
epor t

d ' c t i v i t y

2003

THEME 2A

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Contraintes

Constraint Programming

Rocquencourt

Table of contents

1. Team 1

2. Overall Objectives 1

3. Scientific Foundations 2

3.1. Concurrent constraint programming 2
3.2. Constraint solvers 2
3.3. Constraint programming environments 3

4. Application Domains 3

4.1. Combinatorial optimization 3
4.2. Bioinformatics 4

5. Software 4

5.1. GNU-Prolog 4
5.2. BIOCHAM 4
5.3. Adaptive search library 5
5.4. TCLP 5
5.5. CLPGUI 5

6. New Results 5

6.1. Linear Concurrent Constraint programming 5
6.2. Contextual Logic Programming 6
6.3. Subtyping constraints in quasi-lattices 6
6.4. The cutset global constraint 6
6.5. Adaptive search 6
6.6. Detection of symmetries 7
6.7. Generic trace format 7
6.8. Visualization for debugging 7
6.9. 3D placement constraints and virtual reality 8
6.10. Symbolic model checking of biomolecular interaction nets 8

7. Contracts and Grants with Industry 8

7.1. COSYTEC 8
7.2. ILOG 8

8. Other Grants and Activities 8

8.1. National contracts 8
8.2. European contracts 9
8.3. Invitations 9

9. Dissemination 9

9.1. Teaching 9
9.2. Leadership within scientific community 9

10. Bibliography 10

1. Team
Head of project-team

François Fages [DR, INRIA]

Vice-head of project-team

Pierre Deransart [DR, INRIA]

Administrative assistant

Josy Baron [up to 31/1/3]
Nadia Mesrar [from 1/4/3 to 15/7/3]
Emmanuelle Grousset [from 6/10/3]

Staff member

Sylvain Soliman [CR, INRIA]

Project technical staff

Guillaume Arnaud [IE, INRIA]

Collaborators

Frédéric Benhamou [Professor, University of Nantes]
Philippe Codognet [Professor, University of Paris 6, up to 30/6/3]
Daniel Diaz [Associate Professor, University of Paris 1]
Gérard Ferrand [Professor, University of Orléans]

Ph.D. students

Nathalie Chabrier-Rivier [INRIA scholarship]
Emmanuel Coquery [MESR scholarship up to 30/9/3, ATER CNAM since]
Sorin Craciunescu [Ecole Polytechnique, ATER University of Paris 12]
Rémy Haemmerlé [INRIA scholarship, since 1/11/3]
Ludovic Langevine [INRIA scholarship]

Student interns

Annabelle Ballesta [INSA Rouen, from 7/7/3 to 31/8/3]
Rémi Coolen [Ecole Polytechnique, from 14/4/3 to 15/7/3]
Daniela Grosu [DEA OJMA, from 1/5/3 to 30/9/3]
Rémy Haemmerlé [DEA SPL, from 7/4/3 to 30/9/3]
Sumit Kumar [IIT Kanpur, from 12/5/3 to 31/7/3]
Matthieu Pierrès [DEA IARFA, from 1/4/3 to 31/12/3, shared with Fractale/Complex team]
Nathalie Sznajder [MMFAI ENS Paris, from 10/6/3 to 16/9/3]

2. Overall Objectives
The "Contraintes" group investigates the logical foundations, design, implementation, programming environ-
ments and applications of constraint programming languages.

Constraint Programming is a field born during the mid 80s from Logic Programming, Linear Programming
coming from Operations Research, and Constraint Propagation techniques coming from Artificial Intelligence.
Its foundation is the use of relations on mathematical variables to compute with partial information.

The successes of Constraint Programming in industrial applications are related to the bringing of new
local consistency techniques and of declarative languages which allow an easier control on the mixing of
heterogeneous resolution techniques: numerical, symbolic, deductive, heuristic, etc.

The study of Concurrent Constraint languages is a core aspect of the project as they provide a conceptual
framework for analyzing different issues of Constraint Programming, like constraint resolution techniques,
concurrent modeling, reactive applications, etc. The main application domains investigated are combinatorial
optimization and bioinformatics.

