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2. Overall Objectives
The project was terminated June the 30th, 2003. A proposal for a new project named APICS has been submitted

to the steering comittee of Inria Sophia Antipolis.

The Team develops effective methods for modelling, identification and control of dynamical systems.

2.1.1. Research Themes

• Meromorphic and rational approximation in the complex domain, application to identification
of transfer functions and matrices as well as singularity detection for 2-D Laplace operators.
Development of software for frequency domain identification and synthesis of transfer matrices.

• Control and structure of non-linear systems: continuous stabilization, non-linear transformations
(linearization, classification).
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2.1.2. International and industrial partners

• Industrial collaborations with Alcatel-Space, Alcatel-R&I, CNES, IRCOM, Thomson-MX.

• Exchanges with CWI (the Netherlands), CNR (Italy), the Universities of Illinois (Urbana-
Champaign), of South Florida (Tampa), of California (San Diego), of Alabama (Mobile), of
Minnesota (Minneapolis), of Vanderbilt (Nashville), of Padova (Italy), of Beer Sheva (Israel),
of Leeds (GB), of Maastricht and of Amsterdam (The Netherlands), of TU-Wien (Austria), of
TFH-Berlin (Germany), of Kingston (Canada), of Szegëd (Hungary), of Colorado School of Mines,
of CINVESTAV (Mexico), ENIT (Tunis), VUB (Belgium).

• The project is involved in a NATO Collaborative Linkage Grant (with Vanderbilt University and
ENIT-LAMSIN), in the ACI “Obs-Crev” (with the Teams Caiman and Odyssée from Inria-Sophia
Antipolis, among others), in the ERCIM “Working Group Control and Systems Theory”, in the
TMR-ERNSI and TMR-NCN European research networks.

3. Scientific Foundations

3.1. Identification and deconvolution
Let us first introduce the subject of Identification in some generality.

Abstracting in the form of mathematical equations the behavior of a phenomenon is a step called modeling.
It typically serves two purposes: the first is to describe the phenomenon with minimal complexity for some
specific purpose, the second is to predict its outcome. This is general practice in most applied sciences, be it
for design, control or prediction, although it is generally thought of as yet another optimization problem.

As a general rule, the user imposes the model to fit a parameterized form that reflects one’s own preju-
dice,knowledge of the underlying physical system, and the algorithmic effort consented. Looking for such a
trade-off usually raises the question of approximating the experimental data by the prediction of the model
when the latter is subject to external excitations assumed to be the cause of the phenomenon under study.
The ability to solve this approximation problem, which is often non-trivial and ill-posed, often conditions the
practical usefulness of a given method.

It is when the predictive potential of a model is to be assessed that one is led to postulate the existence of
a true functional correspondence between data and observations, thereby entering the field of identification

itself. The predictive power of a model can be expressed in various manners all of which are attempts to
measure the difference between the true model and the observations. The necessity of taking into account the
difference between the observed behavior and the computed behavior induces naturally the notion of noise as
a corrupting factor of the identification process. This noise incorporates into the model, and can be handled
in a deterministic mode, where the quality of an identification algorithm is its robustness to small errors. This
notion is that of well-posedness in numerical analysis or stability of motion in mechanics. The noise however
is often considered to be random, and then the true model is estimated by averaging the data. This notion
allows approximate but reasonnably simple descriptions of complex systems whose mechanisms are not well
known but plausibly antagonistic. Note that, in any case, some assumptions on the noise are required in order
to justify the approach (it has to be small in the deterministic case, and must satisfy some independence and
ergodicity properties in the stochastic case). These assumptions can hardly be checked in practice, so that the
satisfaction of the end-user is the final criterion.

Hypothesizing an exact model also results in the possibility of choosing the data in a manner suited for
identifying a specific phenomenon. This often interacts in a complex manner with the local character of the
model with respect to the data (for instance a linear model is only valid in a neighborhood of a point).

We now turn to the activity of the team proper in identification. Although the subject, on the academic
level, has been the realm of the stochastic paradigm for more than twenty years, it is in a deterministic
approach to identification of linear dynamical systems (i.e. 1-D convolution processes) based on approximation
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in the complex domain, that the Team made perhaps its most original contributions. Naturally, the deep
links stressed by the spectral theorem between time and frequency domains induce well-known parallels
between function theory and probability, and the work of the Miaou-project can be partly recast from the
stochastic viewpoint. However, the issue was rather tackled by translating the problem of identification into
an inverse problem, namely the reconstruction, from boundary data, of an analytic function in a domain of
the plane. For convolution equations in dimension one—that is, ordinary differential equations possibly in
infinite dimensional spaces —such a translation is provided by the Fourier transform. For certain elliptic
partial differential equations in dimension two, Identification is also connected to analytic continuation, but
this time it is the form of the fundamental solution that introduces holomorphy, especially in the case of the
Laplacian whose solutions are logarithmic potentials.

The data are considered without postulating an exact model, but we simply look for a convenient approxi-
mation to the data in a range of frequency representing the working conditions of the underlying system. A
prototypical example that illustrates our approach is the harmonic identification of dynamical systems which is
widely used in the engineering practice, where the data are the responses of the system to periodic excitations
in its band-width. We look for a stable linear model that describes correctly the behavior in this band-width,
although the model can be inaccurate at high frequencies (that can seldom be measured). In most cases, we
also want this model to be rational, of suitable degree, either because this degree is imposed by the physical
significance of the parameters, or because it must remain of reasonably low order to allow the efficient use of
the model for control, estimation or simulation. Other structural constraints, arising from the physics of the
phenomenon to be modeled, often superimpose on the model. Note that, in this approach, no statistics are used
for the errors, which can originate from corrupted measurements or from the limitated validity of the linear
hypothesis.

We distinguish between an identification step (called non-parametric in a certain terminology) that is
provided with an infinite dimensional model, and an approximation step in which the order is reduced subject
to certain specific constraints on the considered system. The first step typically consists, mathematically
speaking, in reconstructing a function, analytic in the right half-plane, knowing its pointwise values on a
portion of the imaginary axis, in other terms, to make the principle of analytic continuation effective on the
boundary of the analyticity domain. This is a classical question which is ill-posed (inverse Cauchy problem
for the Laplace equation) that we embed into a family of well-posed extremal problems. The second step is
typically a rational or meromorphic approximation procedure (but approximating families other than rational
functions may be considered) in a space of functions analytic in a simply connected open subset, say the right
half-plane in the case of harmonic identification. To make the best possible use of the allowable number of
parameters, or to priviledge some specific physical parameters of the system, it is generally important, in the
second step, to compute optimal or nearly optimal approximants. Rational approximation in the complex plane
is a classical and difficult problem, for which only few effective methods exist. In relation to system theory,
two main difficulties arise: the necessity of controlling the poles of the approximants (to ensure the stability
of the model), and the need to handle matrix-valued functions in the case where the system has several inputs
and outputs.

Rational approximation in the Lp sense to a transfer function on the imaginary axis (i.e the boundary of the
right half-plane) acquires a particular significance in this context for p = 2 and p = ∞. If p = 2, it corresponds
to parametric identification of minimum variance when the system is fed with white noise input (the case of
colored noise corresponds to weighted approximation), and it also corresponds to the minimization of the
L2 → L∞ error in operator norm in the time domain. If p = ∞, the approximation consists in minimizing the
power transfer L2 → L2 of the error (both in the time and frequency domains for the Fourier transform is an
isometry). These problems contribute a generalization (both rational and matrix-valued) of Szegö theory on
orthogonal polynomials, that seems the most natural frame work for setting out many optimization problems
related to linear system identification.

We shall explain in more detail the above two steps in the sub-paragraphs to come. For convenience, we
shall approach them on the circle rather than the line, which is the framework for discrete-time rather than
continuous-time systems. The two frameworks are mathematically equivalent via a Möbius transform.
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3.1.1. Analytic approximation of incomplete boundary data

Participants: Laurent Baratchart, José Grimm, Birgit Jacob [University of Leeds (GB)], Juliette Leblond,
Jean-Paul Marmorat [CMA, École des Mines], Jonathan Partington, Fabien Seyfert.

Key words: meromorphic approximation, frequency-domain identification, extremal problems.

The title refers to the construction of a convolution model of infinite dimension from frequency data in some
bandwidth Ω and some reference gauge outside Ω. The class of models consists of stable transfer functions i.e.

analytic in the domain of stability, be it the half-plane, the disk, etc), and possibly also transfer functions with
finitely many poles in the domain of stability i.e, convolution operators corresponding to linear differential
or difference equations with finitely many unstable modes. This issue arises in particular for the design and
identification of linear dynamical systems, and in certain inverse problems for the Laplacian in dimension two.

Since the question under study may occur on the boundary of planar domains of various shapes when it
comes to inverse problems, it is common practice to normalize this boundary once and for all, and to apply
in each particular case a conformal transformation to bring back to the normalized situation. The normalized
contour chosen here is the unit circle. We denote byD the unit disk, byHp the Hardy space of exponent p,RN

is the set of all rational functions having at most N poles in D, and C(X) is the set of continuous functions
on X . We are looking for a function in Hp +RN , taking on an arc K of the unit circle values that are close to
some experimental data, and satisfying on T rK some gauge constraints, so that a prototypical Problem is:

(P ) Let p ≥ 1, N ≥ 0, K be an arc of the unit circle T , f ∈ Lp(K), ψ ∈ Lp(T rK) and M > 0; find a

function g ∈ Hp + RN such that ‖g − ψ‖Lp(TrK) ≤ M and such that g − f is of minimal norm in Lp(K)
under this constraint.

In order to impose pointwise constraints in the frequency domain (for instance if the considered models are
transfer functions of loss-less systems, see section 4.3.2), one may wish to express the gauge constraint on
T rK in a more subtle manner, depending on the frequency (see section 6.7):

(P ′) Let p ≥ 1,N ≥ 0,K be an arc of the unit circle T , f ∈ Lp(K), ψ ∈ Lp(TrK) andM ∈ Lp(TrK);
find a function g ∈ Hp +RN such that |g − ψ| ≤ M a.e. on T rK and such that g − f is of minimal norm

in Lp(K) under this constraint.

Problem (P ) is an extension to the meromorphic case, and to incomplete data, of classical analytic extremal
problems (obtained by setting K = T and N = 0), that generically go under the name bounded extremal

problems. These have been introduced and intensively studied by the Team, distinguishing the case p = ∞
[38] from the cases 1 ≤ p < ∞, among which the case p = 2 presents an unexpected link with the Carleman
reconstruction formulas [35].

Deeply linked with Problem (P ), and meaningful for assessing the validity of the linear approximation in
the considered pass-band, is the following completion Problem:

(P ′′) Let p ≥ 1, N ≥ 0, K an arc of the unit circle T , f ∈ Lp(K), ψ ∈ Lp(T r K) and M > 0; find a

function h ∈ Lp(T r K) such that ‖h − ψ‖Lp(TrK) ≤ M , and such that the distance to Hp + RN of the

concatenated function f ∨ h is minimal in Lp(T ) under this constraint.

A version of this problem where the constraint depends on the frequency is:
(P ′′′) Let p ≥ 1, N ≥ 0, K an arc the unit circle T , f ∈ Lp(K), ψ ∈ Lp(T rK) and M ∈ Lp(T rK);

find a function h ∈ Lp(T rK) such that |h−ψ| ≤M a.e. on T rK , and such that the distance to Hp +RN

of the concatenated function f ∨ h is minimal in Lp(T ) under this constraint.

Let us mention that Problem (P ′′) reduces to Problem (P ) that in turn reduces, although implicitly, to an
extremal Problem without constraint, (i.e. a Problem of type (P ) whereK = T ) that is denoted conventionally
by (P0). In the case where p = ∞, Problems (P ′) and (P ′′′) can viewed as special cases of (P ) and (P ′′)

respectively, but if p <∞ the situation is different. On can also chose different exponents p on K and T rK
(the Problem is then said to be of mixed type), and this comes up naturally when identifying lossless systems
where the constraint |h| ≤ 1 must hold at each point while the data, whose signal-to-noise ratio is small on
the ends of the bandwidth, are better approximated in the L2 sense. Mixed Problems have begun to be studied
within the Team cf. module 6.7. One has to stress the perhaps counter-intuitive fact that these have in general
no solution if unless the gauge constraintis accounted for, that is, if one sets formallyM = +∞. For instance,
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considering Problem (P ′′), a function given by its trace on a subset K of positive measure on the unit circle
can always be extended in such a manner as to be arbitrarily close, on K , to a function analytic in the disk;
however, it goes to infinity in norm on T r K when the approximation error goes to zero, unless we are in
the ideal case where the initial data are exactly the trace on K of an analytical function. The phenomenon
illustrates the ill-posedness of the analytic continuation on the boundary of the analyticity domain.

