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2. Overall Objectives
The research in Moscova centers around the theory and practice of concurrent programming in the context of
distributed and mobile systems.

Concurrent programming is delicate. It requires a clear understanding of the underlying models and
programming primitives. Our systems are asynchronous, loosely coupled, reconfigurable, and allow mobility.
We started from programming languages such as B. Thomsen’s Facile [26], Cardelli’s Obliq at DEC/SRC,
Pierce and Turner’s Pict [25], and Sewell and Wojciechowski’s Nomadic Pict; in 1996, we defined the Join-
Calculus as a variant of Milner’s π-calculus [27] stressing permanent receivers with unique locations; we
developed in the last years two implementations of the Join-Calculus: the Join-Calculus language 1.05 and
Jocaml.

On the theoretical side, we have worked on process algebras and their equivalences, proofs of security
protocols, frameworks for flow analysis, resource control and concurrent objects. In 2002, we started a
collaboration with U. of Cambridge, EPFL, SICS, KTH and UCL on symmetric distributed applications,
within the framework of the Esprit Global Computing action.

This year, we have developed several new activities related to concurrency and mobile systems. J. Leifer
and G. Peskine built a theory of safe communications between communicating ML processes, which allows
exchanges of abstract data types values. This research is joint with Sewell and Wansbrough in U. of Cambridge.
T. Blanc, a new PhD student, started a work on flow analysis by stack inspection, a work initiated with Fournet
and Gordon during a long internship at Microsoft Research. J. Krivine, new PhD student, also started a work
on transactional models through process algebras. Finally, G. Gonthier developed a new theory of dynamic
linking with system E and Hilbert’s choice operator. The work by Qin and Maranget on concurrent objects in
the Join-Calculus has also been pursued in 2003.
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Since 2001, the research-team Moscova has worked in formal proofs systems. G. Gonthier is continuing his
very long proof of the four color theorem within Coq. D. Doligez and T. Hardin are building the FOC system.
This calculus, devoted initially to certified computer algebra, has also shown itself to be important for more
general specifications of programs. One of the designers, Virgile Prevosto, defended his thesis at U. of Paris 6;
his supervisor was D. Doligez.

In 2003, D. Doligez and L. Maranget pursued their work in the development of the Objective Caml system,
on garbage collection and pattern-matching.

G. Gonthier left the project-team Moscova, on Dec 1, 2003, and joined Microsoft Research in Cambridge.
Finally, three ex-PhD students (S. Conchon, F. le Fessant, A. Schmitt) of our team in 2002 were hired at U. of
Orsay, INRIA-Futurs and INRIA-Rhône Alpes in 2003.

3. Scientific Foundations

3.1. Concurrency theory
Milner started the theory of concurrency in 1980 at Edinburgh. He proposed the calculus of communicating
systems (CCS) as an algebra modeling interaction [23]. This theory was the source of many articles, most
of them are quite subtle. In 1989, R. Milner, J. Parrow and D. Walker [24] introduced a new calculus,
the pi-calculus capable of handling reconfigurable systems. This theory has been refined by D. Sangiorgi
(Edinburgh/INRIA Sophia/Bologna). Many variants of the pi-calculus have been developed since 1989.

We considered the variant of the Join-Calculus[5][6], a variant easier to implement in a distributed
environment. Its purpose is to avoid the use of atomic broadcast to implement fair scheduling of processes. The
Join-Calculus allows concurrent and distributed programming, and simple communication between remote
processes. It was designed with locations of processes and channels. It leads smoothly to the design and
implementation of high-level languages which take into account low-level features such as the locations of
objects.

The Join-Calculus has higher-order channels as in the pi-calculus; channels names can be passed as values.
However there are several restrictions: a channel name passed as argument cannot become a receiver; a receiver
is permanent and has a single location, which allows one to identify channel names with their receivers. The
loss of expressivity induced by these restrictions is compensated by joined receivers. A guard may wait on
several receivers before triggering a new action. This is the way to achieve rendez-vous between processes. In
fact, the notation of the Join-Calculus is very near the natural description of distributed algorithms.

