%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team MIRO

Objects, Types, and Prototypes: Semantics
and Validation

Sophia Antipolis - Lorraine

- THEME 2A -

ctivity

Table of contents

1. Team
2. Opverall Objectives
2.1. Why

2.2. Context and Objectives
2.3. The Team is going to close
3. Scientific Foundations
3.1. Introduction
4. Application Domains
4.1. Introduction
5. Software
5.1. Introduction
6. New Results
6.1. Introduction
6.2. On Rewriting Calculus
6.2.1. Pure Pattern Type Systems
6.2.2. Rewrite Strategies in the Rewriting Calculus
6.2.3. An Imperative Rewriting Calculus
6.2.4. Rewriting Calculus with Fixpoints: Untyped and First-order Systems
6.2.5. The Polymorphic Rewriting Calculus [Type Checking vs. Type Inference]
6.3. On Object Calculus
6.3.1. Imperative Object-based Calculi in (Co)Inductive Type Theories
6.3.2. Reasoning on an Imperative Object-based Calculus in Higher Order Abstract Syntax
6.3.3. Foundations for Dynamic Object Re-classification
7. Contracts and Grants with Industry
7.1. ACI Security
7.2. ARC INRIA
8. Other Grants and Activities
8.1. European FP6 Projects
8.2. Invitations
9. Dissemination
9.1. Dissemination
9.2. Conferences, Talks, Invitations
9.3. Researches Duties
9.4. Jury Member
9.5. Ph.D. and Stages
9.6. Teaching
10. Bibliography

W LW W WD NNDNENDNN = = - -

W W

Nooooaoaoaa b A A BB

1. Team

Miré is a common project between I'INRIA Lorraine and I'INRIA Sophia Antipolis.

Head of project-team
Luigi Liquori [CR INRIA Lorraine]

Vice-head of project team
Joélle Despeyroux [CR INRIA Sophia-Antipolis]

Ph.D. Students
Alberto Ciaffaglione [Co-tutelle INPL-Univ. Udine, -04/2003]
Benjamin Wack [UHP,-2004]

Administrative assistant
Nathalie Bellesso [INRIA Sophia Antipolis, a temps partiel]
Laurence Benini [INRIA Lorraine, a temps partiel]

2. Overall Objectives
2.1. Why

We consider Johachim Mird [24] as a great object-oriented painter. In fact, his paintings from the 1940-1960
period use numerous geometrical objects : points, colored points, squares, circles, windows, lines, curves, etc.
All these elements are dear to object-oriented programming aficionados. We could even go as far as imagining
the painter, who lived in France at Montmartre in the beginning of the 50s, probably inspired the conceptors
of Simula, Smalltalk, and the community of computer scientists who studied the theoretical aspects of the
object-oriented paradigm.

2.2. Context and Objectives

One of the goals of the Team consists in investigating the possibility to "reconcile" object-oriented program-
ming and functional programming while keeping the spirit of the former and the elegance of the latter.

Object-oriented languages have become a major trend in large scale computer applications. This has made
it necessary to study these languages both from a theoretical and a practical point of view, in order to better
exhibit their fundamental characteristics and at the same time define new object oriented and concurrent
languages able to combine expressiveness to security and efficiency. Our research belongs to this context.

We study type theory, new systems improving formal proofs, efficient compilation and execution of object-
oriented languages, and object-oriented operating systems. We are interested in certifying the tools developed
for these languages (interpreters, compilers, ...), using the Coq system as a favorite proof assistant.

Hence, our research program focuses mainly on the three following points :

e the study, definition and certified implementation of a class-based language called SmallTalk2K, and
of a prototype-based language called FunTalk, used as intermediate language for the SmallTalk2K
compiler, defined later in this document ;

e type theory for object-oriented languages and for proof assistants, certified software, rewriting and
formal calculi which are the foundation of object-oriented, functional and concurrent languages.