The solution to (P0) is classical if p = ∞: it is given by the Adamjan-Arov-Krein (in short: AAK) theory.
If p = 2 and N = 0, then (P0) reduces to an orthogonal projection. AAK theory plays a great rôle in
showing the existence and uniqueness of the solution to (P ′′) when p = ∞, under the assumption that the
concatenated function f ∨ ψ belongs to H∞ + C(T ), and to compute this solution by solving iteratively a
spectral problem relative to a family of Hankel operators whose symbols depend implicitly from the data. The
robust convergence of this algorithm in separable Hölder-Zygmund classes has been established [37]. In the
Hilbertian case p = 2, again for N = 0, the solution of (P ) is obtained by solving a spectral equation, this
time for a Toeplitz operator, depending linearly on a parameter λ that plays the rôle of a Lagrange multiplier
and makes the dependence of the solution implicit in M . The ill-posed character of the analytic continuation
described above is to the effect that, if the data are not exactly analytic, the approximation error on K tends
to 0 if, and only if, the constraint M on T r K goes to infinity [35]. This phenomenon can be quantified in
Sobolev or meromorphic classes of functions f , and asymptotic estimates of the behavior of M and of the
error respectively can be obtained, based on a constructive diagonalization scheme for Toeplitz operators due
to Rosenblum and Rovnyak, that makes the spectral theorem effective [12]. These results indicate that the
error decreases much faster, as M increases, if the data have a holomorphic extension to a neighborhood of
the unit disk, this being conceptually interesting for discriminating between nearly analytic data and those
that are not close to a linear stable model; from the point of view of effective computing arises the problem
of representing the functions through expansions that are specifically adapted to the underlying geometry, for
instance, rational bases whose poles cluster at the endpoints of K . Research in this direction is in its infancy.

We emphasize that (P ) has many analogs, equally interesting, that occur in different contexts connected to
conjugate functions. For instance one may consider the following extremal Problem, germane to Problem (P ),
in the Hilbertian context p = 2 and N = 0, where the constraint on the approximant is expressed in terms of
its imaginary part:

Let f ∈ L2(K), ψ ∈ L2(T rK) and M > 0; find a function g ∈ H2 such that ‖Img − ψ‖L2(TrK) ≤ M
and such that g − f has minimal norm in L2(K).

Existence and uniqueness of the solution have been established in [57] as well as the foundations of a
constructive procedure to solve for this Problem. Note that, to the Toeplitz operator that characterizes the
solution of (P ) when p = 2 and N = 0, is superimposed here a Hankel operator, see section 6.8 for still
another extension. This type of constraints is particularly suited to inverse problems for the Laplacian, cf
sections 4.2 and 6.9, where one does not know the real part of the solution on the boundary (for instance
because of local measurements of temperature or electrical potential).

In the non-Hilbertian case, where p 6= 2, ∞, but still N = 0, the solution of (P ) can be deduced from that
of (P0) in an manner analogous to the case p = 2, though the situation is a bit more tricky concerning duality,
because one remains in a convex setup (in infinite dimension, of course), for which local optimization methods
can be applied.

If p <∞ andN > 0, there is up to now no algorithmic solution to Problem (P0) which is proved convergent.
However, the progress that were made allow us to conceive a coherent picture of the main issues and to
develop rather efficient numerical schemes whose global convergence has been proved for prototypical classes
of functions in Approximation theory. The essential features of the approach are summarized below.

First of all, in the case p = 2 and N > 0 which is of particular importance, Problem (P0) can be
reduced to that of rational approximation which is described in more details in section 3.1.2. Here, the link
with classical interpolation theory, orthogonal polynomials, and logarithmic potentials is strong and fruitful.
Second, a general AAK theory in Lp has been proposed which is relatively complete for p ≥ 2 [43]. Although
it does not have, for p 6= ∞, the computational power of the classical theory, it has better continuity properties
and stresses a continuous link between rational approximation in H2 (see section 3.1.2) and meromorphic
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approximation in the uniform norm, allowing one to use, in either context, the techniques available from the
other. Hence, similar to the case p = ∞, the best meromorphic approximation with at most n poles in the disk
of a function f ∈ Lp(T ) is obtained from the singular vectors of the Hankel operator of symbol f between the
spaces Hs and H2 with 1/s+ 1/p = 1/2, the error being here again equal to the (n + 1)st singular number
of the operator. This generalization has a strong topological nature and relies on the theory of critical points
of Ljusternik-Schnirelman as well as on the particular geometry of the Blaschke products of given degree.
Among the common features of this family of problems, the deepest one is perhaps the following: the critical
point equations express non-Hermitian orthogonality of the denominator (i.e. the polynomial whose zeroes
are the poles of the approximant) against polynomials of lower degree, for a complex measure that depends
however on this denominator (because the problem is non-linear). This allows one to extend the index theorem
to the case 2 ≤ p ≤ ∞ [30] and to tackle the uniqueness problem, to study asymptotic errors, and also,
combined with classical techniques of potential theory, to characterize the asymptotic behavior of the poles of
the approximants for functions with connected singularities that are of particular interest for inverse problems
(cf. section 3.1.3). In the light of these results, and although many questions remain open, one can expect
algorithmic progress concerning (P0) for N > 0 and p ≥ 2 in the forthcoming years. As a consequence, the
transition from (P0) to (P ) should follow the same lines as in the analytic case [63].

The case where 1 ≤ p < 2 remains largely open, especially from the constructive point of view, because
if the approximation error can still be interpreted in terms of singular values, the Hankel operator takes an
abstract form not permitting for a functional identification of its singular vectors. These values of p are not
simply an academic exercise: the L1 criterion induces the operator norm L∞ → L∞ in the frequency domain,
which is interesting for damping perturbations. It is possible that some appropriate duality links the case p < 2
to the case 2 < p, but this has not yet been established.

3.1.2. Scalar rational approximation

Participants: Laurent Baratchart, Reinhold Küstner, Juliette Leblond, Martine Olivi, Edward Saff, Herbert
Stahl, Franck Wielonsky.

Key words: rational approximation, critical point, orthogonal polynomials.

Rational approximation is the second step mentioned in section 3.1 and we first approach it in the scalar case,
for complex-valued functions (as opposed to matrix-valued ones). The Problem can be stated as:

Let 1 ≤ p ≤ ∞, f ∈ Hp and n an integer; find a rational function without poles in the unit disk, and of

degree at most n that is nearest possible to f in Hp.

The most important values of p, as indicated in the introduction, are p = ∞ and p = 2. In the latter case,
the orthogonality between Hardy spaces of the disk and of the complement of the disk (the last one being
restricted to functions that vanish at infinity to exclude the constants) makes rational approximation equivalent
to meromorphic approximation, i.e. we are back to Problem (P ) of section 3.1.1 with p = 2 and K = T .
Although no demonstrably convergent algorithm is known for a single value of p, the Miaou project has
designed a steepest-descent algorithm for the case p = 2 whose convergence to a local minimum is guaranteed
in theory, and it is the first satisfying this property. Roughly speaking, it is a gradient algorithm, proceeding
recursively with respect to the order n of the approximant, that uses the particular geometry of the problem in
order to restrict the search to a compact region of the parameter space [1]. This algorithm can determine several
local minima if there are, thus allowing one to compare between them. If there is no local maximum, a property
which is satisfied when the degree is large enough, it happens that every local minimum can be obtained from
an initial condition of lower order. It is not proved, however, that the absolute minimum can always be obtained
using the strategy of the hyperion or RARL2 software (cf. sections 5.1 and 5.3) that consists in choosing the
collection of initial points corresponding to critical points of lower degree; note that we do not know of a
counter-example either, still assuming that there is no maximum, so there is room for a conjecture at this point.

It is only fair to say that the design of a numerically efficient algorithm whose convergence to the best
approximant would be proved is the most important problem from a practical perspective. However, the
algorithms developed by the team seem rather effective and although their global convergence has not been
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established. A contrario, it is possible to consider an elimination algorithm when the function to approximate
is rational, in order to find all critical points, since the problem is algebraic in this case. This method is surely
convergent, since it is exhaustive, but one has to compute the roots of an algebraic system with n variables of
degree N , where N is the degree of the function to approximate and there can be as many as Nn solutions
among which it is necessary to distinguish those that are coefficients of polynomials having all their roots in
the unit disk; the latter indeed are the only ones that generate critical points. Despite the increase of computing
capacity, such a procedure is still unrealistic granted that realistic values of n and N would be like a tenth and
a couple of hundreds (cf. section 4.3.2).

To prove or disprove the convergence of the above-described algorithms, and to check them against practical
situations, the team has undergone a long-haul study of the number and nature of critical points, depending on
the class of functions to be approximated, in which tools from differential topology and operator theory team
up with classical approximation theory. The study of transfer functions of relaxation systems (i.e. Markov
functions) was initiated in [6] and more or less completed in [44], as well as the case of ez (the prototype of
an entire function with convex Taylor coefficients) and the case of meromorphic functions (à la Montessus
de Ballore) [5]. After these studies, a general principle has emerged that links the nature of the critical points
in rational approximation to the regularity of the decrease of the interpolation errors with the degree, and a
methodology to analyze the uniqueness issue in the case where the function to be approximated is a Cauchy
integral on an open arc (roughly speaking these functions cover the case of singularities of dimension one
that are sufficiently regular, cf. section 3.1.3) has been developed. This methodology relies on the localization
of the singularities via the analysis of families of non-Hermitian orthogonal polynomials, to obtain strong
estimates of the error that allow one to evaluate its relative decay. Note in this context an analogue of the
Gonchar conjecture, that uniqueness ought to hold at least for infinitely many values of the degree. Another
uniqueness criterion has been obtained [43] for rational functions, inspired from the spectral techniques of
AAK theory. This result is interesting in that it is not asymptotic and does not require pointwise estimates
of the error; however, it assumes a rapid decrease of the errors and the current formulation calls for further
investigation.

The introduction of a weight in the optimization criterion is an interesting issue induced by the necessity to
balance the information one has at the various frequencies. For instance in the stochastic theory, minimum
variance identification leads to weight the error by the inverse of the spectral density of the noise. It is
worth noting that most approaches to frequency identification in the engineering practice consists of posing
a least-square minimization problem, and to weigh the terms so as to obtain a suitable result using a generic
optimization toolbox. In this way we are led to consider minimizing a criterion of the form:

∥

∥

∥

∥

f − pm

qn

∥

∥

∥

∥

L2(dµ)

(1)

where, by definition,

‖g‖2
L2(dµ) =

1

2π

∫ π

−π

|g(eiθ)|2dµ(θ),

and µ is a positive finite measure on T , pm is a polynomial of degree less or equal to m and qn a monic
polynomial of degree less or equal to n. Such a problem is nicely put when µ is absolutely continuous with
respect to the Lebesgue measure and has invertible derivative in L∞. For instance when µ is the squared
modulus of an invertible analytic function, introducing µ-orthogonal polynomials instead of the Fourier basis
makes the situation similar to the non-weighted case, at least if m ≥ n− 1 [8]. The corresponding algorithm
was implemented in the hyperion software (see section 5.1). The analysis of the critical points equations in the
weighted case gives various counter-examples to unimodality in maximum likelihood identification [59].
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Another kind of rational approximation, that arises in several design problems where only constraints on the
modulus are seeked, consists of approximating the module of a function by the module of a rational function,
that is, solving for

min
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This problem is strongly related to the previous ones; in fact, it can be reduced to a convergent series of
standard rational approximation problems. Note also that if p = ∞, and if moduli are squared, i.e. if the
feasibility of
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is required, one can use the Féjèr-Riesz characterization of positive trigonometric polynomials on the unit as
squared moduli of algebraic polynomials to approach this issue as a convex problem in infinite dimension.
This constitutes another fundamental direction for dealing with rational approximation in modulus that arises
naturally in filter design problems.

3.1.3. Asymptotic behavior of poles of meromorphic approximants and inverse problems for

the Laplacian

Participants: Laurent Baratchart, Edward Saff, Herbert Stahl, Reinhold Küstner, Vilmos Totik [univ. Szeged
and Scien. Acad., Hungary].

Key words: singularity detection, free boundary inverse problems, meromorphic approximation, rational

approximation, orthogonal polynomials, discretization of potentials.

We want here to study the behavior of poles of optimal meromorphic approximants in Lp norm on a closed
contour, to functions defined by Cauchy integrals of measures whose support lies inside the contour. If one
normalizes the contour to be the unit circle, which is no restriction in principle thanks to conformal mapping
but raises of course difficult questions from the constructive point of view for domains whose shape is not
standard (for instance polygonal or elliptic), we find ourselves again in the framework of sections 3.1.1 and
3.1.2. The research so far has focused on functions that are analytic on and outside the contour, and have
singularities on an open arc inside the contour.

Generally speaking, the behavior of poles is particularly important in meromorphic approximation for the
analysis of the error decrease with the degree and for most constructive aspects like uniqueness, so that
everything here could take place in section 3.1.1. However, it is the original motivation of the team to consider
this issue in connection with the approximation of the solution to a Dirichlet-Neumann problem, so as to
extract information on the singularities of that solution. This way to tackle a free boundary problem, classical
in every respect but still widely open, illustrates the approach of the team to certain inverse problems, and
gives rise to an active direction of research at the crossroads of function theory, potential theory and orthogonal
polynomials.

