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2. Overall Objectives

2.1. Introduction

An everyday broader range of software engineering areas requires reasoning on a combination of sequential
or synchronous and asynchronous interaction at the different architectural levels of the system under design.
Relevant practical examples are co-designed hardware-software architectures, multi-tasked/threaded embed-
ded systems, distributed telecom applications. In summary, every system whose design requires robustness to
latency, to distribution, to threading, to separate compilation.

The objectives of ESPRESSO project-team are to propose formal models and implement formal methods
and reliable tools for engineering trusted application components and architectures for embedded and mission-
critical systems, on a spectrum of architectures ranging from circuits to distributed systems, yet within a simple
mathematical framework offering the best reliability guarantees. The project-team demonstrates the effective-
ness and efficiency of this approach by means of the POLYCHRONY design environment. POLYCHRONY is
an integrated development environment and technology demonstrator consisting of a compiler, a visual editor
and simulator and a model checker.

2.2. Strategy and vision

The ESPRESSO project-team builds upon the achievements of the former EP-ATR project-team to propose
formal models, methods and tools to aid the development of reliable software components in embedded system
design. The main paradigm shift of the ESPRESSO project-team is the move from programming languages to
formal methods, where models, methods and tools that made the success of the former are further put into focus
in the latter in the context of heterogeneous computing and programming paradigms. The models considered in
the project-team homogeneously span from synchrony to asynchrony, from discrete time to real time, and are
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captured by the polychronous model of computation [16]. The formal methods considered in the project-team
put this model to work for the refinement-based (top-down) and component-based (bottom-up) development of
software, yielding support for a true platform-based design approach suitable for modern avionics, automotive
and system-level architecture development.

The project-team makes continuous efforts in the development and release of the POLYCHRONY workbench
(http://www.irisa.fr/espresso/Polychrony). The POLYCHRONY workbench consists of a toolbox offering ser-
vices for the implementation of the formal design methodologies studied in the project-team. Its commercial
implementations (SILDEX and RTBUILDER from TNI-VALIOSYS) have achieved industrial-scale usage at
Airbus Industries and Snecma in the context of the past IST SAFEAIR project. Past projects (projects SA-
FEAIR, EXPRESSO, ACOTRIS, NSF-INRIA collaboration) and forthcomming ones (IST proposals ESPACE,
PANDORA, SEA, ARTIST network) demonstrate extensive collaborations with academic and industrial part-
ners in the applications areas of avionics, automotive and architecture-aware embedded system design. The
project-team puts a sustained effort in promoting the experimental POLYCHRONY workbench as free software
with the long-term goal of releasing an open-source distribution.

2.3. Context and motivations

The high-level design of embedded systems and architectures have gained prominence in the face of rising
technological complexity, increasing performance requirements and shortening time to market demands for
electronic equipments. Today, the installed base of intellectual property (IP) further stresses the requirements
for adapting existing components with new services within complex integrated architectures, calling for
appropriate mathematical models and methodological approaches to that purpose.

Over the past decade, numerous programming models, languages, tools and frameworks have been proposed
to design, simulate and validate heterogeneous systems within abstract and rigorously defined mathematical
models. Formal design frameworks provide well-defined mathematical models that yield a rigorous methodo-
logical support for the trusted design, automatic validation, and systematic test-case generation of systems.

However, they are usually not amenable to direct engineering use nor seem to satisfy the present industrial
demand. As a matter of fact, the attention of the industry tends to shift to modeling frameworks based
on general-purpose programming language variants, in response to a growing industry demand for higher
abstraction-levels in the system design process and an attempt to fill the so-called productivity gap.

At present, a possibility of widening existing divergences between formal methods and industrial practices
is perceivable. It seems that any useful methodology cannot avoid the industrial trend of using emerging
programming languages. This contrasted picture calls for an effort toward the convergence between the theory
of formal methods and the industrial practice and trends in system design.

Project-team ESPRESSO aims at this convergence by considering the formal modeling framework POLY-
CHRONY (as one of many formal design frameworks proposed over the past decade). Project-team ESPRESSO
aims at the implementation of present industrial practices and trends in such a framework by considering the
required definition of formal engineering models and appropriate methodological approaches by means of
effective program analysis and transformation techniques implemented in the experimental platform POLY-
CHRONY.

2.4. The polychronous approach

Despite overwhelming advances in embedded systems design, existing techniques and tools merely provide
ad-hoc solutions to the challenging issue of the productivity gap. The pressing demand for design tools
has sometimes hidden the need to lay mathematical foundations below design languages. Many illustrating
examples can be found, e.g. the variety of very different formal semantics found in state-diagram formalisms.
Even though these design languages benefit from decades of programming practice, they still give rise to some
diverging interpretations of their semantics.

The need for higher abstraction-levels and the rise of stronger market constraints now make the need
for unambiguous design models more obvious. This challenge requires models and methods to translate a
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high-level system specification into a distribution of purely sequential programs and to implement semantics-
preserving transformations and high-level optimizations such as hierarchization (sequentialization) or desyn-
chronization (protocol synthesis).

In this aim, system design based on the so-called “synchronous hypothesis” has focused the attention of
many academic and industrial actors. The synchronous paradigm consists of abstracting the non-functional
implementation details of a system and lets one benefit from a focused reasoning on the logics behind the
instants at which the system functionalities should be secured. With this point of view, synchronous design
models and languages provide intuitive models for embedded systems and integrated circuits [ 15]. This affinity
explains the ease of generating systems and architectures and verify their functionalities using compilers and
related tools that implement this approach.

In the relational mathematical model behind the design language SIGNAL, the supportive notation of
the POLYCHRONY workbench, this affinity goes beyond the domain of purely sequential systems and
synchronous circuits and embraces the context of complex architectures consisting of synchronous circuits
and desynchronization protocols: globally asynchronous and locally synchronous architectures (GALS). This
unique feature is obtained thanks to the fundamental notion of polychrony: the capability to describe systems
in which components obey to multiple clock rates. It provides a mathematical foundation to a notion of
refinement: the ability to model a system from the early stages of its requirement specifications (relations,
properties) to the late stages of its synthesis and deployment (functions, automata).

The notion of polychrony goes beyond the usual scope of a programming language, allowing for specifi-
cations and properties to be described. As a result, the SIGNAL design methodology draws a continuum from
synchrony to desynchronization, from specification to implementation, from abstraction to concretization,
from interfaces to implementations. SIGNAL gives the opportunity to seamlessly model circuits and devices at
multiple levels of abstraction while reasoning within a simple and formally defined mathematical model.