The second important feature of the Join-Calculus is the location. A location is a set of channels co-residing
at the same place. The unit of migration is the location. Locations are structured in a tree of locations. A
location migrates with all its sublocations.

The Join-Calculus, renamed Jocaml, has been fully integrated into Ocaml. Locations and channels are new
features; they may be manipulated by or can handle any Ocaml values. Unfortunately the newer versions of
Ocaml are not supporting it. We are still planning for both systems to converge.

3.2. Type systems
Types[7] are used in the theory of programming languages to guarantee (usually static) integrity of computa-
tions. Types are also used for fancier static analysis of programs. The theory of types in used in Moscova to
insure safety properties about abstract values exchanged by two run-time environments.

4. Application Domains

4.1. Telecoms and Interfaces
Key words: telecommunications, distributed applications, security, verification.
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Distributed programming with mobility appears in the programming of the World Wide Web and in auto-
nomous mobile systems. It can be used for customization of user interfaces and for communications between
several clients. The telecommunications are an other example of application, with active networks, hot reconfi-
gurations, and intelligent systems. For instance, France Telecom (Lannion) is designing a system programmed
in mobile Erlang.

5. Software

5.1. Acute, a prototype implementation of a type-safe distributed

programming language
Participants: James Leifer, Peter Sewell [U. of Cambridge], Keith Wansbrough [U. of Cambridge].

Acute provides a test implementation of our current work on type safe semantics for distributed computing.
As such, Acute is equipped with a full semantic definition (of typing, compilation, and execution).

Acute is is an interpreted language whose core features consist of a subset of Ocaml’s. It includes a module
language (though no functors); so-called “marks” for delimiting ranges of modules to be shipped or rebound
when marshalling values; a language of version numbers attached to module declarations; and a language of
version constraints, which are attached to imports.

Though an interpreter, Acute has two distinct phases: the first performs compilation (preprocessing) and the
second run-time execution. The former does type checking and calculates hash fingerprints for the modules
that export abstract types. At run time, the marshalling primitive transforms a value into a string, packing in the
modules to be shipped with the value (as specified by the mark scoping) and value’s type. The unmarshalling
primitive unpacks the value, checking the actual and expected types to ensure type safety and, thanks to the
the compile-time calculation of hash types, abstraction safety. The value may have intentionally been shipped
without all required modules in order to force relinking to local resources at the receiver side: this relinking
involves a version-satisfaction relation that verifies that the version constraints needed by the value are satisfied
by the version numbers of the locally available modules.

Our prototype consists of about 10 000 lines of code and is written in FreshOcaml, a variant of INRIA’s
Ocaml with support for automatic alpha conversion. It is expected to be released in December 2003.

5.2. Pattern matching in Ocaml
Participant: Luc Maranget.

Key words: ocaml, pattern matching.

Luc Maranget has worked on warning messages for pattern matching in the Objective Caml compiler. His
results were published in the Journées Francophones des langages applicatifs [14]. This year Luc Maranget
implemented additional analysis related to pattern-matching. When activated, the new feature send warning
messages about pattern matching that would probably be wrong (and would not be flagged by others warnings)
if the matched value type is altered and the whole program recompiled. The new feature facilitates Objective
Caml usage in a industrial context since it helps to enforce strict coding rules aiming at producing robust code.
This has been incorporated in the standard distribution of Ocaml since Ocaml 3.06.

5.3. Hevea
Participant: Luc Maranget.

Key words: tex, latex, html, web.

Hevea is a fast translator from LATEX to HTML, written in Objective Caml. Hevea was first released in 1997 and
is still maintained and developed by Luc Maranget. A continuous (although informal) collaboration around
Hevea exists, including Philip H. Viton (Ohio State University) for the MS Windows port and Ralf Treinen
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(ENS Cachan) for Debian developments. Hevea consists in about 20 000 lines of Caml and about 5 000 lines
of package sources written “almost” in TEX (the language understood by Hevea). In November, Hevea was
downloaded from 300 sites and is now part of the Debian distribution. This year saw release 1.07. Additionally
Luc Maranget wrote an article for the TEX users association of Greece [11].