As a general rule, critical point equations for these problems express that the polynomial whose roots are the
poles of the approximant is a non-Hermitian orthogonal polynomial with respect to some complex measure
on the singular set of the function to be approximated. New results were obtained over the last three years
concerning the location of such zeroes, and the approach to inverse problem for the Laplacian that we outline
in this section appears to be attractive when the singularities are one-dimensional, for instance in the case of a
cracked domain (see section 4.2). In case the crack is sufficiently smooth, the approach in question is in fact
equivalent to meromorphic approximation of a function with two branch points, and one has been able to prove
[40][34] that the poles of the approximants accumulate in a neighborhood of the geodesic hyperbolic arc that
links the enpoints of the crack [3]. Moreover the asymptotic density of the poles is nothing but the equilibrium
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distribution on the geodesic arc of the Green potential and it charges the end points, that are de facto well
localized if one is able to compute sufficiently many zeros (this is where the method is not fully constructive).
It is interesting to note that these results apply also, and even more easily, to the detection of monopolar
and dipolar sources, a case where poles as well as logarithmic singularities exist. The case of more general
cracks (for instance formed by a finite union of analytic arcs) requires the analysis of the situation where there
the number of branch points is finite but arbitrary. It is conjectured that the poles tend to the contour C that
links the end points of these analytic arcs while minimizing the capacity of the condenser (T,C), where T
is the exterior boundary of the domain (see section 6.6). The conjecture is confirmed numerically and has
been actually proved in the case where the locus of minimal capacity is connected; this covers a large number
of interesting cases, including the case of general polynomial cracks, or of cracks consisting of sufficiently
smooth arcs. This breakthrough, we hope, will constitute a substantial progress towards a proof of the general
case. It would of course be very interesting to know what happens when the crack is “absolutely non analytic”,
a limiting case that can be interpreted as that of an infinite number of branch points, and on which very little
is known. Concerning the problem of a general singularity, in the light of what precedes, one can formulate
the following conjecture: if f is analytic outside and on the exterior boundary of a domain D and if K is the
minimal compact set included in D that minimizes the capacity of the condensor (T,K) under the constraint
that f is analytic and single-valued outside K (it exists, it is unique, and we assume it is of positive capacity
in order to avoid degenerated cases), then every limit point (in the weak star sense) of the sequence νn of
probability measures having equal mass at each pole of an optimal meromorphic approximant (with at most n
poles) of f in Lp(T ) has its support in K and sweeps out to the boundary of K as the equilibrium measure

on K of the condensor (T,K). Yet this conjecture is far from being solved.
Results of this type open new perspectives in non-destructive control (see section 4.2), in that they link

issues of current interest in approximation theory (the behavior of zeroes of non-Hermitian orthogonal
polynomials) to some classical inverse problems for which it a dual approach is proposed: to approximate
boundary conditions and not the equation. Note that the problem of finding a crack suggests non-classical
variants of rational and meromorphic approximation where the residues of the approximants must satisfy some
constraints in order to take into account the boundary conditions, normal or tangential, along the singularity.
In fact, the afore-mentioned results dealing with (unconstrained) meromorphic approximation lead to identify
a deformation of the crack (the arc of minimal capacity that links its end points) rather than the crack itself,
which is valuable to initialize a heavier direct method but which is not conclusive by itself. In order to limit
the deformation which is due to the fact that we did not keep track of the limiting-conditions (especially the
fact that the jump across the crack is real), one may consider approximating the complexified solution F of a
Neumann problem in a cracked domain D by a meromorphic function of the type

∑n
j=1 aj/(z − zj) + g(z),

where g is analytic in D, under the constraint that
∑

k 6=j ak/(zj − zk) + g(zj) is real for each j; in effect,
if the poles zj are distributed along an arc, the above sum is a discrete estimation of the Hilbert transform of
the measure defining the function, and enforcing that it is zero should help satisfying the Neumann condition
along the arc. Such modifications of the initial problem are only beginning to be considered within the team.

We conclude by mentioning that the problem of approximating, by a rational or meromorphic function,
in the Lp sense on the boundary of a domain, the Cauchy transform of a real measure, localized inside the
domain, can be viewed as an optimal discretization problem for a logarithmic potential according to a criterion
involving a Sobolev norm. This formulation can be generalized to higher dimensions, even if the computational
power of complex analysis is no longer there, and this makes for a long-term research project with a much
wider range of applicability. The case of sources in dimension three in a spherical geometry, can for instance,
be attacked with the above 2D techniques when applied to planar sections (see section 6.9).

3.1.4. Matrix-valued rational approximation

Participants: Laurent Baratchart, Andrea Gombani, Martine Olivi, José Grimm.

Key words: rational approximation, inner matrix, reproducing kernel space realization theory.

Matrix-value approximation is necessary for handling systems with several inputs and outputs, and generates
substantial additional difficulties with respect to scalar approximation, theoretically as well as algorithmically.
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In the matrix case, the McMillan degree (i.e. the degree of a minimal realization in the System-Theoretic
sense) generalizes the degree. Hence the problem reads: Let 1 ≤ p ≤ ∞, F ∈ (Hp)m×l and n an integer;

find a rational matrix of size m × l without poles in the unit disk and of McMillan degree at most n nearest

possible to F in (Hp)m×l. To fix ideas, we may define the Lp norm of a matrix as the p-th root of the sum of
the p powers of the norms of its entries.

The main interest of Miaou so far lies in the case p = 2. Then, the scalar approximation algorithm
designed in the scalar case generalizes to the matrix-valued situation [7]. The first difficulty consists here
in the parametrization of transfer matrices of given McMillan degree n, and the inner matrices (i.e. matrix-
valued functions that are analytic in the unit disk and unitary on the circle) of degree n enter the picture in an
essential manner: they play the role of the denominator in a fractional representation of transfer matrices using
the so-called Douglas-Shapiro-Shields factorization. The set of inner matrices of given degree has a manifold
structure that allows to use differential tools as in the scalar case. In practice, one has to produce a good atlas
of charts (parameterizations valid in a neighborhood of a point), and one must handle changes of chart in
the course of the algorithm. The tangential Schur algorithm [27] provides us with such a parameterization
and allowed the team to develop two rational approximation codes. The first one is integrated in the hyperion
software (see section 5.1) that oparates on transfer matrices, while the other is developed under the matlab
interpreter, goes by the name of RARL2, and works with realizations. Both have been tested under contract
against 2 × 2 matrix-valued data built from measurements done by the CNES (branch of Toulouse), IRCOM,
and Alcatel Space, and are the object of sections 7.1 and 7.2. They give high quality results [2] in all cases
encountered so far. These codes are of daily use by Alcatel space and IRCOM, coupled with simulation
software like EMXD, to design physical coupling parameters for the synthesis of hyperfrequency filters made
of resonant cavities.

In this application, obtaining physical couplings requires the computation of realizations, also called internal
representation in system theory. Among the parameterizations obtained via the Schur algorithm, some have
a particular interest from this viewpoint [62]. They lead to a simple and robust computation of balanced
realizations and form the basis of the RARL2 algorithm.

Problems relative to multiple local minima are naturally also present as in the scalar case, but deriving
criteria that guarantee uniqueness is much more difficult than in the scalar case. The case of rational functions
of the proper degree already uses rather heavy machinery [4], and that of matrix-valued Markov functions,
that are the first example beyond rational function has made progress only very recently (cf. section 6.5).

In practice, a method similar to the one used in the scalar case, has been developed to generate local minima
at a given order from those at lower order. In short, one sets out a matrix of degree n by perturbation of a
matrix of degree n − 1 where the drop in degree is due to a pole-zero cancellation. There is an important
difference between polynomial representations of transfer matrices and their realizations: the former lead to
an embedding in a ambient space of rational matrices that allows a differentiable extension of the criterion
on a neighborhood of the initial definition manifold, but not the latter (the boundary is strongly singular).
Generating initial conditions in a recursive way is more delicate in terms of realizations, and some basic
questions on the boundary behaviour of the gradient vector field are still open.

Let us stress that the algorithms mentioned above are first to handle rational approximation in the matrix
case in a way that converges to local minima, while meeting stability constraints on the approximant.

3.1.5. Linear parametric identification

Participants: Laurent Baratchart, Manfred Deistler [TU Wien, Au], Reinhold Küstner, Martine Olivi.

Key words: rational approximation, parametric identification, topology of rational matrices, critical points.

The asymptotic study of likelihood estimators is a natural companion to the research on rational approximation
described above. The context is ultra-classical. Given a discrete process y(t) with values in R

p, and another
process with values in R

m, we check for an explanation of y in terms of u as a finite order linear model:

ŷ(t) = Hu(t) + Le(t),
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where e is a white noise with p components, uncorrelated to u, assumed to represent the uncertainty in y(t), and
where the transfer matrix [L H ] that links (e u)t to ŷ is rational and stable of McMillan degreen, the matrix
L being also of stable inverse (among all noises with same covariance, and given innovation, we chose those
whose spectral factor has minimum phase). The number n is, by definition, the order of the model. If we only
suppose that [H L] belongs to the Hardy space H2 and that L is outer (this means stably invertible in some
sense), such a representation is in fact general for regular (i.e. purely non-deterministic) stationary processes.
Identification in this context appears then as a rational approximation problem for which the classical theory
makes a trade-off between two antagonist factors, namely the bias error on the one hand that decreases when n
increases and the variance error on the other hand that increases with n since the dispersion is amplified with
the number of parameters. This is the stochastic version of the complexity versus precision alternative which
is all-pervasive in modeling.

If one introduces now as a new variable the rational matrix R defined by

R =

(

L H
0 Im

)−1

and if T stands for the first block-row, normalizing the variance of the noise to be identity, the maximum
likelihood estimator is asymptotically equivalent, when the sample size increases, to the minimization of

‖T ‖2
Λ = Tr

{

1

2π

∫ 2π

0

T (eiθ) dΛ(θ) T ∗(eiθ)

}

, (2)

where Λ is the spectral measure of the process (y u)t (which positive and matrix-valued) and where Tr

indicates the trace. If we further restrict the class of models by assuming that we deal with white noise, that is
if L = Im, one obtains a weighted rational approximation problem corresponding to the minimization of the
variance on the output error. If moreover u itself is (observed) white noise, the situation becomes that of 3.1.4.

Formulation (2) shows that stochastic identification aims at a twofold generalization, both rational and
matrix-valued, of the Szegö theory of orthogonal polynomials on the circle, and this sets up a link with classical
function theory.

The consistency problem arises from the fact that the measure Λ is not available, so that one has to
estimate (2) from time averages of the observed samples, assuming that the process is ergodic. The question is
then to decide whether the argument of the minimum of the estimated functional tends to that of (2) when the
sample size increases, and what is the speed of convergence. The most significant result here is perhaps the one
asserting that if there exists a functional model linking u to y (i.e. u is indeed the cause of the phenomenon),
and without assuming compactness of the class of models [56], then consistency holds under weak ergodicity
conditions and persistent excitation assumptions. An analogous of the law of large numbers indicates, in this
context, that convergence is in the order of 1/

√
N , where N is the sample size.

In the preceding result, consistency holds in the sense of pointwise convergence of the estimates on the
manifold of transfer functions of given size and order. One contribution of the Miaou team has been to show
that the result holds even if we do not postulate a causal dependency between inputs and outputs, the measure
Λ being simply defined as the weak limit of the covariances. A second contribution is that this convergence
holds uniformly with all its derivatives on each compact subset of the manifold of models, thereby drawing a
path between the algorithmic behavior of the rational approximation problem (number and nature of critical
points, decrease of error, behavior of the poles) and that of the minimization of empirical means. This allows
one to translate in terms of asymptotic behavior of the estimators virtually all properties that are uniform with
respect to the order of the approximants, and without having to assume that the “true” systems belongs to the
class of models. Let us mention for instance that uniqueness of a critical point in H2 rational approximation,
in the case where the system to approximate is nearly rational of degree n, implies [4] uniqueness of a local
minimizer for the output error when the input is a white noise, asymptotically almost surely on every compact,
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when the density of y with respect to u is nearly rational of degree n. In the case of relaxation systems, with one
input-output, that is, if the transfer function is a Markov function, we obtain, in the light of the results exposed
in module 3.1.2, the same conclusion when the order of approximation is large enough. This is the first known
case of unimodularity where the “true” system does not belong to the class of models. An application to the
localization of the poles of rational estimates of the output error of a long memory system was derived from
this [33]. Here, we are faced again with the question, already mentioned in the introduction, of how to expand
functions in bases that are adapted to the singularities of the spectral density of long memory processes. We
believe this research direction is worth exploring.