2 Activity Report INRIA 2003

2.3. The Team is going to close

The Team is going to close on 12/31/2003. This is our last research activity report. We would like to thanks all
the people that supported us during those exciting (at least for me) three years. The external/internal referees
reports of the Team are available on demand (for the non-INRIA) or by looking to the INRIA-Sophia internal
server of the “Comité des Projets”
http://www-sop.inria.fr/interne/vie/comites/cp/AvantProjets/index.html
For further reading, the interested readers could refer to the following documents (in French):

e The official document of the Team
http://www-sop.inria.fr/interne/vie/comites/cp/AvantProjets/Miro/MiroV1.3.ps.gz

e The 2002 and 2001 Research Activity Reports
http://www.inria.fr/rapportsactivite/RA2002/miro/miro_tf.html
and
http://www.inria.fr/rapportsactivite/RA2001/miro/miro_tf.html

3. Scientific Foundations

3.1. Introduction

The scientific foundations of the Team can be found in
http://www.inria.fr/rapportsactivite/RA2002/miro/module6.html

4. Application Domains

4.1. Introduction

Key words: PDA, PDA-OS, Mobile Phones, Mobile-OS, Safe programming, Certified Software, Mobile Code,
Internet, Telecommunications.

The application domains of the Team can be found in
http://www.inria.fr/rapportsactivite/RA2002/miro/module9.html

5. Software

5.1. Introduction

The description of the software developed inside the Team can be found in
http://www.inria.fr/rapportsactivite/RA2002/miro/module 12.html
http://www.inria.fr/rapportsactivite/RA2002/miro/module 13.html
http://www.inria.fr/rapportsactivite/RA2002/miro/module 14.html

6. New Results

6.1. Introduction
N.B. Before enumerating the new results, the interested reader could have a look on our main research
objectives in
http://www.inria.fr/rapportsactivite/RA2002/miro/module15.html

Project-Team MIRO 3

6.2. On Rewriting Calculus

6.2.1.

6.2.2.

Key words: Type Theory, Calculus of Constructions, Rewriting-Calculus, Pattern-Matching.

Participants: Luigi Liquori, Joélle Despeyroux, Benjamin Wack, Claude Kirchner [Projet-Team Prothéo],
Horatiu Cirstea [Projet-Team Prothéo], Bernard Serpette [Project-Team Oasis], Gilles Barthe [Team Everest].

Pure Pattern Type Systems

In [11], we introduce a new framework of algebraic pure type systems in which we consider rewrite rules
as lambda terms with patterns and rewrite rule application as abstraction application with built-in matching
facilities. This framework, that we call “Pure Pattern Type Systems”, is particularly well-suited for the
foundations of programming (meta)languages and proof assistants since it provides in a fully unified setting
higher-order capabilities and pattern matching ability together with powerful type systems. We prove some
standard properties like confluence and subject reduction for the case of a syntactic theory and under a
syntactical restriction over the shape of patterns. We also conjecture the strong normalization of typable terms.
This work should be seen as a contribution to a formal connection between logics and rewriting, and a step
towards new proof engines based on the Curry-Howard isomorphism.

Rewrite Strategies in the Rewriting Calculus

In [14], we present an overview on the use of the rewriting calculus to express rewrite strategies. We motivate
first the use of rewrite strategies by examples in the Elan language [21]. We then show how this has been
modeled in the initial version of the rewriting calculus and how the matching power of this framework
facilitates the representation of powerful strategies.

6.2.3. An Imperative Rewriting Calculus

6.2.4.

6.2.5.

In [19], we present an imperative version of the Rewriting-calculus, a calculus based on pattern matching,
pattern-abstraction and side-effects, which we call impp.

We formulate a static and a lazy call-by-value dynamic semantics of impp in the style of G. Kahn’s Natural
Semantics. The operational semantics is deterministic, and immediately suggests how to build an interpreter
for the calculus. The static semantics is given via a first-order type-system based on a form of product-type,
which can be assigned to impp-terms, like structures (i.e. pairs).