2 Activity Report INRIA 2003

3. Scientific Foundations

3.1. Concurrent constraint programming
The class of Concurrent Constraint programming languages (CC) was introduced a decade ago by Vijay
Saraswat as a unifying framework for constraint logic programming and concurrent logic programming. The
CC paradigm constitutes a representative abstraction of constraint programming languages, and thus allows a
fine grained study of their fundamental properties.

CC generalizes the Constraint Logic Programming framework (CLP) by introducing a synchronization
primitive, based on constraint entailment. It is a model of concurrent computation, where agents communicate
through a shared store, represented by a constraint, which expresses some partial information on the values
of the variables involved in the computation. The variables play the role of transmissible dynamically created
communication channels.

One of the big successes of CC has been the simple and elegant reconstruction of finite domain constraint
solvers, and the cooperation of several models to solve a single combinatorial problem. On the other hand, to
use CC for programming reactive applications forces one to abandon the hypothesis of monotonic evolution
of the constraint store; this is a strong motivation for new extensions of CC languages.

There are strong completeness theorems relating the execution of a CLP program and its translation in
classical logic, which provide smooth reasoning techniques for such programs. However these theorems are
broken by the synchronization operation of CC. Looking for a logical semantics of CC programs in the general
paradigm of logic programming, program = formula, execution = proof search, leads to a translation in Jean-
Yves Girard’s linear logic. This allows the recovery of some completeness results about successes and stores;
even suspensions may be characterized with the non-commutative logic of Ruet and Abrusci.

It is thus possible to address important issues for Constraint Programming:

• verifying CC programs;

• combining CLP and state-based programming;

• dealing with local search inside a global constraint solving procedure.

The last two cases rely on a natural extension of CC languages, called Linear Concurrent Constraint
languages (LCC), which simply replaces constraint systems built onto classical logic by constraint systems
built onto linear logic. This allows us to represent state changes thanks to the consumption of resources during
the synchronization action, modeled by the linear implication.

3.2. Constraint solvers
Our domains of application use quite different constraint systems:

• finite domains (bounded natural numbers): primitive constraint of some finite domain membership,
numerical, symbolic, higher order and global constraints;

• reals: Simplex algorithm for linear constraints and interval methods otherwise;

• terms: subtyping constraints and ontologies.

The project works on both the constraint resolution methods and their cooperation. The main focus is the
efficiency of constraint propagation methods, and their combination with local search methods.

Project-Team Contraintes 3

3.3. Constraint programming environments
Handling hundreds of thousands of heterogeneous constraints on as many variables is impossible without tools
specially designed to show the different views of the execution.

The DiSCiPl ESPRIT project showed the use of declarative diagnosis methods based on the logical
semantics of programs for interactive debugging systems, and developed tools to visualize the execution of
CLP programs: showing the effect of propagation, the shape of the search space (detection of symmetries), the
impact of heuristics, etc. We have pursued this research with our partners of the RNTL project OADymPPaC.
The main results of this project are a generic trace format for constraint programming languages and a large
investigation of visualization tools.

Semantics based debugging, static and dynamic typing, and more generally validation of CC programs are
also studied in the project. Concerning typing issues in constraint programming, the usual coercions between
constraint domains (e.g. between booleans and integers, lists and terms) offer a particularly challenging task
to type systems design.

4. Application Domains

4.1. Combinatorial optimization
The number and economic impact of combinatorial optimization problems found in the industrial world are
constantly increasing. They cover:

• resource allocation;

• placement;

• scheduling;

• parallelization;

• transport;

• etc.

The last forty years have brought many improvements in Operations Research resolution techniques. In this
framework, Constraint Programming can be seen as providing, on the one hand, local coherence techniques
that can be applied to various numerical or symbolic constraints, and on the other hand, declarative languages.
This last point is crucial for quickly developing complex combinations of algorithms, which is not possible
without a language with a high level of abstraction. It allowed for better results, for instance in scheduling
problems, than traditional methods, and is promised to an even better future when thinking about cooperation
of global resolution and local propagation techniques.

The project builds upon its knowledge of CC languages, constraint solvers and their implementation to work
in these directions. The LCC languages offer a framework for theoretical analysis; and the soft constraints
framework gives a new way to tackle over-constrained problems. The work on programming environments
helps to integrate the Constraint Programming tools into this application domain.

