%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team OBASCO

OBjects, ASpects and COmponents

Rennes

- THEME 2A -

ctivity

Table of contents

Team
Overall Objectives
2.1.1. Component-Oriented Programming:
2.1.2. Aspect-Oriented Programming:
2.1.3. Post Object-Oriented Programming:
2.1.4. Applications:
Scientific Foundations
3.1. Introduction
3.2. Object-Oriented Languages
3.2.1. From Objects to Components
3.2.2. From Objects to Aspects
3.2.2.1. Reflection:
3.2.2.2. Model-View-Controller:
3.3. Domain-Specific Languages
Application Domains
4.1. Overview
4.2. Operating Systems and Networks
4.3. Middleware and Enterprise Information Systems
Software

5.1. Bossa
5.2. EAOP
5.3. MicroDyner
5.4. Reflex

New Results
6.1. Components
6.1.1. Explicit Protocols
6.1.2. Property Checking
6.1.3. Adaptation
6.1.4. Integrating Aspects with Components
6.2. Aspects
6.2.1. Static EAOP
6.2.2. Dynamic EAOP
6.2.3. Reflection and EAOP
6.2.4. Aspectsin OS
6.3. Post-Objects
6.3.1. Design Pattern Reifications
6.3.2. Reflex: Partial Behavioral Reflection in Java
6.3.3. Reflection and Aspects in Smalltalk
6.4. AOP for OS Kernels
6.4.1. Scheduler Policies
6.4.2. Prefetching and extensible Caches
Contracts and Grants with Industry
7.1. IBM Eclipse Fellowships
7.2. Microsoft Research
Other Grants and Activities
8.1. Regional Actions
8.2. National Projects

OO0 I NN WU B B WWINDNDNNDNDDN = -

Activity Report INRIA 2003

8.2.1.
8.2.2.
8.2.3.
8.2.4.

ANVAR Componentifying Multi-Agent Libraries
RNTL ARCAD

Action incitative CORSS

Action incitative DISPO

8.3. European Projects

8.3.1.
8.3.2.

EASYCOMP IST Project
ELASTEX ALFA Project

9. Dissemination
9.1. Animation of the community

9.1.1.

Animation

9.1.1.1. ACM/Sigops:

9.1.1.2. CNRS/RTP Distributed System:
9.1.1.3. CNRS/GDR ALP:

9.1.1.4. OCM 2003:

9.1.1.5. Les jeudis de I’objet:

9.1.2.

Steering, journal, conference committees

9.1.2.1. P.Cointe:
9.1.2.2. T. Ledoux:
9.1.2.3. G. Muller:
9.1.2.4. J. Noyé:
9.1.2.5. J-C. Royer:
9.1.2.6. M. Siidholt:

9.1.3.

Thesis committees

9.1.3.1. P. Cointe:
9.1.3.2. T. Ledoux:
9.1.3.3. G. Muller:
9.1.3.4. J-C. Royer:
9.1.3.5. M. Sidholt:

9.14.

Evaluation committees and expertise

9.14.1. P Cointe
9.2. Teaching
9.2.1. EMOOSE:
9.2.2. DEA infomatique de Nantes
9.3. Collective Duties
9.3.1. P Cointe:
10. Bibliography

15
16
16
16
17
17
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
19
19
19
19
19
19
19
19
19
19
19
20
20
20

1. Team

Figure 1.

OBASCO is a joint project between ECOLE DES MINES DE NANTES (EMN) and INRIA.

