%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team cassis

Combinaison d’Approches pour la Sécurité
des Systemes InfiniS

Lorraine

- THEME 2A -

ctivity

Table of contents

Team

Overall Objectives

2.1. Background

2.2. Context

2.3. Challenge

Scientific Foundations

3.1. Introduction

3.2. Automated deduction

3.3. Synthesizing and solving set constraints

3.4. Reachability analysis for infinite state systems
3.4.1. Context
3.4.2. Approximations and accelerations

Application Domains

4.1. Verification of security protocols

4.2. Automated boundary testing from formal specifications

4.3. Program debugging and verification

Software

5.1. CASRUL

5.2. BZ-Testing-Tools

5.3. haRVey and related tools

54. CLPS
5.5. daTac
5.6. SPIKE

New Results
6.1. Automated deduction
6.1.1. Decision procedures and their extensions
6.1.2. Symbolic constraint solving
6.1.3. Verification of collaborative editors
6.2. Security protocol verification
6.2.1. Extension of the Dolev-Yao model
6.2.2. Intruder knowledge approximation
6.2.3. On-line intrusion detection
6.3. Reachability analysis
6.3.1. Reachability analysis for testing
6.3.2. Reachability computation for parametric systems

6.3.3. Test case and test driver generation from a formal model using constraint solving

6.3.4. Approximation of linear transition systems
Contracts and Grants with Industry
7.1. Industrial contracts
7.2. RNTL
7.3. ANVAR
7.4. 1IST AVISPA
7.5. INTERREG Test-UML
Other Grants and Activities
8.1. International grants
8.2. National grants
8.3. International grants

O 0RX IR BB WNNDNME

e e e e e e e e e
LW WO = OO OO O\

13
13
14
15
15
15
15
16
16
16
16
16
16
17
18

2 Activity Report INRIA 2003
8.4. Individual involvement 18

8.5. Visits of foreign researchers 19

8.6. Visits of team members 19

9. Dissemination 20
9.1. Ph. D. theses 20

9.2. Committees 20

9.3. Seminars, workshops, and conferences 20

22

10. Bibliography

1. Team

CASSIS is a joint project between Laboratoire Lorrain de Recherche en Informatique et ses Applications
(LORIA - UMR 7503) and Laboratoire d’Informatique de I’ Université de Franche-Comté (LIFC - FRE 2661).

Head of project-team
M. Rusinowitch [LORIA]

Vice-Head of project-team
F. Bellegarde [Université Franche-Comté, LIFC]

Administrative assistant
S. Drouot [LORIA]

Staff member (INRIA)
S. Ranise [LORIA]

Staff member (CNRS)
V. Cortier [from Oct. 1, 2003, LORIA]

Faculty member (Université Nancy 2)
L. Vigneron [LORIA]

Faculty members (Université Franche-Comt¢)
F. Ambert [LIFC]
F. Bouquet [LIFC]
G. Cécé [LIFC]
A. Giorgetti [LIFC]
P.-C. Héam [LIFC]
O. Kouchnarenko [LIFC]
B. Legeard [LIFC]
F. Peureux [from Oct. 1, 2003, LIFC]

Post-doctoral fellows
D. Déharbe [Until Mar. 1, 2003, Brazil]
A. Imine [Algeria]
C. Qin [Until Oct. 1, 2003, China]
S. Stratulat [Teaching assistant until Oct. 1, 2003, LORIA]

Ph. D. Student
T. Abbes [BDI-PED, LORIA]
Y. Boichut [INRIA, LIFC]
C. Charlet [Teaching Assistant, LIFC]
S. Chemin [ANVAR, LIFC]
Y. Chevalier [Teaching Assistant, LORIA]
J.-F. Couchot [PRAG UFC, LIFC]
F. Dadeau [ACI, LIFC]
Y. Mainier [FEDER, LIFC]
J. Musset [DGA, LORIA]
F. Peureux [Teaching Assistant until Sept. 1, 2003, LIFC]
J. Santos Santiago [INRIA, LORIA]
M. Turuani [MENRT, LORIA]
N. Vacelet [MENRT, LIFC]

Project Technical Staff
M. Bouallagui [INRIA, until Sept. 1, 2003, LORIA]
S. Guenaud [ANVAR, LIFC]

2 Activity Report INRIA 2003

2. Overall Objectives
2.1. Background

CASSIS is a joint project between Laboratoire Lorrain de Recherche en Informatique et ses Applications
(LORIA - UMR 7503) and Laboratoire d’Informatique de I’ Université de Franche-Comté (LIFC - FRE 2661).

The objective of the project is to design and develop tools to verify the safety of systems with an infinite
number of states. The analysis of such systems is based on a symbolic representation of sets of states in
terms of formal languages or logical formulas. Safety is obtained via automatic proof, symbolic exploration of
models or test generation. These validation methods are complementary. They rely on the study of accessibility
problems and their reduction to constraint solving.

An originality of the project is its focus on infinite systems, parameterized or large scale, for which each
technique taken separately shows its limits. Such is the case for example of protocols operating on topologies
of arbitrary size (ring networks), systems handling data structures of any size (sets), or whose control is
infinite (automata communicating through an unbounded buffer). Ongoing or envisioned applications concern
embedded software (e.g. smart cards, automotive controllers), cryptographic protocols (IKE, SET, TLS,
Kerberos) designed to ensure trust in electronic transactions, and distributed systems.

The problem of validating or verifying reactive systems is crucial with respect to the increasing number
of security-sensitive systems. The failure of these critical systems can have dramatic consequences since for
instance they are embedded in vehicles components, or they control power stations or telecommunication
networks. Beside obvious security issues the reliability of products whose destination is millions of end-users
has a tremendous economical impact.

There are several approaches to system verification: automated deduction, reachability analysis or model-
checking, and testing. These approaches have different advantages and drawbacks. Automated deduction
can address practical verification however it remains complex to handle and requires a lot of expertise and
guidance from the user. Model-checking is exhaustive but must face combinatorial explosion and becomes
problematic with large-size or infinite systems. Testing is fundamental for validating requirements since it
allows for discovering many errors. However, it is almost never exhaustive and therefore only leads to partial
solutions. Hence we believe that these approaches should not be considered as competing but complementary.

The goal of our project is to contribute to new combinations of these three verification techniques in a
framework that would allow applying them in an industrial context. In particular we expect some breakthrough
in the infinite-state verification domain by joint applications of deductive, model-checking and testing
techniques.

2.2. Context

For verifying the security of infinite state systems we rely on

e Different ways to express the safety, reachability or liveness properties of systems, linear-time or
branching-time logics, ..., the application of abstraction or abstract interpretation of models in order
to accelerate (or make it feasible for infinite state systems) analysis based on model exploration.

e Test generation techniques and constraint-based model-checking.

e The modeling of systems whose verification needs to consider an infinite number of states. This
modeling may be obtained by encoding states as words, terms or trees and by representing infinite
sets of states by languages. To each of these structures corresponds appropriate action families, such
as transductions or rewritings.

Our goal is to apply these different approaches for ensuring the security of industrial systems by providing
adequate methods and tools. In more details we aimed at the following contributions (see continuous lines in
Figure 1):

Project-Team cassis 3

1. verification of abstract models derived from existing systems;

2. tests generation from the abstract model for validating the existing model;

3. cross-fertilization of the different validation techniques (deduction, model-checking, test) by taking
advantage of the complementarity scopes and of their respective algorithmic contributions.

Let us mention that all these techniques comply with various development methodologies.

requirements
// V\
Vi N
. . 4 N . .
implementation - *« formalization
N
/ ’ A A
N
///
abstraction verification)
system abstract model model-checking
ST deduction
concretization eductio
execution test generation constraint
strengthening

Figure 1. Software validation in CASSIS

2.3. Challenge

Verifying the safety of infinite state systems is a challenge: nowadays algorithmic techniques only apply to very
specific infinite state systems. Let us mention well-structured transition systems [78] or systems with security
properties that can be verified on finite abstractions of them. On the other hand the deductive approaches are
good candidates to capture infinite system safety verification but are difficult to bring into operation and require
a deep expertise. A solution consists of integrating several verification methods by combining theorem-proving
and model-checking for instance.

The behavior of infinite states systems is expressed in the various models by composing or iterating actions.
One of the main problems with algorithmic techniques is to compute the effect of these actions on the initial
state. This computation is called reachability analysis. The verification of safety properties as well as the
automatic generation of test cases rely heavily on the accuracy of reachability analysis.

The transverse goal is to push away the limitations on the use of formal verification techniques, to ease their
applications, and to let them scale-up.

1. For properties that can be checked by reachability analysis we have proposed models based on
regular languages and rational transductions, relying on works by Bouajjani et al. [68]. We have
completed them by designing algorithms for verifying a refinement relation between two models &
and 7 i.e. for checking that every behaviour of T is a behaviour of 8 [66]). This refinement relation
when satisfied preserves the safety properties and therefore allows them to be inherited. We shall
investigate this approach with other representations.

4 Activity Report INRIA 2003

2. In order to generate boundary-value functional test cases [6], we abstract models as constrained
states. These constraints are solved by a customized solver, called CLPS [19]. The test cases are
derived in two steps:

i. partitioning of the formal model and extraction of boundary values,

ii. reachability graph exploration from constrained states in order to reach boundary values
and generate state sequences (trace) as test cases with the oracle.

After the generation phase, a reification is used to produce the test drivers from the generated test
cases in order to perform it on the system under test and to provide automatic verdict assignment [31].
Furthermore, the kernel of the engine allows one to perform specification animations in order to
validate the model [70].

The kernel of the engine allows also to perform specification animations too [84] for validating the
model. Moreover the abstraction allows verifying linear temporal logic properties for systems with
a large number of states [83].

3. For the safety on infinite state systems we have designed automated deduction tools based on term
rewriting SPIKE [2], daTac [7], haRVey [39] and an extensible and modular platform for detecting
flaws and potential attacks on security protocols [5] [72]. The main techniques involved in these
systems are deduction, constraint solving and induction. The tools have been built on the modeling
of systems by terms and rewrite rules. Our works with other models based on regular languages of
words or trees and of transducers should complement these term rewriting models.

In order to address this challenge, we rely on complementary skills within the project. We believe that each
of the three techniques will benefit from concepts and algorithms designed for the two others.

3. Scientific Foundations

3.1. Introduction

Our main goal is to design techniques and to develop tools for the verification of (safety-critical) systems, such
as programs or protocols. To this end, we develop a combination of techniques based on automated deduction
for program verification, constraint resolution for test generation, and reachability analysis for the verification
of infinite state systems.

3.2. Automated deduction

The main goal is to prove the validity of assertions obtained from program analysis. To this end, we develop
techniques and automated deduction systems based on rewriting and constraint solving. The verification of
recursive data structures relies on inductive reasoning or the manipulation of equations and it also exploits
some form of reasoning modulo properties of selected operators (such as associativity and/or commutativity).

