%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Cristal

Type-safe programming, modularity and
compilation

Rocquencourt

- THEME 2A -

ctivity

1

Table of contents

Team
Overall Objectives
Scientific Foundations
3.1. Type systems
3.1.1. The Hindley-Milner type system
3.1.2. Typing objects
3.1.3. Typing modules
3.1.4. First-class polymorphism and higher-order types
3.1.5. Typing and confidentiality
3.2. The Caml programming language
Application Domains
4.1. Software reliability
4.2. Processing of complex structured data
4.3. Fast development
4.4. Programming secure applications
4.5. Interoperability
4.6. Web programming
4.7. Teaching programming
4.8. Computational linguistics
Software
5.1. Advanced software
5.1.1. Caml Light
5.1.2. Objective Caml
5.1.3. Camlp4
5.1.4. Cameleon
5.1.5. ActiveDVI
5.1.6. SpamOracle
5.1.7. WhizzyTeX
5.2. Prototype software
5.2.1. Wallace
5.2.2. Flow Caml
5.2.3. GCaml
5.2.4. The Zen computational linguistics toolkit
5.2.5. Htmlc
New Results
6.1. Type systems
6.1.1. Extending ML with second order types
6.1.2. Type inference with structural subtyping

6.1.3. Extending HM(X) with existential and universal data-types

6.2. Type isomorphisms

6.2.1. Type isomorphism in the presence of subtyping and recursive types
6.2.2. Type isomorphisms, normalization by evaluation, and partial evaluation

6.3. Modularity
6.3.1. Mixin modules
6.3.2. Recursive modules
6.3.3. Modular type checking of multi-methods
6.3.4. Records and modules

LW W LN N MR — i ek

(eI eriNe o RNe N0 e lie e BN I BN e Nie) lie) le Nie) Nie)Wie WY, BV, BRV, BRO, BV, BJ | BRU, I S i T T i

—_

2 Activity Report INRIA 2003
6.3.5. Algebraic concrete data types 10

6.4. Principled compilation 11
6.4.1. Polymorphic Typed Defunctionalization 11

6.4.2. Compilation of extended recursion 11

6.4.3. Certified compilation 11

6.5. Static analysis 12
6.5.1. Information Flow Analysis 12

6.6. The Objective Caml system, libraries and tools 12
6.6.1. The Objective Caml system 12

6.6.2. The Caml development environment 13

6.6.3. The OCaml-SOAP library 13

6.7. Extensions of Objective Caml 13
6.7.1. OCamlDuce: typed XML processing in OCaml 13

6.7.2. OcamlP3L: high level parallel functional programming and code coupling 14

6.7.3. MetaOCaml: multi-staged computations in OCaml 14

6.7.4. Data persistence 14

6.8. Computational linguistics 15
6.8.1. Lexical, phonological and morphological tools 15

6.8.2. Applicative representation of finite automata and transducers 15

6.8.3. Sanskrit computational linguistics 15

7. Contracts and Grants with Industry 16
7.1. The Caml Consortium 16

8. Other Grants and Activities 16
8.1. National initiatives 16

8.2. European initiatives 16

9. Dissemination 16
9.1. Interaction with the scientific community 16
9.1.1. Learned societies 16

9.1.2. Collective responsibilities within INRTA 16

9.1.3. Collective responsibilities outside INRIA 17

9.1.4. Editorial boards and program committees 17

9.1.5. PhD juries 17

9.1.6. The Caml user community 18

9.2. Teaching 18
9.2.1. Supervision of PhDs and internships 18

9.2.2. Graduate courses 18

9.2.3. Undergraduate courses 18

9.2.4. Continuing education 19

9.3. Participation in conferences and seminars 19
9.3.1. Participation in conferences 19

9.3.2. Invitations and participation in seminars 19

9.4. Industrial relations 19

9.5. Other dissemination activities 20

10. Bibliography 20

1. Team

Head of project-team
Xavier Leroy [Senior research scientist (DR), INRIA]

Vice-head of project-team
Didier Rémy [Senior research scientist (DR), INRIA]

Administrative assistant
Stéphanie Aubin [until March 2003]
Nelly Maloisel [since April 2003]

INRIA staff
Maxence Guesdon [Technical staff (IR), 20% Cristal, 80% Miriad]
Gérard Huet [Senior research scientist (DR)]
Michel Mauny [Senior research scientist (DR)]
Francois Pottier [Research scientist (CR)]
Bruno Verlyck [Technical staff (IR), 80% Cristal, 20% Miriad]
Pierre Weis [Senior research scientist (DR)]

Visiting staff
Roberto Di Cosmo [Professor, university Paris 7, until September 2003]
Basile Starynkevitch [Senior research staff, CEA, since September 2003]
Hanfei Wang [Associate professor, Wuhan University, November 2003—November 2004]

Ph.D. students
Daniel Bonniot [AMN, university Paris 7]
Nadji Gauthier [MENRT grant, university Paris 7, since October 2003]
Benjamin Grégoire [MENRT grant, university Paris 7, in common with Logical]
Tom Hirschowitz [MENRT grant, university Paris 7]
Didier Le Botlan [AMX, university Paris 7]
Vincent Simonet [ENS, university Paris 7]

Student interns
Rajeseharan Deepak [IIIT Hyderabad, May—July 2003]
Thomas Dufour [University Paris 7, May—September 2003]
Nadji Gauthier [University Paris 7, April-September 2003]
Prateek Gupta [IIT Kanpur, May—July 2003]
Julien Roussel [EPITA, October—December 2003]
Zheng Li [University Paris 7, February—September 2003]

2. Overall Objectives

The research carried out in the Cristal group is centered on type systems and related program analyses,
applied to functional, object-oriented, and modular programming languages. The Caml language embodies
many of our research results. Our work spans the whole spectrum from theoretical foundations and formal
semantics to language design, efficient and robust implementations, and applications to real-world problems.
The conviction of the Cristal group is that high-level, statically-typed programming languages greatly enhance
program reliability, security and efficiency, during both development and maintenance.

3. Scientific Foundations
3.1. Type systems

Typing is a fundamental concept in programming: it allows the specification and automatic verification of
consistent handling of data in programs. Moreover, when applied to functions, classes, and modules, typing
helps structuring and managing large and complex programs.

3.1.1.

3.1.2.

3.1.3.

3.14.

2 Activity Report INRIA 2003

The Cristal group studies type systems and typing techniques with the aim of designing safe programming
languages and tools, whose properties are formally established.

The Hindley-Milner type system

The ML language, designed circa 1978, supports automated compile-time type inference and checking. Its
type system supports a form of parametric polymorphism that allows giving types to generic algorithms, that
is, algorithms that work uniformly on a variety of data types. This type system, as well as its type inference
algorithm, are formally specified. Its main property is expressed through a soundness theorem: Well-typed
programs cannot §o wrong.

The ML type system has been the subject of numerous studies and extensions during the last two decades.
Even if they are meant to be reusable in other contexts, many of the results of the Cristal group in this area are
primarily applied in the Caml language, a dialect of ML developed in the Cristal group.

Typing objects

Although object-oriented programming is widely used in industry, very few OO programming languages have
a clear semantics and a formal type system. Different approaches have been proposed in order to lay firm
type-theoretic foundations for OO programming.

The main approach followed by the Cristal group relies on Didier Rémy’s PhD work [56] that proposed
a type system for extensible records allowing type inference. This approach was first extended to objects
by Rémy, in his ML-ART prototype [57]. Rémy and Vouillon [8] later added a fully-fledged class-based
object layer to Caml, which then became Objective Caml (OCaml). This OO layer is compatible with type
inference, and supports advanced OO concepts, such as multiple inheritance, parameterized classes, and “my
type” specialization. It can statically type idioms, such as container classes or binary methods, that require
dynamic type-checking in conventional OO languages, such as Java.

Another approach to type inference for object-oriented programming, featuring implicit subsumption and
based on subtyping constraints, was studied by Francois Pottier in his PhD dissertation [5][6]. Our current
efforts are directed towards multi-methods (that is, method dispatching based on all the arguments of a method)
and the introduction of objects in concurrent programming languages, such as the ones based on the join-
calculus [50].

Typing modules

Module systems provide an alternative to classes for structuring and decomposing large programs. The Caml
module system [54] provides advanced mechanisms for packaging data types with associated operations,
maintaining multiple, possibly abstract interfaces for these packages, and parameterizing a module over other
modules. It is based on the Standard ML module system but offers improved support for separate compilation,
through strict adherence to purely syntactic module types.

While modules are fundamentally different from objects and classes, it would be preferable for modules
to take advantage of the possibilities offered by classes such as inheritance and overriding, as well as mutual
recursion. These issues are currently studied by the Cristal group in the general framework of mixin modules
[46].

Finally, extensional polymorphism provides identifier overloading and generic functions, whose behavior
is guided by the type of their arguments. Extensional polymorphism [51] also allows modelling computations
that dynamically depend on types (input/output, values with dynamic types).

First-class polymorphism and higher-order types

On the one hand, the Hindley-Milner type system has a restricted form of polymorphism: its types are first-
order (they do not contain universal quantifiers), and universal quantification is allowed only at the top level,
as part of type schemes. This restriction allows ML to support automated type inference, without the need for
type annotations in programs.

3.1.5.

Project-Team Cristal 3

On the other hand, system F' allows universal quantifiers to occur arbitrarily deep within a type expression.
This “first-class” polymorphism provides greater expressiveness, at the expense of type inference, which
becomes undecidable.

System F”’s types are second order, i.e., universal quantification is limited to types. In addition, system F,,
offers higher-order types: it also allows universal quantification over type functions (or, in other words, over
parameterized types). This provides even greater expressiveness, making it possible to express notions in the
core language, which in ML must be relegated to the level of the module language.