The inherent flexibility of the abstract notion of signal handled in the synchronous-desynchronized design
model of SIGNAL invites and favors the design of correct-by-construction systems by means of well-
defined transformations of system specifications (morphisms) that preserve the intended semantics and stated
properties of the architecture under design.

3. Scientific Foundations

In practice, a multi-clocked system description is often the representation or the abstraction of an asynchronous
system or of a GALS architecture. In system design, the asynchronous implementation of a system is
obtained through several refinements of its initial description. However, clocks are often left unspecified at
the functional level, and no choice on a master clock is made at the architectural level. As communication and
implementation layers are reached, however, multiple clocks might be a way of life. In the polychronous design
paradigm, one can actually design a system with partially ordered clocks and refine it to obtain master-clocked
components integrated within a multiply-clocked architecture, while preserving the functional properties of the
original high-level design, thanks to the formal verification methodology provided by the formal theory (model
and theorems) of polychronous signals. Our goal is to derive conditions on specifications under which design
refinement principles work. We seek toward tools and methodologies to allow to take high-level specifications
and to refine them in a semantic-preserving manner into GALS implementations.

We start with an outline of the formalism supported by the POLYCHRONY workbench: the data-flow
synchronous programming language SIGNAL, and give an informal presentation of its polychronous model
of computation.

3.1.1. The synchronous data-flow notation Signal
In SIGNAL, a process P consists of the composition of simultaneous equations over signals. A signal x € X
describes a possibly infinite flow of discretely-timed values v € V. An equation © = fy denotes a relation
between a sequence of operands y and a sequence of results = by a process f € F. Synchronous composition
P | Q consists of considering a simultaneous solution of the equations P and () at any time. SIGNAL requires
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three primitive processes: pre , to reference the previous value of a signal in time; when , to sample a signal;
and default , to deterministically merge two signals (and provides, e.g. negation not , equality eq, etc.).

Pi=% =f§|P|Q|P/a
f € FDO{prev|ve V}U{when, default, ...}

The equation x = pre vy (whose concrete syntax is X:=y$1 init v) initially defines x
by v and then by the previous value of y in time (tags ¢1, t2, t3 denote instants).

y: (t1,v1) (t2,v2) (t3,v3) ...
pre vy : (t1,v) (t2,v1) (ts,v2)...

Figure 1.

3.1.2. Example
We exemplify the equational/relational design model of SIGNAL by considering the definition of a counting
process: Count. It accepts an input event reset and delivers the integer output val. A local counter, initialized
to 0, stores the previous value of val (equation counter := pre ( val). When the event reset occurs, val is reset
to 0 (i.e. (0 when reset)). Otherwise, counter is incremented (i.e. (counter + 1)). The activity of Count
is governed by the clock of its output val, which differs from that of its input reset: Count is multi-clocked.

process Count = (? event reset ! integer val)
(| counter = pre 0 val
| val = (0 when reset) default (counter + 1)
[) where integer counter; end;
reset t
counter 0 1 2 3 0
val 1 2 3 0 1 2

3.1.3. Model transformations
In SIGNAL, distributed protocol synthesis and sequential code generation are design stages performed
by correctness-preserving transformations of the system model. Transformations rely on the analysis of
synchronization relations (e.g. c=v, i.e. signals ¢ and v are synchronous) and scheduling relations (e.g. 7 —¢ v,
i.e. v cannot happen before » when c is present). This relational information is used to construct a canonical
control flow graph.

maodel —clocks  scheduling cade
c:=preOQv c=v r—"wv if rthenv=0elsev=c+ 1;
| v:i=(0whenr)defaultc+1 v=rvVe ¢—\"v c=v;

Figure 2.

Hierarchization [28] is the key transformation that allows to obtain this canonical control flow graph. Given
a set of synchronization relations (e.g. hs=hjop hs), it allows to place clocks (e.g. h3) in the control-flow
tree by determining their least upper bounds (e.g. h). Each clock (e.g. r) is the trigger of a set of actions that
are performed in sequence according to scheduling relations (e.g. 7 —" v).
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Figure 3. Hierarchization of a tree hs under a main tree of root h

3.1.4. A polychronous model of computation

The polychronous model of computation is proposed in [16] for the formal study of globally asynchronous
and locally synchronous systems. We consider:

- A set of values v € 'V to represent the operands and results of computations.

- A partially ordered set of tags ¢ € T to denote symbolic time, of minimum O.

Events and signals defined starting from a partially ordered set of tags yield a polychronous structure of
behaviors (finite maps from names to signals) and processes (sets of behaviors).

- Anevente € € =T x Vs the pair of a value and a tag.

- A'signal s € § is a function from a chain of tags to a set of values.

- A behavior b € B is a function from names = € X to signals s € 8.

- A process p € P is a set of behaviors of same domains.

t1 <tz

—_—~
tlztg{it If it
0 1 0 1 0}
ts Lt
# # # 3% b

Figure 4. Partially-ordered events in the polychronous model of computation.

Notice that the chain of tags corresponding to the clock domain of a given signal may only be partially
related to that of another signal, allowing to capture signals belonging to multiple clock domains within a
behavior of a given process: partially ordered tags effectively describe a timing abstraction of multi-clocked
systems. By contrast, considering a totally ordered timing domain requires the addition of a special mark 7 or
L to render the absence of the value carried by a signal at a given time.

3.1.5. Scheduling

To additionally render the possible scheduling of events at a given time, we equip processes with a pre-order
relation ¢, — t’y to denote scheduling: an event along the signal named y at ¢’ may not happen before z at
t. The pair t, of a time tag ¢ and of a signal name z renders the date d of an event along the signal z at the
symbolic time or instant ¢. Hence, a tag ¢ corresponds to the equivalence class of a synchronization relation
between dates, in the spirit of synchronous structures [41]. The domain of dates D = T x X is subject to a
pre-order relation — that denotes scheduling.