4 Activity Report INRIA 2003

4.2. Bioinformatics
In recent years, Biology began a work of elucidation of high level biological processes in terms of their
biochemical bases at the molecular scale. At the end of the Nineties, research in Bioinformatics evolved,
passing from the analysis of the genomic sequence to the analysis of various data produced in mass by post-

genomic technologies (expression of ARN and proteins, SNP and haplotypes, protein-protein interactions,
3D structures, etc). The complexity of the systems concerned requires a large research effort to develop the
symbolic notation of biological processes and data.

In 2002 , we have started a Collaborative Research Initiative ARC CPBIO on “Process Calculi and Biology
of Molecular Networks”. By working with biologists on well understood biological models, we seek:

• to identify in the family of competitive models coming from the Theory of Concurrency (Pi-calculus,
Join-calculus and their derivatives) and from Logic Programming (Constraint Logic Programming,
Concurrent Constraint languages and their extensions to discrete and continuous time, TCC, HCC),
the ingredients of a language for the modular and multi-scale representation of biological processes;

• to provide a series of examples of biomolecular processes transcribed in formal languages, and a set
of biological questions of interest about these models;

• to design and apply to these examples formal computational reasoning tools for the simulation, the
analysis and the querying of the models.

5. Software

5.1. GNU-Prolog
Participants: Daniel Diaz, Rémy Haemmerlé.

GNU Prolog is a free Prolog compiler with constraint solving over finite domains developed by Daniel Diaz.
GNU Prolog accepts Prolog extended with primitives for constraint programming and produces native binaries
(like gcc does from a C source). The Prolog part conforms to the ISO standard for Prolog with many practical
extensions (global variables, OS interface, sockets,...). GNU Prolog also includes an efficient constraint solver
over Finite Domains (FD), giving the user the combined power of constraint programming and the declarativity
of logic programming.

An experimental version called GNU-Prolog-RH has also been released and distributed this year [25]. This
version developed by Rémy Haemmerlé is an extension of GNU-Prolog with attributed variables, coroutining
and constraint logic programming over reals. This version greatly extends the expressive and modeling power
of GNU-Prolog. It is also used to prototype the design and implementation of our new Silcc language.

5.2. BIOCHAM
Participants: Nathalie Chabrier-Rivier, François Fages, Sylvain Soliman.

The Biochemical Abstract Machine BIOCHAM is a programming environment for modeling biochemical
systems, making simulations and querying the model in temporal logic CTL.

In its initial version BIOCHAM 0.1 is composed of:

• a simple rule-based language for modeling biochemical systems at a boolean abstraction level,

• a simple simulator,

• a powerful query language based on temporal logic CTL for querying the temporal properties of the
model,

• an interface to the NuSMV model checker for evaluating CTL queries.

An experimental interface to LOTOS has been developed in collaboration with the VASY project-team. A
repository of computational models of biological systems called CMBSlib aimed at comparing models as well
as formalisms, is currently under construction in collaboration with our partners of the ARC CPBIO.

Project-Team Contraintes 5

5.3. Adaptive search library
Participants: Daniel Diaz, Philippe Codognet.

This is a C library to solve constraint satisfaction problems by the adaptive local search method. The current
release is limited to permutation problems. More precisely, all n variables have the same domain x1..xn and
are subject to an implicit all-different constraint. Several problems fall into this category and some examples
are provided with the library.

5.4. TCLP
Participant: Emmanuel Coquery.

TCLP is a prescriptive type system for Constraint Logic Programming, currently: ISO-Prolog, GNU-Prolog,
SICStus Prolog and the constraint programming libraries of SICStus Prolog. The flexibility of type che-
cking in TCLP is due to three kinds of polymorphism: parametric polymorphism (e.g. list(A)), subtyping
(e.g. list(A)<term) and overloading (e.g. −:num∗num→num and −:A∗B→pair(A,B)). No type declaration are
required, thanks to the type inference algorithm for predicates and to a default term type for function symbols.