The search for type systems that combine some form of first-class and possibly higher-order polymorphism
with a decidable or tractable type inference problem, constitute an important research objective at Cristal
[2][37]. Results in this area would increase the expressiveness of ML-style languages, strengthen their
abstraction capabilities, and therefore facilitate code reuse.

Typing and confidentiality

Numerous programs manipulate sensitive corporate or private data. A static information flow analysis provides
a way of preventing such confidential information from being leaked to untrusted third parties. The Cristal
group applies type inference techniques to this problem [20].

3.2. The Caml programming language

Caml belongs to the ML family of languages. Like all languages of this family, Caml supports both functional
and imperative programming styles, Hindley-Milner static typing with type inference, and features a powerful
module system. Caml also supports class-based object-oriented programming, and has an efficient compiler.

Initially built around a functional kernel with imperative extensions, the ML language evolved in two
independent ways during the 80’s. First, a group headed by Robin Milner designed Standard ML (SML),
whose most innovative feature was its module system, designed by David MacQueen. In parallel, Caml was
first designed and developed in the Formel group at INRIA, in collaboration with members of the C.S. Lab.
of Ecole Normale Supérieure in Paris, and then in the Cristal group. Xavier Leroy designed and implemented
a module system similar to that of SML, but with a greater focus on separate compilation. Didier Rémy and
Jérome Vouillon built the object layer. The version of Caml including these features is called Objective Caml
(OCaml).

From an implementation point of view, Caml has advanced the state of the art in compiling functional
languages. Initially based on the Categorical Abstract Machine, which was implemented on top of a Lisp
runtime system, Caml’s execution model was first changed to a high-performance bytecoded virtual machine
designed by Xavier Leroy and complemented by Damien Doligez’s generational and incremental garbage
collector [48]. The resulting implementation, Caml-Light, has low memory requirements and high portability,
which made it quite popular for education.

Then, on the way from Caml-Light to Objective Caml, Xavier Leroy complemented the bytecode generator
with a high-performance native code compiler featuring optimizations based on control-flow analyses, good
register allocation, and code generators for 9 different processors. The combination of the two compilers
provides portability and short development cycle, thanks to the bytecode compiler, as well as excellent
performance, thanks to the native code generator.

4. Application Domains

4.1. Software reliability

One of the aims of static typing is early detection of programming errors. In addition, typed programming
languages encourage programmers to structure their code in ways that facilitate debugging and maintenance.
Judicious uses of type abstraction and other encapsulation mechanisms allow static type checking to enforce
program invariants.

4 Activity Report INRIA 2003

Typed functional programming is also an excellent match for the application of formal methods: functional
programs lend themselves very well to program proof, and the Coq proof assistant can extract Caml code
directly from Coq specifications and proofs.

4.2. Processing of complex structured data

Like most functional languages, Caml is very well suited to expressing processing and transformations of
complex, structured data. It provides concise, high-level declarations for data structures; a very expressive
pattern-matching mechanism to destructure data; and compile-time exhaustiveness tests. (We are currently
working on extending these mechanisms to the handling of semi-structured data.) Therefore, Caml is a
suitable match for applications involving significant amounts of symbolic processing: compilers, program
analyzers and theorem provers, but also (and less obviously) distributed collaborative applications, advanced
Web applications, financial analysis tools, etc.

4.3. Fast development

Static typing is often criticized as being verbose (due to the additional type declarations required) and
inflexible (due to, for instance, class hierarchies that must be fixed in advance). Its combination with type
inference, as in the Caml language, substantially diminishes the importance of these problems: type inference
allows programs to be initially written with few or no type declarations; moreover, the OCaml approach to
object-oriented programming completely separates the class inheritance hierarchy from the type compatibility
relation. Therefore, the Caml language is perfectly suitable for fast prototyping and the gradual evolution of
software prototypes into final applications, as advocated by the popular “extreme programming” methodology.

4.4. Programming secure applications

Strongly-typed programming languages are inherently well-suited to the development of high-security appli-
cations, because by design they prevent a number of popular attacks (buffer overflows, executing network data
as if it were code, etc). Moreover, the methods used in designing type systems and establishing their properties
are also applicable to the specification and verification of security policies.

4.5. Interoperability

Using languages such as OCaml in realistic or industrial applications often requires interaction with existing
libraries or software components developed in other (more classical) programming languages. Symmetrically,
one may need to program algorithmically challenging parts of some applications in OCaml, and other
parts (GUI, communications, main program) in other languages. Interoperability between OCaml and other
languages is therefore important. We address this need via mechanisms for direct linking with C, Fortran or
Java code, and by attempts to develop OCaml bindings for standard architectures for software components
(Corba, COM, .Net, SOAP).

4.6. Web programming

Web programming is an application domain on which the Cristal group has worked in the past, e.g. via the
MMM applet-enabled browser [55] and the V6 smart Web proxy. Currently, the use of XML documents, online
or offline, and the need for typing their transformations opens an application area that perfectly matches the
strengths of languages such as OCaml. In particular, the relation between standard XML “types” (DTDs,
Schemas) and more classical type-theoretic notions must be studied, in order to make XML transformation
languages and general-purpose languages interact securely and efficiently.

4.7. Teaching programming

Our work on the Caml language has an impact on the teaching of programming. Caml Light is one of
the programming languages selected by the French Ministry of Education for teaching Computer Science

Project-Team Cristal 5

in French classes préparatoires scientifiques. Caml Light and OCaml are also used in engineering schools,
colleges and universities in France, the US, and Japan.

4.8. Computational linguistics

Computational linguistics focuses on the processing of natural languages by computer programs. This rapidly
expanding field is multi-disciplinary in nature, and involves several areas that are extensively represented at
INRIA: syntactic analysis, computational logic, type theory. During the last two years, Gérard Huet has been
investigating this new domain, and has shown that OCaml and its Camlp4 preprocessor have been highly
effective for the development of natural language processing components.

5. Software

5.1. Advanced software

5.1.1.

5.1.2.

5.1.3.

5.14.

The following software developments are publicly distributed (generally under Open Source licenses), actively
supported, and used outside our group.

Caml Light

Participants: Xavier Leroy, Damien Doligez [project Moscova], Pierre Weis.

Caml Light is a lightweight, portable implementation of the core Caml language. It is still actively used in
education, but most other users have switched over to its successor, Objective Caml.
Web site: http://caml.inria.fr/.

Objective Caml

Participants: Xavier Leroy, Damien Doligez [project Moscova], Jacques Garrigue [Kyoto University],
Maxence Guesdon, Luc Maranget [project Moscova], Jérdme Vouillon [CNRS, université Paris 7], Pierre
Weis.

Objective Caml is our main implementation of the Caml language. From a language standpoint, it extends the
core Caml language with a fully-fledged object and class layer, as well as a powerful module system, all joined
together by a sound, polymorphic type system featuring type inference. The Objective Caml system is an
industrial-strength implementation of this language, featuring a high-performance native-code compiler for 9
processor architectures (IA32, PowerPC, AMD64, Alpha, Sparc, Mips, IA64, HPPA, StrongArm), as well as a
bytecode compiler and interactive loop for quick development and portability. The Objective Caml distribution
includes a comprehensive standard library, as well as a replay debugger, lexer and parser generators, and a
documentation generator.
Web site: http://caml.inria.fr/.

Camlp4
Participants: Michel Mauny, Daniel de Rauglaudre [INRIA Futurs].

Camlp4 is a source pre-processor for Objective Caml that enables defining extensions to the Caml syntax (such
as syntax macros and embedded languages), redefining the Caml syntax, pretty-printing Caml programs, and
programming recursive-descent, dynamically-extensible parsers. For instance, the syntax of OCaml streams
and recursive descent parsers is defined as a Camlp4 syntax extension. Camlp4 communicates with the OCaml
compilers via pre-parsed abstract syntax trees. Originally developed by Daniel de Rauglaudre, Camlp4 has
been maintained since 2003 by Michel Mauny.

Web site: http://caml.inria.fr/camlp4/.

Cameleon
Participant: Maxence Guesdon.

6 Activity Report INRIA 2003

Cameleon is a customizable integrated development environment for Objective Caml, providing a smooth
integration between the Objective Caml compilers, its documentation, standard editors, a configuration
management system based on CVS, and specialized code generation tools, such as Dbforge (stub generator
for accessing SQL databases).

Web site: http://savannah.nongnu.org/projects/cameleon.

5.1.5. ActiveDVI
Participants: Pierre Weis, Jun Furuse [LexiFi], Didier Rémy, Roberto Di Cosmo.
ActiveDVIis a programmable viewer for DVI files produced by the TeX and LaTeX text processors. It provides
many fancy graphic effects and can use any X Windows application as plug-in, therefore allowing a demo to
be embedded in a presentation, for instance. ActiveDVI provides an excellent Unix/LaTeX-based alternative
to PowerPoint presentations. In particular, it supports time recording in slide shows: a lecture can be post-
synchronized with the speaker’s words. ActiveDVI uses the Camlimages library developed by J. Furuse and
P. Weis for displaying embedded images.
Web site: http://pauillac.inria.fr/advi/.
5.1.6. SpamOracle
Participant: Xavier Leroy.
SpamOracle is an automatic e-mail classification tool that separates legitimate e-mail from unsolicited
commercial e-mail (spam). It proceeds by Bayesian statistical analysis of word frequencies, based on a user-
provided corpus of legitimate and spam messages.
Web site: http://cristal.inria.fr/~xleroy/software.html.

5.1.7. WhizzyTeX
Participant: Didier Rémy.
WhizzyTeX is an Emacs extension that allows previewing of a LaTeX document in real-time during editing.
Web site: http://pauillac.inria.fr/whizzytex/.