6. New Results

6.1. Join-Calculus
Participants: Georges Gonthier, Pierre Habouzit, Luc Maranget.

The work on the join-calculus and the corresponding language Jocaml has been slowed down in 2003. The
main implementer Fabrice le Fessant could not be hired at INRIA Rocquencourt.

Anyhow, G. Gonthier finalized his journal paper with C. Fournet (Microsoft) on a the hierarchy of
equivalences for asynchronous process calculi [10].

P. Habouzit studied the distributed garbage collector of le Fessant during his summer internship. He achieved
a graphical demo, written in C++, for simulation of le Fessant’s algorithm.

6.2. Type safety for distributed computing
Participants: James Leifer, Gilles Peskine, Peter Sewell [U. of Cambridge], Keith Wansbrough [U. of
Cambridge].

Type abstraction is a key feature of ML-like languages for writing large programs. Marshalling is necessary
for writing distributed programs, exchanging values via network byte-streams or persistent stores. In this
work we combine the two, developing compile-time and run-time semantics for marshalling, that guarantee
abstraction-safety between separately-built programs.

We obtain a namespace for abstract types that is global, i.e. meaningful between programs, by hashing
module declarations. We examine the scenarios in which values of abstract types are communicated from one
program to another, and ensure, by constructing hashes appropriately, that the dynamic and static notions of
type equality mirror each other. We use singleton kinds (Harper and Lillibridge) to express abstraction in the
static semantics; abstraction is tracked in the dynamic semantics by colored brackets. These allow us to prove
preservation, erasure, and coincidence results.

Publications: [13] and [19].

6.3. Semantics for distributed programming with dynamic rebinding and

version control
Participants: James Leifer, Peter Sewell [U. of Cambridge], Keith Wansbrough [U. of Cambridge].

As distributed computation becomes commonplace, it will be increasingly useful to be able to exchange
arbitrary language values, preserving their structure, rather than require the programmer to translate back
and forth to some “external” formats (which would have to be kept in sync with the internal data structures).
Moreover, the difficulty of debugging such systems makes it important to detect errors as early as possible —
as far as possible, interaction should be guaranteed to be type-safe.

This work goes beyond the areas normally considered in language semantics (sequential or concurrent) by
addressing not just distributed execution and communication, but distributed development and deployment
taking place across many administrative domains on a long time-scale. For such applications it is often
impossible to force software updates to be synchronized: there may be many coexisting versions of many
applications, sharing some libraries but not others, that need to communicate.

We address the semantics of ML-like programming languages for distributed computation, focusing on
support for type-safe marshalling of arbitrary language values. In particular: (1) unmarshalling can involve
rebinding to local resources available on the receiver’s side of a communication; (2) values of abstract
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types can be communicated, and a globally-coherent notion of type equality ensures that unmarshalling
respects abstraction; and (3) interoperation between separately-built programs with different versions of shared
modules is supported, with fine-grain version control.

Publications: [20].

6.4. A security analysis for libraries
Participants: Tomasz Blanc, Cédric Fournet [Microsoft Research], Andrew Gordon [Microsoft Research].

We considered a new formal static analysis to help identify security defects in libraries for runtimes, such
as the JVMs or the CLR, that relies on stack inspection for access control. Our tool inputs a set of libraries
plus a description of the permissions granted to unknown, potentially hostile code. It constructs a permission-
sensitive call graph, which can be queried to identify potential defects. We describe the tool architecture,
various examples of security queries, and a pratical implementation that analyses large pre-existing libraries
for the CLR. We also develop a new formal model of the essentials of access control in the CLR (types,
classes and inheritance, access modifiers, permissions, and stack inspection) In this model, we state and prove
the correctness of the analysis.

This work has been submitted for publication, coauthored with A. Gordon and C. Fournet (Microsoft
Research Cambridge).

6.5. A framework for history based stack inspection
Participants: Tomasz Blanc, Jean-Jacques Lévy.

The initial work by Gordon, Fournet can be revisited via a history-based labeled lambda calculus. Standard
properties such as confluency in the labeled calculus stress different algebraic laws from the ones in the initial
framework for stack inspection by Gordon and Fournet. This preliminary work is a starting point for a formal
theory of stack inspection based on the history of redexes such as sketched by Abadi and Fournet.