The calculus is a la Church, in the sense that pattern-abstractions are decorated with the types of the free-
variables of the pattern. The capability of safely access and modify a (monomorphic) typed store, and of
defining fixed-points, makes impp a good candidate for a core, or an intermediate language.

Properties like subject reduction and decidability of type checking are checked completely by a machine
assisted approach, using the Coq proof assistant [23].

Rewriting Calculus with Fixpoints: Untyped and First-order Systems

In [17], we present a typed version of the rewriting calculus (p-calculus), a minimal framework embedding
A-calculus and Term Rewriting Systems, by allowing abstraction on variables and patterns. The higher-order
mechanisms of the A-calculus and the pattern matching facilities of the rewriting are then both available at
the same level. Many type systems for the A-calculus can be generalized to the p-calculus: in this paper, we
study extensively a first-order p-calculus a la Church, called p —. The calculus enjoys subject reduction, type
uniqueness and decidability of typing.

The type system of p — allows one to type (object oriented flavored) fix-points, leading to an expressive and
safe calculus. In particular, using pattern matching, one can encode and type-check term rewriting systems in
a natural and automatic way. Therefore, we can see our framework as a starting point for the theoretical basis
of a powerful typed rewriting-based language.

The Polymorphic Rewriting Calculus [Type Checking vs. Type Inference]

Many type systems for the A-calculus can be generalized to the p-calculus: in [20], we study extensively a
second-order p-calculus a la Church (p2~) that enjoys subject reduction, type uniqueness, and decidability of

typing.

4 Activity Report INRIA 2003

Then, we apply a classical erasing function to p2" obtaining a corresponding type inference system & la
Curry (pF") that enjoys subject reduction. We discuss the two type systems w.r.z. a possible logic underneath
the type systems via Curry-Howard Isomorphism.

Both systems can be considered as core calculi for polymorphic rewriting-based programming languages.

As “bonus-track”, we present a variant of pF (called pF,..) featuring a principal type scheme, and we sketch
an algorithm for type inference a la Damas-Milner-Tofte. We give answers to some conjectures presented last
year by the first author.

6.3. On Object Calculus

6.3.1.

6.3.2.

6.3.3.

Key words: Interactive theorem proving, Logical foundations of programming, Program and system verifica-
tion, Object-based calculi with side effects, Logical frameworks.

Participants: Luigi Liquori, Joélle Despeyroux, Alberto Ciaffaglione, Marino Miculan [Team SLP, Udine,
Italy], Furio Honsell [Team SLP, Udine, Italy], Pietro Di Gianantonio [Team SLP, Udine, Italy].

Imperative Object-based Calculi in (Co)Inductive Type Theories

In [12], we discuss the formalization of Abadi and Cardelli’s impg, a paradigmatic object-based calculus with
types and side effects, in Co-Inductive Type Theories, such as the Calculus of (Co)Inductive Constructions
(CC(CO)Ind)_

Instead of representing directly the original system “as it is”, we reformulate its syntax and semantics
bearing in mind the proof-theoretical features provided by the target metalanguage. On one hand, this
methodology allows for a smoother implementation and treatment of the calculus in the metalanguage. On
the other, it is possible to see the calculus from a new perspective, thus having the occasion to suggest original
and cleaner presentations.

We give hence a new presentation of impg, exploiting natural deduction semantics, (weak) higher-order
abstract syntax, and, for a significant fragment of the calculus, coinductive typing systems. This presentation is
easier to use and implement than the original one, and the proofs of key metaproperties, e.g. subject reduction,
are much simpler.

Although all proof developments have been carried out in the Coq system, the solutions we have devised in
the encoding of and metareasoning on impg can be applied to other imperative calculi and proof environments
with similar features.