5.2. Prototype software

The following software developments are prototypes used mostly within our group, either for experimental
purposes or to support our specific needs. Nonetheless, they are all publicly distributed.

5.2.1. Wallace
Participant: Francois Pottier.
Wallace is a generic library for handling subtyping constraints. It deals with constraint solving and simplifica-
tion, and it is parameterized by the definition of a type algebra. Its objective is to serve as a plug-in component
in the design of a constraint-based type-checker, regardless of the programming language being analyzed.
Wallace was used at project Contraintes as part of a type-checker for Constraint Logic Programming.
Web site: http://cristal.inria.fr/~fpottier/wallace/.

5.2.2. Flow Caml
Participant: Vincent Simonet.
Flow Caml is a prototype implementation of an information flow analyzer for the Caml language. It extends
Objective Caml with a type system tracing information flow. Its purpose is basically to enable realistic

programs to be written and to automatically check that they obey some confidentiality or integrity policy.
Web site: http://cristal.inria.fr/~simonet/soft/flowcaml/.

5.2.3. GCaml

Participants: Jun Furuse [LexiFi], Pierre Weis.

5.24.

5.2.5.

Project-Team Cristal 7

GCaml is an experimental extension of Objective Caml with extensional polymorphism, i.e., type-indexed
functions that dispatch at run-time on the types of their arguments. Based on Jun Furuse’s PhD thesis [51].
Web site: http://cristal.inria.fr/~furuse/generics/.

The Zen computational linguistics toolkit
Participant: Gérard Huet.

Zen is a toolkit for computational linguistics developed in Objective Caml by Gérard Huet. It powers Gérard
Huet’s Sanskrit Site, at http://cristal.inria.fr/~huet/SKT/.
Web site: http://cristal.inria.fr/~huet/ZENY/.

Htmlc
Participant: Pierre Weis.

Htmlc is an HTML template file expander that produces regular HTML pages from source files containing
generated text fragments. These fragments can be the results of variable expansions, the output of an arbitrary
Unix command (for instance, the last modification date of a page), or shared HTML files (such as a common
page header or footer). Htmlc offers a server-independent way of defining templates that factor out the
repetitive parts of HTML pages.

Web site: http://pauillac.inria.fr/htmlc/.

6. New Results
6.1. Type systems

6.1.1.

Extending ML with second order types
Participants: Didier Le Botlan, Didier Rémy.

The ML Language uses simple types (first-order types without quantifiers) enriched with type schemes (simple
types with outer-most universal quantifiers). This allows for type-inference based on first-order unification,
relieving the user from the laborious task of writing type annotations. However, it only enables a limited
form of parametric polymorphism. In contrast, System F uses second-order types (types with inner universal
quantifiers at arbitrary depth) that are much more expressive. As a result, type inference is undecidable in
System F. Hence the user must provide all type annotations.

Didier Le Botlan and Didier Rémy studied a new type system, called MLF, that still enables type synthesis
as in ML while retaining the expressiveness of System F. MLF generalizes a previous proposal by Jacques
Garrigue (Kyoto University) and Didier Rémy, called Poly-ML [2], that is now part of the OCaml type system.
In Poly-ML and OCaml, second-order types are embedded into first-order types by means of semi-explicit
coercions. However, coercions draw a barrier between inferred types and explicit second-order types. This gap
disappears in MLF because its type schemes subsume both ML type schemes with implicit instantiation, and
System-F second-order types with inner polymorphism. The trick is to allow bound variable of type schemes
to stand for another type scheme (providing for inner quantification) or to range over all instances of another
type scheme (providing for ML-style type inference).

Remarkably, type inference in MLF reduces to a new form of unification that amounts to performing first-
order unification in the presence of second-order types. All expressions of ML can be typed in MLF without
any type annotations. All expressions of System F can also be typed, but explicit type annotations are required
for function parameters that are used in a polymorphic manner. The study of MLF is the topic of Didier
Le Botlan’s PhD dissertation, which includes unification and type inference algorithms, their correctness
proofs, as well as a type soundness proof. A summary of these results has been presented at the International
Conference on Functional Programming (ICFP) in Uppsala, Sweden in August 2003 [37]. A small prototype
implementation has also been written (http://cristal.inria.fr/~lebotlan/). This prototype confirms that few

6.1.2.

6.1.3.

8 Activity Report INRIA 2003

annotations are indeed necessary in practice. Moreover, inferred types remain relatively legible in simple
cases, but they can also be cumbersome in certain cases.

Type inference with structural subtyping
Participants: Francois Pottier, Vincent Simonet.

Structural subtyping is a widely used form of subtyping, where two comparable types must have the same
shape and may only differ in their atomic leaves (in particular, there is no lowest or greatest type). This
form of subtyping naturally arises when extending a unification-based type system with atomic annotations
taken from a partially ordered set in order to perform some static analysis (such as detection of uncaught
exceptions, data flow or information flow analysis). Vincent Simonet designed and implemented a realistic
and efficient constraint solving algorithm, for type inference in systems equipped with structural subtyping
and polymorphism. He then achieved a faithful formalization of this algorithm [35], which was presented at
the Asian Symposium on Programming Languages and Systems.

Extending HM(X) with existential and universal data-types
Participants: Francois Pottier, Vincent Simonet.

Vincent Simonet proposed an extension of the type system HM(X') with bounded existential and universal
data-types. This work generalizes Odersky and Léufer’s abstract types for ML, by allowing quantifications
to be bounded by an arbitrary constraint. In Simonet’s system, type inference can be reduced to solving
constraints that involve restricted forms of universal quantification and implication. These constructs are not
generally handled by existing constraint solvers for subtyping. Therefore, Vincent Simonet also proposed a
realistic constraint solving algorithm for the case of structural subtyping, which handles these non-standard
forms. This work has been presented at the International Conference on Functional Programming (ICFP
2003) [34].

6.2. Type isomorphisms

6.2.1.

Type isomorphism in the presence of subtyping and recursive types
Participants: Roberto Di Cosmo, Frangois Pottier, Didier Rémy, Julien Roussel.

Two types A and B are isomorphic if two functions f and ¢ of types A — B and B — A exist such that
both f o gand go f are equivalent to the identity. Type isomorphisms capture insignificant differences in data
representations or function definitions, such as the order of components and function parameters [47].

An important application of type isomorphisms is function retrieval from large libraries, using types as
search keys and performing comparison modulo isomorphism, in order to remove the arbitrary aspects in the
formulation of requests. Complete characterizations of type isomorphisms have long been established and
used to implement retrieval tools in the case of simple types, ML, and second-order type systems. Recently,
the case of recursive types has also been studied.

Our research has been focused on type isomorphisms between products in the presence of recursive
types and subtyping. Taking subtyping into account is particularly interesting in the case of object-oriented
languages, where a function of a given type can also be given any of its subtypes. In theory, confining our
focus to products is a genuine restriction. However, most pertinent cases that can be found in practice are
still covered. We developed an algorithm for type comparison in this context. We also tackled the problem of
building adapters for the results of requests. A consequence of searching modulo type isomorphisms is that
a returned result may not exactly match the request. For instance, parameters of the result may not appear in
the same order as for the request. However, it is possible to adapt, often mechanically, the code found in the
library to return a function (or a class) that matches exactly the request.

Our results are described in a draft paper [44]. They have also been used to design a prototype retrieval tool
for Java classes. This prototype has been implemented in OCaml by Julien Roussel—a student intern from
EPITA during the period of Oct-Dec 2003. Large scale experimentation with this prototype is yet to be carried
out.

6.2.2.

Project-Team Cristal 9

Type isomorphisms, normalization by evaluation, and partial evaluation

Participants: Roberto Di Cosmo, Vincent Balat [University of Genova], Marcelo Fiore [University of
Cambridge], Thomas Dufour.

The study on isomorphisms of types in the presence of products, function and sum types, has led to a major
result, published at LICS 2002 [49], namely that isomorphisms for such a rich type language are not finitely
axiomatisable. As a fundamental tool to establish this result, we developed a precise characterisation of a
canonical form of terms for the lambda calculus with sum and products. No canonical rewriting system was
known for lambda calculus with strong sums, so we gave a direct, inductive definition of canonical forms,
and proved that these forms were the right representative for the equivalence classes of lambda terms modulo
the equational theory for strong sums. For this, we have devised a sophisticated proof, based on a complex
categorical construction, with immediate applications: the standard TDPE (type directed partial evaluator) that
explodes in the presence of sum types, can be modified by incorporating appropriate restrictions derived from
the canonical forms, in such a way as to correctly and efficiently handle even the monstrous terms that come
from the proof given in the LICS paper [49]. This result has been accepted for publication in POPL’04 [22].

During the summer, Thomas Dufour was an intern at INRIA, under the co-direction of Roberto Di
Cosmo and Marcelo Fiore, and has worked on the problem of characterising isomorphisms for passive ML
monomorphic data types (essentially, recursive types with sums and products, but no function space type
constructor), and is now continuing his research as a PhD student under the same supervisors.

6.3. Modularity

6.3.1.

6.3.2.

Mixin modules
Participants: Tom Hirschowitz, Xavier Leroy, J. B. Wells [Heriot-Watt University].

Module systems provide support for modular programming at the level of the programming language,
including abstraction constructs and static verifications. The objective is to reduce programming errors in
modular programs while still allowing the construction of rich libraries of modules. The ML module system
remains one of the most expressive. Nevertheless, this system is weak on at least two important points. Firstly,
mutually recursive definitions cannot be split across separate modules, which hinders modularization in several
cases. Secondly, once a module is defined, the language does not propose any mechanism for incrementally
modifying it. Instead, one has to copy the code manually, and create a new module from scratch.