Rewriting, which allows us to simplify expressions and formulae, is a key ingredient for the effectiveness
of many state-of-the-art automated reasoning systems. Furthermore, a well-founded rewriting relation can
be also exploited to implement reasoning by induction. This observation forms the basis of the approach to
inductive reasoning implemented by SPIKE. This system also features a combination of many simplification
techniques and allows us to detect invalid conjectures. There exist other reasoning systems providing a high
degree of automation for induction such as NqThm and its descendent Acl2. However, these systems do not
allow the user to refute false conjectures as it is the case for SPIKE.

The constraints are the key ingredient to postpone the activity of solving complex symbolic problems only
when this is really necessary. They also allow us to increase the expressivity of the specification language
and to refine theorem-proving strategies. As an example of this, the handling of constraints for unification
problems or for the orientation of equalities in the presence of interpreted operators (e.g. commutativity and/or

Project-Team cassis 5

associativity function symbols) will possibly yield shorter automated proofs. We investigate these techniques
both from a conceptual and a practical viewpoint by implementing them in the system daTac. This tool, to the
best of our knowledge, is the only one which integrates refutationally complete equational reasoning based
on rewriting techniques modulo associative-commutative operators. However, when considering the pure
equational case, the E prover [85] is more efficient thanks to its powerful redundancy elimination techniques
and it is also used in this project.

Finally, decision procedures are being considered as a key ingredient for the successful application of
automated reasoning systems to verification problems. A decision procedure is an algorithm capable of
efficiently deciding whether formulae from certain theories (such as Presburger arithmetic, lists, arrays, and
their combination) are valid or not. We intend to develop techniques to build and combine decision procedures
for the domains which are relevant to verification problems. We also want to perform experimental evaluation
of the proposed techniques by implementing them within the system haRVey, which features a combination
of propositional reasoning (implemented by means of Binary Decision Diagrams or BDD) and of decision
procedures, their combinations, and their extensions to semi-decision procedures handling larger (possibly
undecidable) fragments of first-order logic.

Finally, in order to better understand the various sources of problems in automated theorem proving, we
want to study the complexity of constraint solving problems such as unification and orientability of equations.

3.3. Synthesizing and solving set constraints

The aim of this research is the evaluation of set-oriented formal specifications. The current work concerns the
development of a set constraint solving system based on the CLPS core [19].

By evaluation, we mean the rewriting of the formal model into a constraint system, and the ability for the
solver to verify the invariant on the current constraint graph, to propagate preconditions or guards, and to apply
the substitution calculus on this graph. The constraint solver makes it possible to look into the reachability
graph, representing the states defined by the specification. It is directly used for animating specifications and
automatically generating abstract test cases.

Applying constraint logic programming technology in the validation and verification area is currently an
active way of research. It usually requires concepts on domain finiteness and also the writing of specific
solvers to deal with the description language’s vocabulary.

The technology used in the CLPS solver is based on rewriting set formulae into disjunctive normal form
formulae based on set operators (€, &, =, etc). Usual propagation rules on finite domains have been revisited
with the addition of domains able to contain variables, the V-domains. This allows us to take advantage of the
structure of the formula extracted from the formal model. But this approach requires a finiteness assumption,
and in particular, the infinite terms, like the universe sets—abstract sets in B—must be replaced by a finite
enumerated set before calling the CLPS solver. Moreover, the current version of the solver is able to deal with
B notation, and the Z notation is currently being integrated, whereas the principles used in animation, invariant
verification and test generation can be generalized to every set-oriented notation.

3.4. Reachability analysis for infinite state systems

The main objective of this task is deciding if non-desirable states can or cannot be reached by a huge size or
infinite state system. This reachability problem is obviously crucial to guarantee the safety of critical systems.

3.4.1. Context

Presently, infinite state system verification is done on a (finite state) abstraction of the infinite system. These
abstractions use symbolic representations coming from different theories such as languages and automata,
various logics, term rewriting systems, constraint systems, etc.

We adapt and specialize these techniques to answer the particular question of the reachability analysis. This
question is directly linked with some objectives of the other tasks. Indeed, before testing a limit state, one

6 Activity Report INRIA 2003

might like to know if it is reachable. Also, a non-practical proof can be improved and assisted by knowing
some useful sets of reachable states.

In order to improve the efficiency of the reachability analysis, the (semi-)algorithms which perform a
symbolic exploration of infinite state systems need to be examined and adapted to huge size and parameterized
systems. These algorithms are based on logical abstractions and theories requiring their combination with
automatic demonstration tools.

3.4.2. Approximations and accelerations

The reachability sets of an infinite kind (communicating automata systems, parameterized systems) are in
general non recursive. Our pragmatic goal is then to compute a sequence of sub-approximations of the set of
reachable states. Such a sequence has to converge “often” and in a finite number of steps towards the exact
reachability state set. This set is accurate since the application systems which need to be verified are far from
having the power of Turing machines.

The first problem to be solved is how to obtain a finite representation of sets of infinite states. This
representation has to be compatible with the way we compute the reachable state space (traversal of the control
flow graph of the system and approximation of the effect of the loops in this control flow graph).

The second problem we have is how to compute in a finite number of steps an infinite number of reachable
states [67][68]. This can only be solved by computing in one step the effect of infinite sequences of transitions
of the system (called meta-transitions). The abstraction of infinite sequences of transitions into a meta-
transition has to be adapted to the properties to be verified on the system.

4. Application Domains
4.1. Verification of security protocols

Security protocols such as SET, TLS and Kerberos, are designed for establishing the confidence of electronic
transactions. They rely on cryptographic primitives the purpose of which is to ensure integrity of data,
authentication or anonymity of participants, confidentiality of transactions, etc.

The experience has showed that the design of those protocols is often erroneous, even when admitting that
cryptographic primitives are perfect, i.e. that an encoded message cannot be decrypted without the appropriate
key. An intruder can intercept, analyze and modify the exchanged messages with very few computation means
and therefore, for example, generate important economic damage.

Analyzing cryptographic protocols is complex because the set of configurations to consider is very large, and
can even be infinite: one has to consider any number of sessions, any size of messages, sessions interleaving,
algebraic properties of encryption or data structures.

Our objective is to automatize as much as possible the analysis of protocols starting from their specification.
This consists in bringing a tool easy to use, permitting to specify a large number of protocols thanks to a
standard high-level language, and permitting either to look for flaws in a given protocol or to check that it
satisfies a given property. Such a tool is essential for verifying existing protocols, but also for helping in
designing new ones. For our tool to be easy to use, it has to provide a graphical interface allowing a user to do
only click-button.

The system CASRUL [5] that we are developing is a first prototype, giving an idea of what will be the
final tool. It permits to consider many protocols, but its specification language has to be extended for handling
e-business protocols for example.

4.2. Automated boundary testing from formal specifications

In [6], we have presented a new approach for test generation from set-oriented formal specifications: the BZ-
TT method. This method is based on Constraint Logic Programming (CLP) techniques. The goal is to test
every operation of the system at every boundary state using all input boundary values of that operation. The
unique features of the BZ-TT method are that it:

e takes both B [62] and Z [87] specifications as input;

Project-Team cassis 7

e avoids the construction of a complete finite state automaton for the system;

e produces boundary-value test cases (both boundary states and boundary input values);
e produces both negative and positive test cases;

e is fully supported by tools;

e hasbeen validated in several industry case studies for smart card OS and application validation (GSM
11-11 standard [18] and Java Card Virtual Machine Transaction mechanism [31]) and for embedded
automotive software (an automobile wind-screen wiper controller).

This test generation method can be summed up as follows: from the formal model, the system computes
boundary values to create boundary states; test cases are generated by traversal of the state space with
a preamble part (sequences of operations from the initial state to a boundary state), a body part (critical
invocations), an identification part (observation and Oracle state computation) and a post-amble part (return
path to initial or boundary state). Then, an executable test scripts file is generated using a test pattern and
a table of correspondence between abstract operations (from the model) and concrete ones. This approach
differs on several main points from the work of Dick, Faivre er al: first, using boundary goals as test objectives
avoids the complete construction of the reachability graph; second, this process is fully automated and the test
engineer could just drive it at the boundary value computation level or for the path computation.

The BZ-TT method is fully supported by the BZ-Testing-Tools tool-set. This environment is a set of tools
dedicated to animation and test cases generation from B or Z formal specifications. It is based on the CLPS
constraint solver, able to simulate the execution of the specification. By execution, we mean that the solver
computes a so-called constrained state by applying the pre- and post-condition of operations. A constrained
state is a constraint store where state variables and also input and output variables support constraints.

A unique feature of the BZ-Testing-Tools approach is its strong boundary testing orientation. Despite the
enormous popularity of boundary-value testing strategy for black-box testing in the software practitioners
guide, currently this approach has not been widely investigated for automated formal model-based test
generation. In the BZ-TT approach, boundaries are computed both for state variables in each effect predicates
and for the input variables in the computation of the body part of the test.

One orientation of the current work is to go beyond the finiteness assumption limitations by using symbolic
constraint propagation during the test generation process.

4.3. Program debugging and verification

Catching bugs in programs is difficult and time-consuming. The effort of debugging and proving correct even
small units of code can surpass the effort of programming. Bugs inserted while “programming in the small”
can have dramatic consequences for the consistency of a whole software system as shown, e.g., by viruses
which can spread by exploiting buffer overflows, a bug which typically arises while coding a small portion of
code. To detect this kind of errors, many verification techniques have been put forward.

Static analysis has been used to automatically detect common bugs such as out-of-range array subscripts
and variables used before initialization. Many commercial tools (such as PREfix [71]) are based on such
techniques. More recently, in the static analysis community, there seems to be a growing demand for a
more declarative approach.! In fact, while static analysis techniques are quite efficient, they are described
operationally by means of the rules used in the analysis and the domains of abstract values. As a consequence,
in some cases, the properties checked by the analysis may not match the expectations of the programmer. A
declarative approach seems mandatory to enable the programmer to express the properties to be checked so
that the results of the analysis can be confronted against his expectations. In this direction, some tools based on
(extensions of) first-order logic have been developed (e.g. [81][79][77]). These tools take a program with some
annotations written in (an extension of) first-order logic and they produce a set of formulae of (a fragment of)

'See, for example, the challenge at http://research.microsoft.com/specncheck/consel_challenge.htm.

8 Activity Report INRIA 2003

first-order logic whose satisfiability implies that a bug is present in the code. In order to check for satisfiability,
a theorem prover capable of handling the generated proof obligations must be available.

Theorem proving is also important to other systems for model checking software. For example, SLAM [65]
implements the abstract-check-refine paradigm: build an abstract model, check the desired property and, if
the check fails, refine the model, and repeat. The abstract model is a program with the same control-flow as
the original, but only boolean variables tracking the state in the original program. Checking the property is
done by reachability analysis: if a certain statement is not reachable in the abstracted program, then it is not
reachable in the original one. However, the abstraction may be too coarse, so that a statement is reachable in
the abstract program but not in the original one. In such a case, counterexample-driven refinement is applied
to generate a new abstract program without the spurious path. SLAM relies on theorem proving, to detect
spurious error paths, and give hints to refine the abstraction.