Reasoning on an Imperative Object-based Calculus in Higher Order Abstract Syntax

In [13], we illustrate the benefits of using Natural Deduction in combination with weak Higher-Order Abstract
Syntax for formalizing an object-based calculus with objects, cloning, method-update, types with subtyping,
and side-effects, in inductive type theories such as the Calculus of Inductive Constructions. This setting
suggests a clean and compact formalization of the syntax and semantics of the calculus, with an efficient
management of method closures. Using our formalization and the Theory of Contexts, we can prove formally
the Subject Reduction Theorem in the proof assistant Coq, with a relatively small overhead.

Foundations for Dynamic Object Re-classification

In [16], we investigate, in the context of functional prototype-based languages, objects which might extend
themselves upon receiving a message. The possibility for an object of extending its own “self”, referred to
by Cardelli as a self-inflicted operation, is novel in the context of typed object-based languages. We present a
sound type system for this calculus which guarantees that evaluating a well-typed expression will never yield
a message-not-found run-time error. The resulting calculus appears to be also a good starting point for a
rigorous mathematical analysis of class-based languages.

Our contribute can be viewed as a sound foundations for dynamic object re-classification underpinned on
Sfunctional programming paradigm. Re-classification changes at run-time the class membership of an object
while retaining its identity. An imperative approach to re-classification, suggesting language features, has been
undertaken through the language Fickle [22].

Project-Team MIRO 5

The present work is based on the paper “A Lambda Calculus of Objects with Self-Inflicted Extension”,
by the last three authors, which appeared in Proceedings of ACM-SIGPLAN OOPSLA-98, International
Symposium on Object Oriented, Programming, System, Languages and Applications, Vancouver, British
Columbia, ACM Press, 1998. With respect to that contribution, in the present work the reduction semantics
has been slightly changed, the type system refined and the proofs are fully documented.

7. Contracts and Grants with Industry
7.1. ACI Security

The Team participate to the ACI Action Recherche Incitative “Modulogic: Atelier de construction modulaire
de logiciels certifiés. Application aux politiques de sécurité”. The official web site of the action is:
http://pauillac.inria.fr/modulogic/

7.2. ARC INRIA

The Team participate to the ARC Action Recherche Coopérative “Concert: Compilateurs Certifiés”. The
official web site of the action is:
http://www-sop.inria.fr/lemme/concert/
The principal objective of the co-operative research project Concert is to determine, if it is feasible in the
current state of knowledge, to produce a realistic compiler which is certified, i.e. accompanied by semantic a
Coq proof of equivalence between the source code and the generated computer code.

8. Other Grants and Activities
8.1. European FP6 Projects

e The Team participates to the call for proposal IST Coordination Action (FET Open Scheme)
Call FP6-2002-IST-C Types for Proof and Programs : TYPES in the 6th Framework Program of
the European Union. J. Despeyroux is the local coordinator of the INRIA Sophia site. The full
proposition can be found at:
http://www.dcs.ed.ac.uk/~rap/TYPESO3_DRAFT.ps

o The Team participates to the “Appsem II: Applied Semantics” working group in the 5th Framework
Program of the European Union which officially started on 1 January 2003. The web site of the
working group is:
http://www.tcs.informatik.uni-muenchen.de/~mhofmann/appsem?2/

8.2. Invitations
The Team invited the following researchers in 2003:
e May 2003 (14 DD) : Prof. Simona Ronchi della Rocca, University of Torino. (Talk: A Typed
Intersection Calculus).
e December 2003 (1DD) : Prof. Stefane Ducassé, University of Berne, (Talk: Reengineering and
Traits).