This work can be useful for security analysis of reconfigurable systems based on tracing of new interactions.

6.6. Typing dynamic linking
Participant: Georges Gonthier.

In most modern operating systems, applications access system and user program libraries using dynamic

linking. This allows several applications to coexist while sharing code and, more importantly, implementation
of basic data types, which means they can interoperate efficiently. As a rule, a software module is written and
tested under the assumption that it will be executed with adequate libraries, and that all other modules will be
using the same libraries.

Unfortunately, modeling dynamic linking in the standard module type system, based on the Harper-
MacQueen existential types, is quite awkward. Since linking in this system is represented by an explicit
functor application, it is necessary to include the dynamic linking code along with the user code. This breaks
abstraction, as dynamic linking is a system operation, and should therefore be part of the language semantics.

Starting with a visit to UCSC in December 2002, G. Gonthier reformulated his work with M. Abadi (U.
Santa Cruz) and B. Werner (Logical) on a new approach to typing dynamically linked modules, based on a
second-order version of Hilbert’s choice symbol (usually denoted ε), rather than existial quantifiers.

They succeeded in overcoming the technical limitations of an earlier attempt at exploiting this insight
(in 2000), which were caused by incompatibilities between the intricate cut elimination procedure of the
ε-calculus, and the natural order of computation for functional programs. The improvement comes from
replacing the structural comparison of interfaces (a library is identified by the text of its description) by name
comparison (a library is identified by a unique reference name). This change simplifies the type system,
and simultaneously restricts the underlying logic to the so-called ε

∗ fragment of the ε calculus, whose
computational interpretation is much simpler.
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The resulting type system, dubbed System E, is an improvement in almost every respect on its predecessor.
System E can, for instance, be consistently extended with parametric polymorphism and explicit modules.
Moreover a novel but plausible abstract machine was designed, that implements System E dynamic linking.
Remarkably, the machine can handle incremental libraries, in which the implementation of an interface
depends on another, previous implementation of the same interface. The machine achieves this by using a
novel form of dynamic binding, based on a digest of the call context, to select the appropriate version of a
library.

6.7. Objective-Join
Participants: Ma Qin, Luc Maranget.

Combining object oriented and concurrent programming is one of our long-term goals. We start from the initial
work by Didier Rémy (project-team CRISTAL), Cédric Fournet (Microsoft Research) and Cosimo Laneve
(Universita di Bologna) [9]. This work presents a class-based object-oriented extension of the join-calculus.
Current work on this topics is performed by Ma Qin and Luc Maranget. Ma Qin now completes her second
thesis year, her tutors are Luc Maranget and Pierre-Louis Curien (team PPS, CNRS).

Ma Qin’s thesis work consists in integrating the approach of [9] in a real programming language. However
this approach looks quite complex and may prove difficult use in practice as it stands now. One can think
for instance about sacrificing a bit of expressivity so that to produce a simpler system. Our work on the
practical side of an object extension to the join-calculus made good progress this year, with unexpected
results. We showed that the original system is not as expressive as we first thought. Types do not contain
enough information on object synchronization to allow the typing of quite ordinary (and obviously type-error
free) classes built by inheritance. Abstraction on types as performed by this original system was somehow
artificial and resulted in types that would have been difficult to understand by programmers and even more
difficult to write, as modular programming requires. This reinforces our statement on the complexity of the
system, which is a serious drawback not only for developing a practical compiler but also for writing programs.
We now propose a conceptually simpler, more expressive, typing system. The key idea lies in including all
synchronization information in class types. From the join-calculus point of view this amounts to including
join-patterns in class types and strengthening the common view of classes as templates for objects. As our
solution hinders program abstraction we are now working on restoring abstraction by method hiding. We plan
to investigate the impact of this simple solution on the synchronization information present in class types.

This work is published this year at the The First Asian Symposium on Programming Languages and

Systems [15].

6.8. FOC project
Participants: Richard Bonichon, Damien Doligez, Thérèse Hardin, Virgile Prévosto, Pierre Weis [Project-
team Cristal].