It is well known that discharging the proof obligations arising in software verification reduces to the
problem of proving the unsatisfiability of a first-order formula ¢ with a complex Boolean structure modulo a
background theory. For example, ¢ can encode an execution path e of a program and the theory can specify its
domains of computation. In this situation, the unsatisfiability of ¢ modulo the theory implies the unfeasibility
of e. haRVey—the prototype we are developing—is a system based on a combination of BDD (for the
propositional reasoning) and superposition theorem proving (for the first-order equational reasoning) and has
been designed to be open and easily embeddable in larger verification systems in order to test our ideas in a
flexible way.

The goals of our research are two. First, we will perform theoretical investigations of various combinations
of propositional and first-order satisfiability checking so to automate the theorem proving activity required
to solve a large class of program analysis problems. Second, we will perform experimental investigations to
make such techniques scale up significantly, so that real programs (of thounds or even millions of lines) can be
precisely analized. In fact, the actual state-of-the-art of program analysis techniques shows a dramatic trade-off
between precision and performance; for example, there exist pointer analysis techniques capable of handling
huge programs whose results are not very informative, see e.g. [80] for a discussion on this issue.

5. Software
5.1. CASRUL

Key words: Protocols, cryptography, verification.
Participants: M. Bouallagui, Y. Chevalier, M. Rusinowitch, M. Turuani, L. Vigneron.

CASRUL is a system that encompasses several translation and constraint solving techniques for automating
protocol analysis in Dolev-Yao model and some extensions. Protocol specifications as they can be found in
white papers are compiled by the CASRUL system and then are passed on decision procedures for checking
whether they are exposed to flaws.

The CASRUL compiler performs a static analysis to check the executability of the protocol (i.e. whether
each principal has enough knowledge to compose the messages he is supposed to send), and then compiles
the protocol and intruder activities into an Intermediate Format based on first-order multiset rewriting. The
Intermediate Format unambiguously defines an operational semantics for the protocol. Afterwards, different
translators can be employed for translating the Intermediate Format into the input language of different analysis
tools. The Intermediate Format can be also generated in a typed mode (the untyped one is the default), which
leads to smaller search spaces at the cost of abstracting away type-flaws from the protocol. This compiler is
the front-end of several verification tools designed in the context of the European projects AVISPA.

The detection of flaws in a hostile environment can be reduced to solving symbolic constraints in the
message space. The intruder should send messages that comply with the protocol specification in order to

Zhttp://www.loria.fr/equipes/cassis/softwares/casrul/

Project-Team cassis 9

get undetected by honest agents. After the last protocol step, the intruder should be able to derive the secret
from the replies sent by the honest agents (and possibly using some initial knowledge).

The CASRUL implementation of these symbolic constraints solving is efficient and has been successful
with many security problems. Among the 51 protocols in the Clark/Jacob library [73], 46 can be expressed in
the tool specification language. Among the 51 protocols 35 are flawed, and CASRUL can find a flaw in 32 of
them, including a previously unknown type confusion attack in Denning Sacco Protocol.

5.2. BZ-Testing-Tools

Key words: Test generation, formal specification, animation of specifications.
Participants: F. Ambert, F. Bouquet, S. Guenaud, B. Legeard, F. Peureux, N. Vacelet.

BZ-Testing-Tools® (BZ-TT, for short) is a tool-set for animation and test generation from B, Z and State-chart
specifications. BZ-Testing-Tools provides several testing strategies (partition analysis, cause-effect testing,
boundary-value testing and domain testing), and several test model coverage criteria (multiple condition
coverage, boundary coverage and transition coverage). The tool-set is composed of three graphic user
interfaces, for animation, test generation and reification. Animation is used to validate the model. Test
generation is used to define the test to validate. Reification is used to translate abstract tests into concrete
executable scripts.

5.3. haRVey and related tools

Key words: Automated deduction, saturation theorem proving, satisfiability, equational theories, boolean
reasoning, BDD:s.

Participants: J.-F. Couchot, D. Déharbe, A. Giorgetti, S. Ranise [correspondent].

haRVey* is a theorem prover for first-order logic with equality [39]. Its main feature is the capability of
behaving as a decision procedure for the problem of checking the validity of certain classes of (ground)
formulae modulo some theories of relevance in verification such as lists, arrays, and their combinations. The
system is based on a combination of BDDs to compactly represent the boolean structure of formulae and
superposition theorem proving to efficiently and flexibly reason in many first-order equational theories. If a
formula is not a logical consequence of a theory, then haRVey returns a set of literals from which a counter-
example can be built.

The system has been especially designed to be integrated in larger verification systems, such as interactive
theorem provers, symbolic simulators, and verification condition generators. The following tools (developed
within the CASSIS project) have been combined with haRVey:

e bam2rv takes a B abstract machine containing an invariant clause and generates proof obligations
encoding the fact that the invariant is inductive (for details, see [38][58]).

e rvqe’ performs some transformations on a validity problem so that haRVey can process it.

Also the tool Why* (developed by J.-C. Filliatre of LRI, Université Paris Sud, Orsay) can generate proof
obligations for our system to check the correctness of ML and C programs.

We have successfully applied haRVey (in combination with the tools listed above) to the verification and
the debugging of imperative programs [48][42] as well as of B specifications [38].

3http:/lifc.univ-fecomte. fr/~bztt
*http://www.loria.fr/equipes/cassis/softwares/haRVey/

Shttp://lifc.univ-fcomte. fr/~couchot/rvqe/
Chttp://why.Iri.fr/

10 Activity Report INRIA 2003

5.4. CLPS

Key words: Constraint Logic Programming, Set constraints, Solver.
Participants: F. Ambert, F. Bouquet, S. Guenaud, B. Legeard, F. Peureux, N. Vacelet.

CLPS [19] is a set constraint solver dedicated to the evaluation of set-oriented formal specifications. Its
constraint domain uses Homogeneous Hereditarily Finite Set Universe with set operators and relations
(€,¢,C,=,#, etc) and allows mapping functions (total or partial injection, surjection or bijection) and
relations. CLPS features customized partial consistency techniques using specific inference rules in order
to maintain arc consistency.

5.5. daTac

Key words: Automatic deduction, first-order logic, equational logic, associative-commutative theories, sym-
bolic constraints.

Participant: L. Vigneron [correspondent].

The daTac [88] system (Déduction Automatique dans des Théories Associatives-Commutatives) is a software
for theorem proving and completion in associative and commutative theories, in first-order logic. The
deduction techniques implemented are combining selection strategies, deduction steps, redundant information
deletion, and symbolic constraints. daTac is documented, maintained and accessible on the web (version
0.94).” Recent modifications have been done for giving a better control of deduction and simplification
strategies. daTac is intensively used in the CASSIS group for verifying cryptographic protocols.

5.6. SPIKE

Key words: Induction, consistency of specifications, completeness of function definitions.
Participants: S. Stratulat, M. Rusinowitch [correspondent].

The SPIKE system is a software verification tool. It is able to perform proofs by induction, consistency checks
of specifications and completeness tests of function definitions. SPIKE provides heuristics for the generation
of test sets and for the automatic generation of lemmas. It also allows for minimal user interaction by
automatizing the easy inference steps in the proofs. A reasonable number of examples have been automatically
treated by SPIKE with a lower interaction degree than other similar systems (for example Gilbreath card trick,
Ramsey theorem, binomial theorem, verification of digital systems).

A new prototype (written in OCAML), integrating proof strategies and decision procedures, is under
development by Sorin Stratulat. It has been already successfully applied to the validation of the JavaCard
platform by the LEMME project and to the design to an XML collaborative editor and a file synchronizer by
the ECOO project.

SPIKE is available on the web.*

6. New Results
6.1. Automated deduction

6.1.1. Decision procedures and their extensions

Key words: Propositional and first-order satisfiability, quantifier instantiation, integration, combination of
decision procedures.

Participants: F. Bellegarde, D. Déharbe, S. Ranise, M. Rusinowitch, L. Vigneron.

Thttp://www.loria.fr/equipes/cassis/softwares/daTac/
8http://www.loria.fr/equipes/cassis/softwares/spike/

6.1.2.

Project-Team cassis 11

In many cases, applying software analysis techniques reduces to the problem of proving the unsatisfiability
of a formula of first-order logic with a complex Boolean structure modulo a background theory. So, we have
considered the problem of checking that a Boolean combination of ground literals is satisfiable modulo a
theory. Our technique is based on a simple yet efficient combination of BDDs and superposition theorem
proving. The idea is to abstract ground atoms to propositional letters and then let BDDs represent the Boolean
structure of (an abstraction of) the formula. Since it is easy to extract the Disjunctive Normal Form (DNF)
of ¢4 from its BDD representation, we check the satisfiability modulo the theory of each disjunct in the
DNF by invoking a superposition theorem prover. A refinement of this schema which dramatically improves
performances (based on the capability of generating suitable lemmas to prune the BDD) has also been devised.
In order to build procedures which check for satisfiability modulo a certain theory, we have adopted our work
in [16]. This allows us the flexible implementation of many decision (and semi-decision) procedures by simply
feeding a superposition theorem prover with the axioms of the theory and the literals to be proved satisfiable
modulo the theory [48]. It is also an efficient alternative to specialized decision procedures as described in
[63].

We have also considered the problem of reducing the satisfiability of a first-order formula ¢ (possibly
containing quantifiers) modulo a theory T to the satisfiability of a ground formula ¢, modulo a theory T’
s.t. ¢ is satisfiable modulo T iff ¢, is satisfiable modulo J” and T is contained in J’. This can be seen as a
pre-processing step so that the technique developed for ground formulae can be applied also to non-ground
ones [39].

The efficiency of the proposed algorithms is shown by comparing an implementation of our techniques in the

system haRVey with the state-of-the-art theorem prover Simplify (used in the ESC/Java tool [79]) on a set of
benchmarks extracted from the debugging and verification of C functions manipulating pointers. The results
show that our techniques scale better and always return correct results (Simplify may return false negatives
given its heuristic nature). For details of the experiments see [39].
Another viewpoint on decision procedures is to generalize the congruence closure algorithm with the aim of
building a compact representation of an equational theory. In collaboration with Stony Brook University, NY,
we have used this technique to define rewriting based decision procedures which are crucial ingredients in
developing efficient automated reasoning systems [17]. This work can also be seen as a rational reconstruction
of previous results in the literature and allows us to understand the relationships between such results (Nelson
et Oppen [82], Downey, Sethi, and Tarjan [76], Shostak [86]). Furthermore, all the results carry over to
associative-commutative operators by using combination algorithms for the completion of theories having
disjoint signatures so to generate a convergent term rewriting system on an extended signature. This approach
can also be used to solve word problems for theories containing associative-commutative symbols without
resorting to simplification orderings which must be compatible with associative-commutative operators [64].
With this approach, we plan to investigate different approaches to fragments of set theory so to extend the
techniques used in the CLPS system. In particular, we will try to obtain modularity results for combining
decision procedures for different theories sharing some symbols. We will also try to propose techniques to
smoothly integrate decision procedures within the general strategies of the automated theorem provers.