3.2. Structure and control of non-linear systems
In order to control a system, one generally relies on a model, obtained from a priori knowledge like physical
laws or experimental observations. In many applications, one is satisfied with a linear approximation around
a design point or a trajectory. It is however very important to study non-linear systems (or models) and
their control for the following reasons. First, some systems have, near interesting working points, a linear
approximation that is non-controllable so that linearization is ineffective, even locally. Secondly, even if the
linearized model is controllable, one may wish to extend the working domain beyond the validity domain of the
linear approximation. Work described in module 3.2.1 proceeds from this problematics. Finally, some control
problems, such as path planning, are not of local nature and cannot be answered by a linearly approached
model. The structural study described in module 3.2.2 has for purpose to exhibit invariants that can be used,
either for reducing the study to simpler systems or for being used as a foundation of a non-linear identification
theory, that would give informations on model classes to be used in the case where there is no a priori reliable
information, and that black-box linear identification is not satisfactory. The success of the linear model, in
control or in identification, has its cause in the fine understanding one has of it; in the same fashion, a better
mastery of invariants of non-linear models for some transformations is a prerequisite to a true theory of non-
linear identification and control. In what follows, all non-linear systems are supposed to have a state space of
finite dimension.

3.2.1. Continuous stabilization

Key words: control, stabilization of non-linear systems, non-linear control, non holonom mechanical system.

Participants: Ludovic Faubourg [univ. of Bourgogne and CNES], Andreï Ivanov, Jean-Baptiste Pomet.

Stabilization by continuous state feedback — or output feedback, that is, the partial information case —
consists of designing a control that is a smooth (at least continuous) function of the state and such that
a design point (or a trajectory) is asymptotically stable, for the closed system. One can consider this as a
weakened version of the optimal control problem: to compute a control that optimizes exactly a given criterion
(for instance to go somewhere in minimal time) leads in general to a very irregular dependence on the state;
stabilization is a qualitative objective (to go somewhere asymptotically) less constraining than minimization of
a criterion, and leaves of course more latitude and allows to impose for instance a lot of regularity. Stabilization
problems are often solved, at least near a regular design point, by well-mastered control theory methods; the
methods studied here deal with the behavior near points where linear methods are inefficient (non-controllable
linear approximation) or tend to master the behavior on a larger zone in the state space. A very important
question is the robustness of the stability: in fact, control laws depend heavily on the structure of the model
and asymptotic stability conservation for nearby structures or parameter values is not granted. We shall explain
hereafter two research directions followed by the Team.

3.2.1.1. Periodic stabilisation of non-linear systems.

It is known that a certain number of non-linear systems, although controllable, cannot be stabilized by a control
that is a continuous function of the state alone [48]. One can of course, for these systems, relax the continuity
requirement using for instance non-continuous control feedbacks obtained from minimal-time optimization,
but a more recent idea consists of looking after continuous feedbacks (better, smooth ones) loosening the
constraints that the control depends only on space and allowing a time dependency, for instance periodic.
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Researches in the Team, with collaboration from the Icare Team, have played an important role in establishing
these results [9].

3.2.1.2. Control Lyapunov functions.

Lyapunov functions are a well-known tool for the study of the stability of non-control dynamic systems.
For a control system a Control Lyapunov Function is a Lyapunov function for the system closed by a given
command. This can be expressed by a differential inequality that is called the “Artstein equation [29]”, that
looks like the Hamilton-Jacobi-Bellmann equation but is largely under-determined. One can deduce, from the
knowledge of a control Lyapunov function, stabilizing continuous state-space feedbacks easily.

We are interested in the Team in obtaining control Lyapunov functions. This can be the first step in
synthesizing a stabilizing control, but even when a stabilizing control is already known, obtaining a control
Lyapunov function can be very useful for studying robustness of the stabilization, or for modifying the initial
control law to a more robust one; also if one has to deal with a problem where it is important to optimize a
criterion, and that the optimal solution is hard to compute, one can look for a control Lyapunov function that
is “near” the solution of the optimization problem, and that leads to a stabilizing control easier to work on, and
of a cost (in the sense of the criterion) not far from the optimum.

Recent work in the Team has consisted, starting from objects that are “nearly” control Lyapunov functions,
and that are explicitly constructible, or at least easily described, in distorting them, constructively, into control
Lyapunov functions, or, on the contrary, depending on the case, to show that such a construction is impossible.
In [50], these objects are either functions of type first integrals [51] that cannot be made decreasing, or
functions that have the desired properties, but are not smooth [52].

Note that these constructions are exploited in the study requested by Alcatel Space (see module 7.3), where
choice is left between the use of optimal control techniques or stabilization.

3.2.2. Transformations and equivalences of non-linear systems and models

Participants: David Avanessoff, Laurent Baratchart, Monique Chyba [UC Santa Cruz (USA)], Jean-Baptiste
Pomet.

Key words: non-linear control, non-linear feedback, classification, non-linear identification.

A static feedback transformation of a dynamical control system is a (non-singular) reparametrization of
control, depending on the state, and possibly, a change of coordinates in the state space. A dynamic feedback

transformation of a dynamic control system consists in a dynamic extension (adding new states, and assigning
then a new dynamics) followed by a state feedback on the augmented system.

• From the point of view of the control, the interest of these transformations is that a command that
allows to satisfy some objectives on the transformed system can be used to control the original
system including the possibly extended dynamics in the controller. Of course the favorable case is
when the transformed system has a structure that can more easily be exploited than the original one,
for instance a linear controllable system.

• From the point of view of identification and modeling, in the non-linear case, the interest is as
mentioned above, either to derive qualitative invariants that can support the choice of a non-linear
model given some observations, or to contribute to a classification of non-linear systems that is
missing sorely today for elaborating real methods in non-linear identification.

These two problems studied in the Team are now developped.
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3.2.2.1. Dynamic linearization.

The problem of dynamic linearization, still unsolved, is that of finding explicit conditions on a system for the
existence of a dynamical feedback that would make it linear.

These last years [53], the following property of control systems has been emphasized: for some systems,
included linear systems, there exists a given number of functions of the state and the derivatives of the control,
that are related by no differential equation and that “parameterize all trajectories”. This property and its
importance in control, has been brought in light in [53], where it is called differential flatness, the above
mentioned functions being called flat or linearizing functions, and it was shown, roughly speaking, that a
system is differentially flat if, and only if, it can be converted to a linear system by dynamic feedback. On one
hand, this property of the set of trajectories has in itself an interest at least as important for control than the
equivalence to a linear system, and on the other hand it gives a handle for tackling the problem of dynamic
linearization, namely to find linearizing functions.

An important question remains still open: how can one algorithmically decide that a given system has or
not such functions, i.e. is dynamically linearizable or not? This problem is both difficult and important for
non-linear control. For systems with four states and two controls, whose dynamic is affine in the control (these
are the lowest dimensions for which the problem is really non-trivial), necessary and sufficient conditions [10]
for the existence of linearizing functions depending on the state and the control (but not the derivatives of the
control) are surely explicit, but point to the complexity of the question.

From the algebraic-differential point of view, the module of differentials of a controllable system is free and
of finite dimension over the ring of differential polynomials in d/dt with coefficients in the space of functions
of the system, and for which a basis can be explicitly constructed [28]. The question is to find out if it has
a basis made of closed forms, that is, locally exact. Expressed in this way, it is an extension of the classical
integrability theorem of Frobenius to the case where coefficients are differential operators. Together with
stability by exterior differentiation (the classical condition), further conditions are required here to ascertain
the degree of the solutions is finite, the mean-term goal is to obtain a formal and implementable algorithm,
able to decide whether or not a given system is flat on a regular point. One can also consider sub-problems
with their own interests, such as deciding flatness with a given pre-compensator, or characterizing “formal”
flatness that would correspond to a weak interpretation of the differential equation, and also localizing these
questions to a neighborhood of an equilibrium point.

3.2.2.2. Topological Equivalence

In what precedes, we have not taken into account the degree of smoothness of the transformations under
consideration.

In the case of dynamical systems without control, it is well known (Hartman-Grobman theorem) that, away
from degenerate (non hyperbolic) points, if one requires the transformations to be merely continuous, every
system is locally equivalent to a linear system in a neighborhood of an equilibrium. It is tempting thus,
in the frame of a classification of control systems, to look for such equivalence modulo non-differentiable
transformations and to hope bring about some robust “qualitative” invariants and perhaps stable normal forms.
An equivalent of the Hartman-Grobman theorem for control systems would say for instance, that outside a
“rare” class of models (for instance, those whose linear approximation is non-controllable), and locally near
fixed values of the state and the control, no qualitative phenomenon can distinguish a non-linear system from
a linear one, all non-linear phenomena being hence either of global nature or singularities. Such a statement is
wrong: if a system is locally equivalent to a controllable linear system via a bi-continuous transformation—a
local homeomorphism in the state-control space—it is also equivalent to this same controllable linear system
via a transformation that is as smooth as the system itself, at least in the neighborhood of a regular point (in the
sense where the rank of the control system is locally constant), see [21] for details; a contrario, under weak
regularity conditions, linearization can be done by non-causal transformations (see the same report) whose
structure remains unclear, but take a concrete sense when the entries are generated by a finite dimensional
dynamics.
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The above considerations call for the following question, important for modeling control systems: are there
local “qualitative” differences between the behavior of a non-linear system and its linear approximation in the
case the latter is controllable?

4. Application Domains

4.1. Introduction
The activity of the team focuses on two bottom lines, namely optimization in the frequency domain on the
one hand, and the control of systems governed by differential equations on the other hand. Therefore one
can distinguish between two main families of applications: one dealing with design and inverse problems for
diffusive and resonant systems, and one dealing with control of cetain mechanical or optical systems. For
applications of the first type, approximation techniques as described in module 3.1.1 allow one to deconvolve
linear equations, analyticity being the result of either the use of Fourier transforms or the harmonic character
of the equation itself. Concerning the second type of applications, they mostly concern the control of systems
that are “poorly” controllable, for instance low thrust satellites or optical regenerators. We describe all these
applications below in more detail.

4.2. Geometric inverse problems for the Laplacian
Participants: Laurent Baratchart, Amel Ben Abda [ENIT, Tunis], Fehmi Ben Hassen, Slim Chaabane, Imen
Fellah, Mohamed Jaoua [ENIT, Tunis], Moez Kallel, Reinhold Küstner, Juliette Leblond, Moncef Mahjoub,
Edward Saff, Franck Wielonsky.

Key words: inverse problem, Laplace equation, non destructive control, tomography.

Localizing cracks, pointwise sources or occlusions in a two-dimensional material, using thermal, electrical,
or magnetic measurements on its boundary is a classical inverse problem. It arises when studying fatigue of
structures, behavior of conductors, or else magneto-encephalography as well as the detection of buried objects
(mines, etc). However, no really efficient algorithm has emerged so far if no initial information on the location
or on the geometry is known, because numerical integration of the inverse problem is very unstable. The
presence of cracks in a plane conductor, for instance, or of sources in a cortex (modulo a conversion of 3D data
to 2D, see later) can be expressed as an analyticity defect of the solution of the associated Dirichlet-Neumann
problem, and may in principle be approached using techniques of best rational or meromorphic approximation
on the boundary of the object (see sections 3.1.1 to 3.1.3 and 6.9). The realistic case where data are available
only on a part of the boundary is a typical example of application of the analytic and meromorphic extension
techniques developed earlier.

The 2D approach proposed here consists in constructing, from measured data on a subsetK of the boundary
Γ of a plane domainD, the trace on Γ of a function F which is analytic in D except for a possible singularity
across some subset γ ⊂ D (typically: a crack). One can then use the approximation techniques described
above in order to:

• extend F to all Γ if the data are incomplete (it may happen that K 6= Γ) if the boundary is not
fully accessible to measurements), in order to identify for instance an unknown Robin coefficient,
see [13], [49] where stability properties of the procedure are established;

• detect the presence of a defect γ in a computationally efficient manner; [45];

• obtain information on the location of γ [34][31], [15].

Thus, inverse problems of geometric type that consist in finding an unknown boundary from incomplete data
can be approached this way [3], possibly in combination with other techniques [45]. Preliminary numerical
experiments have yielded excellent results and it is now important to process real experimental data, that the
team is currently busy collecting. In particular, contacts with the Odyssée Team of Inria Sophia Antipolis
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(within the ACI “Obs-Cerv”) should provide 3D magneto-encephalographic data, and we already studied how
to extract 2D informations from them, see section 6.9. The team is also in contact with companies in order to
get 2D (or cylindrical 3D) data issued from engineering practice.

Among the research perspectives opened by these applications, there lies a non-classical approximation
problem where residues would be constrained so as to incorporate in the structure of the approximant some
features inherited from the fact that we have to estimate a logarithmic potential with a boundary condition, see
module 3.1.3. Experiments have been carried out with real residues for a straight crack, which indeed indicate
a critical configuration on the crack. However, parametrizing through poles and residues produces global
singularities that are undesirable, hence we need to adopt another parametrization based on the coefficients of
the polynomials; this requires further study.

In the long term, we envisage generalizing this type of methods to the case of problems with variable
conductivity coefficients, as well as to the Helmholtz equation. Using convergence properties of approximation
algorithms in order to establish stability results for some of these inverse problems is also an appealing
direction for future research.

4.3. Identification and design of resonant systems
Key words: telecommunications, multiplexing, filtering device, hyperfrequency, surface waves.