The complete list of visiting researcher of the Team can be found in
http://www.inria.fr/rapportsactivite/RA2002/miro/module29.html

6 Activity Report INRIA 2003

9. Dissemination

9.1. Dissemination

L. Liquori was also the “Publicity chair” of the Team; the full list of presentations can be found in
http://www.inria.fr/rapportsactivite/R A2002/miro/module30.html
A presentation of the Team can be found in
http://www-sop.inria.fr/miro/Luigi.Liquori/Miro.pdf

9.2. Conferences, Talks, Invitations
During 2003:

e J. Despeyroux has participated to ACM, PLI, Principles, Logics, and Implementations of High-Level
Programming Languages;

e L. Liquori has participated to ACM POPL, Principle of Programming Languages where he gave the
talk Pure Pattern Type Systems;

e L. Liquori has visited for 5 days the “Semantics and Logics of Computation” group in Turin
(Mariangiola Dezani, Stefano Berardi, Mario Coppo, Simona Ronchi della Rocca);

e L. Liquori has given talks at the University of Udine, at the University of Turin, at the Ecole Normale
Supérieure of Lyon, at LIX, and at the INRIA-Sophia: “Pure Pattern Type Systems”, and “An
Imperative Calculus”;

e L. Liquori has given the talk “Rho as (Meta) Logical Calculus and as (Multi) Paradigm Calculus”
at CNAM Paris, and at LIP6 Paris VI.

9.3. Researches Duties

The complete list of the researches duties of the Team can be found at:
http://www.inria.fr/rapportsactivite/RA2002/miro/module32.html

9.4. Jury Member
L. Liquori participated as a jury member to the Ph.D. defense of A. Ciaffaglione, in Juin 2003, Udine, Italy.

9.5. Ph.D. and Stages

A. Ciaffaglione, defended his Ph.D. thesis “Towards Certified Software for (manipulating) Reals and Objects”
in June 2003, Udine, Italy.
The complete list of Ph.D thesis and Stages of the Team can be found in
http://www.inria.fr/rapportsactivite/R A2002/miro/module34.html

9.6. Teaching

e L. Liquori will be teaching from 5/01/04 to 12/03/04 the courses “Functional Programming” and
“Computability and Complexity” at the Department of Informatics, University of Sussex, Brighton,
UK (2nd and 3th year university courses, approx 60h).

e L. Liquori will teach from 9/8/04 to 20/8/04 in the 16th European Summer School in Logic,
Language and Information Nancy, France, the Advanced Course “The Rewriting Calculus”.

Project-Team MIRO 7

10. Bibliography
Major publications by the team in recent years

[1] D. COLNET, L. LIQUORI. Match-O, a Statically Safe (?) Dialect of Eiffel. in « Proc. of TOOLS », IEEE
Computer Society, 2000.

[2] J. DESPEYROUX. Proof of translation in Natural Semantics. in « Proc. of LICS », IEEE Computer Society,
1986.

[3]J. DESPEYROUX, A. FELTY, A. HIRSCHOWITZ. Higher-order Abstract Syntax in Coq. in « Proc. of TLCA »,
volume 902, Springer Verlag, pages 124—138, 1995.

[4] J. DESPEYROUX, P. LELEU. Recursion over Objects of Functional Type. in « Mathematical Structures in
Computer Sciences », number 4, volume 11, 2001.

[5] P. D. GIANANTONIO, F. HONSELL, L. LIQUORI. A Lambda Calculus of Objects with Self-inflicted Extension.
in « Proc. of OOPSLA », The ACM Press, pages 166-178, 1998.

[6] L. LIQUORI. An Extended Theory of Primitive Objects: First Order System. in « Proc. of ECOOP », series
LNCS, volume 1241, Springer Verlag, pages 146-169, 1997.

[71 L. LIQUORI. On Object Extension. in « Proc. of ECOOP », series LNCS, volume 1445, Springer Verlag, pages
498-552, 1998.

[8] C. SCHURMANN, J. DESPEYROUX, F. PFENNING. Primitive Recursion for Higher-Order Abstract Syntax. in
« Theoretical Computer Science », number 1-2, volume 266, 2001, pages 1-57.