In [50][60], we are also investigating an alternative approach to combining decision procedures whereby
key ingredients of the Shostak schema (i.e. the canonizer and the solver) are extended and used to refine the
Nelson-Oppen approach for certain classes of theories. This work is being carried over in D.-K. Tran’s thesis
work. In this context, we plan to implement our ideas in haRVey so to test their practical value as well as to
extend the system to reason about theories which are difficult, if not impossible, to handle by superposition
(e.g. Presburger arithmetic). Finally, in [42], we have investigated the integration between the Nelson-Oppen
combination schema and the activity of instantiating quantifiers so to automatically prove formulae containing
quantifiers in the presence of a combination of theories.

Symbolic constraint solving
Key words: Unification, constraint solving.

Participant: M. Rusinowitch.

6.1.3.

12 Activity Report INRIA 2003

Equational unification problems are central in automated deduction. In collaboration with Siva Anantharaman
(LIFO, Orléans) and Paliath Narendran (SUNY, Albany) we have considered unification modulo theories
that extend the well-known ACT (associative, commutative, idempotent) by adding a binary symbol ‘%’
that distributes over the AC'I-symbol ‘+’. If this distributivity is one-sided we get a DEXPTIME-complete
unification problem [29]. If ‘%’ is distributive on both side over ‘+’, we get a theory denoted AC'I D; we show
unification modulo ACID to be NEXPTIME-decidable and DEXPTIME-hard [28]. These theories seem to
be related to the analysis of programs modeled in terms of process algebras and to the theory of set constraints.
We have also proved that modulo the theory which adds on to ACID the assumption that ‘x’ is associative-
commutative unification is undecidable.

Verification of collaborative editors
Key words: Collaborative, editor synchronization, consistency, proof.

Participants: A. Imine, M. Rusinowitch.

Collaborative Editors allow a group of users to edit a shared document at the same time from physically
dispersed sites that are interconnected by a supposed reliable network. The interactive nature of Collaborative
Editors requires that the effect of a user’s action be seen by the local user and distant users in a timely
way. Therefore, the state-of-the-art collaborative Editors usually replicate the shared document at each site
and use Operational Transformation (OT) algorithms to achieve convergence copies of cooperating sites and
high responsiveness. OT algorithms is based on optimistic concurrency control: local operations are executed
immediately on the local replica of the document without being nondeterministically blocked or delayed as
in many pessimistic schemes. On the other hand, remote operations are executed after being transformed
against those that have been executed and that are concurrent. Using these algorithms, however, imposes the
verification of convergence conditions. Verifying these conditions is often difficult — even impossible — to
produce by hand.

In this respect, the objective of this work is to study the convergence problem in order to propose a formal
framework for developing correct OT algorithms. This work is developed in collaboration with the ECOO
project.

Initially, we have constructed a transition system from a Collaborative Editor, where the transition steps
were expressed as rewrite rules. In order to verify the convergence conditions from this specification we have
used the SPIKE prover. In that way we have detected bugs in several Collaborative Editors designed by the
specialists of the domain [40].

To simplify the verification task, we have developed a prototype tool, VOTE (Validation of Operational
Transformation Environment), for automatically checking convergence conditions [43][40]. The input of
our tool consists of a formal specification written in algorithmic style. The tool compiles the description in
conditional equations that can be analyzed by SPIKE.

Furthermore, we have proposed to use the transformational approach for building a generic and safe
synchronizer [46]. This one forces convergence in all cases and reconciles divergent data at all possible levels
of granularity. The synchronizer resolves all conflicts automatically without delegating them to users or the
administrator. Users can compensate system decisions after synchronization completion.

6.2. Security protocol verification

6.2.1.

Key words: Protocol, security, verification, exclusive-or, exponentiation.

Extension of the Dolev-Yao model
Participants: M. Bouallagui, Y. Chevalier, M. Rusinowitch, J. Santiago, M. Turuani, L. Vigneron.

In the domain of protocol verification, we have obtained this year the first results relaxing the perfect
cryptography assumption [35]. This hypothesis was a limitation on most formal protocol analysis techniques.
We have also studied security for a model allowing an infinite number of sessions for finite messages. Finally
we have enhanced a validation technique based on over-approximations of the intruder knowledge.

6.2.2.

6.2.3.

Project-Team cassis 13

We have designed an algorithm for deciding the insecurity of cryptographic protocols in presence of the
standard Dolev-Yao intruder (with a finite number of sessions) extended with so-called oracle rules, i.e.
deduction rules that satisfy certain conditions. As an instance of this general framework, we obtain that
protocol insecurity is in NP for an intruder that can exploit the properties of the exclusive or operator. This
operator is frequently used in cryptographic protocols but cannot be handled in most protocol models. An
immediate consequence of our proof is that checking whether a message can be derived by an intruder (using
exclusive or) is in PTIME. We also apply our framework to an intruder that exploits properties of certain
encryption modes such as cipher block chaining.

By taking a different oracle rule we have obtained an NP decision procedure for the formal analysis of
protocols in presence of modular exponentiation with products allowed in exponents [36]. Unlike other works,
the number of factors that may appear in the products is unlimited. This procedure is quite useful to analyze
protocols based on Diffie-Hellman technique. For instance we have shown that our model is powerful enough
to uncover known attacks on the Authenticated-Group Diffie-Hellman.2 protocol suite.

We have proposed a protocol model which integrates two different ways of analyzing cryptographic
protocols: i) analysis w.r.t. an unbounded number of sessions and bounded message size, and ii) analysis
w.r.t. an a priori bounded number of sessions but with messages of unbounded size. We have shown that in
this model secrecy is DEXPTIME-complete [34]. This result is obtained by extending the Dolev-Yao intruder
to simulate unbounded number of sessions.

Intruder knowledge approximation
Participants: Y. Boichut, G. Cécé, P.C. Héam, O. Kouchnarenko.

We have investigated the tree automata method by Genet and Klay for the validation of protocols in
collaboration with Dublin City University and based on the tool Is2Tif they have developed for Isabelle prover
syntax. The idea is to over-estimate the intruder knowledge by using regular tree languages. This method
allows one to show that some states are unreachable, and hence that the intruder will never be able to know
certain terms. Regular tree-languages can be used here to effectively model the knowledge that the intruder
might have acquired from previous sessions.

A translator to ISABELLE -Is2Tif input syntax- has been developed in order to link CASRUL together with
Is2Tif. This work gives to CASRUL the capability to verify security protocols with an unbounded number of
sessions. Furthermore the class of verifiable protocols w.r.t. Is2Tif has been extended. We intend to develop a
CASRUL package based on the intermediate format and using the principles of Is2tif.

On-line intrusion detection
Participants: T. Abbes, M. Rusinowitch.

Intrusion Detection Systems are becoming necessary tools for system administrators to protect their network.
However they find more and more difficulties with high speed networks. To enhance their capacity and deal
with evasion techniques, frequently used by hackers, we have introduced a new method to filter the network
traffic. The detection method, while being stateful, processes each packet as soon as it is received. We have
employed this strategy after a new classification of detection rules. Then, we have used efficient multi-search
methods and suitable data structure for signatures. The method has been successfully implemented as an
extension of the Intrusion Detection System “Snort” [25][24].

Nevertheless, IDS are still plagued with false positive alerts, letting security professionals to be overwhel-
med by the analysis tasks. To overcome this problem, we have proposed a combination of pattern matching and
protocol analysis approaches. While the first method of detection relies on a multi pattern matching strategy,
the second one benefits from an efficient decision tree adapted to the network traffic characteristics.

6.3. Reachability analysis

6.3.1.

Reachability analysis for testing
Key words: Set-theoretic specification, boundary test, first-order logic.

6.3.2.

14 Activity Report INRIA 2003

Participants: J.-F. Couchot, D. Déharbe, A. Giorgetti, S. Ranise.

Given a B model of an (already implemented) industrial system, the software called BZ-Testing-Tools
automates the generation of functional boundary tests. However, it follows a process that does not guarantee
their reachability. We plan to add a component to check whether these testing objectives are reachable or not.
The set-theoretic specifications built at LIFC are large, but their reasonably simple structure suggest us to treat
the reachability question with automatic proving techniques like those implemented in haRVey.

The work described in [74] aimed to bridge the gap between this need with the techniques developed for
infinite systems (such as abstraction, acceleration, ...). It defines a reduced language for models and properties
to check and details how to translate a B abstract machine into this language. Algorithms are given to build a
symbolic representation of reachable states, through an abstraction mechanism. The toy example of a process
scheduler is work out entirely to illustrate the method. As a prerequisite to reachability analysis, we showed
how to prove the correctness of a class of B specifications by checking their invariant [38]. When the proof
fails, the question arises to check the reachability of a counter-example exhibited by some model finder. This
question brings us back to our initial task.

This work continues within the Ph. D. thesis of J.-F. Couchot, strengthening the cooperation between the
BZ-Testing-Tools and haRVey.

Reachability computation for parametric systems
Key words: Parametric systems, regular languages, reachability.

Participants: F. Bellegarde, C. Charlet, G. Cécé, P.-C. Héam, O. Kouchnarenko, Y. Mainier.

Regular languages can be used for reachability analysis. We use this language-based model in two directions.

In the first direction, we propose a verification approach for a class of parameterized systems which
are composed of an arbitrary number of similar processes. For that, in C. Charlet’s thesis [10], states of
symbolic transition systems are represented by regular languages and the transitions by transducers over
regular languages. If a symbolic model of the systems can be computed by acceleration of the actions, then
we can also verify safety and liveness properties, and a refinement relation R between these symbolic models.

In [30][52], we present a refinement verification for this class of parameterized systems. The verification
of the refinement relation R by Regular Model Checking [61] is done on transition systems where states are
regular languages and transitions are labelled by accelerated actions. We show that, under some conditions, if R
is verified between two symbolic models, then refinement is verified between concrete parameterized systems
without accelerated actions. Then, we can take advantage of the property preservation by refinement for their
verification since the model checking verification at the abstract level is more likely to terminate. We have
implemented a prototype tool to verify the refinement relation for parameterized systems. Our tool is based
on the LASH” libraries to represent automata and on the RM C" tool to compute transducers acceleration.
Presently, our tool generates symbolic reachability graphs, verifies refinement between two symbolic transition
systems and also verifies safety properties for these systems. When refinement is not verified, our tool finds
the origin of the error. We applied our tool to verify automatically the refinement for abstract and refined
specifications of parameterized systems like the PID [75] and an elevator. We must however complete this
framework by adding the verification of safety and liveness properties.

The second direction is for computing the image of a rational language by the transitive closure of a relation.
This is a central question in a Regular Model Checking. In a recent paper [69], Bouajjani, Muscholl and Touili
proved that the class of rational languages L of the form ULy L1 L;... Ly, is closed under all semi-commutation
relations R, where the union U is finite and the L;’s are either letters or of the form B* with B a subset
of the alphabet. Moreover, a recursive algorithm on the regular expression allows computing R*(L). We
developed a more efficient algorithm to compute R*(L) [53]. Moreover, we answer an open question asked
in the Bouajjani and al.’s paper by giving a larger class of rational languages closed under union, intersection,

° Available at http://www.montefiore.ulg.ac.be/~boigelot/research/lash/.
10 Available at http://www.regularmodelchecking.com/.