Mixin modules are a notion of modules that allow both cross-module recursion and modifiability. They
have been extensively studied in the setting of call-by-name evaluation. Under a call-by-value evaluation
regime, they tend to conflict with the usual static restrictions on recursive definitions. Moreover, the semantics
of instantiation has to specify an order of evaluation, which involves a difficult design choice. In a technical
report [39], Tom Hirschowitz, Xavier Leroy, and J. B. Wells presented a strongly-typed kernel language of call-
by-value mixin modules, including improvements compared to previous proposals concerning side effects,
anonymous definitions, and the practicality of the type system. The obtained language, called MM, is very
expressive, but rather heavy, since its semantics have to perform computations over the graph of dependencies
between module components. In another technical report [38], Tom Hirschowitz defined a simpler strongly-
typed kernel language of call-by-value mixin modules, called Miz. Although less powerful than M M, this
language appears to be more practical.

Recursive modules
Participant: Xavier Leroy.

Building on our work on mixin modules (section 6.3.1), Xavier Leroy designed and implemented in Objective
Caml 3.07 an experimental extension of Objective Caml with mutually recursive module definitions. While
not as general as a fully-fledged mixin module system, this extension provides a short-term answer to the
practical need for cross-references between modules. The implementation of the new recursive module binding
construct builds on our compilation scheme for extended recursion described in section 6.4.2. This work is still

6.3.3.

6.3.4.

6.3.5.

10 Activity Report INRIA 2003

preliminary, in that the detection of ill-founded recursions is performed partially at compile-time and partially
at run-time. Future work includes the design and implementation of a fully static detection.

Modular type checking of multi-methods

Participants: Daniel Bonniot, Didier Rémy.

Multi-methods generalize conventional class-based object-oriented programming by detaching methods from
objects: a multi-method is a function that performs (multiple) dynamic dispatch on the types of all its
arguments.

Daniel Bonniot introduced earlier kinding constraints to enable parameterization of methods over groups
of classes that have some common structure (represented by the same kind) but that are not necessarily in a
subclass relationship [45]. A revised version, including an open-world view point, was published this year [13]
and is the core of his PhD dissertation: Extension and application of polymorphic constrained type systems.

Daniel Bonniot has also proposed a type-safe design of super calls from more specific implementations of
a multi-method to some of its existing more general implementations. All these extensions to type-checking
multi-methods have been formalized in a unified framework based on polymorphic constrained type systems.
The high-level language is then compiled in a type-safe manner into a monomorphic language akin to the Java
bytecode.

These theoretical results have been transferred to the implementation of the Nice language
(http://nice.sourceforge.net), which provides multi-methods and advanced high-level features while re-
maining compatible with Java libraries. Some recent improvements of Nice have been to enable multiple
dispatch on (mono-)methods declared in Java packages and to extend the concept of dispatch to selection
based on integer, boolean, string, and enumeration values.

Records and modules
Participant: Francois Pottier.

Programming languages in the ML family feature a module sub-language, which forms a distinct layer above
the core language. A module is a set of value and type definitions. The module language also features functions
from modules to modules (functors), which increase code reusability.

Despite extensive research, today’s module languages remain complex and of limited flexibility. Therefore,
Francois Pottier wishes to design a more powerful module language, by re-unifying it with the core language,
in order to reduce the overall complexity of the design, and by equipping it with a more expressive type
system. From this point of view, modules would become records, while functors would become functions. A
type system featuring rows and higher-order polymorphism would be required to lend the language sufficient
expressive power.

Frangois Pottier continued his study on potential designs for the source language as well as on potential
compilation schemes. The latter includes in particular selective monomorphization, which produces speciali-
zed copies of polymorphic functions in order to improve runtime efficiency.

Algebraic concrete data types
Participant: Pierre Weis.

Pierre Weis has proposed the notion of algebraic concrete data types, which is a middle ground between
traditional ML concrete data types and algebraic abstract data type. Like concrete data types, algebraic
concrete data types can be examined and destructured concretely using ML pattern matching. Like abstract
data types, algebraic concrete data types cannot be constructed outside of their defining module, thus allowing
the definition and enforcement of invariants at data construction time. Therefore, algebraic concrete data types
combine the ability to enforce representation invariants with the convenience of pattern-matching. Moreover,
they provide a solution to the irritating problem of completeness that is typical of algebraic data types, since
the conceptor of an algebraic concrete type can drastically reduce the set of primitives to the strict minimum
that guarantees the invariants.

Project-Team Cristal 11

This proposal for algebraic concrete data type has been added to the Objective Caml language, version 3.07,
under the name private types.

6.4. Principled compilation

6.4.1.

6.4.2.

6.4.3.

Polymorphic Typed Defunctionalization
Participants: Nadji Gauthier, Frangois Pottier.

Defunctionalization is a program transformation that aims to turn a higher-order functional program into a
first-order one, i.e., to eliminate the use of functions as first-class values. Its purpose is therefore identical to
that of closure conversion, but differs however from the latter by storing a fag, instead of a code pointer, within
every closure. Defunctionalization has been used both as a reasoning tool and as a compilation technique.

Defunctionalization is commonly defined and studied in the setting of a simply-typed A-calculus, where
it is shown that semantics and well-typedness are preserved. It has been observed that, in the setting of a
polymorphic type system, such as ML or System F, defunctionalization is not type-preserving. Francgois Pottier
and Nadji Gauthier showed that extending System F with guarded algebraic data types, in the style of Xi,
Chen, and Chen [58], allows recovering type preservation. This result, which allows adding defunctionalization
to the toolbox of type-preserving compiler writers, will be presented at the conference POPL’04 [32].

Compilation of extended recursion
Participants: Tom Hirschowitz, Xavier Leroy, J. B. Wells [Heriot-Watt University].

In the OCaml compiler, mutually recursive definitions are implemented using the “in-place update” trick,
introduced by Cousineau and Mauny in 1987. Compared to a classical method, based on the update of
reference cells, it avoids one indirection at each recursive call. Compared to Appel’s method for compiling
mutually recursive functions used in the SML/NJ and Objective Caml compilers, it allows the definition of
non-functional, mutually recursive values.

In a conference paper [26] and its companion research report [40], Tom Hirschowitz, Xavier Leroy, and
J. B. Wells extend this compilation scheme to a richer set of mutually recursive definitions. Furthermore,
they formalize the compilation scheme as a translation down to a low-level target language without recursive
definitions. This target language is close to one of the intermediate languages used in the OCaml compiler,
which accounts for its implementability. Finally, they prove the semantic correctness of the compilation
scheme by a simulation argument.

Certified compilation
Participant: Xavier Leroy.

Formal methods are being increasingly applied to safety-critical software, in order to increase their reliability
and meet the requirements of the highest levels of software certification. However, formal methods are applied
to the source code of the software, written in C or higher-level languages; but what actually runs in the safety-
critical computer is the machine code generated from the sources by a compiler. Making sure that the compiler
does not introduce bugs is a difficult process: extensive testing of the executable code can help, but the highest
levels of certification in e.g. avionics actually require manual inspection of the assembly code produced by the
compiler, which is laborious and costly.

A more efficient solution to this problem is to apply formal methods to the compiler itself. We are currently
exploring the feasibility of developing a certified compiler, i.e., a realistic compiler that comes with a machine-
checked proof that the generated assembly code has the same semantics as the source code. This exploration
takes place within the Coordinated Research Action (ARC) Concert, involving projects Cristal, Lemme,
Mimosa, Mir6, Oasis, and University of Evry.

As part of these preliminary explorations, Xavier Leroy formalized and proved correct representative
parts of a compiler back-end, using the Coq proof assistant. His Coq development includes the definition
and operational semantics of a register transfer language (RTL — a typical intermediate language used in
compilers), the proof of a general framework for defining and solving dataflow equations, and the specification

12 Activity Report INRIA 2003

and proof of semantic preservation for three classical optimizations based on dataflow analysis: constant
propagation, register allocation by coloring of an interference graph, and elimination of unreachable or unused
code. This development represents about 5000 lines of Coq and required 3 man-months.

The results of this experiment are globally encouraging. In particular, dataflow analyses are relatively easy
to formalize and prove correct in the Coq proof assistant. However, the program transformations that exploit
the results of these analyses are somewhat harder to prove correct.

6.5. Static analysis
6.5.1. Information Flow Analysis

Participants: Francois Pottier, Vincent Simonet.

Francois Pottier and Vincent Simonet have continued their work on information flow analysis in programming
languages of the ML family. The main achievement for 2003 has been the public release of the Flow Caml
system, which is an extension of the Objective Caml language with an implementation of the type system
they previously designed [20]. In Flow Caml, types are annotated with security levels chosen in a user-
definable lattice. Each annotation gives an approximation of the information conveyed by the expression that
it describes. Since it has full type inference, the system verifies, without requiring source code annotations,
that every information flow caused by the program is legal with respect to the security policy specified by
the programmer. Vincent Simonet has also written comprehensive documentation for the system, including a
tutorial [42].

Besides security analysis, Flow Caml is also interesting since it is one of the first realistic implementations
of a programming language that features both subtyping and polymorphism, and that has a complete type
inference algorithm. Hence, this work gave us the opportunity to implement an efficient library for solving
subtyping constraints (see section 6.1.2), and to experiment it on real-sized programs.

6.6. The Objective Caml system, libraries and tools
6.6.1. The Objective Caml system

Participants: Xavier Leroy, Jacques Garrigue [Kyoto university], Damien Doligez [project Moscoval],
Maxence Guesdon, Luc Maranget [project Moscova], Michel Mauny, Pierre Weis.