The synchronous composition p | ¢ of two processes p and ¢ is defined by the union of all behaviors b (from
p) and ¢ (from q) such that all signals along the interface I of p and ¢ carry the same values at the same tags

3.1.6. Algebraic structure of polychrony
Scalability is a key concept for engineering embedded systems in a smooth design process. A formal support
for timing scalability in design is given in our model by the so-called stretch-closure property. The intuition
behind this relation is to consider a signal as an elastic with ordered marks on it (tags). If it is stretched,
marks remain in the same relative and partial order but have more space (time) between each other. The same
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Pu=f =fy|P|Q|P/x
f € FDO{prev|ve V}U{when, default, ...}

The equation z = pre vy (whose concrete syntax is X:=y$1 init v) initially defines =
by v and then by the previous value of y in time (tags ¢1, t2, t3 denote instants).

y: (t1,v1) (t2,v2) (t3,03) ...
pre vy : (t1,v) (t2,v1) (t3,v2)...

Figure 5. Scheduling relations.

i o r — @ I it
pab=|(z — @ jid t [{ v —» @ ® 6 4 =ceq
y — @@ @ 5 4 j o it tt

Figure 6. Synchronous composition p| q : matching behaviors along common signals (in blue)

holds for a set of elastics: a behavior. If elastics are equally stretched, the order between marks is unchanged.
Stretching is a partial-order relation which gives rise to an equivalence relation between behaviors: b and ¢ are
clock-equivalent, written b ~ c, iff there exists a behavior d s.t. d < band d < c.

x @ ffff it yid If
! < |
y ot I [

Figure 7. Stretching the clock of a behavior.

To model asynchrony, we consider a weaker relation which discards synchronization relations and allows for
comparing behaviors w.r.t. the sequences of values signals hold. The relaxation relation allows to individually
stretch the signals of a behavior. Relaxation is a partial-order relation that defines the flow-equivalence relation.
Two behaviors are flow-equivalent iff their signals hold the same values in the same order. The behaviors b
and c are flow-equivalent, written b = c, iff there exists a behavior d s.t. d C band d C c.

T ff oot ff ff t
l c N
y T f t ff If

Figure 8. Relaxation of a behavior.

The model of polychrony provides a purely relational denotation of SIGNAL, defined in [16], consisting of
the function [P] = p that associates a SIGNAL process P with the set p of its possible behaviors. Notice that
the semantics of SIGNAL is stretch-closed: whenever a process P has a behavior b, written b € [P], then it
admits any stretching ¢ € [P] of b.

3.1.7. Formal design properties
The model of polychronous signals allows to define formal properties that are essential for the component-
based design of GALS architectures [16]. Input-endochrony is a key design property. A process p is input-
endochronous iff, given an external (asynchronous) stimulation of its inputs I, it reconstructs a unique
synchronous behavior (up to clock-equivalence) i.e. Vb, ¢ € p, (b|1) = (c|[r) = b ~ c. An interpretation of

"We write b| x for the projection of a behavior b on a set X C X of names.
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endochrony (figure 9) consists of considering any flow equivalent inputs (b|;) =~ (c|s) of p and by observing
that, among these flow equivalent inputs, an endochronous process only admits clock-equivalent behaviors
(bl1) ~ (c|r) by producing clock equivalent outputs (b|p) ~ (c|o). In other words, controllability denotes the
class of processes that are stallable or insensitive to (internal and) external propagation delays.

f
y It o, ¥t b4 b
t t N t
= it
c 1 & clr I & c # ¢
# t t ot

Figure 9. Endochrony.

Flow-invariance is the property that ensures that the refinement of a functional specification p|g by an
asynchronous implementation p || ¢ preserves flow-equivalence. Formally, the refinement of p|g by p || ¢
is flow-invariant iff, for all b € p|q, forall ¢ € p || ¢, (b]r) = (¢|r) implies b ~ ¢ for I the input signals
of p|g. In SIGNAL, GALS architectures are modeled as endo-isochronously communicating endochronous
processes: Two endochronous processes p and ¢ are endo-isochronous iff (p|7) | (¢|7) is endochronous (with
I = vars(p) N vars(q) the interface between p and ¢). Endo-isochrony implies flow-invariance and is,
like controllability, amenable to static verification. [22] formally defines the synchronization and scheduling
analysis of SIGNAL and gives decision procedures for controllability and endo-isochrony based on that
(behavioral) type information.

4. Application Domains

The application domains covered by the platform POLYCHRONY, developed by the ESPRESSO project-team
are engineering areas where a system design-flow requires high-level transformations and verifications to be
applied during the development-cycle.

The project-team has focused on developing such integrated design methods in the context of avionics
applications, through the European IST projects SACRES, SYRF, SAFEAIR. This research track is being
continued in the submitted ESPACE (avionics) and SEA (automotive) projects.

In this context, POLYCHRONY is seen as a platform on which the architecture of an embedded system can
be specified from the earliest design stages until the late deployment stages through a number of formally
verifiable design refinements. One of the most prominent recent developments resulting from work in this
application area is the complete model of the APEX services library in SIGNAL. A variant of it is in use at
SNECMA-Hispano-Suiza and AIRBUS Industries [33], [18].

Another prominent result of the project-team in the same context is the development of a real-time JAVA
plug-in for POLYCHRONY [21], developed in the context of the RNTL project EXPRESSO. This tool enables the
modeling of avionics applications in JAVA and allows for applying high-level transformation and verification
on that model, using POLYCHRONY, and generate an optimized, serialized code, whose runtime subsystem
footprint and generated scheduling are specific to the target architecture of the application.

Recent trends in system-level design show, in a far from unrelated way, the need for modeling systems
on chips as globally asynchronous and locally synchronous systems. It is indeed manifest in the charter of
the ACM-IEEE MEMOCODE conference [12]. It is the subject of an ongoing NSF-INRIA collaboration of the
project-team with UC San Diego, UC Irvine and Virginia Tech.

5. Software

5.1. The Polychrony workbench

Participants: Loic Besnard, Thierry Gautier, Paul Le Guernic.
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The POLYCHRONY toolset, which is registered at the APP, is now freely distributed (at binary level) for
non-commercial use on the site http://www.irisa.fr/espresso/Polychrony. Based on the SIGNAL language, it
provides a formal framework:

1. to validate a design at different levels,

2. to refine descriptions in a top-down approach,

3. to abstract properties needed for black-box composition,
4

. to assemble predefined components (bottom-up with COTS).

It constitutes a development environment for critical systems, from abstract specification until deployment
on distributed systems. It relies on the application of formal methods, allowed by the representation of a
system, at the different steps of its development, in the SIGNAL polychronous semantic model. Based on the
same polychronous principles, there is a commercial tool, SILDEX, provided by the TNI-VALIOSYS company
(http://www.tni-valiosys.com).