The FOC project is a joint effort of three teams (D. Doligez, P. Weis at INRIA; T. Hardin, M. Jaume,
V. Ménissier-Morain, R. Rioboo at LIP6; D. Delahaye, C. Dubois, O. Pons, V. Viguié at CNAM-CEDRIC;
and several PhD students).

The objective of the FOC project is the design and implementation of a development framework for certified
and modular software, in which required properties are formally asserted. Its features support the description
of the requirements (by declarations and statements); then a step-by-step introduction of new statements,
declarations; and, finally, the implementation for which every declaration has been associated to a definition
and every statement has received a proof.

Declarations, definitions, statements, and proofs are recorded in FOC units (which correspond to classes
or modules, in other programming languages). Units are grouped into libraries. Several tools are given to
build new units: multiple inheritance, late binding, full parameterisation upon units and values. The proofs are
currently done with the Coq proof assistant. Once achieved and checked, the proof is recorded in the unit and
stored for a posteriori verification purposes.
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The presence of proofs and their combination with object-oriented features introduces potential for inconsis-
tencies. Syntactic restrictions can prevent some of these inconsistencies. The compiler performs static analyses
to detect the remaining inconsistencies, and rejects inconsistent units. After checking the units, the compiler
performs translations into Ocaml, and also into documentation languages (Latex and XML). The compiler
also synthesizes all the information coming from the structure of the unit and translates it to Coq in order to
provide the user with the correct context to build the proofs. With this context, the proof of an implementation
is based not only on the properties of the algorithm, but also on the framework where the definition is inserted.
This technique also checks inter-unit consistency.

The first release of the language was done in July 2003. It contains the compiler, a library of Computer
Algebra algorithms devoted to polynomials, and several development tools, among them an automatic
documentation tool, based on Openmath, to allow interfacing with other Computer Algebra systems.

Virgile Prévosto has completed his PhD, which was devoted to the design and implementation of the
FOC compiler. His dissertation also contains the proof of correctness of the compiler with respect to the
formal specification of FOC written by S. Boulmé in Coq. Damien Doligez and Thérèse Hardin worked on
various aspects of FOC, among them the design of a proof search tool based on the tableaux method. Richard
Bonichon, a new PhD student, is working on a Tableaux-based version of deduction modulo[8]. The FOC
group is involved in the research action “ACI Modulogic”, which is coordinated by T. Hardin. Recently, Pierre
Weis joined the FOC group, where he will handle compiler development.

6.9. A mechanical proof of the Four Color theorem using the Calculus of

Constructions
Participants: Georges Gonthier, Benjamin Werner [Project team LOGICAL].

The four color theorem asserts that four colors suffice to paint the regions of any planar map in such a way that
any two adjacent regions are given different colors. It is one of the more famous results in discrete mathematics,
largely because it took over a century, and a breakthrough use of computers, to prove it. However this very use
of computer programs casts some doubt on the proof, at least on a philosophical level, because the validity of
the proof becomes contingent on the informal, often ambiguous, semantics of the programming language.

As the computer cannot be dispensed of, because of the combinatorial complexity of the proof, the only way
to avoid the above problems is to use formally verified programs, which means carrying the entire proof inside
a formal demonstration system. This makes the four color theorem an ideal case study to test and demonstrate
the maturity of a formal proof assistant such as the Coq system developed by the Logical research team.
Building on his 1995 experience on the formal verification of the safety of a concurrent garbage collection
algorithm, G. Gonthier has undertaken, with B. Werner (Logical) the implementation in Coq of a recent (1997)
proof of the four color theorem due to Robertson, Sanders, Seymour and Thomas.

Like the first (1994) Appel and Haken proof, this proof has two parts:

1. Check, by enumerating all maps of radius 2 consisting of penta-to-octagonal regions around a penta-
to-unidecagonal hub, that the (suitably modified) Euler formula implies that any near 6-connected
cubic planar map contains one of 633 specific submaps.

2. Check, by analyzing the structure of its set of border colorings, that each of these 633 sub-maps is
“reducible”, that is, that the task of coloring any planar map that contains one of these submaps can
be reduced to one of coloring a smaller map.