5.5. CLPGUI
Participant: François Fages.

CLPGUI is a generic graphical user interface written in Java for constraint logic programming. It is currently
available for GNU-Prolog and Sicstus Prolog. CLPGUI has been developed both for teaching purposes and for
debugging complex programs. The graphical user interface is composed of several windows: one main console
and several dynamic 2D and 3D viewers of the search tree and of finite domain variables. With CLPGUI it
is possible to execute incrementally any goal, backtrack or recompute any state represented as a node in the
search tree. The level of granularity of the search tree is defined by annotations in the CLP program.

6. New Results

6.1. Linear Concurrent Constraint programming
Participants: Emmanuel Coquery, François Fages, Rémy Haemmerlé, Sylvain Soliman.

Now that the theory of LCC languages in Linear Logic is well established, we have started the development of
a first implementation of this paradigm. The system named Silcc (pronounce “silk”, meaning “Silcc Is LCC”)
is a complete implementation of LCC based on GNU-Prolog native code compiling technology. Silcc is an
extensible and modular constraint programming system which is based on a small kernel language, called
LCC(K) [25]. Several libraries will be developed on top of this kernel for: constraint solving over different
domains, search procedures, forward chaining rules and compatibility with other systems like GNU-Prolog.
The main novelties for the programmer will include:

• imperative features unified with constraints,

• powerful synchronization primitives,

• capability of defining new constraint systems,

• accompanying verification tools.

6 Activity Report INRIA 2003

6.2. Contextual Logic Programming
Participant: Daniel Diaz.

While a program-structuring feature is required for a production programming language, the current proposals
for the inclusion of modules in the ISO Prolog standard are not very consensual. We have thus investigated an
alternative solution based on Contextual Logic Programming (CxLP). Informally, the main point of CxLP
is that programs are structured as sets of predicates (units) which can be dynamically combined in an
execution attribute called a context. Goals are seen just as in regular Prolog, except for the fact that the
matching predicates are to be located in all the units which make up the current context. We extended CxLP
to attach arguments to units: these serve the dual purpose of acting as “unit-global” variables and as state
placeholders in actual contexts. CxLP clearly carries a higher overhead than regular Prolog, as the context
must be searched at run-time for the unit that defines a goal’s predicate, a process which requires at least
one extra indirection compared to straight Prolog; this kind of situation has become more usual and less of a
performance issue in recent systems, in Object-Oriented and even in procedural languages, for instance as a
result of using dynamically-loaded shared libraries. We have built a prototype implementation of a Contextual
Logic Programming language inside GNU-Prolog [2], which has surprisingly good performance, considering
we aren’t performing any optimization.

6.3. Subtyping constraints in quasi-lattices
Participants: Emmanuel Coquery, François Fages.

We have shown the decidability and NP-completeness of the satisfiability problem for non-structural subtyping
constraints in quasi-lattices [10]. This problem, first introduced by Smolka in 1989, is important for the typing
of logic and functional languages. We have generalized Trifonov and Smith’s algorithm over lattices, to the
case of quasi-lattices with a complexity in O(mvMvn3), where m (resp. M) stands for the number of minimal
(resp. maximal) elements of the quasi-lattice, v is the number of unbounded variables and n is the number of
constraints. Similarly, we have extended Pottier’s algorithm for computing explicit solutions to the case of
quasi-lattices.

These results directly apply to our system TCLP for type inferencing in constraint logic programming [8].
Their application to ontological reasoning is under investigation.

6.4. The cutset global constraint
Participant: François Fages.

We have designed a new global constraint for cutset problems. A cutset in a directed graph G = (V, E) is
a set of vertices that cuts all cycles in G. Finding a cutset of minimum cardinality is NP-hard. There exist
several approximate algorithms and exact algorithms, most of them using graph reduction techniques. The
cutset constraint we propose in [16] is a boolean constraint over variables associated to the vertices of a
given graph, that states that the subgraph restricted to the vertices having their boolean variable set to true
is acyclic. We propose a filtering algorithm based on graph contraction operations and inference of simple
boolean constraints, that has a linear time complexity in O(|E| + |V |). Several search heuristics based on
graph properties provided by the cutset constraint have been studied. The efficiency of the cutset constraint
is shown on on benchmarks of the literature for pure minimum cutset problems, and on an application to
log-based reconciliation problems where the global cutset constraint is mixed with other boolean constraints.