Objective Caml is our main implementation of the Caml language. It is described in section 5.1.2. This year,
we released version 3.07 of the Objective Caml system, after an extensive testing period involving two “beta”
pre-releases. The main novelties in this release are:

e The introduction of “private type” declarations, corresponding to the notion of algebraic concrete
data types described in section 6.3.5.

e An experimental extension with recursive module definitions, as described in section 6.3.2.

e A relaxation of the so-called “value restriction”, which allows more polymorphic types to be inferred
for certain let bindings. This relaxation, designed and proved sound by Jacques Garrigue [52],
allows type variables to be generalized in the type of an expansive expression, provided they occur
only covariantly in the inferred type.

e A port of the native-code generator to the new AMD 64-bit architecture, known technically as x86-64
and commercially as the Opteron and Athlon64 processors.

e A mechanism to record the types inferred for each sub-expression during compilation. These types
can then be browsed off-line either under the Emacs editor or by using the OCaml browser. This is
useful to locate the source of type errors, and also for pedagogical purposes.

e The standard library module Scanf for formatted input was extended and its performances greatly
improved.

6.6.2.

6.6.3.

Project-Team Cristal 13

The Caml development environment
Participants: Maxence Guesdon, Nadji Gauthier, Vincent Simonet.

Cameleon is an integrated development environment for Objective Caml. It is described in section 5.1.4.
Maxence Guesdon is the main developer and maintainer of Cameleon, This year, he added a library to generate
HTML pages called Toolhtml.

Nadji Gauthier contributed Sqml, a library to parse and print SQL select queries. In combination with the
Dbforge generator of SQL/OCaml bindings, Sqml will allow the user to define SQL queries and verify them
against the database schema at compile time.

Maxence Guesdon and Vincent Simonet developed MozCaml, a sidebar for the Mozilla web browser. This
sidebar lets the user browse and search the OCaml documentation, the Caml Humps (collection of libraries),
as well as news about Caml (new libraries and tools, current discussions, etc). The distribution of news items
relies on the RSS format, a standard XML DTD to represent news. Maxence Guesdon developed a library
called OCaml-RSS to parse and print RSS files from OCaml programs.

The OCaml-SOAP library
Participants: Michel Mauny, Prateek Gupta.

SOAP is a standardized framework for remote method invocation based on XML as the data representation
and HTTP as the transport layer. It can be used for programming distributed applications, and also to support
cross-language interoperability. OCaml-SOAP is a binding between OCaml and the SOAP framework, initially
developed by Michel Mauny and Gaurav Chanda in 2002. This year, Prateek Gupta improved this initial
implementation during a summer internship supervised by Michel Mauny. This second version is more
complete and modular, and is now publicly released (http://caml.inria.fr/ocaml-soap/).

6.7. Extensions of Objective Caml

6.7.1.

OCamlDuce: typed XML processing in OCaml
Participants: Roberto Di Cosmo, Michel Mauny, Jérome Vouillon [CNRS, Paris 7 university].

XML is now ubiquitous as a generic format for semi-structured data, both for data exchange (on the Web and
other network protocols) and for data storage (in semi-structured databases). XML has created considerable
interest in the type systems community (to interpret XML DTDs and Schemas as types) and also in the
functional programming community (for XML transformations and XML database queries).

Our objective is to enrich OCaml with language and typing support for the manipulation and transformation
of XML data, while enforcing DTD conformance via static typing. The starting point of this work is the XDuce
functional language developed at U. Penn. [53], which expresses XML transformations via extended pattern
matching on XML data, and maps DTDs to regular expression types that can be checked statically.

While XDuce is very strong at expressing XML transformations, it is not a general-purpose programming
language: it provides little support for conventional data structures and algorithms. The goal of the OCamlIDuce
effort is, therefore, to combine the strengths of XDuce and OCaml: the program parts that transform XML data
are written in a dialect of XDuce, statically type-checked with high precision using XDuce’s regular expression
types, and translated down to OCaml; these parts can then be linked with the remainder of the program, written
in standard OCaml. Two-way communication between XDuce-defined functions and OCaml-defined functions
is supported.

Challenges to be overcome include designing a suitable mapping between XDuce and OCaml types, and
compiling XDuce pattern-matching down to efficient and compact OCaml code.

In March 2003, together with Giuseppe Castagna’s group at ENS where the CDuce extension of XDuce
is being developed, we invited Haruo Hosoya (Kyoto Univ.) for two weeks, during which we had productive
meetings at INRIA, PPS and ENS. We now have an early prototype implementation of OCamlDuce that
combines interpreted XDuce programs with compiled OCaml modules.

6.7.2.

6.7.3.

6.7.4.

14 Activity Report INRIA 2003

OcamlP3L: high level parallel functional programming and code coupling

Participants: Roberto Di Cosmo, Zheng Li, Pierre Weis, Francois Clément [project Estime], Jérome Jaffré
[project Estime], Vincent Martin [project Estime], Susanna Pelagatti [University of Pisa], Arnaud Vodycka
[project Estime].

The OcamlIP3L project aims at providing an industrial-strength, high-level parallel programming library for
the Ocaml language, based on the P3L skeleton language developed by the researchers of the University of
Pisa.

This year, we started a productive cooperation with the Estime project on the problem of coupling legacy
numerical codes. They were looking for generic tools and infrastructure to facilitate these couplings, and
found all they needed in OcamlP3L, and more besides, since they also obtained parallelisation of the code
essentially for free. This cooperation has also deeply influenced the evolution of the system’s design, which
now incorporates a clear notion of stream processor, allows for a much more flexible coordination of parallel
tasks than that available in the previous version, and incorporates a notion of computational weight of the
user level tasks, fine grained enough to allow the programmer complete control of how to place his heavy
computation on the nodes of a computational grid. The experiment has led to a first working version of
the coupling code that has been successfully tested on the INRIA Rocquencourt Cluster, and presented at
Supercomputing in Nuclear Applications 2003 [24]. A more detailed article on this coupling experiment was
submitted to the special issue of Journal of Functional Programming on Functional Programming and Parallel
Computing.

In association with Susanna Pelagatti and Zheng Li, Roberto Di Cosmo is currently investigating formal
models of data distributions and the efficient compilation of a new powerful skeleton for data parallelism in
OcamlP3L; preliminary results are presented in [15].

MetaOCaml: multi-staged computations in OCaml

Participants: Cristiano Calcagno [Imperial College, London], Walid Taha [Rice University], Liwen Huang
[Yale University], Xavier Leroy.

Multi-stage programming languages provide a small set of constructs for the construction, combination, and
execution of delayed computations. Multi-staged computation therefore accounts for macro generation and
run-time code generation in a principled and semantically well-founded manner.

MetaOCaml is an extension of our Objective Caml language and implementation with multi-staged
constructs: quotes, escapes, and execution of dynamically-generated expressions via compilation to the Ob-
jective Caml byte-code. It is developed by Cristiano Calcagno, Walid Taha and Liwen Huang; Xavier Leroy
provided technical expertise with the Objective Caml implementation. MetaOCaml is one of the first imple-
mentations of multi-staged programming within a full-featured functional programming language, and is thus
a good vehicle for experimentation with actual uses of multi-staged programming. MetaOCaml is described
in an article that was presented at the Generative Programming and Component Engineering conference [23].

Data persistence
Participant: Basile Starynkevitch.

Basile Starynkevitch, previously research engineer at Commissariat 2 I’Energie Atomique, DRT/DTSI Saclay,
joined the Cristal project in september 2003 for a sabbatical as spécialiste issu de 1’industrie. He works
on adding data persistence to the OCaml language. Persistence allows data to persist between runs of a
program, with greater transparency and integration into the language than classical approaches based on
explicit database programming. He developed a prototype persistence library called PERSIL. It provides a
simple persistence mechanism, with transactions, built on top of existing mechanisms, such as segmented
files or relational database systems like MySQL. Further work includes the development of more orthogonal
persistence mechanisms, perhaps by extending appropriately the OCaml language and compiler.

Project-Team Cristal 15

6.8. Computational linguistics

6.8.1.

6.8.2.

6.8.3.

Lexical, phonological and morphological tools
Participant: Gérard Huet.

Gérard Huet extracted a generic toolkit from his Sanskrit modelling platform, enabling the construction of
lexicons, the computation of morphological derivatives and flexed forms, and the segmentation analysis of
phonetic streams modulo euphony. This little library of finite state automata and transducers, called Zen for
its simplicity, was implemented in an applicative kernel of Objective Caml, called Pidgin ML. A literate
programming style of documentation, using Jean-Christophe Fillidtre’s program annotation tool Ocamlweb, is
available. The Zen toolkit is distributed as free software (under the GPL licence) in the Objective Caml Hump
site. This development forms a significant symbolic manipulation software package within pure functional
programming that demonstrates the feasibility of developing symbolic applications having good time and
space performance, within a purely applicative methodology.

This platform is currently being used outside the Cristal team. For instance, a lexicon of French flexed forms
has been implemented by Nicolas Barth and Sylvain Pogodalla, in the Calligrammes project at Loria.

The algorithmic principles of the Zen library, based on the linear contexts data structure (‘zippers’) and
on the sharing functor (associative memory server), were presented as an invited lecture at the symposium
Practical Aspects of Declarative Languages (PADL), New Orleans, Jan. 2003 [30]. An extended version was
written as a chapter of the book “Thirty Five Years of Automating Mathematics”, edited in honor of N. de
Bruijn [17].

Applicative representation of finite automata and transducers
Participant: Gérard Huet.

The Zen library algorithms were abstracted as a uniform applicative representation of finite automata and
transducers. This structure was presented at the Festschrift in Honor of Zohar Manna for his 64th anniversary
at Taormina (Sicily), and published in its proceedings [27].

Sanskrit computational linguistics
Participants: Gérard Huet, Rajeseharan Deepak.

G. Huet presented an original algorithm of segmentation and tagging for the Sanskrit language at the XIIth
World Sanskrit Conference, Helsinki, Finland, Aug. 2003 [28][43]. The problem concerning the correct
treatment of preverbs, which gave rise to a specific prediction technique (‘phantom phonemes’), was presented
at the International Conference on Natural Language Processing (ICON-2003) at Mysore, India, in December
2003 [29].