6.3.3.

6.3.4.

Project-Team cassis 15

semi-commutative relations and conjugacy. Our algorithm is also effective for this new class. This approach
has been implemented in OCAML. The experimental tests we have done so far are conclusive.

In Y. Mainier’s current thesis work, we are investigating the synchronization of parametric systems using a
Presburger formula. The challenge is to be able to limit the problem sufficiently to obtain acceleration semi-
algorithms. Accelerations and regular model checking are both based on inclusion between regular languages
so another challenge is the decidability of the inclusion in the considered class of languages. The study of
some toys examples seems to answer both requirements. We now have to look for the formal definition of the
corresponding class of applications.

Test case and test driver generation from a formal model using constraint solving
Key words: Model-Based Testing, Formal Specifications, Test Case Generation, test Driver Generation.

Participants: F. Ambert, F. Bouquet, S. Guenaud, B. Legeard, F. Peureux, N. Vacelet.

The need to offer better methods and tools for functional black-box testing of large scale system has given rise
to a large amount of research on generating tests from formal specifications. The BZ-TT approach is based on
an original method of boundary-value extraction and preamble computation based on a customized constraint
logic programming technology. This method has been validated on several real-size industrial applications.
The new research directions that we follow concern various research challenges.

Firstly, we have addressed the problem of mastering the test number explosion. To do that, we formalize
different model coverage criteria to allow the test engineer to choose the level of model coverage he/she wants
during test generation.

Secondly, we have tried to improve search algorithm during the preamble calculus: we are studying a
backward-chaining algorithm using the constraint solver CLPS [37].

Thirdly, we have introduced the Generation of Test Drivers from the abstract generated test cases [31][59].

Finally, we currently work to improve the customized set constraint solver CLPS [19][18] in order to
complete the data-structure and to optimize the resolution.

Approximation of linear transition systems
Key words: Linear transitions systems, model-checking, acceleration rules.

Participants: J. Musset, M. Rusinowitch.

We have proposed in [12][47] a construction for approximating the reachability sets of linear transition
relations. Our approach takes into considerations the asymptotic behavior of the dynamic system depending
on the eigenvalues and the dimension of the characteristic space associated. Compared to previous works,
we improve the class of transition relations for which we can construct a meta-transition. Finally, we use
polynomials to represent these meta-transitions. We have illustrated this method on a train controller specified
in Lustre.

7. Contracts and Grants with Industry

7.1. Industrial contracts

This project is validated by industrial case studies. These case studies help to identify the problem in the
verification of infinite system. During 2003, we have worked in three new industrial case studies:

e Schlumberger e-city (Besangon) with MagIC500, bank paid terminal (january 2002 to September
2003),
e Schlumberger Smart Cards (Montrouge) key management (October 2002 to October 2003),

e PSA with interfaces for the car industry (November 2002 to October 2003).

16 Activity Report INRIA 2003

7.2. RNTL

In the area of structural testing using constraint solving, LIFC has been working in RNTL INKA “Génération
automatique déterministe de données de tests selon des criteres de couverture structurelle” driven by THALES
division Systemes Aéroportés with the laboratories I3S/Nice (Michel Rueher) et LSR/Grenoble (Farid Ouab-
dessalam). It is a pre-project financed by Industry Ministry with 780 KF to LIFC 2001/2003.

7.3. ANVAR

The French government-organization ANVAR supports the development of the tool-set BZ-Testing-Tools with
500Keuros from September 2001 to October 2003. This funding was given in order to create a new company,
Leirios Technologies, able to commercialize and to transfer to the market the BZ-Testing-Tools technology.

7.4. IST AVISPA

AVISPA!" is a shared-cost RTD (FET open) project, funded by the European Commission under the Informa-
tion Society Technologies Programme operating within the Fifth Framework Programme, started on January
Ist, 2003. The participants are: Mechanized Reasoning Group at DIST, Universita di Genova (Genova, Ita-
ly), CASSIS project at INRIA, Information Security Group at ETHZ (Ziirich, Switzerland) and Siemens AG
(Munich, Germany).

AVISPA aims at developing a push-button, industrial-strength technology for the analysis of large-scale
Internet security-sensitive protocols and applications. This technology will speed up the development of the
next generation of network protocols, improve their security, and therefore increase the public acceptance of
advanced, distributed I'T applications based on them. A central aim of the project is to integrate this technology
into a robust automated tool, tuned on practical, large-scale problems collected from IETF drafts, and migrated
to standardization bodies.

7.5. INTERREG Test-UML

In the European Interreg III project (Suisse - Franche-Comté), LIFC is a member of the TestUML project with
the Ecole Polytechnique Fédérale de Lausane - EPFL - concerning Test generation from UML/OCL formal
models. The duration of the project is 2 years and it was started in November 2002.

8. Other Grants and Activities

8.1. International grants

e SECURYPTO,"” a new France-Quebec research network between LIFO (Orléans), IMAG (Gre-
noble), LORIA (Nancy), UQAM (Montréal) investigates the specification and verification of security
properties in process algebras, using notions and techniques from: rewriting, constraints, information
flow and interference, process localities and performance.

e We (Nancy) are collaborating with David Deharbe of Department of Computer Science and Applied
Mathematics, of UFRN, Federal University of Rio Grande do Norte (Natal, Brazil) on the develop-
ment of the system haRVey and its application to various verification problems.

Uhttp://www.avispa-project.org/
Phttp://www.hains.org/security.html

Project-Team cassis

17

8.2. National grants

We have been invited by the members of the INRIA Research action (ARC) ModoCop to participate
to their activities. The goal of this action is to verify object-oriented concurrent programs. "

ACI V3F—*“Validation & Verification of programs with floating-point numbers”.

The goal of this project is to provide tools to support the verification and validation process of
programs with floating-point numbers. More precisely, V3F will investigate techniques to check that
a program satisfies the calculations hypothesis on the real numbers that have been done during the
modelling step. The underlying technology is based on constraint solving.

Partners:

— I3S-INRIA Sophia Antipolis - Michel Rueher,
— IRISA-INRIA Vertecs & Lande - Thierry Jeron & Arnaud Gotlieb,
— CEA-LIST - Bruno Marre.

Duration: 3 years.
Starting: October 2003.

ACI EDEMOI—*“Formal Modelling and Verification of Airport Security”

The EDEMOI project aims at defining an approach for the construction and analysis of a precise
reference document that models and structures current standards and associated recommendations.
The exploitation of this model by the civil aviation authorities will improve airport security.
Partners:

— LSR-IMAG - Yves Ledru,

— CEDRIC-CNAM - Veronique Donzeau-Gouge,
— ONERA Toulouse - Michel Lemoine,

— GET ENST Paris - Sylvie Vignes.

Duration: 3 years.
Starting: October 2003.

ACI Securité GECCOO—*“Génération de code certifié pour des applications orientées objet (Spéci-
fication, raffinement, preuve et détection d’erreurs)”.

This project aims at developing methods and tools for the design of object-oriented systems that
require a high degree of security. The methods and tools will be developed to be integrated,
i.e. together they will form a coherent design method from specification to certified code generation
using refinement, simulation, testing and verification techniques. In particular, the project focuses on
the design of smart card applications, written in a subset of Java (like JavaCard), annotated with JML
specifications. Several tools exist which manipulate JML annotated programs. However, experiences
with using JML for industrial applications also have revealed several of its shortcomings which this
project proposes to attack.

The teams collaborating in this project (Equipe TFC (LIFC), Projet Lemme (INRIA), Projet LogiCal
(LRI), Equipe VASCO (LSR)) have complementary skills in the domains of security, modeling
object oriented programs, and interactive and automatic program verification.

Duration: July 2003 - July 2006.

Bhttp://www-sop.inria.fr/lemme/modocop/

18 Activity Report INRIA 2003

e ACI Cryptologie VERNAM—*Decidable subclasses of cryptographic protocols”
Academic partners: University of Provence (R. Amadio and D. Lugiez) and ENS Cachan (H. Comon
and J. Goubault-Larrecq)
Duration: fall 2000 - fall 2003.

e We are members of the working group Vérification des systemes a nombre infini d’états of the GDR
Spécifications, Preuves et Tests, directed by A. Bouajjani et A. Finkel.

e We participate to the working group Sémantiques Logiques et Opérationnelles, Vérification et
Optimisation (SLOVO) of GDR Spécifications, Preuves et Tests.

e With respect to the Contrat de Plan Etat-Région Lorraine 2000-2006, we are working in the Pole de
Recherche Scientifique et Technologique Intelligence Logicielle within the theme: - Qualité et stireté
des logiciels et systemes informatiques - with the action VALDA (2002-2003).

8.3. International grants

e PAI PROCOPE: Combining automata-theoretic and rewriting techniques for the analysis of crypto-
graphic protocols. The participants are the CASSIS project and the team of professor Thomas Wilke,
Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel.
The aim of this project is to combine the rewriting approach, pursued by the French partner, and the
automata-based approach, studied on the German side, in order to develop algorithms and tools for
the automated analysis of a class of protocols containing many real-world protocols that are out of
the scope of current methods and tools.

e We collaborate with SUP’COM (Ecole Supérieure des Communications de Tunis) with A. Bouhoula,
on the formal verification for telecommunication software.

e In the area of automated test generation from a formal model, we have an active collaboration with
Dr Mark Utting from the Formal Method group from the University of Waikato."* This cooperation
is supported by the France-New-Zealand scientific program.

e In the context of the verification of cryptographic protocols, we are collaborating with D. Sinclair
and F. Oehl of Dublin City University, School of Computer Applications, Ireland.

8.4. Individual involvement

e The TFC group is organizing and will host the national conference “Approches Formelles dans
I’ Assistance au Développement de Logiciel 2004 (AFADL’2004) on June 16-18, 2004.

e Francoise Bellegarde: director of the research team Techniques formelles et a contraintes (TFC) of
the laboratory Laboratoire d’Informatique de I’ Université de Franche-Comté (LIFC), member of the
laboratory board.

e Fabrice Bouquet: elected member in UFR board, elected member in laboratory board. In charge of
the Mobilization area (9 research projects, with 46 researcher and 8 laboratories) in ISTI Institute.'

e Olga Kouchnarenko: elected member of the laboratory board, Program Committee member of the
International Workshop on Formal Methods 2003 (IWFM’03), held in Dublin, Ireland on July 11,
2003.

e Bruno Legeard : elected member of the University of Franche-Comté Scientific Council. Assistant-
Director of the LIFC. Reviewer for the national program RNTL (1999 to 2003).

Yhitp://www.cs.waikato.ac.nz/Research/fm/index.html
Bhitp://www.isti.info

Project-Team cassis

19

Silvio Ranise: Trustee of the european project CALCULEMUS (Systems for Integrated Computa-
tion and Deduction).' Local coordinator of the ACI GECCOO. Co-chair of the First Workshop on
Pragmatics of Decision Procedures in Automated Deduction (PDPAR’03), affiliated to the 19th In-
ternational Conference on Automated Deduction (CADE’19), held in Miami, Fl. (USA). Coordinator
(with Cesare Tinelli) of the Satisfiability Modulo Theories Library (SMT-LIB) initiative."” Organi-
zer of the Theoretical Computer Science Seminar/Séminaire d’informatique fondamentale (SIF) at
LORIA. Web master of the site for the CASSIS project.