One of the best training ground for the research of the team in function theory is the identification and design
of physical systems for which the linearity assumption is well-satisfied in the working range of frequency,
and whose specifications are made in frequency domain. Resonant systems, acoustic or electromagnetic, are
prototypical examples of common use in telecommunications. We shall be more specific on two examples
below.

4.3.1. Design of surface acoustic wave filters

Participants: Laurent Baratchart, Andrea Gombani, José Grimm, Martine Olivi.

Surface acoustic waves filters are largely used in modern telecommunications especially for cellular phones.
This is mainly due to their small size and low cost. Unidirectional filters, formed of SPUDT transducers that
contain inner reflectors (cf. Figure 1), are increasingly used in this technological area. The design of such
filters is more complex than traditional ones.
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Figure 1. Transducer model.

We are interested here in a filter formed of two SPUDT transducers (Figure 2). Each transducer is composed
of cells of the same length τ each of which contains a reflector and all but the last one contain a source
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Figure 2. Configuration of the filter

(Figure 1). These sources are all connected to an electrical circuit, and cause electro-acoustic interactions
inside the piezo-electric medium. In the transducer SPUDT2 represented on Figure 2, the reflectors are
positioned with respect to the sources in such a way that near the central frequency, almost no wave can
emanate from the transducer to the left (Sg ≈ 0), this being called unidirectionality. In the right transducer
SPUDT1, reflectors are positioned in a symmetric fashion so as to obtain unidirectionality to the left.

Specifications are given in the frequency domain on the amplitude and phase of the electrical transfer
function. This function expresses the power transfer and can be written as

E(r, g) = 2
V2

I0
=

2
√
G1G2 Y12

Y12Y21 − (Y11 +G1)(Y22 +G2)
,

where Y is the admittance of the coupling:
(

I1
I2

)

=

(

Y11 Y12

Y21 Y22

) (

V1

V2

)

.

The design problem consists in finding the reflection coefficients r and the source efficiency in both transducers
so as to meet the specifications.

The transducers are described by analytic transfer functions called mixed matrices, that link input waves
and currents to output waves and potentials. Physical properties of reciprocity and energy conservation endow
these matrices with a rich mathematical structure that allows one to use approximation techniques in the
complex domain (see module 7.1) according to the following steps:

• describe the set E of electrical transfer functions obtainable from the model,
• set out the design problem as a rational approximation problem in a normed space of analytic

functions:

min
E∈E

‖D − E‖,

where D is the desired electrical transfer,
• use a rational approximation software (see modules 5.1 and 5.3) to identify the design parameters.

The first item, is the subject of ongoing research. It connects the geometry of the zeroes of a rational
matrix to the existence of an inner symmetric extension without increase of the degree (reciprocal Darlingtom
synthesis). Let us mention that the interest of the team for this application started through a collaboration with
Thomson Microsonics in 1999.
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4.3.2. Hyperfrequency filter identification

Participants: Laurent Baratchart, Stéphane Bila, José Grimm, Jean-Paul Marmorat [CMA-EMP], Fabien
Seyfert.

In the domain of space telecommunications (satellite transmissions), constraints specific to onboard tech-
nology lead filters with resonant cavities to be used in the hyperfrequency range. These filters are used for
multiplexing (before or after amplification), and consist of a sequence of cylindrical hollow bodies, magneti-
cally coupled by irises (orthogonal double slits). The electromagnetic wave that traverses the cavities satisfies
the Maxwell equations, forcing the tangent electrical field along the body of the cavity to be zero. A deeper
study (of the Helmholtz equation) states that essentially only a discrete set of wave vectors is selected. In the
considered range of frequency, the electrical field in each cavity can be seen as being decomposed along two
orthogonal modes, perpendicular to the axis of the cavity (other modes are far away, and their influence can
be neglected).

TUNING SCREW

COUPLING SCREW

Figure 3. Schematic 4-cavities dual mode filter. Each cavity has 3 screws to couple the modes within the cavity, so

that there are 12 quantities that should be optimized. Quantities like the diameter and length of the cavities, or the

width of the 8 slits are fixed in the design phase.

Each cavity (see Figure 3) has three screws, horizontal, vertical and midway (horizontal and vertical are
two arbitrary directions, the third direction makes an angle of 45 or 135 degrees, the easy case is when all
the cavities have the same orientation, and when the directions of the irises are the same, as well as the input
and output slits). Since the screws are conductors, they act more or less as capacitors; on the other hand, the
electrical field on the surface has to be zero, which modifies the boundary conditions of one of the two modes
(for the other mode, the electrical field is zero, and hence is not influenced by the screw), the third screw
acts as a coupling between the two modes. The effect of the iris is to the contrary of a screw: no condition
is imposed where there is a hole, which results in a coupling between two horizontal (or two vertical) modes
of adjacent cavities (in fact the iris is the union of the rectangles, the important parameter being their width).
The design of a filter consists of finding the size of each cavity, and the width of each iris. After that, the filter
can be constructed, and tuned by adjusting the screws. Finally, the screws are glued. In what follows, we shall
consider a typical example, a filter designed by the CNES in Toulouse, with four cavities near 11 Ghz.

Near the resonance frequency, a good approximation of the Maxwell equations is given by the solution
of a second order differential equation. One obtains thus an electrical model for our filter as a sequence of
electrically-coupled resonant circuits, and each circuit will be modeled by two resonators, one per mode,
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whose resonance frequency represents the frequency of a mode, and whose resistance represent the electric
losses (current on the surface).

In this way, the filter can be seen as a quadripole, with two ports, when plug on a resistor at one end and
fed with some potential at the other. We are then interested in the power transmitted and reflected. This leads
to defining a scattering matrix S, that can be considered as the transfer function of a stable causal linear
dynamical system, with two inputs and two outputs. Its diagonal terms S1,1, S2,2 correspond to reflections at
each port, while S1,2, S2,1 correspond to transmission. These functions can be measured at certain frequencies
(on the imaginary axis). The filter is rational of order 4 times the number of cavities (that is 16 in the example),
and the key step consists in expressing the components of the equivalent electrical circuit as a function of the
Sij (since there are no formulas for expressing the length of the screws in terms of parameters of this electrical
model). On the other hand, this is also useful for the design of the filter, for analyzing numerical simulations
of the Maxwell equations, and for checking the design, particularly the absence of higher resonant modes.

In reality, the resonance is not studied via the electrical model, but via a low pass equivalent obtained upon
linearizing near the central frequency, which is no longer conjugate symmetric (i.e. he underlying system may
not have real coefficients) but whose degree is divided by 2 (8 in the example).

In short, the identification strategy is as follows:

• measuring the scattering matrix of the filter near the optimal frequency over twice the pass band
(which is 80Mhz in the example).

• solving bounded extremal problems, in H2 norm for the transmission and in Sobolev norm for
the reflection (the module of he response being respectively close to 0 and 1 outside the interval
measurement) cf. module 3.1.1. This gives a scattering matrix of order roughly 1/4 of the number
of data points.

• Then one rationally approximate with fixed degree (8 in the occurrence) via the hyperion software
cf. module 3.1.4 and 5.1.

• A realization of the transfer function is thus obtained, and some symmetry constraints are added
here.

• Finally one builds a realization of the approximant and he looks for a change of variables that kills
non-physical couplings. This is obtained by using algebraic-solvers and continuation algorithms on
the group of orthogonal complex matrices (the symmetry forces this kind of change of basis).

The final approximation is of high quality. This can be interpreted as a validation of the linearity hypothesis
for the system: the relative L2 error is less than 10−3. This is illustrated by a reflection diagram (Figure 4).
Non-physical coupling are less than 10−2.

The above considerations are valid for a large class of filters. These developments have also been used for
the design of unsymmetric filters, useful for the synthesis of repeating devices.

The team extends today its investigations, to the design of output multiplexors (OMUX) that couple several
filters of the previous type on a manifold. The objective is to establish a global model for the behavior that
takes into account

• within each channel the coupling between the filter and the Tee that connects it to the manifold,

• the coupling between two consecutive channels.

The model is obtained upon chaining the transfer matrices associated to the scattering matrices. It mixes
rational elements and complex exponentials (because of the delays) and constitutes an extension of the
previous framework. Under contract with the CNES (see 7.1), the team has started a study of the design
with gauge constraints, based on function theoretical tools.
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4.4. Spatial mechanics
Participants: Ludovic Faubourg [univ. of Bourgogne and CNES], Jean-Baptiste Pomet.

Key words: spatial mechanics, satellite, orbital control, telecommunications.

The use of satellites in telecommunication networks motivates a lot of research in the area of signal and image
processing. Problems of spatial mechanics and satellite control are also vital to these new technologies. For
instance, fuel represents half of the total mass of the satellite, which is an obstacle to the missioning charge
(devices for telecommunications, image processing surveillance, etc), since the total mass is limited by the
capacity of the launchers.

Hence it is natural to seek more efficient propulsion means. Progress in physics permit today effective
“electrical” propulsion modes (ionic engines, plasma, etc) that have a better efficiency, but a much smaller
instantaneous thrust than traditional chemical rockets. This raises difficult control problems, whose study by
the team is carried out in collaboration with Alcatel-Space Cannes, see module 7.3.

Note that spatial mechanics is a domain that poses a great deal of delicate control problems, due to the
extreme conditions and long lease of life of satellites.

4.5. Non-linear Optics
Participants: Alex Bombrun, Jean-Baptiste Pomet, Fabien Seyfert.

Key words: Optics, 3R regeneration, optical fibers, networks, telecommunications.

The increased capacity of numerical channels in information technology is a major industrial challenge. The
most performing means nowadays for transporting the signals from a server to the user and backwards is via
optic fibers. The use of this medium at the limit of its time of response causes new control problems in order
to maintain a safe signal, both in the fibers and in the routing and regeneration devices.

The team has been associated, under contract with Alcatel R&I (see module 7.4), in the control of the
“all-optic” regenerators.

4.6. Transformations and equivalence of non-linear systems
Participants: Laurent Baratchart, Jean-Baptiste Pomet, David Avanessoff.

Key words: path planning, mobile cybernetics, identification.

The works presented in module 3.2.2 are upstream from applications. However, beyond the fact that deciding
whether a given system is linear modulo an adequate compensator is clearly conceptually useful, the use of
“flat outputs” for path planning has a great interest, see for instance the European Control Conference [60].
Moreover, as indicated in section 3.2, a better understanding of the invariants on non-linear systems under
feedback would lead to considerable progress in identification.

5. Software

5.1. The hyperion software
Participants: José Grimm [manager], Fabien Seyfert, Franck Wielonsky.

There was no major development concerning the hyperion software this year. It was used in research contracts
with CNES and Alcatel Space, as well as for numerical tests in crack detections.

On the other hand, we started to create a library named bibapics, a set of matlab-callable routines, that
offers the same functionalities as hyperion, and is compatible with its system of batch files. It uses XML as
language for descriptions of tasks.

5.2. The Tralics software
Participant: José Grimm [manager].
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The development of a LATEX to XML translator, named Tralics was continued. For more details, see module
6.2. TRALICS was sent to the APP in December 2002. Its IDDN number is InterDepositDigitalNumber =
IDDN.FR.001.510030.000.S.P.2002.000.31235. Binary versions are available for Linux, Solaris, Windows
and Mac-OS X. Its web page is http://www-sop.inria.fr/miaou/tralics.

5.3. The RARL2 software
Participants: Jean-Paul Marmorat, Martine Olivi [manager].

RARL2 (Réalisation interne et Approximation Rationnelle L2) is a software for rational approximation (see
module 3.1.4). Its web page is http://www-sop.inria.fr/miaou/RARL2/rarl2.html. This software takes as input
a stable transfer function of a discrete time system represented by

• either it internal realization

• or its N first Fourier coefficients

• or discretized values on the circle

It computes a best approximant (local minimum) stable, of given McMillan degree, in the L2 norm.
It is somehow related to the arl2 function of hyperion (see module 5.1) and differs in the way it represents

the systems: a polynomial representation is used in hyperion, while RARL2 uses a realization, this being very
interesting in some cases. It is implemented in MATLAB. This software handles multi-variable systems (with
several inputs and several outputs), and uses a parameterization that has the following advantages

• it handles only stable systems, so that the result is necessarily stable,

• it allows the use of differential tools, and can identify uniquely a system,

• it is well-conditioned, and computations are cheap.

An iterative research strategy on the degree of the local minima, similar in principle to that of arl2, increases
the chance of obtaining the absolute minimum (see module 6.3) by generating, in a structured manner, several
initial conditions. Contrary to the polynomial case, we are in a singular geometry on the boundary of the
manifold on which minimization takes place, which forbids the extension of the criterion to the ambient
space. We have thus to take into account a singularity on the boundary of the approximation domain, and it
is not possible to compute a descent direction as being the gradient of a function defined on a larger domain,
although the initial conditions obtained from minima of lower order are on this boundary. Thus, determining
a descent direction is nowadays, to a large extent, a heuristic step. This step works well in the cases handled
up to now, but research are under way in order to make this step ruly algorithmic.