POLYCHRONY is a set of tools composed of:

1. A SIGNAL batch compiler providing a set of functionalities viewed as a set of services for,
e.g., program transformations, optimizations, formal verification, abstraction, separate compilation,
mapping, code generation, simulation, temporal profiling...

2. a Graphical User Interface with interactive access to compiling functionalities.

3. The SIGALI tool, an associated formal system for formal verification and controller synthesis.
SIGALI is jointly developed with the VERTECS project-team (http://www.irisa.fr/vertecs).

POLYCHRONY supports SIGNAL as a native, high-level, design language. It is also an open design platform
that supports several input formalisms and notations and that is connected to other verification and design
tools. For example:

1. in the context of the EXPRESSO project, a prototype® of a real-time JAVA plug-in [21] has been
developed, demonstrating the capabilities of POLYCHRONY to model multi-threaded (i.e. GALS)
architectures.

2. inthe context of the ACOTRIS project, a prototype of UML to SIGNAL translation has been developed.

The POLYCHRONY platform offers services for modeling system behavior and architectures from high-level,
heterogeneous notations and formalisms. Such models are hosted in POLYCHRONY using the polychronous
data-flow notation SIGNAL. POLYCHRONY operates these model representation by performing transforma-
tions and optimizations on them (hierarchization of control, desynchronization protocol synthesis, separate
compilation, clustering, abstraction) in order to deploy such system specifications on mission specific target
architectures. The POLYCHRONY platform supports both component-based embedded system design, allo-
wing for the capture and integration of existing components on a given architecture; and refinement-based
design, allowing for a seamless upgrade of specifications and components toward deployment on specific tar-
get architectures while ensuring compliance to formal design properties. Finally, C, C++, multi-threaded and
real-time JAVA and SYNDEX code generators are provided. The connection to the SYNDEX distribution tool
(http://www-rocq.inria.fr/syndex) has been developed in the context of the ACOTRIS project.

%i.e. implementing the translation of a functional subset of real-time JAVA suitable for avionics application design: no dynamic resource
allocations, no non-terminal recursion, etc.
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5.2. The Apex services library
Participants: Abdoulaye Gamatié, Thierry Gautier.

The APEX interface, defined in the ARINC standard [29], provides an avionics application software with the
set of basic services to access the operating-system and other system-specific resources. Its definition relies on
the Integrated Modular Avionics approach (IMA, [30]). A main feature in an IMA architecture is that several
avionics applications (possibly with different critical levels) can be hosted on a single, shared computer system.
Of course, a critical issue is to ensure safe allocation of shared computer resources in order to prevent fault
propagations from one hosted application to another. This is addressed through a functional partitioning of the
applications with respect to available time and memory resources. The allocation unit that results from this
decomposition is the partition (Figure 10).

A partition is composed of processes which represent the executive units (an ARINC partition/process is akin
to a UNIX process/task). When a partition is activated, its owned processes run concurrently to perform the
functions associated with the partition. The process scheduling policy is priority preemptive. Each partition is
allocated to a processor for a fixed time window within a major time frame maintained by the operating system.
Suitable mechanisms and devices are provided for communication and synchronization between processes
(e.g. buffer, event, semaphore) and partitions (e.g. ports and channels).

The specification of the ARINC 651-653 services in SIGNAL offers a complete implementation of the APEX

communication, synchronization, process management and partitioning services. Its SIGNAL implementation
consists of a library af danaric naramatarizahla QIANAT madulac

- ]SemaMonitor_Ic
Active_partitign_ID ctive_process_ID [var_istart
timedout ONES{priority_value} lvar_ocqunt
lvar_data
Throwable 5 1 Vvar_idohe
end_processing1 T

PARTITION_LEVEL_OS{1}

1 SemaMonitor_lock
Jvar_istart
Jvar_idone
N lvar_data
EVEN{priority_value} ~ {yaroccount
{p ¥ } Jvar_start
Jvar_inport
Throwable_6_2 {var_outpoft
Throwable| 10_2 [var_done
end_processing2
¢ .
war_inport SemaMonitor_lock
War_start = lvar_reset
war_reset L L lvar_start
war_data 10{priority_value} Ivar inport
var_done |y owable 3 3 var_done
e SHARED_RESOURCES{} Throwable_7_3 frar-outeort
initialize - end_processing3
>
war_istart
war_idone
pvar_ocount
ar_outport
SemaMonitor_lock

Figure 10. ARINC partition-level model of an even-parity checker model in SIGNAL

5.3. Real-time Java plug-in
Participants: Loic Besnard, Bruno Le Dez, Luc-Michel Sévere, Jean-Pierre Talpin.

The real-time JAVA plug-in of POLYCHRONY is a tool which was developed during the frame of the RNTL
project EXPRESSO (section 7.2). It consists of modeling a domain-specific subset of the real-time JAVA
specification (for modeling avionics applications or control dominated embedded systems) in SIGNAL: thus
it provides a compiler from this subset of RT-JAVA into SIGNAL. This model is obtained from a given
JAVA class-file hierarchy (at either byte-code or source level) by, first, automatic modeling of the application
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architecture using instances of the POLYCHRONY-APEX services and, second, by translating periodic/sporadic
JAVA threads and event handlers in the data-flow polychronous design language SIGNAL [26].

Main JAVA class (initialization)
periodic thread
event handler
instances of APEX services
SIGNAL process
SIGNAL process

ARINC partition

Figure 11. Architecture of the real-time JAVA plug-in for POLYCHRONY

The novelty of integrating POLYCHRONY in a high-level design tool-chain lies in the formal support offered
by the former to automate critical and complex design verification and validation stages yielding a correct-by-
construction system design and refinement in the latter. Polychronous design allows for an early requirements
capture and a compositional and formally checked transformational refinement, automating the most difficult
design steps toward implementation using efficient clock resolution and synthesis techniques, implemented in
the SIGNAL compiler.

5.4. A model of Signal in Coq

Participants: Mickaél Kerbeeuf, Jean-Pierre Talpin.

The verification of a reactive system is usually done by elaborating a discrete model of the system specified
in a dedicated formalism and then by checking a property against the model. The use of formal proof systems
enables to prove hybrid properties about infinite state systems: the correctness and the completeness of a
reactive system.