6.5. Adaptive search
Participants: Philippe Codognet, Daniel Diaz, François Fages, Matthieu Pierrès.

We have re-implemented the Adaptive Search method as a C-based framework library [7]. This new imple-
mentation is more generic and efficient than the previous one but is dedicated to permutation problems, that is:
all variables have a same initial domain and are subject to an implicit all-different constraint. Many classical

Project-Team Contraintes 7

problems fall into this category. In this new implementation, stochastic moves can also occur to escape from
a plateau with a given probability. This last action has proved to be very effective on benchmarks where many
local minima with large plateaus occur such as the magic square problem for which a ten time speedup factor
can be achieved.

This adaptive search method has been combined with genetic algorithms in a multi-user system, developed
in collaboration with the Fractale/Complex team, for assigning offices to project-teams at INRIA Rocquen-
court. In this experimental system, sets of solutions satisfying preference constraints are computed by adaptive
search, and the preferences of users are learned by genetic algorithms through their notation of the solutions
proposed by the system [26].

6.6. Detection of symmetries
Participants: Guillaume Arnaud, Annabelle Ballesta, Pierre Deransart, François Fages.

Symmetries in constraint satisfaction problems are an important issue. They may lead to a lot of redundant
computations and dramatically increase the size of the search space (for example simple instances of the
Balanced Incomplete Block Design problem have more than 1052 symmetries). The work on symmetries is
twofold: first, the symmetries of a specific problem have to be identified, then they have to be broken to
avoid useless computation. We have developed a library for GNU-Prolog that implements the classical SBDS
algorithm (Symmetry Breaking During Search). This library provides an easy symmetry breaking facility for
GNU-Prolog programmers [3]. Besides, a first algorithm for statically detecting symmetries in Constraint
Satisfaction Problems has been investigated in [20].

6.7. Generic trace format
Participants: Pierre Deransart, François Fages, Gérard Ferrand, Ludovic Langevine.

Debugging tools are essential to help tune constraint solving programs and each platform has its own
environment tools. However, at present, these tools are specific and have to be redesigned and re-implemented
for each constraint solver whereas much could be factorized. We propose a generic framework to enable
debugging tools to be defined almost independently from finite domain solvers, and conversely, tracers to
be built independently from these tools. We have designed a generic trace schema based on a generic

observational semantics which formalizes relevant aspects of constraint programming and solving. We
have developed Codeine, a tracer for the GNU-Prolog platform, that implements this schema [18][19]. The
genericity of the schema has also been demonstrated on two other platforms (Choco and PaLM) by our partners
of the OADymPPaC Project.

6.8. Visualization for debugging
Participants: Guillaume Arnaud, Pierre Deransart, François Fages, Ludovic Langevine.

Using generic trace format allows us to develop solvers and debugging tools independently. It is a way to
incentivate the creation of new and more powerful debugging tools. To validate this approach we experimented
several combinations of new debugging tools (from the OADymPPaC project partners) with some solvers,
especially GNU-Prolog and PaLM which handle constraint propagation in different ways [12]. We have shown
that they all find in the generic trace the whole information they require. The debugging tools are mostly
visualization oriented: they display abstractions of the execution. The developer can use these displays to better
understand the behavior of his program and to correct it or to improve its performances. Two new viewers
have been implemented by us to display search-trees. The first viewer is an adaptation of the Christmas-Tree
developed by ILOG, using propagation details to assign a more or less big size to each node. The second
viewer, River-Tree, applies the so-called Strahler numbers as a clue to guide in the exploration of the search-
tree and get a better overall impression of it. Strahler numbers were originally used to relate the morphological
structure of river networks: they give quantitative measures of the complexity of a tree and its sub-trees. The
integration of these viewers in a new released version of CLPGUI is still in progress.

8 Activity Report INRIA 2003

6.9. 3D placement constraints and virtual reality
Participants: Rémi Coolen, François Fages.

We have investigated a constraint programming approach to a 3D placement problem (placing hardware in an
office) combined with virtual reality tools for the visualization of the problem and complex interactions. The
idea is to explore the concept of constraint programming as a paradigm of augmented virtual reality. The user
interacts with the placement system through a representation of the scene in virtual reality, augmented with a
representation of distance constraints [22].