5.4. The RGC software
Participants: Fabien Seyfert, Jean-Paul Marmorat.

The RGC software (Réalisation interne à géométrie contrainte) has no web page.
The identification of filters modeled by an electrical circuit that was developed inside the team (see module

4.3.2) leads to compute the electrical parameters of the filter. This means finding a particular realization
(A,B,C,D) of the model given by the rational approximation step. This 4-tuple must satisfy constraints
that come from the geometry of the equivalent electrical network and translate into some of the coefficients
in (A,B,C,D) being zero. Among the different geometries of coupling, there is one called “the arrow form”
[47] which is of particular interest since it is unique for a given transfer function and also easily computed.
The computation of this realization is the first step of RGC. However if the desired realization is not in arrow
form, one can show that it can be deduced by an orthogonal change of basis (in general complex). In this
case, RGC starts a local optimization procedure that reduces the distance between the arrow form and the
target, using successive orthogonal transformations. This optimization problem on the group of orthogonal
matrices is non-convex and has a lot of local and global minima. In fact, there is not always uniqueness of
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the realization of the filter in the given geometry. Moreover, it is often interesting to know all the solutions of
the problem, because the designer cannot be sure, in many cases, which one is being handled, and sometimes
the assumptions on the reciprocal influence of the resonant modes are not well satisfied. Today, apart from the
particular case where the arrow form is the desired form (this happens frequently up to degree 6) the RGC
software gives no guarantee to obtain a single realization that satisfies the prescribed constraints. Work is in
progress, see section 6.12.

5.5. PRESTO-HF
Participant: Fabien Seyfert.

PRESTO-HF: a toolbox dedicated to lowpass parameter identification for hyperfrequency filters http://www-
sop.inria.fr/miaou/Fabien.Seyfert/Presto_web_page/presto_pres.html

In order to allow the industrial transfer of our methods, a Matlab-based toolbox has been developed,
dedicated to the problem of identification of low-pass hyperfrequency filter parameters. It allows to run the
following algorithmic steps, one after the other, or all together in a single sweep:

• determination of delay components, that are caused by the access devices (automatic reference plane
adjustment);

• automatic determination of an analytic completion, bounded in module for each channel, (see
module 6.11);

• rational approximation, of fixed McMillan degree;

• determination of a constrained realization.

For the matrix-valued rational approximation stage Presto-HF relies either on hyperion (Unix or Linux
only) or RARL2 (platform independent), both rational approximation engines are developed within the team.
Constrained realizations are computed by the RGC software. As a toolbox, Presto-HF has a modular structure,
which allows one for example to include some building blocks in an already existing software.

The delay compensation algorithm is based on the following strong assumption: far off the passband, one
can reasonably expect a good approximation of the rational components of S11 and S22 by the first few terms
of their Taylor expansion at infinity, a small degree polynomial in 1/s. Using this idea, a sequence of quadratic
convex optimization problems are solved, in order to obtain appropriate compensations. In order to check the
previous assumption, one has to measure the filter on a larger band, typically three times the pass band.

This toolbox is currently used by Alcatel Space in Toulouse.

6. New Results

6.1. Tools for producing the Activity Report
Participants: José Grimm, Bruno Marmol [DISC], Marie-Pierre Durollet [DISC].

Key words: Perl, XML, module, configure, make.

The great novelty in the RAWEB2002 (Scientific Annex to the Annual Activity Report of Inria), was the use
of XML as intermediate language, and the possibility of bypassing LATEX (one Inria Team acted as a guinea
pig, or beta-tester, depending on your point of view). A working group, formed of M.P. Durollet, J. Grimm, L.
Pierron, and I. Vatton (not forgetting A. Benveniste, J.-P. Verjus and J.-C. Le Moal) is in charge of the definition
of the tools; in 2003, B. Marmol joined the group, he is in charge of the dissemination of the package.

The first step of this new writing scheme has been to put on the Web, for the year 2001, together with the
HTML version (obtained by Latex2HTML) and the PostScript version (obtained by LATEX), a Pdf version,
obtained independently via the XML route. The second step was, in 2002, to produce the HTML, PostScript
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and Pdf versions using an XML intermediate representation. Finally, for the year 2003, authors of the RAWEB
are assumed to produce the XML by themselves (using the same tools as in 2002, of course).

This XML version of 2001 was obtained via a Perl script [55]. This script used some various tool, like Ω,
ltx2x, bibtex, Perl, etc. It is nowadays replaced by the Tralics software, described in module 6.2.

One important issue was the choice of the DTD (document type definition). One one hand, it should follow
the pseudo-DTD as defined for the RAWEB since five years (the Activity Report is a set of modules, with
contributors, key-words, etc), and on the other hand, it must be as close as possible to standards DTDs. We have
decided to use a variant of the TEI (text encoding initiative, see http://www.tei-c.org/) for the text, MathML
for the mathematics, and an ad-hoc DTD for the bibliography. This DTD was not modified in 2003: first of all,
we do not have enough experience (some people look closely at the DTD because they have to use it and this
will give us new ideas for the next year), second, we do not want to change everything every year (in 2003, the
RAWEB is in English, so that keyword values have been translated, but we left the original keyword names),
and finally, we still do not know a good DTD for the bibliography.

The translation from XML to HTML is done via an XSLT style sheet and the Gnome tools (xsltproc being
an efficient processor). The main difficulty comes from the mathematics: we have decided to translate all
formulas into images, (in the case $x+\alpha$, only the α is converted) as follows: a dedicated Perl script
extracts from the XML file all formulas, and converts them to a set of pages in a dvi file (we use here the same
algorithm for converting the XML to PostScript). Each page is converted to an image via pstoimg, which is a
Perl code, part of latex2html. For the next year, we anticipate to find a solution that avoids the need to install
of the whole latex2html bundle.

The translation of the XML text to a Pdf or PostScript document is a two-phase process: first a style sheet
is used, that converts the XML into an XSL-FO document, by adding some formatting instructions (in this
phase, we explain for instance that the text font should be Times). This file is formatted by TEX or pdfTEX,
thanks to the xmltex package that teaches to TEX the subtleties of XML and utf-8 encoding, and two packages
for the XSL-FO and MathML commands. Some commands have been rewritten, improving the rendering of
formulas like lim

x→0
sin2(x) and

(

n
m

)

.

6.2. Tralics: a Latex to XML Translator
Participant: José Grimm.

Key words: Scanner, parsing, validation.

The TRALICS software is a C++ written LATEX to XML translator, based upon a Perl script that was used for
the raweb, and described in [55]. It was presented at the EuroTEX conference in Brest, [16]. One use of the
software is shown on figure 6. Since the XML source of the raweb is strongly constrained, Tralics can also be
used as a raweb validator: it refuses commands like \section, and emits warnings for bibliographic entries
that are not of the current year; it can also generate a draft version of the PostScript output that does not require
the XML tools to be installed. On the other hand, Tralics knows of over one thousand commands (included
those forbidden by the raweb), and is linked to the preview-latex package of David Kastrup.

The main philosophy of Tralics is to have the same parser as TEX, but the same semantics as LATEX. This
means that commands like \chardef, \catcode, \ifx, \expandafter,\csname, etc., that are not described
in the LATEX book and not implemented in translators like latex2html, tth, hévéa, etc., are recognised by Tralics.
This year we added constructions like \endlinechar,\read, \uppercase, \endinput, which are less used,
and a bit tricky. Note that a construction like \ifdim\wd0>0pt\fi is recognised by the parser, but there is no
way to change the size of the box number zero, so that the test is always false.

Some commands (like \dump or \patterns are not implemented, because they neither affect parsing nor
produce an output. All commands that produce a dvi output in LATEX have been implemented as commands
that produce XML code, for instance basic commands like (\chapter, \it, etc), environnments (figure, table,
notes), mathematics, and of course all commands needed by the Raweb (for instance, “topics” management).
There are some unresolved problems: for instance, Tralics understands only basic array specifications (r, l, c,
and bar, not p or @), non-math material in a math formula is rejected (unless it is formed of characters only),
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Figure 6. A slide that explains how the raweb operates. Rectangular boxes contain tools, diamond-shape boxes are

style sheets, and ellipses contain language names; the name XML is in a double ellipse, it is the central object. The

Perl script that handles the math formulas is not shown here; it uses tools borrowed from latex2html.
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a figure environment should contain only graphics together with a single caption, commands defined by the
picture environment are translated (but refused by the style sheet). Finally, because it is too complicated to
parse the result of Bibtex, we decided to use our own bibtex-to-latex translator (this is not the best solution).

For more information, see the Tralics web page.

6.3. Parametrizations of matrix-valued lossless functions
Participants: Andrea Gombani, Bernard Hanzon [Univ. Libre (VU) of Amsterdam], Jean-Paul Marmorat,
Martine Olivi, Ralf Peeters [Univ. of Maastricht].

These parametrization issues have been studied for several years in the project. Atlases of charts have been
derived from a matrix Schur algorithm associated with Nevanlinna-Pick interpolation data. In a chart, a lossless
function can be represented by a balanced realization computed as a product of unitary matrices. Moreover, an
adapted chart for a given lossless function can be built from a realization in Schur form. Such a parametrization
presents a lot of advantages : it ensures identifiability, takes into account the stability constraint and preserves
the order and presents a nice numerical behavior. This parametrization has been used in the software RARL2
which deals with rational approximation in L2 norm.

The natural framework for these studies is that of complex functions while, in most applications, systems are
real-valued and their transfer functions have real coefficients. We may of course restrict our parametrization
by imposing real interpolation data, but in this case our strategy to find an adapted chart from the Schur does
not work anymore. In order to preserve all the nice properties of the previous parametrization, it appears that
we must consider a more general interpolation problem, that is the contour integral interpolation problem of
Nudelman. Doing this, we can follow the previous approach, and build an atlas of charts for real lossless
function (of fixed degree and size), which allow for a recursive construction of balanced realizations and such
that the Schur real form provides an adapted chart. This new results have been presented at the CDC03 [18].
We hope that this general framework will allow us to parametrize other subclasses of function, in particular
symmetric lossless functions which naturaly arise in connection with the physical principle of reciprocity.

6.4. The mathematics of Surface Acoustic Wave filters
Participants: Laurent Baratchart, Per Enqvist, Andrea Gombani, Martine Olivi.

Surface Acoustic Waves (in short: SAW) filters consist in a series of transducers which transmit electrical
power by means of surface acoustic waves propagating on a piezoelectric medium. They are usually described
by a mixed scattering matrix which relates acoustic waves, currents and voltages. By reciprocity and energy
conservation, these transfers must be either lossless, contractive or positive real, and symmetric. In the design
of SAW filters, the desired electrical power transmission is specified. An important issue is to characterize the
functions that can actually be realized for a given type of filter. In any case, these functions are Schur and can
be completed into a conservative matrix with an increase of at most 2 of the McMillan degree, this matrix
describing the global behavior of the filter. Such a completion problem is known as Darlington synthesis and
has always a solution for any higher McMillan degree in the rational case if the symmetry condition is of no
concern. However in our case, additional constraints arise from the geometry of the filter as the symmetry and
certain interpolation condition. In [22] and [32], we give a complete mathematical description of such devices,
and we provide some realization for the relevant tranfer-functions while giving he solution to the Darlington
synthesis in the symmetric case with preserved McMillan degree.

6.5. Rational and Meromorphic Approximation
Participants: Laurent Baratchart, Reinhold Küstner, Vasilyi Prokhorov [Univ. Alabama, Mobile], Edward
Saff, Herbert Stahl, Pascale Vitse.

Meromorphic approximation of Markov functions in the L1 sense made progress in recent years concerning
the error rate and the pole distribution, and it has been the object of further study in connection with minimal
Blaschke products in L2(µ) where µ is a positive measure with support on a segment in (−1, 1) whose Cauchy
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transform generates the associated Markov function. In particular, sharp asymptotics for these Blaschke
products were derived in [41]. Moreover, this work naturally induces some links between meromorphic
approximation of Markov functions and the n-widths of the unit ball of Hp in Lq(µ), because the extremal
functions are essentially the singular vectors of the Hankel operator associated to the approximation problem
with exponent s such that 1/s+ 2/p = 1. When p ≥ q, we were able to generalize the asymptotics obtained
by Fisher and Stessin for the n-width and we derived the corresponding orthogonality conditions. These are
interesting because they are similar to those that arise in rational approximation in L2-norm, translated to the
segment rather than the circle. This work has given rise to a publication [42]

The matrix version of a Markov function is the Cauchy transform of a positive matrix valued measure.
For those, it has been proved this year that a best L2 rational approximant is again Markov. This is an
important step towards studying rates of convergence and uniqueness issues, that was achieved using the
critical point equations based on the Douglas-Shapiro-Shields factorization of the approximant [4] and the
Potapov decomposition of the inner factor of the approximant, plus some transversality theory to show the best
approximant generically has right and left inner factors that are transpose from each other (the approximant is
assumed to be conjugate-symmetric).