To this aim, the ESPRESSO project-team has developed a complete model of the SIGNAL design language
in CoQ [40]. More precisely, we have defined a translation scheme of the trace semantics of SIGNAL to
the logical framework of COQ. We have conducted several case studies to demonstrate the applicability of the
approach to resolve sophisticated verification problems: a complete model and proof of the well-known steam-
boiler problem [36], the correctness of an implementation of a SIGNAL protocol for loosely timed-triggered
architectures [20].

Such a proof, of course, cannot always be done automatically: it requires human-interaction to direct the
proof strategy. The prover can nonetheless automate its most tedious and mechanical parts. In general, formal
proofs of programs are difficult and time-consuming. In the particular case of modeling a reactive system
using SIGNAL, experience however shows that this difficulty is significantly reduced thanks to the combined
declarative style of programming and a relational style of modeling.
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6. New Results

6.1. Main contributions

The activity of the project-team this year is marked with several important milestones, rooting the foundations
of the project-team on solid ground.

e A polychronous model of computation. The article [16], whose original aim was to synthesize
the model and methods used in the POLYCHRONY platform, presents the first theoretical model
of multi-clocked synchrony (polychrony) that is characterized by a semi-lattice structure of tagged
traces (in the spirit of Lee et al. “models of computation” [39] that is closed by clock equivalence
and flow equivalence. In this structure, we actually gave the first accurate characterization of key
formal properties and decision procedures to refinement-based design: so called input-endochrony
(controllability of a synchronous system from its input) and flow-invariance (invariance of a design
refinement by flow-equivalence).

o The release of the POLYCHRONY platform. The work that yielded the release of the POLY-
CHRONY platform was an important investment of the ESPRESSO project-team, totaling four
man/year since the project-team creation (January 2002). Since its first release on the website
http://www.irisa.fr/espresso/Polychrony early February, the package has been registered by our close
academic and industrial partners. The POLYCHRONY platform offers services for modeling system
behavior and architectures from high-level, heterogeneous notations and formalisms, and implement
services for the transformation and optimization of such specifications (hierarchization of control,
desynchronization protocol synthesis, separate compilation, clustering) in order to deploy such spe-
cifications on mission specific target architectures.

e A model of APEX services in POLYCHRONY. The complete specification of the APEX services
API in SIGNAL is undoubtedly the most demonstrative application of the polychronous model of
computation implemented in the POLYCHRONY platform. It offers a complete implementation of
the APEX communication and synchronization services, of the process management and partitioning
services. Its SIGNAL implementation consists of a library of generic, parameterizable SIGNAL
modules. It is used locally to model the real-time JAVA virtual machine.

e A real-time JAVA plug-in for POLYCHRONY. A complementary demonstration of the expressive
capabilities of the POLYCHRONY platform and its APEX services library is the development of a real-
time JAVA plug-in [21]. This plug-in consists of modeling a domain-specific subset of the real-time
JAVA specification (for modeling avionics applications or control dominated embedded systems) by,
first, modeling the application architecture using instances of APEX services and, second, translating
periodic/sporadic JAVA threads and event handlers into the data-flow polychronous design language
SIGNAL. The development of this tool is an effort of two man/year in the context of the RNTL
EXPRESSO project together with its transfer to the TURBOJ compiler of SILICOMP (1 man/year).

e Case-studies on high-level system design using POLYCHRONY. In the context of an NSF-INRIA
collaboration with UC San Diego, UC Irvine and Virginia Tech, we have conducted several case
studies aiming at demonstrating the usability of POLYCHRONY as a semantics platform for compo-
sitional system design in SystemC. This work has been initiated through several visits/internships
and preliminary results in this direction are reported in [23][22]. The platform POLYCHRONY is
now in use in the BALBOA project in the aim of capturing behavioral abstractions of existing Sys-
temC IP block descriptions, in order to correctly interface them using appropriate protocol synthesis
techniques.

e [Events: the creation of the ACM-IEEE sponsored MEMOCODE conference [12] and of the ACM
supported FMGALS workshop [13] (section 9.2).
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In addition, new results, related to on-going projects, have been accomplished on the connection of SIGNAL
to UML and SYNDEX (sections 6.2 and 6.3), on modeling real-time applications and on evaluating their
performances (section 6.4), on modeling system-level design languages (section 6.5) and on modeling weakly
synchronized protocols (section 6.6).

6.2. A Signal plug-in for Uml-Accord
Participant: Thierry Gautier.

Following previous studies on the BDL model and, more specifically, on the translation of UML state
diagrams into the BDL notation [42] (resp. STATEMATE into SIGNAL [31]), we have, with our partners of
the ACOTRIS project (see 7.1), defined and experimented models of translation of applications specified using
the UML/ACCORD methodology [38] to SIGNAL. A main objective is to take benefit from verification and code
generation tools available in the synchronous model. Two models of translation have been defined.

The first one considers a strictly synchronous semantics of state-diagrams. More precisely: Oy = f (I, St)
and Sy = f(I;, Si—1), where I, O and S represent respectively inputs, outputs and state of the system. This
is not in accordance with the execution semantics defined in UML, but has to be compared with the models
considered in Argos or SyncCharts. It may be used as one element for a future proposal of a synchronous
semantics of UML state-diagrams. A plug-in called YATUS, from UML/ACCORD to SIGNAL, following this
approach, has been realized by CS with INRIA support.

The second model follows the UML asynchronous execution semantics, which considers that events are
managed in queues. One queue of events is associated with each state-diagram representing the behaviour of
an “active” real-time object. A basic hypothesis for this translation is that queues of events are bounded. Then,
the state-diagrams, the handling of the queues, and the language of actions are translated into SIGNAL [27]. A
plug-in called GASP, from UML/ACCORD to SIGNAL, following the UML semantics, has been realized by CS
and CEA-List with INRIA support.

Both approaches, which have been validated using applications in the ACOTRIS project, should be more
deeply compared. Another direction, not yet explored, for a UML/SIGNAL connection, would be the possible
use of the OCL notation to specify polychronous properties.

6.3. A Signal plug-in for SynDEx
Participants: Loic Besnard, Thierry Gautier, Qiuling Pan.

The SYNDEX environment (http://www-rocq.inria.fr/syndex, AOSTE project-team) aims at rapid prototyping
and optimization of real-time embedded applications on multicomponent architectures. Its goal is to find an
optimized implementation of an application algorithm on an architecture, while satisfying constraints.