6.10. Symbolic model checking of biomolecular interaction nets
Participants: Nathalie Chabrier-Rivier, François Fages, Daniela Grosu, Nathalie Sznajder, Sylvain Soliman.

In [1] we have introduced a formalism to represent and analyze protein-protein and protein-DNA interaction
networks. The expressivity of this language, is illustrated by providing a formal counterpart of Kohn’s
compilation on the mammalian cell cycle control. This effectively turns an otherwise static knowledge into
a discrete transition system incorporating a qualitative description of the dynamics. Our proposal is then to use
the Computation Tree Logic CTL as a query language for querying the possible behaviors of the system. We
provide examples of biologically relevant queries expressed in CTL about the mammalian cell cycle control
and show the effectiveness of symbolic model checking tools to evaluate CTL queries in this context [5]. The
generalization of this approach to quantitative models using differential equations [5][24] and to probabilistic
models using probabilistic model checking [28] is under investigation.

The biochemical abstract machine BIOCHAM 0.2 is based on these concepts [6][21].

7. Contracts and Grants with Industry

7.1. COSYTEC
Collaboration within the RNTL project OADymPPaC (Nov. 2000 - May 2004)

Technology transfer of the generic trace format for the CHIP product.
Technology transfer of the CLPGUI software for the dynamic visualization of CHIP program execution.

7.2. ILOG
Collaboration within the RNTL pre-competitive project Manifico (Feb. 2003 - Feb. 2006, 150 Keuros) on non
intrusive metacompilation of matching with constraints in rule based languages

Collaboration within the RNTL project OADymPPaC, evaluation of Ilog Discovery visualization com-
ponent in the framework of constraint programming

8. Other Grants and Activities

8.1. National contracts

• RNTL project MANIFICO (Sep. 2003-2006) on the compilation of rules and constraints. with
LORIA PROTHEO and ILOG coord.

• INRIA cooperative research initiative ARC CPBIO (2002-2004) on “Process Calculi and Molecular
Networks Biology”, with LORIA MODBIO, CNRS PPS lab. of University Paris 7 and Genoscope
Evry, coord. F. Fages INRIA Rocquencourt.

• RNTL project OADymPPaC (Nov. 2000 - May 2004) “Tools for Dynamic Analysis and Debugging
of Constraint Programs” with IRISA LANDES/INSA, INRIA-Futurs, Ecole des Mines de Nantes,
University of Orléans, COSYTEC and ILOG, coord. P. Deransart INRIA Rocquencourt.

Project-Team Contraintes 9

8.2. European contracts

• 6th PCRD STREP APRIL II “Applications of probabilistic inductive logic programming”, coord.
Prof. L. de Raedt, University of Freiburg.

• 6th PCRD Network of Excellence REWERSE “Reasoning with rules and semantics”, coord. Prof.
F. Bry, Ludwig Maximillian’s University in Munich.

• 5th PCRD Network of Excellence COLOGNET “Computational logic network”, area of constraint
logic programming coord. F. Rossi, University of Padova.

• ERCIM working group on Constraints, coord. F. Fages, INRIA Rocquencourt.

8.3. Invitations
Prof. Stephen Muggleton from the Computational Bioinformatics Group at Imperial College in London, visited
our group in August.

9. Dissemination

9.1. Teaching
Contraintes is affiliated to the Doctoral school EDITE of the University of Paris 6.

All Ph.D. students and some members of Contraintes teach in the first or second cycles of Universities or
Engineering schools. Our involvement in third cycle cursus is the following:

• DEA SPL “Sémantique, Preuve et Langages”, ENS, X, University Paris 6, 7, 11: course of program-
mation par contraintes, François Fages 10h, Sylvain Soliman 10h.

• DEA IARFA, University Paris 6: Philippe Codognet 20h.

• DEA Informatique, University of Orléans: François Fages 3h.

• DESS Informatique, University Paris Sorbonne: Daniel Diaz 30h.

• Ecole Jeunes Chercheurs en Programmation, course of programmation par contraintes, François
Fages 6h.

9.2. Leadership within scientific community

• Pierre Deransart is the General Secretary, past Chairman, of the “Association Française pour la
Programmation en Logique et la programmation par Contraintes” AFPLC, and member of the
Steering Committee of PPDP. He is in charge of international relationships of INRIA with Brazil
and Portugal. He is the manager of the OADymPPaC project.