[9] O. ZENDRA, D. COLNET, S. COLLIN. Efficient Dynamic Dispatch without Virtual Function Tables. The
SmallEiffel Compiler.. in « Proc. of OOPSLA », volume 32(10), The ACM Press, pages 125-141, 1997.

Doctoral dissertations and ‘“Habilitation’ theses

[10] A. CIAFFAGLIONE. Certified reasoning on Real Numbers and Objects in Co-inductive Type Theory. Ph.
D. Thesis, Dipartimento di Matematica e Informatica, Universita di Udine, Italy and LORIA-INPL, Nancy,
France, 2003.

Publications in Conferences and Workshops

[11] G. BARTHE, H. CIRSTEA, C. KIRCHNER, L. LIQUORI. Pure Patterns Type Systems. in « Proc. of POPL »,
The ACM Press, pages 250-261, 2003.

[12] A. CIAFFAGLIONE, L. LIQUORI, M. MICULAN. Imperative Object-based Calculi in (Co)Inductive Type
Theories. in « Proc. of LPAR », series LNCS, volume 2850, Springer Verlag, pages 59-77, 2003.

[13] A. CIAFFAGLIONE, L. LIQUORI, M. MICULAN. Reasoning on an Imperative Object-based Calculus in
Higher Order Abstract Syntax. in « Proc. of MERLIN », The ACM Digital Library, 2003, To appear.

8 Activity Report INRIA 2003

[14] H. CIRSTEA, C. KIRCHNER, L. LIQUORI, B. WACK. Rewrite Strategies in the Rewriting Calculus. in « Proc.
of WRS », series Electronic Notes in Theoretical Computer Science, 2003, To appear.

Internal Reports

[15] A. CIAFFAGLIONE, L. LIQUORI, M. MICULAN. On the Formalization of Imperative Object-based Calculi
in (Co)Inductive Type Theories. Technical report, number RR-4812, INRIA, 2003, http://www.inria.fr/rrrt/rr-
4812.html, Journal version of LPAR+MERLIN.

Miscellaneous

[16] A. CIAFFAGLIONE, P. D. GIANANTONIO, F. HONSELL, L. LIQUORI. Foundations for Dynamic Object Re-
classification. 2003.

[17] H. CIRSTEA, L. LIQUORI, B. WACK. Rewriting Calculus with Fixpoints: Untyped and First-order Systems.
2003, Submitted.

[18] L. LIQUORI. Book Review: Formal Methods for Open Object-Based Distributed Systems. The Computer
Journal, 46(6). Oxford University Press - British Computer Society., 2003.

[19] L. LIQUORI, B. P. SERPETTE. An Imperative Rewriting Calculus. 2003, Submitted.

[20] L. LiQUORI, B. WACK. The Polymorphic Rewriting Calculus [Type Checking vs. Type Inference]. 2003,
Submitted.

Bibliography in notes

[21] P. BOROVANSKY, C. KIRCHNER, H. KIRCHNER, P.-E. MOREAU, C. RINGEISSEN. An Overview of ELAN.
in « Proc. of WRLA », volume 15, Electronic Notes in Theoretical Computer Science, 1998.

[22] S. DrROSSOPOULOU, F. DAMIANI, M. DEZANI-CIANCAGLINI, P. GIANNINI. More Dynamic Object Re-
classification: Ficklell. in « ACM Transactions On Programming Languages and Systems », number 2, volume
24,2002, pages 153-191.

[23] G. HUET, G. KAHN, C. PAULIN-MOHRING. The Coq Proof Assistant - A tutorial, Version 6.1. rapport
technique, number 204, INRIA, 1997, http://www.inria.fr/rrrt/rt-0204.html, Version révisée distribuée avec
Coq. http://coq.inria.fr/.

[24] WEB SITE FUNDACIO JOAN MIRO. 2002, http://www.info-france-usa.org/fr/.