In the ACOTRIS project (see 7.1), we have developed a translator from SIGNAL to SYNDEX, for the software
part of an application. This translator is realized along two axes:

e The first one (semantic axis) is the clock hierarchy: a SYNDEX algorithm is associated with each
clock of the hierarchy.

e The second one (syntactic axis) is composed of the set of SIGNAL processes which have to be kept
as units of structuration (SYNDEX algorithms) in the generated SYNDEX code.

The main add-ons of the translator are the following:

e [t gives SIGNAL designs access to the functionalities of SYNDEX, in particular the possibility to get
and to prototype distributed implementations obtained from quantitative criteria;

e Itenables SIGNAL as possible input formalism for SYNDEX users;

e It allows the use of SYNDEX on applications developed in formalisms for which it is of interest to
have a SIGNAL intermediate representation.

Future extensions of the translator will take into account the hardware architecture part.
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6.4. Modeling and evaluation of distributed real-time applications
Participants: Loic Besnard, Abdoulaye Gamatié, Thierry Gautier, Paul Le Guernic.

A way for modeling distributed real-time applications using SIGNAL consists in the definition of a set of basic
components required for such applications. For that purpose, we described various kinds of components. A
large part of these components has been defined based on specifications from the avionics standard ARINC 653
[34] [33]. This standard relies on the IMA approach (Integrated Modular Avionics). It gives the basic services
that form the API between the application software and the core software (the operating system and system
specific functions), within a system. They are commonly called APEX services (APplication EXecutive). The
standard also defines the basic executive entities: partitions and processes (see 5.2). Among APEX services,
one can mention for instance, those which achieve communications between partitions as well as processes,
or the management of processes and time.

We studied how these components can be used within the POLYCHRONY platform. In such a way, one
can take advantage of available formal tools and techniques. We first illustrated the general approach to the
design of basic components [18] [19]. Then, we focused on how they can be used in order to model real-time
applications.

A general methodology for the design of distributed real-time applications already exists within
POLYCHRONY (earlier studies about this methodology began during the european project Sacres [35]). Basi-
cally, the design of such an application consists in the distribution of an initial SIGNAL program representing
the application on a target architecture (composed of a set of possibly heterogeneous execution components,
e.g. processors, micro-controllers). A general observation is that the level of detail at which the architecture
needs to be known depends quite a lot on the refinement of the mapping to the chosen architecture. This
means that in the simplest cases, the amount of data required is fairly small, and simple to assess:

e the set of processors or tasks, and the mapping from the SIGNAL program sub-parts of the application
to those processors or tasks;

e the topology of the network of processors, the set of connections between processors, and a mapping
from inter-process communications to these communication links;

e adefinition of the set of system-level primitives used e.g. for communications (readings and writings
to the media).

Further degrees of refinement of the description may be required for a better architecture-adaptation: for
example, concerning communications, the type and nature of the links (that could be implemented using
shared variables, synchronous or asynchronous communications). If the target architecture features an OS,
the required model consists basically in the profile of the corresponding functions. For instance, according to
the degree of use of the OS, we need models of synchronization gates, communications (possibly including
routing between processors) or task management services (e.g. start, stop, suspend and resume).

The components we have described in [18] [19] provide a means to model most of the above features in
order to get detailed models of applications: communication and synchronization mechanisms, system-level
functions, execution entities (like process and partitions). A sample case study of avionic application has been
modeled in SIGNAL using APEX components [17] (the considered example takes its inspiration from a real
world avionics application). The aim was first to show the feasibility of describing avionics applications using
our SIGNAL models. Then, the application model can be formally analyzed for various purposes. In particular,
we focus on timing issues which are critical in the design of real-time systems. So, we illustrate how timing
issues are addressed, e.g. to compute worst case execution times on the resulting SIGNAL model. For that, we
use a technique based on transformations of SIGNAL programs [37], which yields a “temporal interpretation”
associated with an initial program. Roughly, a SIGNAL program that models an application is recursively
composed of sub-programs, where elementary sub-programs belong to the language kernel and called atomic
nodes. A profiling of such a process substitutes each signal = with a new signal representing availability dates
date_x and automatically replaces atomic nodes with their timing model counter-part (“timing” morphism).
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The resulting time model is composed (by standard synchronous composition) with the original functional
description of the application, and for each signal z, a synchronization with the signal date_x is added. The
resulting process is close to (or even represents exactly) the model of the temporal behavior of the application
running on its actual architecture. One can obviously design less strict modeling to get faster simulation (or
formal verification); it is sufficient to consider more abstract representations either of the architecture or of the
program.

Combining our component models and the above performance evaluation technique within POLYCHRONY,
the whole design framework (from specification to verifications and analysis) relies on the use of the single
formalism of the SIGNAL language.

6.5. Polychronous model of system-level design in SystemC
Participants: David Berner, Paul Le Guernic, Jean-Pierre Talpin.

SYSTEMC is a system modeling and specification language widely supported by industry and a growing
user base. It is based on the C++ language, extending it with classes for the modeling of concurrency, time,
communication, reactivity, hardware data types, and a growing number of features that ease design entry,
testing and verification. Major advantages are the easy system specification, the usage of standard C++ tools
such as compiler and debugger, and the ability to describe both the hardware and the software part of the
system.

The usage of standard (and highly developed) compilers such as GCC and the ability to treat high levels
of abstraction result in simulation speeds, orders of magnitude higher than those of conventional VHDL or
VERILOG simulation. For big designs however, simulation speed still is a major hindering to exhaustive system
testing and validation. While looking at the SYSTEMC compilation flow, we notice that the scheduling part is
far from optimal. Signals in SystemC sensitivity lists are evaluated more often than actually necessary.

With the appropriate dependency and clock hierarchy information available in a SIGNAL description, we
aim at obtaining an optimized scheduling and significantly higher simulation speeds. To achieve this goal, we
are targeting to transform a valid SYSTEMC description into a SIGNAL description. This is done in three steps.
First we determine the threading and synchronization structure of the program. This can then be transformed
quite straightforward into SIGNAL skeleton code. SYSTEMC blocks that do not contain any synchronization
points can be included into the SIGNAL skeleton as is, with the help of PRAGMA statements.

process epc = (7 integer in_data; boolean start; ! boolean out_data; boolean done;)
spec (| start --> out_data
| start --> done

| done "= out_data
| in_data "= when (start=true)
1
pragmas CPP_CODE "ol = EPC_SPECC(&il,&i2,&02)"
end pragmas
Such blocks will be treated for the scheduling as black boxes of instantaneous execution, thus allowing
for a much more selective evaluation of signals in sensitivity lists and giving raise to significant scheduling
and therefore simulation improvements. In order to improve security and to help the detection of errors,
we are currently investigating an interface description of these blocks of instantaneous execution with the
help of SIGNAL processes. These interfaces would expose signal dependency and clock synchronization
information and form a behavioral type description. The composition of such components can then be checked
for correctness with a type checker, and the correctness of the component itself can then be verified with the
help of a model checker. This part is ongoing joint research together with the FERMAT group of Virginia Tech.
Synchronous modeling of SYSTEMC descriptions will combine the ease of description and the expressiveness
of SystemC with the scheduling, dependency calculation, formal typing, and verification capabilities of
synchronous languages, notably SIGNAL.
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6.6. Formal proofs of polychronous protocols with Coq
Participants: Micka¢l Kerbceuf, Jean-Pierre Talpin.