It is the latter part that mandates the use of a computer. Indeed in their initial proof Appel and Haken
manually checked over 10 000 cases to establish part 1, but this brave effort could not be carried over to part 2,
where most of the 633 submaps require checking over 20 000 000 coloring topologies.

The Coq implementation therefore started with the combinatorial aspect of task 2, as the this was clearly
the one which would test the performance of the system – fully verified programs can take significantly more
time and space to execute than their equivalent informal versions. This implementation used reflection, that
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is, the possibility of embedding ML-like programs inside logical statements of the Calculus of Inductive
Constructions, and running them as part of the verification process. Using reflection, the problem of verifying a
complex result is reduced to that of verifying the correctness of a program that establishes it, which in this case
means substantial size savings in both proof script (the user input to Coq) and proof witness (the “compiled
proof” that is passed on to the kernel checker of Coq).

Although the implementation needed to use somewhat elaborate algorithms to compensate the limitations
of the Coq language (in this case, the absence of arrays), this first task went surprisingly well. One of its
offshoots was a new Coq proof script style that allows a more effective combination of deductive, equational,
and computational proof steps. Several features of this style have already been adopted in the recent versions
of the Coq system.

The second subtask was implementing the basic planar graph theory in which the purely combinatorial
results of the first subtask could be interpreted. This proved to be surprisingly difficult, mostly because
the “obvious” demonstrations of many of the results in this theory are based on visual inspections that are
extremely tedious to formalize, and use topological arguments outside the scope of the Coq formalization
(doing the theory of complex integration to establish the Jordan Curve Theorem being out of the question).
Instead, a new, purely combinatorial, definition of planar maps was used, rediscovering and extending results
of Tutte and Stahl. This definition is highly regular, extending the familiar map-graph duality to a triple
edge/node/face duality, and allows a simple, purely combinatorial definition of the Jordan Curve property,
which is shown to be equivalent to the Euler formula. This work was completed in 2002, and presented at an
invited lecture at TLCA’03.

The third subtask, carried out in 2003, was the integration of the results of the two first, to yield the theorems
really covering part 2. One of these theorems, due to Birkhoff, asserts that coloring any cubic map that is not

near 6-connected can be reduced to coloring a smaller map. Its proof turned out to be a very good test case for
the integration process, because it could be reduced to a variant of the reducibility check, using the verified
programs developed in the first subtask. The main difficulty in the integration subtask was that it was necessary
to completely unify the basic data types used in the first two subtasks, as the complexity of dealing with two
different representations (even if only slightly so) turned out to be overwhelming. The unification process was
complex because it involved unifying the properties describing the representations, not just the data types. The
unification process required several iterations, each of which meant a pass over most of proof scripts developed
in the first two subtasks. It was an excellent test of the robustness of the proof script style that was developed
for this project.

The stage is now set for a fourth subtask, which would complete the proof by establishing part 1. Most of
this task is programming-oriented: compiling the list of 633 submaps into a (reflected) program that checks for
their presence in a radius-2 submap, and verifying the correctness of that compilation. Based on the experience
with the first subtask, which was also program-oriented, it can be expected to proceed more smoothly than the
second and third subtasks.

6.10. Fault tolerancy and safety properties for mobile and concurrent systems
Participants: Vincent Danos [PPS], Jean Krivine.

Classical models for distributed systems (CCS, pi-calculus, Join-calculus) offer unidirectional semantics. They
model normal evolution of distributed systems through time by the observation of their visible communica-
tions. The study of distributed system behavior in the presence of failure can be critical. In particular, we may
want to be able to tolerate faults and to recover to a consistent state. This problem is classical in the design of
distributed systems, where the failure of a process forces it to rollback to the last saved state.