Back to scalar-valued functions, a natural generalization of Markov functions is the class of Cauchy integrals
with respect to some complex measure supported on symmetric contours for the Green potential in the unit
disk, i.e. the Green potential has equal normal derivative on either side of the contour. Thus the generalization
is twofold: symmetric contours generalize the segment and complex measures generalize positive ones. Such
Cauchy integrals were studied by H. Stahl who showed the convergence in capacity of Padé approximants
for them [64], and subsequently by Gonchar and Rachmanov who established the exact geometric rate in
uniform approximation to these [54] after Parfenovs proof of the Gonchar conjecture [61]. We have generalized
their result by showing, under weak conditions, that the upper limit of the n-th root of the meromorphic
approximation error with n poles in Lp is less or equal to e1/2C where C is the Green capacity of the support
of the measure in the unit disk. These results are based on the assessment of the asymptotic behaviour of
the poles of the approximants using Hankel operator techniques, and they are linked with those concerning
asymptotics of poles of functions with branch points described in module 6.6. An article is currently under
writing on the subject.

6.6. Asymptotic behavior of poles
Participants: Laurent Baratchart, Reinhold Küstner, Edward Saff, Herbert Stahl, Vilmos Totik [univ. Szeged
and Acad. of Sciences, Hongary].

It has been shown in [43] that the denominators of best rational of meromorphic approximants in the Lp norm
of a closed curve, say the unit circle T for definiteness, satisfy for p ≥ 2 a non-Hermitian orthogonality relation
with respect to some complex measure for functions described by a Cauchy integral on a curve γ (locus of
singularities) contained in the unit disk D. When γ is a real segment, it is also established that under very
weak conditions, the poles of the best rational approximants in L2(T ) converge to the minimal segment of
the real axis that contains the support of the measure as long as it is regular enough. These conditions require
that the argument of the measure to be of bounded variation, but any support in (−1, 1) is allowed, as long
as the density of the measure is not too small. These conditions were generalized to the case of a varying
weight, provided that its modulus of continuity is bounded by a function continuous at zero. In any case, using
conformal transformations, this applies to the case where γ is a geodesic arc, and is sufficient for analyzing,
in the sense of weak-star convergence of counting measures, the asymptotic behaviour of the poles of best
approximants to algebraic functions with two branch points: the asymptotic distribution of the poles, if γ does
not intersect T , is then the equilibrium distribution of the condenser (T,C) where C is the geodesic arc that
joins the branch points.

According to what precedes, the poles of the best rational or meromorphic approximants of the “complex
solution” of the Laplacian on a cracked domain converge if the crack is “analytic enough”, to the geodesic arc
that joins its endpoints, with a density that charges these endpoints (since it is a property of the equilibrium
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measure). This gives substantial information on the location of the crack. The case of definitely more general
cracks, for instance piecewise polynomial, under suitable regularity conditions for the data to analyze, can be
reduced to the case of a function with a finite number, but maybe more than two, branch points.

After having conjectured that, for a finite but arbitrary number of branch points, the asymptotic pole
distribution is the equilibrium distribution on the continuum M that contains these points and that minimizes
the capacity of the capacitor (T,M), see module 3.1.3, we have proved in 2002 that this conjecture holds in
the case of a connected continuum. The proof does not use orthogonality but rather the minimizing character
of the optimal approximants as well as some symmetry properties of the arc of minimal capacity with respect
to ring conformal applications combined to the boundedness of the Cauchy transform on the Carleson curves.
This year, the case of a non-connected continuum was solved in the case p = ∞, and considerable progress
was also made for 2 ≤ p <∞, though the final result is not yet fully established.

6.7. Extremal problems with pointwise constraints
Participants: Laurent Baratchart, Juliette Leblond, Fabien Seyfert.

The study of the Problem (P ′) defined in section 3.1.1 has been carried out in the case where p = 2, ψ = 0, and
the functionM is in L∞ of T rK and bounded from below almost everywhere by a strictly positive constant.
Together with the existence and uniqueness of the solution, we have proved that the constraint is saturated
pointwise, that is |g| = M a.e. on T r K , this being perhaps counter-intuitive. We obtained fixed point
equations that characterize the solution, involving the resolvant of a Toeplitz operator, but with a multiplier
that is here a function [39]. The study of the convergence of an iterative scheme is under examination, the goal
being its implementation in the hyperion software. Note that if we approach the multiplier by a step function,
we get a string of spectral equations similar to these used for solving Problem (P ).

An algorithm that consists in discretizing the modulus constraint and using Lagrange duality-based optimi-
zation techniques as in section 6.11 has already been implemented and performs satisfactorily.

6.8. Extremal problems with real constraints
Participants: Juliette Leblond, Jean-Paul Marmorat, Jonathan R. Partington.

Another generalization of problem (P ) in the analytic framework whereN = 0, that also extends the extremal
problems in H2 with constraint on the imaginary parts stated in section 3.1.1, is the following:

Let f ∈ L2(K), ψ ∈ L2(T rK) and M > 0; find a function g ∈ H2 such that ‖Img − ψ‖L2(TrK) ≤ M
and such that g − f has minimal norm in L2(K).

Let p ≥ 1, K be an arc of the unit circle T , f ∈ Lp(K), ψ ∈ Lp(T rK), and α, β,M > 0; fin a function

g ∈ Hp such that α ‖Re(g − ψ)‖Lp(TrK) + β ‖Im(g − ψ)‖Lp(TrK) ≤ M and such that Re(g − f) is of

minimal norm in Lp(K) under this constraint.

This is a natural formulation for issues concerning Dirichlet-Neumann problem for the Laplace operator, see
sections 4.2 and 6.9, where data and physical prior information concern real (or imaginary) parts of analytic
functions.

For p = 2, existence and uniqueness of the solution have been established in [58] as well as a constructive
solution procedure which, in addition to the Toeplitz operator that characterizes the solution of (P ) in the case
p = 2 and N = 0, involves a Hankel operator.

Situations with other values of p will be considered, as well as a suitable general weighted formulation of
constrained extremal problems on T .

6.9. Inverse Problems for 2D and 3D Laplacian
Participants: Laurent Baratchart, Amel Ben Abda [ENIT, Tunis], Fehmi Ben Hassen, Slim Chaabane [ENIT,
Tunis], Imen Fellah, Mohamed Jaoua, Juliette Leblond, Moncef Mahjoub, Jean-Paul Marmorat, Jonathan R.
Partington.

Key words: inverse problems, Laplacian, non destructive control, tomography.
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The fact that 2D harmonic functions are real parts of analytic functions allows one to tackle issues in
singularity detection and geometric reconstruction from boundary data of solutions to Laplace equations
using the meromorphic and rational approximation tools developed by the team. Some electrical conductivity
defaults can be modeled by pointwise sources inside the considered domain. In dimension 2, the question
made significant progress last year. In this situation, the singularities of the function (of the complex variable)
which is to be reconstructed from boundary measures are poles (case of dipolar sources) or logarithmic
singularities (case of monopolar sources). Hence, the behavior of the poles of the rational or meromorphic
approximants, described in modules 3.1.1 to 3.1.3, allow one to efficiently locate their position. This, together
with corresponding software implementation, is part of the subject of the Ph.D. thesis of F. Ben Hassen and a
paper is in preparation [31], where the related situation of small inhomogeneities connected to mine detection
is also approached.

In 3D, epileptic regions in the cortex are often represented by pointwise sources that have to be localized
from potential measures on the scalp of a potential difference, that is the solution of a Laplace equation (EEG,
electoencephalography). Note that the head is here modeled as a sequence of spherical layers. This inverse
EEG problem is the object of a collaboration between the Miaou and Odyssée Teams through the ACI “Obs-
Cerv”. A nice breakthrough has been done this year which makes it possible now to process via best rational
approximation on a sequence of 2D disks along the sphere [15] and [36]. The point here is that, up to an
additive function harmonic in the 3D ball, the trace of potential on each boundary circle coincides with that of
a function with branchpoints as singularities in the associated disk. The behaviour along the family of disks
of the poles of their best rational approximants on each circle is strongly linked to the location of the sources,
using properties discussed in sections 3.1.3 and 6.6. (in the particular case of a unique source, we end up with
a rational function); this is still under study. Constructive and numerical aspects of the expected procedures
(harmonic 3D projection, Riesz transformation, spherical harmonics) have neen studied and encouraging
results are already available on numerically computed data. We need now to handle the Cauchy problem
raised by several layers of different (although constant) conductivities in order to treat experimental data from
EEG (see also below).

In the 2D case again, but with incomplete data, the geometric problem of finding, in a constructive way,
an unknown (insulating) part of the boundary of a domain is considered in the Ph.D. thesis of I. Fellah.
Approximation and analytic extension techniques described in section 3.1.1 together with numerical conformal
transformations of the disk provide here also interesting algorithms as well as stability properties for the inverse
problem under consideration.

Finally, solving Cauchy problems analytic on an annulus or on a spherical layer is also a necessary ingredient
of the methodology, since it is involved in the propagation of initial conditions from the boundary to the center
of the domain, where singularities are seeked, when this domain is formed of several homogeneous layers of
different conductivities (as in the EEG problem above). On a 2D annulus, this issue, which is the main theme
of the PhD thesis of M. Mahjoub, arises when identifying a crack in a tube or a Robin coefficient on its inner
skull. It can be formulated as a completion problem on the boundary of a doubly connected domain, which
allows us to get both numerical algorithms and stability results in this framework [46], thereby generalizing
the simply connected situation [49], [13].

6.10. Local linearization of control systems
Participants: David Avanessoff, Laurent Baratchart, Jean-Baptiste Pomet.

In [20], we account for some novel constructions that are relevant to characterize flatness of nonlinear control
systems (see “dynamic equivalence” in section 4.6). These are tools for analyzing some overdetermined
systems of PDEs for which neither the number of independent variables nor the order is a priori fixed. A
notion of “very” formal integrability was introduced, and the equations arising when characterizing flatness
are proved to have this property.

Also, the final version of our results on topological linearization (see “topological equivalence” in
section 4.6) became available [21].
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6.11. Analytic Extension with polynomial values
Participant: Fabien Seyfert.

We study here the problem of analytic extension of pointwise frequency measurements of a dissipative linear
system, where the strong assumption is that the unknown part is well-modeled by a polynomial in 1/s (s =
iw). Let {wi, S(wi)} be the sequence of measurements, J the interval defined by J = [min

i
(wi),max

i
(wi)]

and contains 0. We define a continuous function S(w) forw ∈ J via interpolation (for example, using splines)
between points of measure. Let I be a set of frequencies for which we believe that the polynomial model is
valid. Typically I is consists of two batches of measurements near the boundary of J , for instance

I = {wk, |wk| ≥ wc}.

We want to solve the following problem:

min
p
ψ(p) =

∑

wk∈I |S(wk) − p( 1
wk

)|2







p ∈ Cn[x]
||P

H
2(S ∨ p)||2 ≤ Ec

∀w ∈ Jc |p(1/w)|2 ≤ 1

(3)

where Jc represents the complementary of J , and ∨ the concatenation operator (S ∨ p denotes the function

defined by S on J and p(1/w) on Jc). The notation H
2

stands for the orthogonal of the Hardy space
of the right half-plane associated with the measure dw/(1 + w2). In other words, we are looking for the
polynomial completion that takes best account for the data at frequencies in I , and satisfies two constraints:
one on the norm of the unstable part of the completed data, and the other on the dissipative character
of the extension. It can be shown that if I has more than n + 1 points, and under the condition that
there exists a feasible point, then (3) has a unique solution p0. Moreover, if there exists a feasible point
that satisfies strictly the inequalities in (3), then there exist real non-negative numbers λ0 · · ·λ2n+1 and
x1 · · ·x2n+1 ∈ W = [1/min

i
(wi), 1/max

i
(wi)] such that

{

λ0(||PH
2(S ∨ p)||2 − Ec) = 0

∀k ∈ {1 · · ·2n+ 1} λk(|p(xk)| − 1) = 0

and such that p0 is the unique minimum of the following convex optimization problem:

min
p∈C[x]

∑

wk∈I

|S(wk) − p(
1

wk
)|2 + λ0||PH

2(S ∨ p)||2 +

2n+1
∑

k=1

λk|p(xk)|2.

Two problems arise however, in order to make the previous construction effective:

• localization of the xi

• tuning of the multipliers λi

In order to obtain an estimation of the xi, we have chosen to discretize the module constraint atm points, for
which a Chebichev distribution is shown to be well-suited. One shows then that the solution of the discretized
problem converges to p0 for largem. Moreover, fine estimates of the errors relative to the respect of the module
constraint are available as functions of m.

Concerning the tuning of the Lagrange multipliers, we decided to solve the dual problem of concave
maximization associated to the dicretized version of (3). The constraints in this maximization problem are
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linear positivity constraints of the multipliers. The computation of the gradient and the Hessian associated
to this problem allowed the implementation of an efficient algorithm for solving (3) inside the PRESTO-HF
software. Note also that techniques similar to those proposed here are under study, in order to merge them with
the solution of the problem explained in section 6.7.

6.12. Exhaustive determination of constrained realizations corresponding to a

transfer function
Participants: Laurent Baratchart, Jean Charles Faugere [project SPACES, Rocquencourt], Fabien Seyfert.