A protocol for loosely time-triggered architectures (or LTTA) has been proposed [32] to provide an abstract
synchronous specification on top of real-time architectures. This abstract model is designed so as to satisfy
the synchronous hypotheses and meet the implementation architecture constraints. It makes it possible to
design, specify and verify reactive systems in the context of the synchronous approach. The robustness of the
protocol has been proved manually and automatically with LUSTRE and SIGNAL in [32]. We proposed a new
formalization of the protocol in COQ, a proof-assistant for higher-order logics. We aimed at defining a most
general model of the protocol, founded on the least set of assumptions about the physical characteristics of
the architecture. The manual and the automatic proofs of the robustness of the protocol can be considered
as a refinement of the COQ model. These results have been published at the Sth. International conference on
Formal Engineering Methods [20].

6.6.1. Loosely Time-Triggered Architectures.
A loosely time-triggered architecture is a physical system in which:

e Bus access is quasi-periodic and non-blocking;
e Read and write operations are independent;

e  Values are sustained by the bus and periodically refreshed.

The LTTA is composed of three devices, a writer, a bus, and a reader. Each device d is activated by its
own, approximately periodic, clock (denoted by a function t%). At the nth clock tick (time % (n)), the writer
generates the value % (n) and an alternating flag b™ (n). Both values are stored in its output buffer, denoted
by y". At any time ¢, the writer’s output buffer 4™ contains the last value that was written into it. At t°(n),
the bus fetches y™ to store in the input buffer of the reader, denoted by y®. At t*(n), the reader loads the input
buffer y® into the variables z:(n) and b(n). Then, in a similar manner as for an alternating bit protocol, the
reader extracts 2:(n) iff b(n) has changed.
writer reader - sustain 3P - busz™ tW yW = (zV,b%) 2F = x t* y* = (z,b) tP

6.6.2. Correctness of the protocol.
In any execution of the protocol, the sequences ¥ and =" must coincide, i.e.,

Vn -2t (n) = 2V (n) (n

In order to prove the correctness of the protocol, we need to prove that, under some hypotheses on the clocks,
the property (1) is true.

6.6.3. Abstraction and formalization in Coq
The translation in COQ of the specifications is quite straightforward. Physical time is seen as an abstract data
type i.e., a type 7, a binary predicate < and the assumption that < is reflexive, transitive and total. A clock ¢
is modeled by a function which maps any natural number n in its domain to the instant ¢ € T when the nth
sampling tick occurs. The only assumption on this function is that it is strictly monotonic.

We introduce a function called read_index which maps to a given reading tick %k the writing tick
read_index(k) corresponding to the instant (on the writer’s clock) when the writer emitted the value that
can be read at the instant & (on the reader’s clock). To prove the correctness of the protocol, we prove that
read_index is increasing, and that it covers N (so that all written values are actually read). Thus, all written
values are actually read (and possibly more than once) in a correct order. The property (1) follows when
VEk € N, bW (k+1) # b%¥ (k). It is actually the case with the alternating bit protocol. This result holds under the
following specific condition (where 7P (n) stands for the first instant where the bus can fetch the nth writing):

vneN, FkeN, st. 7°(n) < (k) < 7°(n+1)
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6.6.4. A formal framework for any implementation
The CoQ encoding of the protocol for LTTAs is founded on the smallest set of physical requirements and
logical requirements. Thus, any implementation must provide at least these requirements. Its correctness
then follows. We refine this approach by adding an intermediate level between COQ and the analyzed
implementation. This interface details the expected form of the time domain (variable 7 in COQ and its order
<), and the clocks. To prove the correctness of any implementation built upon the model denoted by the
intermediate level, we only have to prove that its specification implies the assumptions of its interface.

6.6.5. Future work
An attractive aspect of the use of COQ is the extraction of a reference implementation of the protocol. The only
difficulty is that this protocol involves partial function that are difficult to deal with in CoQ*. We also plan to
connect the COQ model of SIGNAL (cf. section 6.6) with this approach, to prove the correctness of protocols
stated in SIGNAL.

7. Contracts and Grants with Industry
7.1. Rntl project Acotris, no2 00 C 0527 00 31307 01 1 (02/2001-07/2003)

Participants: Loic Besnard, Thierry Gautier, Paul Le Guernic, Qiuling Pan.

The partners of the RNTL project ACOTRIS (http://www.acotris.c-s.fr) are CS-SI, CEA-List, MBDA (ex.
Aérospatiale Matra Missiles), SITIA and INRIA (project-teams ESPRESSO and AOSTE). The project proposes
a methodology and a systematic approach (with tools support) to rationalize the development phases of real-
time embedded systems. The objectives are to help with the complete specification of the need and the design
of real-time applications, while integrating:

e an analysis and design methodology based on a standard UML formalism (UML with ACCORD
method from CEA),

e a design and realization methodology based on the synchronous model (SIGNAL and
AAA/SYNDEX method from INRIA).

The goal is to assist the designers of real-time multi-task applications during the co-design process by a
quasi complete automation of this process. For that purpose, the project adapts and connects the existing tools
by developing “plugins”.

UML is used for modeling, SIGNAL is used for software validation, and finally, SYNDEX is used for
hardware/software “adequation” (efficient matching). This is illustrated on figure 12 [25].

The following tools plugins have been developed during the project:

e UML to SIGNAL (for the software architecture),
e SIGNAL to SYNDEX (for the software architecture, too),
e UML to SYNDEX (for the hardware architecture).