• François Fages is the Chairman of the ERCIM Working Group on Constraints, the Chairman of the
“Association Française pour la Programmation en Logique et la programmation par Contraintes”
AFPLC, a member past-Chairman of the Steering Committee of the ACM International Conference
on Principles and Practice of Declarative Programming, PPDP, and a member of the Scientific
Council of the French-Russian Liapunov Institute.

• Sylvain Soliman is the Secretary of the ERCIM Working Group on Constraints.

10 Activity Report INRIA 2003

10. Bibliography

Articles in referred journals and book chapters

[1] N. CHABRIER, M. CHIAVERINI, V. DANOS, F. FAGES, V. SCHÄCHTER. Modeling and querying biochemical

networks. in « Theoretical Computer Science », volume To appear, 2003.

Publications in Conferences and Workshops

[2] S. ABREU, D. DIAZ. Objective: in Minimum Context. in « Proceedings of ICLP’2003, International Conference
on Logic Programming », MIT Press, Mumbai, India, 2003.

[3] G. ARNAUD. Implantation de SBDS en GNU-Prolog. in « Programmation en logique avec contraintes,
proceedings of JFPLC 2003 », series special issue of RSTI, Hermès, M. DUCASSÉ, editor, pages 237–250,
Amiens (France), June, 2003.

[4] N. CHABRIER, F. FAGES. "Model-checking" symbolique de réseaux biochimiques. in « Actes des Journées
Francophones de la Programmation en Logique avec Contraintes JFPLC’2003 », series special issue of RSTI,
Hermès, M. DUCASSÉ, editor, pages 155–168, Amiens (France), June, 2003.

[5] N. CHABRIER, F. FAGES. Symbolic model cheking of biochemical networks. in « Proceedings of the first
Workshop on Computational Methods in Systems Biology, CMSB’03 », series LNCS, volume 2602, Springer-
Verlag, pages 149–162, Rovereto, Italy, March, 2003.

[6] N. CHABRIER, F. FAGES. The Biochemical Abstract Machine BIOCHAM. in « Poster proceedings of European
Conference on Computational Biology ECCB’03 », C. CHRISTOPHE, H. LENHOF, M. SAGOT, editors, Paris,
September, 2003.

[7] P. CODOGNET, D. DIAZ. An Efficient Library for Solving CSP with Local Search. in « Proc. Metaheuristics
International Conference MIC’03 », Kyoto, Japan, 2003.

[8] E. COQUERY. TCLP: A type checker for CLP(X). in « Proceedings of the the 13th workshop on logic
programming environments, associated to ICLP’03 », A. SEREBRENIK, F. MESNARD, editors, Mumbai,
India, December, 2003.

[9] E. COQUERY, F. FAGES. Contraintes de sous-typage dans les quasi-treillis. in « Actes des Journées Fran-
cophones de la Programmation en Logique avec Contraintes JFPLC’2003 », series special issue of RSTI,
Hermès, M. DUCASSÉ, editor, pages 253–266, Amiens (France), June, 2003.

[10] E. COQUERY, F. FAGES. Subtyping constraints in quasi-lattices. in « Proceedings of the 23rd conference
on foundations of software technology and theoretical computer science, FSTTCS’2003 », series LNCS,
Springer-Verlag, P. PANDYA, J. RADHAKRISHNAN, editors, Mumbai, India, December, 2003.

[11] R. DEBRUYNE, G. FERRAND, N. JUSSIEN, W. LESAINT, S. OUIS, A. TESSIER. Correctness of constraint

retraction algorithms. in « Proceedings of FLAIRS’03: 6th international Florida Artificial Intelligence Re-
search Society conference », AAAI press, pages 172–176, 2003.

Project-Team Contraintes 11

[12] P. DERANSART, L. LANGEVINE, M. DUCASSÉ. Debugging Constraint Problem with Portable Tools. in
« Proceedings of the International Workshop on Logic Programming Environments WLPE’03 associated to
ICLP’03 », Tata Institute of Fundamental Research, A. SEREBRENIK, editor, Mumbai, India, December, 2003.