We studied in some generality the case of parameterized linear systems characterized by the following classical
state space equation,

ẋ(t) = A(p)x(t) +B(p)u(t)
y(t) = C(p)x(t)

(4)

where p = {p1, · · · pr} is a finite set of r parameters and (A(p), B(p), C(p)) are matrices whose entries
are polynomials (over the field C) of the variables p1 · · · pr. For a parameterized system σ and p ∈ Cr we
call πσ(p) the transfer function of the system σ(p). Some important questions in filter synthesis concern the
determination of the following parameterized sets

p ∈ Cr1 , Eσ1
(p) = {q ∈ Cr1 , πσ1

(q) = πσ1
(p)}

p ∈ Cr2 , Eσ1,σ2
(p) = {q ∈ Cr1 , πσ1

(q) = πσ2
(p)} (5)

General results were obtained about these sets, in particular a necessary and sufficient condition ensuring their
cardinals are finite. In the special case of coupled-resonators an efficient algebraic formulation has been derived
which allowed us to compute Eσ(p) for nearly all common filter geometries. The latter formulation breaks in
particular a natural symmetry of the problem and this in turn simplifies tremendously the computation of a
Gröbner basis of the associated algebraic system.

Our next goal is to build a software package for users of the filtering community which implements our ideas
(the package almost already exists but in a prototypic form). Theoretically there remains a striking question
concerning the generic existence of a “real solution” to the filter realization problem when starting from a
loss-less transfer. Results have already been obtained in this direction for particular coupling geometries but
we conjecture a much more general property to hold.

6.13. Frequency Approximation and OMUX design
Participants: Laurent Baratchart, Jean-Paul Marmorat [CMA-EMP], Fabien Seyfert.

An OMUX (Output MUltipleXor) can be modeled in the frequency domain by chaining of scattering matrices
of filters as those described in section 4.3.2, connected in parallel to a common access via a wave guide, see
figure 5. The problem of designing the OMUX so as to satisfy gauge constraints is then naturally translated
into a set of constraints on the values of the scattering matrices and phase shift introduced by the guides in the
considered bandwidth.

In a first step, in order to be able to test our methods and to compare them with the tuning done by Alcatel
Space, we have designed an OMUX simulator on a matlab platform. The direct approach, as used by the
manufacturer, is of course to couple this simulator with an optimizer, in order to reduce transmission and
reflection wherever they are too large. This is what we have done, using the matlab optimizer, choosing an
integral Lp criterion, with p = 16, something that is near the uniform norm, but still differentiable. We have
also explicitly computed the gradient of the criterion, and this generated an important improvement of the
computational time (say, by a factor of ten), helpful for further developments. However, the results are similar
to those obtained by Alcatel Space on a non-satisfactory example. We thus believe that this problem requires
a more specific approach.
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Thus, we have observed, that, for each frequency, the constraints can be interpreted as a sequence of
conditions that concern each channel one after the other, and express that the reflection, evaluated at this
frequency, belongs to a disk whose center and radius depend on the channels and the lengths of the guides that
are not adjacent to the considered one. The hyperbolic geometry comes into play naturally, via the chaining
formulas, and it produces a relative decoupling between the different parameters (channel length and filter).
In particular, this shows that the tuning of each filter and each length should be possible in a diagonal manner,
if we had an efficient rational approximation algorithm with pointwise constraints (the approximant should be
Schur). This is an interesting question, both for applications and in itself, that will be studied in the future.

As a result, we should be able to construct a multi-phased tuning procedure, first relaxed, channel after
channel, then global, using a quasi-Newton method. Note the the discretizations in frequency of the integral
criterion and the near periodicity of the exponentials (that express the delays) interact in a complex manner,
and generate numerous local minima.

7. Contracts and Grants with Industry
7.1. Contract CNES-IRCOM-INRIA

Contract no1 03 E 1034
In the framework of a contract that links CNES, IRCOM and Inria, whose objective is to realize a software

package for identification and design of hyperfrequency devices, the work of Inria has been

• modeling and analysis of an IMUX, see module 4.3.2,
• study of the structure and computation of the coupling parameters associated to physical parameters

for a given geometry. (see module 6.12),
• turbo-engine for hyperion,
• modeling and algorithmic analysis of an OMUX see module 4.3.2.

In this contract, we promised version 0.57 of hyperion to both partners. This contract has been renewed in
2003.

7.2. Contract Alcatel Space (Toulouse)
Selling of a license of hyperion, RARL2 and RGC.

7.3. Contract Alcatel Space (Cannes)
Contract no1 01 E 0726.

This contract started in 2001, for three years. The objective is to find control laws for posting spaceships
(satellites) with new generation engines, that have excellent throughput, but a very low thrust.

7.4. Contract Alcatel CIT
Contract no1 02 E 0517. This was a one year contract, that ended formally in February, 2003.

Subject. Digital signals in optic fiber networks need some “regeneration” and also converting from a
wavelength to another. The most powerful way is to avoid decoding the signal and regenerate in a
purely analogic way using nonlinear optic components. The device under consideration was based
on a SOA-MZI (Mac Zendher Interferometer using Semi-conductor Optical Amplifiers). Its tuning
is very delicate, and is very sensitive to variations of the input signal (and these variations do occur).
The goal was to set up a control procedure for such a device, to compensate for variations in the
input signal. A regulation for a simpler device was already available, and a multivariable control was
needed here.

Outcome. We have contributed to develop a control law that performed well on the laboratory experi-
ments. Alcatel decided to file a patent [26] concerning this control procedure. The main reason of
this success was a modeling effort.
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8. Other Grants and Activities
8.1. Scientific Committees

L. Baratchart is member of the editorial board of Computational Methods in Function Theory.

8.2. National Actions
Together with project-teams Caiman and Odyssée (INRIA-Sophia Antipolis, ENPC), the University of Nice
(J.A. Dieudonné lab.), CEA, CNRS-LENA (Paris), and a few French hospitals, we are part of the national
action ACI Masse de données « OBS-CERV », 2003-2006 (inverse problems, EEG).

The region PACA (Provence Alpes Côte d’Azur) is partially supporting the post-doctaral stay of Per Enquist
until May, 2004. We also obtained a (modest) grant from the region for exchanges with SISSA Trieste (Italy),
2003-2004.

8.3. Actions Funded by the EC
The Team is member of the TMR network European Research Network on System Identification (ERNSI),
see http://www.cwi.nl/~schuppen/ernsi/ernsihp.html. This formally ended in February. A new proposal of a
Research Training Network (RTN) has been submitted to the EC.

The team obtained a Marie Curie EIF (Intra European Fellowship) FP6-2002-Mobility-5-502062, for 24
months (2003-2005). This finances Mario Sigalotti’s post-doc.

The Team is a member of the Marie Curie multi-partner training site Control Training Site, number
HPMT-CT-2001-00278, 2001-2005. See http://www.supelec.fr/lss/CTS/.

The project is member of Working Group Control and System Theory of the ERCIM consortium, see
http://www.ladseb.pd.cnr.it/control/ercim/control.html.

8.4. Extra-european International Actions
NATO CLG (Collaborative Linkage Grant), PST.CLG.979703, « Constructive approximation and inverse
diffusion problems », with Vanderbilt Univ. (Nashville, USA) et le LAMSIN-ENIT (Tunis, Tu.), 2003-2005.

8.5. Exterior research visitors
In addition to the “Scientific advisors” and to the “Visiting scientists” listed in section 1, the following
scientists visited us in 2003.

• Mohamed Jaoua (Lamsin-ENIT, Tunis).
• Herbert Stahl (TU Berlin).
• Nejat Olgac, Univ. of Connecticut (Mechanical Engineering), “On Linear Time Invariant, Time

Delayed Systems (Lti-Tds)”.
• Emmanuelle Crepeau, Université Paris Sud (candidate CR2 2003).
• Bronislaw Jakubczyk, Académie des Sciences de Pologne, Varsovie, “Classification des systèmes de

contrôle sur le plan et de leurs bifurcations”,
• Pascale Vitse, Université Laval à Québec, “Une approche tensorielle au problème de la couronne

opératorielle”.
• Pascale Vitse, Université de Besançon, “Interpolation Libre Par Des Polynômes De Degré Fixé”.
• Grégoire Charlot, SISSA, Trieste (Italie), (candidat CR2 2003), “Contrôle optimal pour les systèmes

quantiques à n niveaux d’énergie”.
• Maureen Clerc, INRIA, Team Odyssée, “l’électro-encephalographie - problème direct et inverse”.
• Tarek Hamel, Laboratoire LSC FRE-CNRS 2494, Univ. d’Evry Val d’Essonne, “Modélisation et

stabilisation d’un drone à 4 voilures tournantes”.
• Vladimir Peller, Michigan State University, Mini cours sur la Théorie analytique des opérateurs à

valeurs vectorielles (AAK matriciel).
• Benedicte Dujardin, Observatoire de la Côte d’Azur, “Polynômes orthogonaux de Szego et approxi-

mation rationnelle.”
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9. Dissemination

9.1. Teaching

Courses

– D. Avanessoff gave lectures in general mathematics at University of Nice - Sophia
Antipolis.

– L. Baratchart, DEA Géométrie et Analyse, LATP-CMI, Univ. de Provence (Marseille).

– J. Leblond teaches mathematics in the 12-15 cycle of Montessori les Pouces Verts.

Trainees

– Antoine Chaillet, « Fonction de Lyapunov contrôlée pour le transfert d’orbite avezc rendez-
vous en faible poussée » (control Lyapunov functions for low thrust orbital transfer). DEA
Université Paris-sud (Orsay).

Ph.D. Students

– David Avanessoff, « Linéarisation dynamique des systèmes non linéares et parametrage
de l’ensemble des solutions » (dynamic linearization of non linear control systems, and
parameterization of all trajectories).

– Fehmi Ben Hassen, « Localisation de sources ponctuelles par approximation rationnelle et
méromorphe », co-tutelle with Lamsin-ENIT (Tunis).

– Alex Bombrun, « Commande optimale, feedback, et tranfert orbital de satellites » (optimal
control, feedback, and orbital transfert for low thrust satttelite orbit transfer)

– Imen Fellah, “Data completion in Hardy classes and applications to inverse problems”,
co-tutelle with Lamsin-ENIT (Tunis).

Ph.D. thesis defended

– Reinhold Küstner, “Asymptotic Zero Distribution of Orthogonal Polynomials with respect
to Complex Measures having Argument of Bounded Variation”, May 27, 2003.

9.2. Community service
F. Wielonsky is on leave to the University of Lille.

J.-B. Pomet is in charge of organizing a seminar on control and identification.
L. Baratchart is a member of the “bureau” of the CP (Comité des Projets) of INRIA-Sophia Antipolis.
J. Grimm is a member of the CUMI (Comité des utilisateurs des moyens informatiques) of the Research

Unit of Sophia Antipolis.
J. Leblond is part of the Colors Committee of INRIA-Sophia Antipolis.
J.-B. Pomet is a representative at the “comité de centre”.
Several members of the team have participated in the Direction (co-director: J. Leblond), Scientific

(L. Baratchart), and Organization (J. Grimm, F. Limouzis) Committees of the CNRS-INRIA summer school
“Harmonic analysis and rational approximation: their rôles in signals, control and dynamical systems theory”,
Porquerolles, september. http://www-sop.inria.fr/miaou/anap03/index.en.html

The whole team has also been deeply involved in establishing and writing down the proposition of a new
project-team, named Apics.
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9.3. Conferences and workshops
Talks, courses, sessions, software demonstrations at the CNRS-INRIA summer school “Harmonic analysis and
rational approximation: their rôles in signals, control and dynamical systems theory”, Porquerolles, september.
http://www-sop.inria.fr/miaou/anap03/index.en.html

J. Grimm gave a talk about Tralics at Eurotex 2003 (Brest)
David Avanessoff and Mario Sigalotti gave talks at the “2nd Junior European Meeting Control Theory and

Stabilization”, Torino, It.
J. Leblond was invited to give a talk at the Applied Analysis Seminar, LATP, Univ. Provence (Aix-Marseille

I), at the MEEG Workshop in UTC, Compiègne, “Inverse problems in medical imaging : sources localization
for EEG/MEG” and the Infinite Dimensional Dynamical Systems (IDDS), Exeter, UK.

M. Olivi has given a lecture at CDC 2003, Maui, Hawaii (USA), 9-12 December.
F. Seyfert gave a talk at the “Journées nationales du calcul formel 2003” about the use of computer

algebra based methods for the exhaustive computation of couplings parameters, at “Advances in constructive
approximation (Nashville)” about the mixed (L2, L∞) bounded extremal problem and at the “IMS 2003
(Philadelphia)” about the determination of a rational stable model from measured scattering data.

L. Baratchart was an invited speaker at “Advances in Constructive Approximation” Conference , May 2003,
Vanderbilt University (Tenessee), and at the colloquium of Michigan State University (East Lansing) in March
2003.

F. Wielonsky delivered a talk at the workshop “Complex Analysis and Inverse Problems”, December 15-19,
I.H.P. (Paris).
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