The Web site http://cristal.inria.fr/~huet/SKT, which presents various Sanskrit linguistics resources interac-
tively, has an average of 1500 monthly visitors. In September 2003, a database of 200 000 flexed forms was
delivered as a free resource in the XML format (given with a specific DTD). This database is used for research
experiments by Pr. Stuart Shieber’s team at Harvard University.

A collaboration is under way with Pr. Peter Scharf, from the Classics Department at Brown University, for
interoperable use of such resources and exchange of annotated corpuses. Rajeseharan Deepak, a student from
the International Information Institute of Technology (IIIT) in Hyderabad, spent his two months of summer
internship in Rocquencourt to realise a module for manipulating within Ocaml an XML database conforming
to a DTD. This was used notably to adapt to Ocaml the Whitney Dictionary of Roots, which was digitised as
an XML document by collaborators of P. Scharf. This work is a preliminary step in the systematic construction
of the conjugated forms of Sanskrit verbs.

Another collaboration began in September with Pr. Brendan Gillon, a linguist from Mc Gill University in
Montreal, on the software structuring of a tree bank that he manually constructed from an annotated corpus
of 500 sentences, issued from citations chosen in the Apte course book on Sanskrit syntax. This work should
lead to the first version of a formal grammar describing Sanskrit sentences.

16 Activity Report INRIA 2003

7. Contracts and Grants with Industry

7.1. The Caml Consortium

The Caml Consortium is a formal structure where industrial and academic users of Caml can support the
development of the language and associated tools, express their specific needs, and contribute to the long-
term stability of Caml. Membership fees are used to fund specific developments targeted towards industrial
users. Members of the Consortium automatically benefit from very liberal licensing conditions on the OCaml
system, allowing for instance the OCaml compiler to be embedded within proprietary applications. Currently,
four companies are members of the Caml Consortium: Artisan Components, Athys, Dassault Aviation, and
LexiFi. For a complete description of this structure, refer to http://caml.inria.fr/consortium/.

8. Other Grants and Activities

8.1. National initiatives

The Cristal and Moscova projects participate in an Action Concertée Incitative GRID named “PL4-
CARAML”, also involving the PPS lab (University Paris 7), the LIFO (University of Orléans) and the LA-
CL (University Paris 12). The theme of this action is the design of extensions to functional programming
languages in order to program efficient parallel computations, based on the BSP parallel programming model.
Our participation to this action focuses on the OCaml-related aspects: design of OCaml extensions and support
for OCaml. This ACI is managed by the LIFO.

8.2. European initiatives

The Cristal project is involved in the European Esprit working group 26142 named “Applied Semantics II".
The purpose of this working group, and its predecessor “Applied Semantics”, is to foster communication
between theoretical research in semantics and practical design and implementation of programming languages.
This group is coordinated by the Ludwig-Maximilians University in Munich and comprises both European
academic teams and industrial research labs. The yearly meetings of this working group allow us to keep good
connections with the European semantics community.

9. Dissemination

9.1. Interaction with the scientific community

9.1.1.

9.1.2.

Learned societies

Gérard Huet was elected Member of the French Academy of Sciences in november 2002.
Xavier Leroy and Didier Rémy are members of IFIP Working Group 2.8 (Functional Programming).

Collective responsibilities within INRIA

Gérard Huet was chairman of the Section locale d’Auditions (local hiring committee) for the INRIA Futurs
CR2 hiring competition (43 candidates for 5 positions). He spent the academic year 02-03 at LaBRI in
Bordeaux, in the Signes team led by Christian Retoré, to help in the creation of a project-team of the Futurs
UR, devoted to the syntax/semantics interface in natural language.

Michel Mauny was chairman of the Section locale d’Auditions (local hiring committee) for the INRIA
Rocquencourt CR2 hiring competition. He is membre de I’équipe de direction (member of the management
team) of the INRIA Rocquencourt research unit; vice-président du Comité des Projets (deputy chairman of
the Projects Committee) since november 2003; and membre suppléant nommé de la Commission d’Evaluation
(appointed deputy member of the Evaluation Committee) since december 2003. He was scientific organizer
of the rencontres INRIA-Industrie 2004 (INRIA-Industry meeting), whose theme is Software Engineering.

9.1.3.

Project-Team Cristal 17

Finally, Michel Mauny participated in INRIA working group on the position of secretaries in INRIA research
groups.

Pierre Weis is a member of the comité d’UR de Rocquencourt. He is membre titulaire élu (elected member)
of the Comité Technique Paritaire and Comité de Concertation, and membre suppléant élu (elected deputy
member) of the Commission d’Evaluation.

Pierre Weis and Maxence Guesdon participate in an INRIA working group whose purpose is to computerize
various administrative procedures, such as purchase orders, travel authorizations (demandes de mission), etc.
Pierre Weis also developed a Web-based submission procedure for post-doc applications, in collaboration with
Faranak Grange of the INRIA Foreign Relations office.

Collective responsibilities outside INRIA

Roberto Di Cosmo is a member of the Commissions de spécialistes (hiring committees) of University Paris 7
and University of La Réunion.

Gérard Huet was president of the review committee of the PPS laboratory at University Paris 7 (november
2003). He is Member of the Board of University Paris 7.

Xavier Leroy is a member of the steering committee of the International Conference on Functional
Programming (ICFP) and of the Asian Association for Foundation of Software (AAFS). He is scientific advisor
for the European IST Network DART (Dynamic Assembly, Reconfiguration and Type-checking).

Michel Mauny is a member of the Executive Office of the Réseau National de Recherche en Télécommu-
nications (RNRT). He is a member of the Scientific Board of the Groupement de recherche Algorithmique,
Langage et Programmation (GDR ALP), and of the Scientific Board of the French-Moroccan cooperation
program Réseaux STIC.

9.1.4. Editorial boards and program committees

9.1.5.

Roberto Di Cosmo was a member of the program committees of FOSSACS’04, LICS’04, WRS’03, WRS’04,
and the First International Conference on Free Software Development and Usage (LACFREE’03).

Gérard Huet is a member of the selection committee of the ESSLLI 2004 summer school that will take
place in Nancy in august 2004. He is a member of the program committee of the 11th Workshop on Logic,
Language, Information and Computation (WoLLIC’2004), to occur at the University of Paris 12 in july 2004.

Xavier Leroy chaired the program committee of the 31st ACM Symposium on Principles of Programming
Languages (POPL 2004).

Xavier Leroy and Didier Rémy are members of the editorial board of the Journal of Functional Program-
ming.

Michel Mauny was a member of the program committee of the JFLA’04 conference.

Didier Rémy is on the program committee of the international conference on Programming Language
Design and Implementation (PLDI) that will be held in Washington DC, USA in june 2004.

PhD juries
Roberto Di Cosmo chaired the PhD juries of Tom Hirschowitz and Benjamin Grégoire (University Paris 7,
december 2003).

Gérard Huet was jury member at the doctorate defense of Virgile Prevosto (University Paris 6, september
2003) and reviewer (rapporteur) of the habilitation of Guy Perrier (University Nancy 1, november 2003).

Xavier Leroy was reviewer for Benoit Sonntag’s PhD thesis (University Nancy 1, november 2003). He
participated in the PhD juries of Simdo Melo de Sousa (University of Nice, february 2003), Hervé Grall
(Ecole des Ponts et Chaussées, december 2003), Tom Hirschowitz (University Paris 7, december 2003), and
Benjamin Grégoire (University Paris 7, december 2003).

Michel Mauny acted as a reviewer in the PhD committee of Eric Moretti (december 2003, University Paris
11), and as a reviewer in the habilitation of Emmanuel Chailloux (december 2003, University Paris 7).

18 Activity Report INRIA 2003

9.1.6. The Caml user community

Maxence Guesdon maintains the Caml Humps (http://caml.inria.fr/humps/), a comprehensive Web index of
about 250 Caml libraries, tools and tutorials contributed by Caml users. This Web site contributes significantly
to the visibility of the Caml language.

9.2. Teaching

9.2.1.

9.2.2.

9.2.3.

Supervision of PhDs and internships

Roberto Di Cosmo supervised the DEA internships of Thomas Dufour (5 months) and Zheng Li (8 months),
as well as the 4-month research internship of Christophe Calves (student at ENS Cachan). Thomas Dufour and
Zheng Li then started a PhD, still under Roberto Di Cosmo’s supervision.

Xavier Leroy supervises the PhD work of Tom Hirschowitz. Jointly with Benjamin Werner (project
Logical), he co-supervises the PhD work of Benjamin Grégoire.

Michel Mauny supervised Prateek Gupta’s summer internship (master’s student), and is supervising Hanfei
Wang (associate professor, Wuhan University, visiting scholar at INRIA sponsored by the Chinese government
from November 2003 to November 2004).

Gérard Huet supervised Rajeseharan Deepak’s summer internship.

Frangois Pottier supervises Vincent Simonet’s PhD studies. He supervised Nadji Gauthier, a DEA intern,
over a period of six months. Nadji Gauthier is now pursuing a PhD, still under Francois Pottier’s supervision.

Didier Rémy has been supervising Didier Le Botlan and Daniel Bonniot’s PhDs since September 2000 and
Alexandre Frey’s PhD since 2001.

Frangois Pottier and Didier Rémy supervised the internship of Julien Roussel (engineering student at
EPITA).

Graduate courses

The Cristal project-team is strongly involved in the DEA Programmation: sémantique, preuves et langages
(Programmmg semantics, proofs, languages), a graduate program co-organized by Universities Paris 6, Paris
7, Paris Sud, Ecole Normale Supérieure Paris, Ecole Normale Supérieure de Cachan, Ecole Polytechnique and
CNAM.