We want to use a reversible process algebra to express reversibility in the syntax of processes, and to be able
to track dependencies of communications between processes. When a failure occurs, a process may return to
a previous state by canceling its communications. This framework, named CCS-R, is proved minimal in the
sense that it captures equivalence up to permutation of independent transitions and is not sensitive to canceled
branches of the calculus.
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A first version of this setting was considered in the case of formal molecular biology. Regev, Shapiro and
a number of authors have proposed that process algebras such as the pi-calculus, develop ed for the modeling
of communication in decentralized computational systems, might be useful in biology. In pi-calculus, there
is much latitude in the way a given biological phenomenon is represented. Therefore, we think that a more
restrictive setting will better correspond to biological systems (such as the EGF-MAPK cascade in Regev’s
formalization).

Moreover, the examples that were given so far are always running forward, rarely letting a binding or an
activation be undone. While this might be a quite reasonable assumption in some cases, for instance when
describing a signal transduction pathway, it is certainly a departure from actual biochemistry where practically
all reactions are reversible.

This has been presented at the BioConcur workshop [12].

7. Contracts and Grants with Industry

7.1. Ozone
Participant: Georges Gonthier.

Moscova contributes to Inria’s participation, coordinated by V. Issarny (project-team ARLES), in the European
Project Ozone, on the development of a demonstration platform for Ambient Intelligence Systems, with
industrial partners Philips and Thomson.

The Moscova contribution concerns the security and privacy features of the system. On the one hand, during
monthly meetings held between G. Gonthier, J. Shao (Thomson), and P. Lenoir (Philips), a novel architecture
for open software Digital Copyright Management was developed, for which patent applications are under way.
On the other hand, G. Gonthier elaborated on the ideas underlying the digital rights architecture to produce a
security policy specification language design [18][17].

8. Other Grants and Activities

8.1. National actions

8.1.1. ACI Modulogic

This project is a consortium with CNAM (C. Dubois), LIX (G. Dowek), project-team PROTHEO (I. Gnaedig),
project-team MIRO (L. Liquori), LIP6 (T. Hardin) and MOSCOVA (D. Doligez). The aim is to build secure
software with the use of formal specifications. The challenges are to fully specify a programming language
with the ρ-calculus, to build proof tools based on deduction-modulo (a logical system design by G. Dowek,
C. Kirchner, T. Hardin), and to compile these proofs into Coq.

8.1.2. France telecom

J.-J. Lévy is co-supervisor, with P. Crégut, of the doctoral work of Guillaume Chatelet, who is working on
extensions of Erlang with primitives for mobility. This PhD will be defended in 2004 at Ecole polytechnique.

8.2. European actions

8.2.1. Projet PEPITO

2003 is the second year of the european project PEPITO (Peer to Peer, Implementation and Theory), part of the
Global Computing action inside Esprit. This project is a consortium with KTH (Seif Haridi, coordinator), U. of
Cambridge (Peter Sewell), EPFL (Martin Odersky), SICS (Per Brand), UCL (Peter van Roy). It is concerned
with theoretical and practical aspects of distributed and symmetric applications, with mobility. It federates
efforts already started with Mozart (Mobile Oz), JoCaml and Scala.
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We had a review meeting in Rovereto (February 2003). Our contribution was mainly around calculi for
resource controls (Dynamic Join and M-calculus by A. Schmitt) and is now mostly around Type Safe
Marshalling, a common effort with U. of Cambridge, which can be viewed as an other way of using safe
resources. The previous work by A. Schmitt (who spent a post-doctoral year at U. of Pennsylvania) is now
finished and has been presented at POPL 2003 [16].

9. Dissemination

9.1. Animation of research
G. Gonthier is vice-chairperson of the scientific comittee of Inria Rocquencourt, and suppleant member of the
Inria evaluation commission. He represented Inria at the steering comittee of the Cea-EdF-Inria schools.

T. Hardin is vice-chairperson of SPECIF, in charge of research, since June 2001.
J.-J. Lévy has participated to the PhD juries of Marc Lacoste (Imag) and Francesco Zappa Nardelli (ENS).

9.2. Teaching
Our project-team participates to the following courses:

• “Informatique fondamentale”, 2nd year course at the Ecole polytechnique, 250 students (J.-J. Lévy,
professor in charge of this course; G. Gonthier and L. Maranget, professors “chargés de cours”).
G. Gonthier was chairing the programming projects; J.-J. Lévy edited new lecture notes (270 pages)
available on the Web[21]. The contract of Georges Gonthier with Polytechnique was finished on Aug
31, 2003.