Michaél Rusinowitch: member of the IFIP Working Group 1.6 (Rewriting); member of the steering
committee of RTP 19 of CNRS: SECC (Complex or Constrained Embedded Systems); member of
the scientific committee of the CRIL (CNRS, Computer Science Laboratory of Lens); Chairman of
Security Protocol Verification, CONCUR Satellite Workshop, Marseille, september 6, 2003.
Chairman of IJCAR 2004 (with D. Basin) of International Joint Conference on Automated Reaso-
ning, 04 July - 08 July, 2004, Cork, Ireland. PC member of “Rencontres Sécurité et Architecture
Réseaux”, SAR 2003, july 2003, Nancy. PC member of Sixth International Workshop in Formal
Methods IWFM’03). Dublin City University, 11 July 2003.

Editor of a special issue of Technique et Science Informatiques, 2003 on computer security.

Laurent Vigneron: elected member of the LORIA council; member (secretary) of the IFIP Working
Group 1.6; web master of the site Rewriting Home Page, of the Rewriting Techniques and Appli-
cations (RTA) Conference site, and of the web page for the IFIP Working Group 1.6; member of
the scientific council of Université Nancy 2; chairman of the conference FTP: First-Order Theorem
Proving, 2003; member of the FTP steering committee.

8.5. Visits of foreign researchers

Adel Bouhoula (Professor, Tunisia) visited our group (Nancy) for two weeks in July. The subject of
the collaboration is how to detect intruders.

Ralf Kiisters (Christian-Albrechts-Universitit, Kiel) visited our group (Nancy) for one week in
September. The subject of the collaboration is the verification of security protocols.

Mark Utting (University of Waikato, New-Zealand) visited LIFC twice in 2003: 2 weeks in June and
2 weeks in November.

Thomas Wilke (University of Kiel, Germany) visited our group (Nancy) for one week in March. The
subject of the collaboration is the verification of security protocols.

8.6. Visits of team members

Yohan Boichut visited the laboratory “Conception et Réalisation des Application Complexes”,
University of Montreal, Canada from November 9 to November 29, 2003. This visit is part of the
bi-lateral project Securypto between Canada and France.

Julien Musset has been hosted from April to August 2003 by the University of Karlsruhe (Group of
Prof. J. Calmet). He was supported by a CALCULEMUS/Marie Curie Grant.

1Shttp://www.calculemus.net
7http://combination.cs.uiowa.edu/smtlib

20 Activity Report INRIA 2003

9. Dissemination
9.1. Ph. D. theses

Here follows a list of the Ph. D. theses defended this year:
1. Célina Charlet, title: “Raffiner pour Vérifier des systéemes paramétrés”, supervisors: F. Bellegarde
and O. Kouchnarenko, defended on December 19th, 2003.

2. Yannick Chevalier, title: “Résolution de problemes d’accessibilité pour la compilation et la vali-
dation de protocoles cryptographiques”, supervisors: M. Rusinowitch and L. Vigneron, defended on
December 9th, 2003.

3. Julien Musset, title: “Approximation de relations de transition : application a la vérification de
systemes infinis”, supervisor: M. Rusinowitch, defended on July 15th, 2003.

4. Mathieu Turuani, title: “Sécurite des Protocoles Cryptographiques : Décidabilité et Complexité”,
supervisor: M. Rusinowitch, defended on December 11th, 2003.

9.2. Committees

Michael Rusinowitch is a member of the AFIT committee to award the best Ph. D. theses in theoretical
informatics of the year.

9.3. Seminars, workshops, and conferences

e Y. Boichut has given a seminar at the University of Montreal, entitled “Une méthode de vérification
des protocoles cryptographiques basée sur les automates d’arbres”” on November 21, 2003.

e F. Bouquet has attended the following events:

— Conference AFADL 03 Rennes, 15-17 january,

— INRIA Sophia Antipolis (ARC Modocop), 17 April,
— Conference FME’03 Pisa (Italia), 8-13 September,

— IRISA Rennes (ARC Modocop), 17 September,

— Software Testing workshop CNAM Paris, 16 October,

e Y. Chevalier has attended the following events:

— Logic in Computer Science, Ottawa (Canada), June;

— FST-TCS (Bombay, India), December;

— AVISPA meetings: January (Nancy), March (Zurich), May (Nancy), July (Munich), Octo-
ber (Zurich);

— VERNAM meeting, (Grenoble), March;

— seminar at Montreal Polytechnic (group headed by John Mullins), entitled “Complexité de
I’étude d’un nombre non-borné de sessions”, June;

— seminar at Concordia University (group headed by Sofiene Tahar (HVG)), entitled “An NP
Decision Procedure for Protocol Insecurity with XOR”, June.

e F. Bouquet and A. Giorgetti have presented two alternative B specifications of an electronic purse at
Modocop Workshop on Smart Card Specification, Verification and Testing, at INRIA Rhone-Alpes,
December 4, 2003.

Project-Team cassis

21

e G. Cécé has participated in regular meetings with G. Sutre and A. Finkel at the LSV of Cachan, Paris

during 2003.
e J.-F Couchot and A. Giorgetti have taken part in the B day organized by the B group of GDR ALP

at CNAM, 20 november 2003. They presented a talk entitled “Preuve automatique de (certaines)

machines B”.

e F Dadeau has attended FATES (Formal Approach to Testing of Softwares) workshop and the ASE
(Automated Software Engineering) conference in Montréal, 6-10 October 2003. He presented the

BZ-TT tool-set during the demo session of ASE.

e O. Kouchnarenko has attended the following events:

VERNAM meeting, March 2003, to give a presentation entitled ”Automatic Approxima-
tion for Security Protocols Verification™;

Seminar at the LIAFA, May 2003, to give a presentation entitled ”Automatic Approxima-
tion for Security Protocols Verification: a Way to Combine Model-Checking and Theorem
Proving .

e B. Legeard has attended the following events:

Software Testing workshop CNAM Paris, 15-16 October 2003,
Cartes & IT security Paris - Workshop on new paradigm for testing, 19 November 2003.

e M. Rusinowitch has attended the following events:

WEFLP’03, 12th International Workshop on Functional and (Constraint) Logic Program-
ming Valencia, Spain, June 12-13, 2003 to give an invited presentation entitled “Automated
Analysis of Security Protocols”;

Sixth International Workshop in Formal Methods (IWFM’03). School of Computing,
Dublin City University, 11 July 2003 to give an invited presentation entitled “Deciding
Security of Cryptographic Protocols”;

Seminar at the Max Planck Institute, july 2003,
Formal Methods Europe 2003, Pisa, september 2003;
Logic in Computer Science 2003, Ottawa, june 2003.

e S. Ranise has attended the following events:

Workshop on Infinite Systems and Verification of Quantitative Properties (JSIVPQ’03),
Grenoble, March 2003;

Fourth Workshop on First-Order Theorem Proving (FTP’03), Valencia, Spain, June 12-14,
2003;

Eleventh Symposium on the Integration of Symbolic Computation and Mechanized Rea-
soning (CALCULEMUS2003), Rome, Italy, September 10-12, 2003;

International Conference on Software Engineering and Formal Methods (SEFMO03), Bris-
bane, Australia, September 24-26, 2003;

Sixth Workshop on Formal Methods, Campina Grande, PB, Brazil, October 12-14, 2003;
Meeting to prepare an European project, Grenoble, November 24-25, 2003.

22 Activity Report INRIA 2003

e M. Turuani has attended the following events:

— Logic in Computer Science 2003, Ottawa (Canada), June 2003;

e L. Vigneron has attended the following events:

— 14th International Conference on Rewriting Techniques and Applications (RTA’03), Va-
lencia, Spain, June 9-11, 2003;

— IFIP Working Group 1.6 on Term Rewriting, Valencia, Spain, June 12, 2003;

— Fourth Workshop on First-Order Theorem Proving (FTP’03), Valencia, Spain, June 12-14,
2003.

e F. Bellegarde, F. Bouquet, F. Dadeau, A. Giorgetti, B. Legeard, and S. Ranise have attended the
start-up meeting of the ACI GECCOO in Paris on September 8, 2003.

10. Bibliography
Major publications by the team in recent years

[1] A. ARMANDO, S. RANISE, M. RUSINOWITCH. Uniform Derivation of Decision Procedures by Superposition.
in « Proceedings of Annual Conference of the European Association for Computer Science Logic (CSL'01) »,
series Lecture Notes in Computer Science, volume 2142, Springer, L. FRIBOURG, editor, pages 513-528,
Paris, France, September, 2001.

[2] A. BOUHOULA, M. RUSINOWITCH. Implicit Induction in Conditional Theories. in « Journal of Automated
Reasoning », number 2, volume 14, 1995, pages 189-235.

[31 G. CECE. Vérification, analyse et approximations symboliques des automates communicants. Ph. D. Thesis,
LSV — URA 2236 CNRS, 61, Av. du Pdt. Wilson; 94235 Cachan Cedex, janvier, 1998.

[4] M. HIBTI, B. LEGEARD, H. LOMBARDI. Une procédure de décision pour un probleme de satisfiabilité dans
un univers ensembliste héréditaire. in « Revue informatique théorique et applications / Theorical Informatics
and Applications », number 3, volume 31, 1997, pages 205-236.

[5]1 F. JACQUEMARD, M. RUSINOWITCH, L. VIGNERON. Compiling and Verifying Security Protocols. in « Logic
for Programming and Automated Reasoning (LPAR’00) », series Lecture Notes in Computer Science, volume
1955, Springer, A. VORONKOV, M. PARIGOT, editors, pages 131-160, Reunion Island, France, 2000.

[6] B. LEGEARD, F. PEUREUX, M. UTTING. Automated Boundary Testing from Z and B. in « Formal Methods
Europe (FME 2002) », series Lecture Notes in Computer Science, volume 2391, Springer, L.-H. ERIKSSON,
P. LINDSAY, editors, pages 21-40, 2002.

[7] L. VIGNERON. Positive Deduction Modulo Regular Theories. in « Proceedings of Computer Science Logic
(CSL’95) », series Lecture Notes in Computer Science, volume 1092, Springer, H. K. BUNING, editor, pages
468—485, Paderborn, Germany, 1995.

Project-Team cassis 23

Books and Monographs

[8] FTP 2003, 4th International Workshop on First-Order Theorem Proving. I. DAHN, L. VIGNERON, editors,
series Electronic Notes in Theoretical Computer Science, number 1, volume 86, Elsevier Science Publishers,
2003, http://www.elsevier.com/locate/entcs/volume86.html.

[9] Pragmatics of Decision Procedures in Automated Reasoning (PDPAR’03). S. RANISE, C. TINELLI, editors,
July, 2003, http://www.loria.fr/~ranise/pdpar03/, Workshop affiliated to the 19th Conference on Automated
Deduction (CADE-19).