Roberto Di Cosmo is the director of the DEA Programmation, and teaches the Linear Logic course in this
DEA (20 hours). Francois Pottier teaches the Types and Programming course in this DEA (20 hours). Xavier
Leroy supervises the Programming Languages track of this DEA.

Gérard Huet taught a course on the syntax/semantics interface in natural language at DEA d’Informatique
of University Bordeaux 1, jointly with C. Retoré.

Xavier Leroy gave a 5-hour lecture on module systems at the Ecole Jeune Chercheurs en Programmation,
a summer school attended by about 25 first-year PhD students.

Frangois Pottier and Didier Rémy have contributed a chapter on the essence of ML type inference to a
graduate textbook edited by Benjamin Pierce [19].

Undergraduate courses
Didier Rémy is a part-time professor at Ecole Polytechnique. This year, he taught a course on Operating
systems principles and programming to third year students. Maxence Guesdon was teaching assistant for this
course.

Michel Mauny gave two courses to engineering students, one on Functional programming at ISIA (20
hours), the other on the Unix system at ETGL (42 hours).

Pierre Weis gave a course on denotational semantics to engineering students at ENSTA (Ecole Nationale
des Techniques Avancées), Paris (16 hours).

Project-Team Cristal 19

9.2.4. Continuing education
Pierre Weis gave a course on “Normal forms in rings”, illustrated with Caml programs, at the yearly meeting
of the professeurs de mathématiques des classes préparatoires (math professors of the preparatory class
undergraduate curriculum).

9.3. Participation in conferences and seminars

9.3.1. Participation in conferences
Xavier Leroy, Michel Mauny and Francois Pottier attended the symposium Principles of Programming
Languages and the satellite workshops Types in Language Design and Implementation and Foundations of
Object-Oriented Languages (New Orleans, USA, january 2003).

Pierre Weis attended the Journées Francophones des Langages Applicatifs (Chamrousse, France, january
2003).

Xavier Leroy and Didier Rémy participated in the annual meeting of IFIP Working Group 2.8 Functional
Programming (Sierre, Switzerland, january 2003). Xavier Leroy gave two talks, one on certified compilation,
the other on Bayesian spam filtering. Didier Rémy presented his work with Didier Le Botlan on MLF [37].

Didier Le Botlan and Vincent Simonet attended the Workshop on Applied Semantics (APPSEM 2)
(Nottingham, UK, march 2003). Didier Le Botlan presented his PhD work on MLF, and Vincent Simonet
presented a short overview of the Flow Caml system [36].

Xavier Leroy was invited speaker at the ETAPS federation of conferences (Warsaw, Poland, april 2003). He
talked on computer security from a programming language and static analysis perspective [31].

Francois Pottier attended the Logic in Computer Science symposium (LICS) (Ottawa, Canada, june 2003),
where he presented a paper on a constraint-based vision of rows [33].

Tom Hirschowitz, Didier Le Botlan, Didier Rémy and Vincent Simonet attended the International Confe-
rence on Functional Programming (ICFP) (Uppsala, Sweden, august 2003). Tom Hirschowitz also attended the
co-located conference on Principles and Practice of Declarative Programming (PPDP). Tom Hirschowitz pre-
sented his work on the compilation of recursion [26] at PPDP. Didier Le Botlan presented his work with Didier
Rémy on MLF [37] at ICFP. Vincent Simonet presented his work about existential and universal data-types in
HM(X) [34] at ICFP.

Vincent Simonet participated in the Dagstuhl Seminar on Language-Based Security, organized by A.
Banerjee, H. Mantel, D. Naumann and A. Sabelfeld.

Vincent Simonet attended the Asian Symposium on Programming Languages and Systems (Beijing, China,
november 2003), where he presented his work about type inference with structural subtyping [35].

9.3.2. Invitations and participation in seminars

Tom Hirschowitz spent one week at the University of Genova, visiting the programming languages group.
He gave a seminar lecture on his work on mixin modules. Tom Hirschowitz spent one week at Heriot-Watt
University (Edinburgh), in the context of his collaboration with J. B. Wells. He gave a talk to the ULTRA
group on mixin modules and on the compilation of recursion.

Didier Le Botlan gave a talk about his PhD work to the Alice group at the University of Saarbriicken,
Germany in April 2003.

Michel Mauny went to Rabat (Morocco) as a member of the Scientific Board of the French-Moroccan
program Réseaux STIC, at the end of March 2003.

9.4. Industrial relations

Xavier Leroy is consultant for the Trusted Logic start-up company, one day per week, in the context of a
convention de concours scientifique.

Pierre Weis is scientific collaborator at LexiFi, a start-up company that use Caml to design and implement
a domain-specific language devoted to formal description and pricing of financial contracts.

20 Activity Report INRIA 2003

9.5. Other dissemination activities

Roberto Di Cosmo is a recognized academic expert on free software. He gave a number of seminar talks and
conferences on the subject of free software, software patents, intellectual property and the digital barrier, in
France, Italy, Argentina and Peru, for widely different audiences: academics, I'T professionals, and the general
public. Slides from some of the conferences are available from http://www.dicosmo.org/TALKS. He published
an article on intellectual property in Upgrade [14].

Michel Mauny and Maxence Guesdon participated in the Solutions Linux exhibition (Paris, feb 4-6, 2003).
At the INRIA booth, they presented Objective Caml to potential users and generally promoted the language.

Maxence Guesdon took part in the design and development of the Web site of the Association Libre Cours,
http://www.librecours.org/. This non-profit association collects freely available courses and lecture notes in
French and ensures that they are widely available to students and teachers.

10. Bibliography
Major publications by the team in recent years
[1] G. COUSINEAU, M. MAUNY. The Functional Approach to Programming. Cambridge University Press, 1998.

[2] J. GARRIGUE, D. REMY. Extending ML with semi-explicit higher-order polymorphism. in « Information &
Computation », number 1/2, volume 155, 1999, pages 134-169.

[3] T. HIRSCHOWITZ, X. LEROY. Mixin modules in a call-by-value setting. in « Programming Languages and
Systems — ESOP’2002 », series Lecture Notes in Computer Science, volume 2305, Springer-Verlag, D. LE
METAYER, editor, pages 620, 2002, http://pauillac.inria.fr/~xleroy/publi/mixins-cbv-esop2002.pdf.

[4] X. LEROY. A modular module system. in « Journal of Functional Programming », number 3, volume 10, 2000,
pages 269-303, http://pauillac.inria.fr/~xleroy/publi/modular-modules-jfp.ps.gz.

[S]F. POTTIER. A Versatile Constraint-Based Type Inference System. in « Nordic Journal of Computing », number
4, volume 7, 2000, pages 312-347.

[6] F. POTTIER. Simplifying subtyping constraints: a theory. in « Information & Computation », number 2, volume
170, 2001, pages 153-183.

[7]1 F. POTTIER, V. SIMONET. Information Flow Inference for ML. in « Proceedings of the 29th ACM Symposium
on Principles of Programming Languages (POPL’02) », pages 319-330, January, 2002.

[8] D. REMY, J. VOUILLON. Objective ML: A simple object-oriented extension to ML. in « 24th ACM Conference
on Principles of Programming Languages », ACM Press, pages 40-53, 1997.

[9] D. REMY. Using, Understanding, and Unraveling the OCaml Language. G. BARTHE, editor, in « Applied
Semantics. Advanced Lectures », series Lecture Notes in Computer Science, volume 2395, Springer-Verlag,
2002, pages 413-537.

[10] P. WEIS, X. LEROY. Le langage Caml. edition second, Dunod, July, 1999.

Project-Team Cristal 21

Doctoral dissertations and ‘“Habilitation’ theses
[11] B. GREGOIRE. Compilation de termes de preuves. Ph. D. Thesis, University Paris 7, December, 2003.

[12] T. HIRSCHOWITZ. Modules mixins, modules et récursion étendue en appel par valeur. Ph. D. Thesis,
University Paris 7, December, 2003.

Articles in referred journals and book chapters

[13] D. BONNIOT. Using kinds to type partially-polymorphic methods. in « Electronic Notes in Theoretical
Computer Science », volume 75, 2003.

[14] R. D1 CoSMO. Legal Tools to Protect Software: Choosing the Right One. in « Upgrade », number 3, volume
4, June, 2003, pages 21-23, http://www.upgrade-cepis.org/issues/2003/3/up4-3DiCosmo.pdf.

[15] R. D1 CosMO, S. PELAGATTI. A calculus for dense array distributions. in « Parallel Processing Letters »,
number 13, volume 3, 2003.

[16] J.-C. FILLIATRE, F. POTTIER. Producing All Ideals of a Forest, Functionally. in « Journal
of Functional Programming », number 5, volume 13, September, 2003, pages 945-956,
http://pauillac.inria.fr/~fpottier/publis/filliatre-pottier.ps.gz.

[17] G. HUET. Linear Contexts and the Sharing Functor: Techniques for Symbolic Computation. F.
KAMAREDDINE, editor, in « Thirty Five Years of Automating Mathematics », Kluwer, 2003,
http://pauillac.inria.fr/~huet/PUBLIC/DB.pdf.

[18] X. LEROY. Java bytecode verification: algorithms and formalizations. in « Journal of Automated Reasoning »,
number 3—4, volume 30, 2003, pages 235-269, http://pauillac.inria.fr/~xleroy/publi/bytecode-verification-
JAR.pdf.

[19] F. POTTIER, D. REMY. The essence of ML type inference. B. C. PIERCE, editor, in « Advanced topics in
Types and Programming Languages », MIT Press, 2004, To appear.