[13] P. DERANSART, L. LANGEVINE, M. DUCASSÉ. Generic Trace Model for Finite Domain Solvers and its

Application to GNU-Prolog. in « Proceedings of the Joint Annual Workshop of the ERCIM Working Group
on Constraints and the CoLogNET area on Constraint and Logic Programming », MTA-SZATKI, K. APT, F.
FAGES, F. ROSSI, P. SZEREDI, J. VÁNCZA, editors, Budapest, Hungary, July, 2003.

[14] M. DUCASSÉ, L. LANGEVINE, P. DERANSART. Rigorous Design of Tracers: an Experiment for Constraint

Logic Programming. in « Proceedings of the 5th International Workshop on Automated and Algorithmic
Debugging, AADEBUG’03 », Ghent, Belgium, 2003.

[15] F. FAGES. Symbolic model checking for biochemical systems (invited tutorial). in « Proceedings of Internatio-
nal Conference on Logic Programming ICLP’03 », MIT Press, Mumbai, India, December, 2003.

[16] F. FAGES, A. LAL. A Global Constraint for Cutset Problems. in « Proceedings of Fifth International Workshop
on Integration of AI and OR techniques in constraint programming for combinatorial optimization problems
CPAIOR’03 », M. GENDREAU, G. PESANT, L. ROUSSEAU, editors, Montreal, Canada, April, 2003.

[17] G. FERRAND, W. LESAINT, A. TESSIER. Towards declarative diagnosis of constraint programs over finite

domains. in « Proceedings of the 5th International Workshop on Automated and Algorithmic Debugging,
AADEBUG’03 », M. RONSSE, editor, pages 159–170, Ghent, Belgium, 2003.

[18] L. LANGEVINE, P. DERANSART. Un nouveau traceur générique pour GNU-Prolog. in « Programmation en
logique avec contraintes, proceedings of JFPLC 2003 », series special issue of RSTI, Hermès, M. DUCASSÉ,
editor, pages 97–110, Amiens (France), June, 2003.

[19] L. LANGEVINE, M. DUCASSÉ, P. DERANSART. A Propagation Tracer for GNU-Prolog: from Formal

Definition to Efficient Implementation. in « Proceedings of ICLP’03, International Conference on Logic
Programming », series Lecture Notes in Computer Science, Springer Verlag, C. PALAMIDESSI, editor,
Mumbai, India, December, 2003.

Internal Reports

[20] A. BALLESTA. La détection de symétries dans les problèmes de programmation par contraintes. Rapport de
stage de l’INSA de Rouen, INRIA, September, 2003.

[21] N. CHABRIER, F. FAGES, S. SOLIMAN. BIOCHAM’s user manual. INRIA, edition 0.2, November, 2003,
http://contraintes.inria.fr/BIOCHAM/.

[22] R. COOLEN. Apport de la réalité virtuelle dans un problème de placement 2D/3D. Rapport de stage d’option
de l’Ecole Polytechnique, INRIA, June, 2003.

[23] E. COQUERY, F. FAGES. Subtyping constraints in quasi-lattices. Technical report, number RR-4926, INRIA
Rocquencourt, September, 2003, http://www.inria.fr/rrrt/rr-4926.html.

12 Activity Report INRIA 2003

[24] D. GROSU. Modélisation et interrogation en logique temporelle de processus biochimiques. Rapport de DEA
OMJA Paris, INRIA, September, 2003.

[25] R. HAEMMERLÉ. Conception et Compilation d’un Langage Noyau Linéaire Concurrent avec Contraintes.

Rapport de DEA SPL Paris, INRIA, September, 2003.

[26] M. PIERRÈS. Systèmes fortement contraints: émergence évolutionnaire d’un consensus. Rapport de stage de
DEA IARFA, INRIA, September, 2003.

[27] S. SOLIMAN. Pi-calculus and LCC, a Space Odyssey. Research Report, number RR-4855, INRIA, June, 2003,
http://www.inria.fr/rrrt/rr-4855.html.

[28] N. SZNAJDER. Introduction de probabilités dans le système BIOCHAM de modélisation de processus

biochimiques. Rapport de MMFAI ENS Paris, INRIA, September, 2003.