Doctoral dissertations and ‘“Habilitation’’ theses

[10] C. CHARLET. Raffiner pour Vérifier des systemes paramétrés. These de doctorat, Université de Franche-
Comté, Besangon, December, 2003.

[11] Y. CHEVALIER. Résolution de problémes d’accessibilité pour la compilation et la validation de protocoles
cryptographiques. These de doctorat, Université Henri Poincaré, Nancy, décembre, 2003.

[12] J. MUSSET. Approximation of transition relations. Application to infinite states systems verification. Ph. D.
Thesis, Université Henri Poincaré, Nancy, juillet, 2003.

[13] M. TURUANI. Sécurité des Protocoles Cryptographiques: Décidabilité et Complexité. These de doctorat,
Université Henri Poincaré, Nancy, décembre, 2003.

Articles in referred journals and book chapters

[14] A. ARMANDO, L. COMPAGNA, S. RANISE. Rewriting and Decision Procedure Laboratory: Com-
bining Rewriting, Satisfiability Checking, and Lemma Speculation. in « In Festschrift in Honour
of Prof. Joerg Siekmann », series Lecture Notes in Artificial Intelligence, Springer Verlag, 2003,
http://www.loria.fr/~ranise/pubs/Inai60.ps.gz, To appear.

[15] A. ARMANDO, S. RANISE. Constraint Contextual Rewriting. in « J. of Symbolic Computation », number 1-2,
volume 36, 2003, pages 193-216, http://www.mrg.dist.unige.it/~silvio/pubs/ftp-jsc.ps.gz.

[16] A. ARMANDO, S. RANISE, M. RUSINOWITCH. A Rewriting Approach to Satisfiability Procedures. in
« Journal of Information and Computation—Special Issue on Rewriting Techniques and Applications
(RTA’01) », number 2, volume 183, June, 2003, pages 140—-164, http://www.loria.fr/~rusi/pub/longcslO1.ps.

[17] L. BACHMAIR, A. TIWARI, L. VIGNERON. Abstract Congruence Closure. in « Journal of Automated
Reasoning », 2003, To appear. Also available as Technical Report A01-R-266, LORIA, Nancy (France).

[18] E. BERNARD, B. LEGEARD, X. LUCK, F. PEUREUX. Generation of Test Sequences from Formal Specifica-
tions: GSM 11-11 Standard Case-Study. in « International Journal on Software - Practice and Experience »,
2003, Accepted for publication.

[19] F. BOUQUET, B. LEGEARD, F. PEUREUX. A constraint solver to animate a B specification. in « International
Journal on Software Tools for Technology Transfer », 2003, Accepted for publication.

24 Activity Report INRIA 2003

[20] H. COMON, P. NARENDRAN, R. NIEUWENHUIS, M. RUSINOWITCH. Deciding the Confluence of Ordered
Term Rewrite Systems. in « ACM Transactions on Computational Logic », number 1, volume 4, January, 2003,
pages 33-55, http://www.loria.fr/~rusi/pub/tocl.ps.

[21] A. GIORGETTI. An asymptotic study for path reversal. in « Theoretical Computer Science », volume 299,
2003, pages 585-602.

[22] M. RUSINOWITCH, S. STRATULAT, F. KLAY. Mechanical Verification of an Ideal ABR Conformance
Algorithm. in « Journal of Automated Reasoning », number 2, volume 30, February, 2003, pages 153-177,
http://www.loria.fr/~rusi/pub/sorinjar.ps.

[23] M. RUSINOWITCH, M. TURUANI. Protocol Insecurity with Finite Number of Sessions and Composed
Keys is NP-complete. in « Theoretical Computer Science », volume 299, April, 2003, pages 451-475,
http://www.loria.fr/~rusi/pub/tcsprotocol.ps.gz.

Publications in Conferences and Workshops

[24] T. ABBES, A. BOUHOULA. Détection d’Interaction de Services de Télécommunications. in « Premier Congres
Francophone MAJECSTIC 03 », octobre, 2003.

[25] T. ABBES, A. BOUHOULA, M. RUSINOWITCH. Filtrage efficace pour la détection d’intrusions. in
« Conférence Sécurité et Architecture Réseaux, SAR 2003 », Juillet, 2003.

[26] F. AMBERT, F. BOUQUET, B. LEGEARD, F. PEUREUX. Automated Boundary-Value Test Generation from
Specification - Method and Tools. in « 4th International Conference on Software Testing (4th IC TEST) »,
pages 52-68, April, 2003.

[27] F. AMBERT, S. CHEMIN, B. LEGEARD. Intégration de domaines a variables dans un solveur de contraintes
ensemblistes. in « Programmation en Logique avec Contraintes, JFPLC 2003 », volume Hors serie RSTI
(Revue des Sciences et Technologie de I’Information), Hermes Lavoisier, M. DUCASSE, editor, pages
217-222, Amiens, Juin, 2003, http://lifc.univ-fcomte.fr/~bztt/docs/article/jfplc03 ACL.ps.

[28] S. ANANTHARAMAN, P. NARENDRAN, M. RUSINOWITCH. AC(U)ID-Unification is NEXPTIME-Decidable.
in « Proc. of the Int. Conf. MFCS 2003, Bratislava (Slovak Rep.) », series Lecture Notes in Computer Science,
volume 2747, Springer, B. ROVAN, editor, August, 2003.

[29] S. ANANTHARAMAN, P. NARENDRAN, M. RUSINOWITCH. Unification over ACUI plus Distributivi-
ty/Homomorphisms. in « Proc. of the Int. Conf. on Automated Deduction, CADE-19 », series Lec-
ture Notes in Computer Science, volume 2741, Springer, F. BAADER, editor, pages 442-457, 2003,
http://www.loria.fr/~rusi/pub/cade2003.ps.

[30] F. BELLEGARDE, C. CHARLET, O. KOUCHNARENKO. How to Compute the Refinement Relation for
Parameterized Systems. in « Proc. First Int. ACM & IEEE Conf. on Formal Methods and Models for Codesign
(MEMOCODE’2003), Mont St-Michel, France », pages 103—112, June, 2003.

[31] F. BOUQUET, B. LEGEARD. Reification of Executable Test Scripts in Formal Specification-Based Test
Generation: The Java Card Transaction Mechanism Case Study. in « Formal Methods, FME 2003 », volume

Project-Team cassis 25

2805, Springer-Verlag, K. ARAKI, S. GNESI, D. MANDRIOLI, editors, pages 778-795, September, 2003.

[32] F. BOUQUET, B. LEGEARD. Réification de scripts exécutables en génération de tests a partir de spécification
formelles: application aux mécanismes de transaction de la Java Card. in « AFADL’2003 », pages 141-156,
Rennes, Janvier, 2003, http://lifc.univ-fcomte.fr/~bztt/docs/article/afadl03.pdf.

[33] F. BOUQUET, B. LEGEARD, N. VACELET. Un format fédérateur pour l’évaluation de spécifications formelles
en programmation logique avec contraintes. in « Programmation en Logique avec Contraintes, JFPLC’2003 »,
volume Hors serie RSTI (Revue des Sciences et Technologie de I'Information), Hermes Lavoisier, M. DU-
CASSE, editor, pages 203-216, Amiens, Juin, 2003, http://lifc.univ-fcomte.fr/~bztt/docs/article/jfplcO3BLV.ps.

[34] Y. CHEVALIER, R. KUSTERS, M. RUSINOWITCH, M. TURUANI, L. VIGNERON. Extending the Dolev-Yao
Intruder for Analyzing an Unbounded Number of Sessions. in « Computer Science Logic (CSL 03) and 8th
Kurt Godel Colloquium (8th KCG) », series Lecture Notes in Computer Science, volume 2803, Springer, M.
BAAz, editor, Vienna, Austria, August, 2003.

[35] Y. CHEVALIER, R. KUSTERS, M. RUSINOWITCH, M. TURUANI. An NP Decision Procedure for Protocol
Insecurity with XOR. in « Proceedings of the Logic In Computer Science Conference LICS’03 », pages 261-
270, June, 2003, http://www.loria.fr/~chevalie/Research/xor-oracle.pdf, Long version available as Technical
Report RR-4697, INRIA, France.

[36] Y. CHEVALIER, R. KUSTERS, M. RUSINOWITCH, M. TURUANI. Deciding the Security of Proto-
cols with Diffie-Hellman Exponentiation and Products in Exponents. in « Proceedings of the Foun-
dations of Software Technology and Theoretical Computer Science FSTTCS’03 », December, 2003,
http://www.loria.fr/~chevalie/Research/expo-oracle.pdf, Long version available as Christian-Albrecht
Universitidt IFI-Report 0305, Kiel (Germany).

[37] S. COLIN, B. LEGEARD, F. PEUREUX. Preamble computation in automated test generation using Constraint
Logic Programming. in « Proceedings of UK-Test Workshop », York, UK, September, 2003, http://lifc.univ-
fcomte.fr/~bztt/docs/article/UK-Test03.ps.

[38] J.-F. CoucHOT, F. DADEAU, D. DEHARBE, A. GIORGETTI, S. RANISE. Proving and Debugging Set-
Based Specifications. in « Proc. of the 6th Workshop on Formal Methods », UFCG, Campina Grande, PB,
Brazil, October, 2003, http://www.loria.fr/~ranise/pubs/rvgo2B.ps.gz, Also to appear in Electronic Notes on
Theoretical Computer Science (ENTCS).

[39] D. DEHARBE, S. RANISE. Light-Weight Theorem Proving for Debugging and Verifying Units
of Code. in « Proc. of the International Conference on Software Engineering and Formal Me-
thods (SEFMO03) », IEEE Computer Society Press., Brisbane, Australiab, September, 2003,
http://www.loria.fr/~ranise/pubs/sefm03.ps.gz.

[40] A. IMINE, P. MOLLI, G. OSTER, M. RUSINOWITCH. Proving Correctness of Transformation Functions in
Real-time Groupware. in « Proceedings of the 8th European Conference on Computer Supported Cooperative
Work, 14-18 September 2003, Helsinki, Finland », Kluwer, K. KUUTTI, AL., editors, pages 277-293, 2003.

[41] A. IMINE, P. MOLLI, G. OSTER, P. URSO. VOTE: Group Editors Analyzing Tool. in « Proc. of the 4th
Workshop on First-Order Theorem Proving (FTP’03), Electronic Notes in Theoretical Computer Science »,

26 Activity Report INRIA 2003

volume 86, Elsevier, I. DAHN, L. VIGNERON, editors, 2003.

[42] A. IMINE, S. RANISE. Building Satisfiability Procedures for Verification: The Case Study of Sorting
Algorithms. in « Proc. of the International Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’03) », 2003.

[43] A. IMINE, P. URSO. Automatic Detection of Copies Divergence in Collaborative Editing Systems. in « Formal
Methods for Industrial Critical Systems (FMICS’03), Electronic Notes in Theoretical Computer Science »,
volume 80, Elsevier, T. ARTS, W. FOKKINK, editors, 2003.

[44] O. KOUCHNARENKO, A. LANOIX. Refinement and Verification of Synchronized Component-based Systems.
in « Formal Methods, FM 2003 », series Lecture Notes in Computer Science, volume 2805, Springer, K.
ARAKI, S. GNESI, M. D., editors, pages 341-358, Pisa, Italy, September, 2003.