Head of project-team
Pierre Cointe [Professor, Ecole des Mines de Nantes]

Staff Member INRIA
Jacques Noyé [CR1 INRIA on leave]

Faculty Members from EMN
Rémi Douence [Associate Professor]
Thomas Ledoux [Associate Professor]
Jean-Marc Menaud [Associate Professor]
Gilles Muller [Professor]
Jean-Claude Royer [Professor]
Mario Siidholt [Associate Professor]

Administrative Assistant
Sylvie Poizac [part-time (50%)]

Ph. D. Student
Hervé Albin-Amiot [Cifre grant with SODIFRANCE until January 2003]
Gustavo Bobeff [MINES contract]
Pierre-Charles David [MESR grant]
Simon Denier [EPA grant since September]
Hervé Duchesne [MINES grant since October]
Andrés Farias [ATER UNIVERSITY OF NANTES]
Yann-Gaél Guéhéneuc [IBM grant until May]
Sebastian Pavel [MESR grant, ACI DISPO, since October]
Marc Segura-Devillechaise [MINES grant]
Eric Tanter [grant from UNTVERSITY OF CHILE]
Luc Teboul [MINES grant]
Visiting Scientist
Julia Lawall [DIKU, UNIVERSITY OF COPENHAGEN, May to August 2003]
Technical Staff
Bil Lewis [June to July 2003]
Patricio Salinas [March to December 2003]

Student Intern
Rickard A. Aberg [October 2002 - March 2003]

2. Overall Objectives

OBASCO addresses the general problem of adapting software to its uses by developing tools for building
software architectures based on components and aspects [15]. We are (re)using techniques developed in the

2 Activity Report INRIA 2003

programming languages, in particular object-oriented languages, arena.

Our perspective is the evolution from programming in the small, as supported by object-oriented languages
a la Smalltalk, Java, and C#, towards programming in the large, as it emerges with component models.
Our objective is the implementation of a Component Virtual Machine (CVM) taking into account the three
following levels :

1. A model formalizing the principles underlying the implementation of components, that is dealing
with encapsulation, composition, interaction and adaptation.

2. A language integrating aspect-oriented and component-oriented programming in order to obtain
reasonably expressive executable architectural descriptions.

3. AJavainfrastructure including a number of tools, dealing with program analysis and transformation,
interpretation, monitoring, and execution, common to the object, aspect and component approaches.
These tools will be integrated in an Integrated Development Environment such as Eclipse.

In practice, the CVM federates our work along four directions:

2.1.1. Component-Oriented Programming:
Definition of a language making it possible (i) to program components by explicitly representing their
composition both at the structural and behavioral level, (ii) to manage their adaptation all along their life
cycle. To this aim, we are relying on reflection and specialization techniques. We are also looking at how to
interface such a language with de facto industrial standards such as EJB, .NET, and CCM.

2.1.2. Aspect-Oriented Programming:
Formalization of aspect-oriented programming based on the concepts of event, trace, and monitor. Implemen-
tation of a corresponding language using reflection, as well as program analysis and transformation techniques.

2.1.3. Post Object-Oriented Programming:
Contribution to the evolution from an object model to a unified model supporting programming in the large
and adaptation through reflection. Study of the problems resulting from integrating objects and aspects on the
one hand, objects and components on the other hand.

2.1.4. Applications:
In order to question and validate our approach, we are developing applications with a focus on the various
layers of enterprise information systems: from operating systems, to middleware and business components.

3. Scientific Foundations

3.1. Introduction

The OBASCO project was created in 2003'. Its primary goal is to investigate the possibility of a continuum
between objects, aspects and components. We plan to study formal models of components and aspects to
reason about adaptable systems. A natural result of our research is the realization of prototypes based on the
investigation into new programming languages and paradigms suited to component-oriented systems with a
particular emphasis on meta-programming.

Historically the core members of OBASCO have a strong background in the design and implementation of
(reflective) object-oriented languages [1][3][10]. This background has been enriched by expertise in operating
system, active networks and middleware [18][8][7]. Our goal is to take advantage of this complementarity by
developing a methodology and a set of tools covering in a uniform way the software process from “OS to
applications”.

'Great thanks to the reviewers: Isabelle Attali, Gérard Boudol, Yves Caseau, Jacky Estublier, Rachid Guerraoui, Michel Mauny and
Jan Vitek.

Project-Team OBASCO 3

3.2. Object-Oriented Languages

3.2.1.

Glossary

Object: An object has a set of “operations” and a “state” that remembers the effect of operations.
Objects may be contrasted with functions, which have no memory. A language is object-based if
it supports objects as a language feature (page 168 of [61]).