3http://pauillac.inria.fr/pipermail/cog-club/2002/thread.htm1#569
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Figure 12. The ACOTRIS approach

Verification / logical
and temporal
Validation
(SIGNAL)

7.2. Rntl project Expresso, no2 01 C 0299 00 31307 01 1 (06/2001-05/2003)
Participants: Bruno Le Dez, Abdoulaye Gamatié, Paul Le Guernic, Jean-Pierre Talpin.

The partners of the RNTL project EXPRESSO (http://www.irisa.fr/rntl-expresso) are AONIX, SILICOMP,
THALES, EDF, AIRBUS, VERIMAG. The contribution of the ESPRESSO project-team consists of the definition
and implementation of the real-time JAVA plug-in for POLYCHRONY, seen as a high-level transformation and
verification tool for domain-specific real-time JAVA programs in avionics (described in section 5.3).

7.3. Caroll project Protes (10/2003-10/2005)

Participants: Thierry Gautier, Jean-Pierre Talpin.

The partners of the CAROLL project PROTES (which started October 2003) are THALES, CEA-List and
the INRIA project-teams ESPRESSO, AOSTE and DART. The aim of the project PROTES is to propose a UML
profile for real-time and embedded systems and to defend it before the OMG.

8. Other Grants and Activities

8.1. Nsf-Inria program
Participants: David Berner, Paul Le Guernic, Jean-Pierre Talpin.

In the frame of the NSF-INRIA Cooperation of the ESPRESSO project-team with Virginia Tech and UC San
Diego, David Berner is currently spending three months at Virginia Tech (October-December 2003). He
is working with Prof. Dr. Sandeep Shukla in the FERMAT (Formal Engineering Research using Methods,
Abstraction, and Transformations) group of the ECE (Electrical and Computer Engineering) department. The
main goal of this exchange is to advance in the definition of behavioral interface descriptions for SYSTEMC
program blocks. The interface of a SYSTEMC block can be described as a SIGNAL process, containing signal
dependency and clock synchronization information. This information (commonly not used in, nor available to
a SYSTEMC compiler), will form the type of this component. If we have sound type information for the
components available, type checking will expose problems in the model that would otherwise have been
detected much later in the design process. Also types can be the basis of the automatic generation and insertion
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of interfaces, which would significantly facilitate the development process. Finally the implementation of a
component can be formally checked against its type with the help of existing model checkers such as SPIN.
Our common topic of investigation, the typing of SYSTEMC components, turns out to be a key capability for
the speedup, cost reduction, and formalization for the design process of embedded systems.

8.2. Network of excellence Artist
Participants: Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

The ESPRESSO project-team is involved in the activity of the ARTIST network of excellence (http://www.artist-
embedded.org). This activity essentially consists of the definition of a road-map on embedded system
design [24].

9. Dissemination
9.1. Advisory

e Paul Le Guernic is executive board member of the Réseau National en Technologies Logicielles and
steering committee member of the Réseau National en Micro-Nano Technologies.

e Paul Le Guernic and Jean-Pierre Talpin are steering committee member of the ACM-IEEE conference
on methods and models for codesign (MEMOCODE).

e Jean-Pierre Talpin is a member of the external advisory board for the center of embedded systems at
Virginia Tech.

e Jean-Pierre Talpin is member of the organization committee of the FMGALS (formal methods for
GALS architectures) workshop series.

9.2. Conferences

Creation of the ACM-IEEE MEMOCODE conference. The project-team initiated the joint ACM-IEEE confe-
rence on formal methods and models for codesign, MEMOCODE’2003, chaired by Pr. Gupta, Pr. Shukla, J.-P.
Talpin and P. Le Guernic (http://www.irisa.fr/MEMOCODE). The main topics of high-level system design,
of hierarchical and incremental verification, of conformance checking, are central and key issues from an in-
dustrial point of view. The call for papers is in complete synergy with the demand of the industry majors in
the area and calls for contributions to five industrial cases studies, proposed by researchers from Synopsys,
Motorola, Cadence, Verplex Systems, Mentor Graphics, and from the SystemC consortium.

e Jean-Pierre Talpin served as technical program co-chair of MEMOCODE’2003.
e Paul Le Guernic served as technical program committee member of MEMOCODE’2003.

e Loic Besnard managed the technical support for the MEMOCODE 2003 conference.

e Jean-Pierre Talpin served as technical program co-chair for the FME’2003 workshop on formal
methods for GALS architectures (FMGALS’2003).

e Jean-Pierre Talpin served as technical program committee member for the IEEE DATE 2003 confe-
rence.

e Thierry Gautier served as technical program committee member for the EUROMICRO workshop
SLAP’2003.
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9.3. Events

Jean-Pierre Talpin gave a tutorial on “High-level modeling and validation methodologies for em-
bedded systems—bridging the productivity gap” at the IEEE conference on VLSI design, January
2003.

Loic Besnard and Abdoulaye Gamatié participated to the 10th. INRIA-Industry meeting “Applica-
tions de I’informatique et de 1’automatique aux transports”, January 2003.

Thierry Gautier participated to the workshop “UML model checking” (IRIT, Toulouse, January
2003), with a presentation on “ACOTRIS: Real-Time and Model Checking”.

Jean-Pierre Talpin gave a seminar on “Formal refinement-checking in an embedded system design
methodology” at the Inaugural of the Embedded Systems Center at Virginia Tech, October 2003.

Jean-Pierre Talpin defended his HDR thesis [14] at IRISA on November 25th.

9.4. Teaching

9.5. Visits

Thierry Gautier, Bernard Houssais and Loic Besnard teached on real-time programming at the DESS-
IsA and Di1c 2 of University of Rennes I.

Abdoulaye Gamatié gave courses as teaching assistant at the University of Rennes I.
Mickaél Kerbeeuf gave courses as teaching assistant at INSA-Rennes.

Thierry Gautier and Loic Besnard managed a team of DIIC 3 LSI/ARC students for a mini-project
on the implementation of a VHDL code generator for SIGNAL.

Pr. Sandeep Kumar Shukla (Virginia Tech) visited the project-team as Invited Professor of the
University of Rennes in July 2003.

Mohammad Reza Mousavi (Eindhoven University) visited the project-team from June Ist to July
15th.

The project-team invited Dr. Grant Martin (Cadence) for a conference at IRISA on “A brief history
of the SoC revolution” June 23rd, 2003.

The project-team invited Pr. Rajesh Gupta UC San Diego) for a conference at IRISA on “Online
Strategies for Power and Performance Management in Embedded Systems” June 27rd, 2003.
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