[45] O. KOUCHNARENKO, A. LANOIX. SynCo: a Refinement Analysis Tool for Synchronized Component-based
Systems. in « FM’2003 Tool Exhibition Notes », T. MARGARIA, editor, pages 47-51, Pisa, Italy, September,
2003.

[46] P. MOLLI, G. OSTER, H. SKAF-MOLLI, A. IMINE. Using the Transformational Approach to Build a Safe
and Generic Data Synchronizer. in « Proceedings of GROUP 2003, ACM 2003 International Conference on
Supporting Group Work, November 9-12, 2003, Sanibel Island, Florida, USA », ACM, 2003.

[47] J. MUSSET, M. RUSINOWITCH. Computing Metatransitions for Linear Transition Systems. in « FME 2003,
12th International FME Symposium », series Lecture Notes in Computer Science, volume 2805, Springer,
pages 562-581, Pisa, Italy, September, 2003.

[48] S. RANISE, D. DEHARBE. Applying Light-Weight Theorem Proving to Debugging and Verifying Pointer Pro-
grams. in « Proc. of the 4th Workshop on First-Order Theorem Proving (FTP’03) », series Electronic Notes in
Theoretical Computer Science, number 1, volume 86, Valencia, Spain, May, 2003, http://www.elsevier.nl/gej-
ng/31/29/23/135/23/show/Products/notes/index.htt#010.

[49] S. RANISE. Building Convex Hulls by Combining SAT Solving and Algebric Compu-
ting. in « Proceedings of the 11th Symposium on the Integration of Symbolic Computa-
tion and Mechanized Reasoning (CALCULEMUS2003) », Rome, Italy, September, 2003,
http://www.loria.fr/~ranise/pubs/calculemus2003.ps.gz.

[50] S. RANISE, C. RINGEISSEN, D. TRAHN. Rule-Based Algorithms for Combining Nelson-Oppen Theories
and Shostak Theories. in « Proc. of the Third Workshop on Cooperative Solvers in Constraint Programming
(Satellite Event to CP’2003) », Kinsale, County Cork, Ireland, September, 2003.

[51] M. RUSINOWITCH. Automated Analysis of Security Protocols. in « Proceedings of the 12th International
Workshop on Functional and (Constraint) Logic Programming, WFLP’03 », number 3, volume 86, Electronic
Notes in Theoretical Computer Science, G. VIDAL, editor, June, 2003, http://www.elsevier.com/locate/entcs.

Project-Team cassis 27

Internal Reports

[52] F. BELLEGARDE, C. CHARLET, K. KOUCHNARENKO. Using Acceleration to Compute Parameterized System
Refinement. Research Report, number RR-4716, INRIA, January, 2003, http://www.inria.fr/rrrt/rr-4716.html.

[53] G. CECE, P.-C. HEAM, Y. MAINIER. Efficiency of Automata in Semi-Commutation Verification Techniques.
Research Report, number RR-5001, INRIA, December, 2003, http://www.inria.fr/rrrt/rr-500 1. html.

[54] I. DABN, L. VIGNERON. FTP’2003, 4th International Workshop on First-Order Theorem Proving. Technical
report, number DCSI-II/10/03, Universidad Politécnica de Valencia, Valencia, Spain, 2003.

[55] O. KOUCHNARENKO, A. LANOIX. Refinement and Verification of Synchronized Component-based Systems.
Technical report, number 4862, INRIA Research Report, Juin, 2003, http://www.inria.fr/rrrt/rr-4862.html.

[56] P. MOLLI, G. OSTER, H. SKAF-MOLLI, A. IMINE. Safe Generic Data Synchronizer. Research Report, num-
ber A03-R-062, LORIA, Nancy (France), May, 2003, http://www.loria.fr/publications/2003/A03-R-062/A03-
R-062.ps.

Miscellaneous

[571 Y. BOICHUT. Combinaison d’approches pour la vérification de protocoles cryptographiques. Rapport de DEA,
Laboratoire d’Informatique de 1’Université de Franche-Comté, Besancon, France, 2003.

[58] F. DADEAU. Vérification automatique de machines abstraites B paramétrées—Exemples, preuves et outils.
Rapport de DEA, Laboratoire d’Informatique de 1’ Université de Franche-Comté, Besancon, France, 2003.

[59] B. GOGNIAT. Pilotage de bancs de test de systemes embarqués a partir de I’environnement State-Chart-
Testing-Tools. Rapport de DEA, Laboratoire d’Informatique de 1’Université de Franche-Comté, Besancon,
septembre, 2003.

[60] D. K. TRAN. Coopération de procédures de décision: Etude et implantation. Rapport de DEA, LORIA —
Université Henri Poincaré, Nancy, 2003.

Bibliography in notes
[61] P. A. ABDULLA, B. JONSSON, M. NILSSON, J. D’ORSO. Regular Model Checking Made Simple and

Efficient. in « Proc. of CONCUR 2002 - Concurrency Theory, 13th International Conference », series Lecture
Notes in Computer Science, volume 2421, Springer, pages 116—130, Brno, Czech Republic, August, 2002.

[62] J.-R. ABRIAL. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

[63] A. ARMANDO, M. P. BONACINA, A. K. SEHGAL, S. RANISE, M. RUSINOWITCH. High-performance
deduction for verification: a case study in the theory of arrays. in « Proceedings of the 2nd Verification
Workshop (VERIFY02) », Copenhagen, Denmark, 2002.

[64] L. BACHMAIR, I. V. RAMAKRISHNAN, A. TIWARI, L. VIGNERON. Congruence Closure modu-
lo Associativity-Commutativity. in « 3rd International Workshop on Frontiers of Combining Systems

28 Activity Report INRIA 2003

(FroCoS’2000) », series Lecture Notes in Computer Science, volume 1794, Springer-Verlag, K. KIRCHNER,
C. RINGEISSEN, editors, pages 242-256, Nancy, France, 2000.

[65] T. BALL, S. K. RAJAMANI. Automatically Validating Temporal Safety Properties of Interfaces. in « SPIN
2001 », series LNCS, volume 2057, pages 103—-122,2001.

[66] F. BELLEGARDE, C. DARLOT, J. JULLIAND, O. KOUCHNARENKO. Reformulation: a Way to Combine
Dynamic Properties and Refinement. in « International Symposium Formal Methods Europe (FME 2001) »,
series Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 2001.

[67] B. BOIGELOT, P. WOLPER. Symbolic Verification with Periodic Sets. in « Proceedings of the sixth Internatio-
nal Conference on Computer-Aided Verification CAV », volume 818, Springer-Verlag, DILL, D. L., editor,
pages 55-67, Standford, California, USA, 1994.

[68] A. BOUAJJANI, B. JONSSON, M. NILSSON, T. TOUILIL. Regular Model Checking. in « Computer Aided
Verification (CAV’00) », series Lecture Notes in Computer Science, volume 1855, Springer, pages 403418,
Chicago, IL, USA, 2000.

[69] A. BOUAJJANI, A. MUSCHOLL, T. TOUILI. Permutation rewriting and algorithmic verification. in
« LICS’01 », series IEEE Computer Society, pages 399-408, 2001.

[70] F. BOUQUET, B. LEGEARD, F. PEUREUX. Constraint Logic Programming with Sets for Animation of
B formal Specifications. in « Workshop on (Constraint) Logic Programming and Software Engineering
(CLPSE’2000) », 2000.

[711] W. R. BUsH, J. D. PINcuUs, D. J. SIELAFF. A static analyzer for finding dynamic programming errors. in
« Software—Practice & Experience », number 30, 2000, pages 775-802.

[72]1 Y. CHEVALIER, L. VIGNERON. A Tool for Lazy Verification of Security Protocols. in « 16th IEEE International
Conference Automated Software Engineering », 2001.

[73]J. CLARK, J. JACOB. A Survey of Authentication Protocol Literature. 1997, http://www.cs.york.ac.uk/~jac/papers/drareviewps.ps.

[74] J.-F. COUCHOT. Atteignabilité d’états et spécifications logico-ensemblistes. Mémoire de DEA, Laboratoire
d’Informatique de I’Université de Franche-Comté, Besangon, France, octobre, 2002.

[75]1J. DICK, A. FAIVRE. Automating the Generation and Sequencing of Test Cases from Model-Based Specifica-
tions. in « FME’93: Industrial-Strength Formal Methods », series Lecture Notes in Computer Science, volume
670, Springer-Verlag, pages 268-284, April, 1993.

[76] P. J. DOWNEY, R. SETHI, R. E. TARJAN. Variations on the Common Subexpressions Problem. in « Journal
of the Association for Computing Machinery », number 4, volume 27, 1980, pages 758-771.

[77] D. EVANS. Using Specifications to Check Source Code. Technical report, MIT, 1994, MIT/LCS/TR-628.

Project-Team cassis 29

[78] A. FINKEL, P. SCHNOEBELEN. Well Structured Transition Systems Everywhere!. in « Theoretical Computer
Science », number 1-2, volume 256, 2001, pages 63-92.

[79] C. FLANAGAN, K. R. LEINO, M. LILLIBRIDGE, G. NELSON, J. B. SAXE, R. STATA. Extended Static
Checking for Java. in « Proc. ACM PLDI », pages 234-245,2002.

[80] M. HIND. Pointer Analysis: Haven’t We Solved This Problem Yet?. in « 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE’01) », Snowbird, UT, 2001.

[81] D. JACKSON, M. VAZIRI. Finding Bugs with a Constraint Solver. in « Proc. of Intl. Symp. on Soft. Test. and
Anal. », 2000.

[82] G. NELSON, D. OPPEN. Fast Decision Procedures Based on Congruence Closure. in « Journal of the
Association for Computing Machinery », number 2, volume 27, April, 1980, pages 356-364.

[83] B. PARREAUX. Vérification de systemes d’événements B par model-checking PLTL - Contribution a la
réduction de I’explosion combinatoire en utilisant de la résolution de contraintes ensemblistes. These de
doctorat, Université de Franche-Comté, Besancon, 2000.

[84] L. PY, B. LEGEARD, B. TATIBOUET. Evaluation de spécifications formelles en programmation logique avec
contraintes ensemblistes — Application a I’animation de spécification B. in « AFADL 2000 », pages 21-35,
Grenoble, France, 2000.

[85] S. ScHULZ. System Abstract: E 0.3. in « Proceedings of the 16th International Conference on Automated
Deduction », series Lecture Notes in Artificial Intelligence, volume 1632, Springer-Verlag, H. GANZINGER,
editor, pages 297-301, Trento, Italy, 1999.

[86] R. E. SHOSTAK. Deciding Combinations of Theories. in « Journal of the Association for Computing
Machinery », number 7, volume 21, 1984, pages 583-585.

[871J. M. SPIVEY. The Z notation: A Reference Manual. edition 2™ Prentice-Hall, 1993.

[88] L. VIGNERON. Déduction automatique avec contraintes symboliques dans les théories équationnelles. These
d’université, Université Henri Poincaré - Nancy 1, novembre, 1994.