[20] F. POTTIER, V. SIMONET. Information Flow Inference for ML. in « ACM Transactions on Pro-
gramming Languages and Systems », number 1, volume 25, January, 2003, pages 117-158,
http://pauillac.inria.fr/~fpottier/publis/fpottier-simonet-toplas.ps.gz.

[21] R. D1 CosmMo, D. KESNER, E. POLONOVSKI. Proof Nets and Explicit Substitutions. in « Mathematical
Structures in Computer Science », number 3, volume 13, 2003, pages 409-450.

Publications in Conferences and Workshops

[22] V. BALAT, R. D1 CosMO, M. FIORE. Extensional Normalisation and Type-Directed Partial Evaluation for
Typed Lambda Calculus with Sums. in « 31st ACM symposium on Principles of Programming Languages »,
ACM Press, January, 2004, To appear.

[23] C. CALCAGNO, W. TAHA, L. HUANG, X. LEROY. Implementing Multi-stage Languages Using ASTs,

22 Activity Report INRIA 2003

Gensym, and Reflection. in « Generative Programming and Component Engineering (GPCE’03) », 2003,
http://www.cs.rice.edu/~taha/publications/conference/gpce03b.pdf.

[24] F. CLEMENT, V. MARTIN, A. VODICKA, R. DI COSMO, P. WEIS. Domain decomposition for flow simulation
around a waste disposal site: direct computation versus code coupling using OCamlP3I. in « International
Conference on Supercomputing in Nuclear Applications (SNA’2003) », September, 2003.

[25] J. FURUSE. Extensional polymorphism by flow graph dispatching. in « Programming Lan-
guages and Systems, first Asian Symposium, APLAS 2003 », series Lecture Notes in Compu-
ter Science, number 2895, Springer-Verlag, A. OHORI, editor, pages 376-393, November, 2003,
http://pauillac.inria.fr/~furuse/publications/flowgraph.ps.gz.

[26] T. HIRSCHOWITZ, X. LEROY, J. B. WELLS. Compilation of extended recursion in call-by-value functional
languages. in « International Conference on Principles and Practice of Declarative Programming », ACM
Press, pages 160-171, 2003, http://pauillac.inria.fr/~xleroy/publi/compil-recursion.pdf.

[27] G. HUET. Automata Mista. in « Festschrift in Honor of Zohar Manna for his 64th anniversary », se-
ries Lecture Notes in Computer Science, volume 2772, Springer-Verlag, N. DERSHOWITZ, editor, 2003,
http://pauillac.inria.fr/~huet/PUBLIC/zohar.pdf.

[28] G. HUET. Lexicon-directed Segmentation and Tagging of Sanskrit. in « XIIth World Sanskrit Conference »,
2003.

[29] G. HUET. Towards Computational Processing of Sanskrit. in « International Conference on Natural Language
Processing (ICON) », 2003.

[30] G. HUET. Zen and the Art of Symbolic Computing: Light and Fast Applicative Algorithms for Com-
putational Linguistics. in « Practical Aspects of Declarative Languages (PADL) symposium », 2003,
http://pauillac.inria.fr/~huet/PUBLIC/padl.pdf.

[31] X. LEROY. Computer Security from a Programming Language and Static Analysis Perspective. in
« Programming Languages and Systems: 12th European Symposium on Programming, ESOP 2003 », series
Lecture Notes in Computer Science, volume 2618, Springer-Verlag, P. DEGANO, editor, pages 1-9, 2003,
Extended abstract of invited lecture.

[32] F. POTTIER, N. GAUTHIER. Polymorphic Typed Defunctionalization. in « 31st ACM symposium on Principles
of Programming Languages », ACM Press, January, 2004, http://pauillac.inria.fr/~fpottier/publis/fpottier-
gauthier-popl04.ps.gz, To appear.

[33] F. POTTIER. A Constraint-Based Presentation and Generalization of Rows. in « Eighteenth Annual IEEE
Symposium on Logic In Computer Science (LICS’03) », pages 331-340, Ottawa, Canada, June, 2003,
http://pauillac.inria.fr/~fpottier/publis/fpottier-lics03.ps.gz.

[34] V. SIMONET. An Extension of HM(X) with Bounded Existential and Universal Data-Types. in « Proceedings
of the 8th ACM SIGPLAN International Conference on Functional Programming (ICFP 2003) », ACM Press,
pages 39-50, Uppsala, Sweden, August, 2003.

Project-Team Cristal 23

[35] V. SIMONET. Type inference with structural subtyping: A faithful formalization of an efficient constraint solver.
in « Programming Languages and Systems, first Asian Symposium, APLAS 2003 », series Lecture Notes in
Computer Science, number 2895, Springer-Verlag, A. OHORI, editor, pages 283-302, November, 2003.

[36] V. SIMONET. Flow Caml in a Nutshell. in « Proceedings of the first APPSEM-II workshop », G. HUTTON,
editor, pages 152—-165, Nottingham, United Kingdom, March, 2003.

[37] D. LE BOTLAN, D. REMY. MLF: Raising ML to the power of System-F. in « Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Programming », pages 27-38, August, 2003,
http://pauillac.inria.fr/~remy/work/mlf/ictp.pdf.

Internal Reports

[38] T. HIRSCHOWITZ. Rigid mixin modules. Technical report, number RR2003-46, ENS Lyon, 2003,
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2003/RR2003-46.ps.gz.

[39] T. HIRSCHOWITZ, X. LEROY, J. B. WELLS. A reduction semantics for call-by-value mixin modules. Technical
report, number 4682, INRIA, 2003, http://www.inria.fr/rrrt/rr-4682.html.

[40] T. HIRSCHOWITZ, X. LEROY, J. B. WELLS. On the implementation of recursion in call-by-value functional
languages. Technical report, number 4728, INRIA, 2003, http://www.inria.fr/rrrt/rr-4728 . html.

[41] X. LEROY, D. DOLIGEZ, J. GARRIGUE, D. REMY, J. VOUILLON. The Objective Caml system, documentation
and user’s manual — release 3.07. INRIA, September, 2003, http://caml.inria.fr/ocaml/htmlman/.

[42] V. SIMONET. The Flow Caml System: documentation and user’s manual. Technical Report, number 0282,
INRIA, July, 2003.

Miscellaneous

[43] G. HUET. Transducers as Lexicon Morphisms, Phonemic Segmentation by Euphony Analysis, Application to
a Sanskrit Tagger. 2003, http://pauillac.inria.fr/~huet/PUBLIC/tagger.pdf.

[44]R. D1 COSMO, F. POTTIER, D. REMY. Subtyping Recursive Types modulo Associative Commutative Products.
2003, http://pauillac.inria.fr/~remy/work/dicosmo-pottier-remy-03.ps.gz, Draft paper.

Bibliography in notes

[45] D. BONNIOT. Using kinds to type partially polymorphic multi-methods. in « Workshop on Types in Program-
ming (TTP’02) », 2002.

[46] G. BRACHA. The programming language Jigsaw: mixins, modularity and multiple inheritance. Ph. D. Thesis,
University of Utah, 1992.

[47]1 R. D1 COoSMO. Isomorphisms of Types: from Lambda Calculus to Information Retrieval and Language Design.
Birkhauser, 1995.

24 Activity Report INRIA 2003

[48] D. DOLIGEZ, X. LEROY. A concurrent, generational garbage collector for a multithreaded implementation
of ML. in « Proc. 20th symp. Principles of Programming Languages », ACM press, pages 113-123, 1993,
http://pauillac.inria.fr/~xleroy/publi/concurrent-gc.ps.gz.

[49] M. FIORE, R. D1 COSMO, V. BALAT. Remarks on isomorphisms in typed lambda calculi with empty and sum
types. in « Symposium on Logic in Computer Science (LICS 2002) », IEEE, 2002.

[50] C. FOURNET, L. MARANGET, C. LANEVE, D. REMY. Inheritance in the join calculus. in « Foundations of
Software Technology and Theoretical Computer Science — FSTTCS 2000 », series Lecture Notes in Computer
Science, volume 1974, Springer-Verlag, 2000.

[51]J. FURUSE. Extensional polymorphism: theory and applications. Ph. D. Thesis, University Paris 7, December,
2002.

[52] J. GARRIGUE. Relaxing the value restriction. August, 2003, submitted for publication, available from
http://wwwfun.kurims.kyoto-u.ac.jp/~garrigue/papers/morepoly.pdf.

[53] H. HosovyA, B. C. PIERCE. XDuce: A Statically Typed XML Processing Language. in « ACM Transactions
on Internet Technology », number 2, volume 3, May, 2003, pages 117-148.

[54] X. LEROY. A syntactic theory of type generativity and sharing. in « Journal of Functional Programming »,
number 5, volume 6, 1996, pages 667-698, http://pauillac.inria.fr/~xleroy/publi/syntactic-generativity.ps.gz.

[55] F. RoUAIX. A Web navigator with applets in Caml. in « Proceedings of the 5th International World Wide
Web Conference, in Computer Networks and Telecommunications Networking », volume 28, Elsevier, pages
1365-1371, May, 1996.

[56] D. REMY. Type Inference for Records in a Natural Extension of ML. C. A. GUNTER, J. C. MITCHELL, editors,
in « Theoretical Aspects Of Object-Oriented Programming. Types, Semantics and Language Design », MIT
Press, 1993.

[57] D. REMY. Programming Objects with ML-ART: An extension to ML with Abstract and Record Types. in
« Theoretical Aspects of Computer Software », series Lecture Notes in Computer Science, volume 789,
Springer-Verlag, M. HAGIYA, J. C. MITCHELL, editors, pages 321-346, April, 1994.

[58] H. X1, C. CHEN, G. CHEN. Guarded Recursive Datatype Constructors. in « Proceedings of the 30th ACM
SIGPLAN Symposium on Principles of Programming Languages », ACM Press, pages 224-235, 2003.