• Compilers, 3rd year course at the Ecole polytechnique, 20 students (L. Maranget, professor “chargé
de cours”; J. Leifer, “vacataire”, assisted him in laboratory courses). This course is available on the
Web[22].

• Concurrency, “DEA Sémantique, preuves et programmation” at U. of Paris 7, 40 students, (Jean-
Jacques Lévy and Catuscia Palamidessi from project-team COMÈTE)

• Lambda Calculus, ‘DEA Sémantique, preuves et programmation” at U. of Paris 7, 40 students,
(T. Hardin)

J.-J. Lévy co-authored 3 computer science exercices (4h+2h+2h) of the entrance examination at the Ecole
polytechnique in 2003. He has participated to the reform of this examination for Computer Science. This may
influence teaching of computer science in the “classes préparatoires”.

9.3. Partipations to conferences, Seminars, Invitations

9.3.1. Participations to conferences

• Jan 12-18, J.-J. Lévy attended the POPL’03 conference in New Orleans. He also participated to
PADL and FOOL.

• Jan 5-10, D. Doligez participated to a school at Dagstuhl on Verification.

• Jan 26-28, L. Maranget gave a talk at JFLA’03 in Chamrousse.

• Feb 9-14, J. Leifer, J.-J. Lévy participated to the Global Computing meeting and Pepito review at
Rovereto.

• Feb 15-19, D. Doligez attended the MKMnet conference in Bertinoro.

• Feb 26, G. Gonthier partipated to an Ozone meeting in Rennes.

• Mar 8-17, J. Leifer and G. Peskine visited P. Sewell in U. of Cambridge.
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• Mar 14-15, J.-J. Lévy attended the ICALP program committee meeting in Harlem.

• Apr 3-4, D. Doligez and J.-J. Lévy participated to the meeting in Honour of Leslie Lamport at U. of
Rennes.

• Jun 12-15, J.-J. Lévy participated to the inauguration of the new computer science building at U. of
Pisa.

• Jun 22-25, G. Gonthier participated to the LICS conference and attended workshops on game
semantics, quantum computing, and mobile computing in Ottawa in June.

• Jul 5-12, Ma Qin attended the Global Computing School at U. of Edinburgh.

• Jul 9-12, G. Gonthier was attended the TLCA’03 conference in Valencia.

• Sep 8-12, D. Doligez attented the Tableaux’03 and Calculemus meetings in Rome.

• Aug 24-29, J. Leifer and G. Peskine presented an article at ICFP in Uppsala. J. Leifer also attended
the Erlang workshop.

• Sep 2-7, J. Krivine and J.-J. Lévy attended CONCUR’03 in Marseille. J. Krivine presented an article
at the BioConcur workshop.

• Oct 23-24, G. Gonthier visited Microsoft Research in Cambridge.

• Sep 30-Oct 3, D. Doligez visited the Protheo project in Nancy

• Nov 27-29, Ma Qin and L. Maranget presented an article at APLAS’03 in Beijing.

• Nov 29-Dec 3, J. Leifer participated to a Pepito meeting in Stockholm.

• Nov 25, J.-J. Lévy visited LAAS in Toulouse for the organization of the IFIP TCS 2004 conference.

• Dec 10-12, D. Doligez attended a meeting in Rennes about the ACI Logic Security.

G. Gonthier served on the program committee of Asian’03. J.-J. Lévy served on the program committee of
ICALP’03.

9.3.2. Other Talks

• G. Gonthier was invited one week in December 2002 at UCSC by M. Abadi to work on dynamic
linking.

• G. Gonthier gave a talk on dynamic linking at Microsoft Cambridge in September.

• J.-J. Lévy gave a talk on the Join Calculus at U. of Pisa in June.

9.3.3. Visits

• April + December, P. Sewell visited Rocquencourt for collaboration with J. Leifer and G. Peskine.

• October, M.Shinwell visited Rocquencourt for discussion on Fresh ML.

• Jun 27, O. Tardieu gave a talk on causality in Esterel
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