Components: Components are for composition. Composition enables prefabricated components to be
reused by rearranging them in ever-new composites. Software components are executable units
of independent production, acquisition and deployment that can be composed into a functioning
system. To enable composition a software component adheres to a particular component model
and targets a particular component platform [58].

Aspects: Aspects tend not to be units of the system’s functional decomposition, but rather to be pro-
perties that affect the performance or semantics of the components in systemic ways. Examples

of aspects include memory access patterns and synchronization of concurrent objects (page 226
of [49]).

Reflection: A process’s integral ability to represent, operate on, otherwise deal with itself in the same
way that it represents, operates and deals with its primary subject matter [57].

Component-based systems and reflection have been research topics for many years and their importance has
grown in tandem with the success of object-oriented languages. Since the end of the seventies, Object-Oriented
technology has matured with the realization of a considerable amount of industrial projects based on languages
such as Smalltalk, ObjectiveC, C++, Eiffel or Java. Today, the support of objects as a programming language
feature is a de facto standard.

But programming in the large, in turn, has revealed some deficiencies in the object-oriented paradigm.
Issues such as how to build reliable systems out of independently developed components or how to adapt
system behavior to new application-specific requirements have now to be addressed.

From Objects to Components

In spite of its successes, the generalization of object-oriented languages has failed? to greatly improve software
reusability. This is due to the inherent difficulties of a white-box model of reuse whereby reusing a class
through inheritance (or an object through cloning) requires a good understanding of the implementation of
the class (or object). The applications have also changed of scale and scope. Integrating heterogeneous pieces
of software, based on shared technical services (distribution, transactions, security...), becomes a fundamental
issue. Taking these issues into account has led to components [58]. The basic idea, as initially explained by
M.D. Mcllroy in 1968 [50] is to industrialize software reuse by setting up both an industry and a market of
interchangeable parts. This corresponds to a strong decoupling between component producers and consumers,
with new stages in the life cycle of a component (e.g., packaging, deployment). This also leads to a kind of
layered programming in the small/in the large with standard object-oriented languages used to implement
primitive components, and a component-oriented language used to implement compound components, which
can also be seen as software architectures. The two main features that a component-oriented language should
support are:

e composability: A component strongly encapsulates its implementation behind an interface and re-
presents a unit of composition (also called assembly). Composition relates provided and required
services (e.g., methods) with well-defined interaction protocols (with synchronous or asynchronous
communications) and properties. This defines the structure and behavior of the compound com-
ponent. Ideally, this composition should be language neutral (with respect to the implementation
language).

2See discussions at: http://www.dreamsongs.com/Essays.html and at: http://www-poleia.lip6.fr/~briot/colloque-JFP/.

4 Activity Report INRIA 2003

e adaptability: A component is designed as a generic entity that can be adapted to its different context
of uses, all along its life cycle. This adaptation can be static (e.g., at assembly time) but also dynamic
(e.g., at runtime). Very flexible architectures can be created by considering components as first-class
citizens (e.g., by being able to return a component as the result of a service). This has to be contrasted
with the standard notion of module.

These properties raise new challenges in programming language design and implementation. They require
an integration of ideas coming from module interconnection languages [55], architecture description languages
(ADLs) [56][51] and object-oriented languages. Modules provide an interesting support for component
structure. In particular, recent proposals around so-called mixin modules combine parameterization, recursive
module definitions, and late binding. ADLs address many of the above-mentioned issues although at a
description, rather than programming, level. Finally, object-oriented languages remain a major source of
inspiration. Interesting extensions have indeed been worked out in this context like notions of explicit protocols
that can be seen as finite state automata but also integrated within the language as types. Recently, a number of
connection-oriented language [58] prototypes have been developed as Java extensions. These languages focus
on component structure.

At the implementation level, an important issue is the exacerbated conflict between early and late binding
due to, on the one hand, strong encapsulation and the need to address errors as early as possible in the life cycle,
and, on the other hand, the possibility to adapt a component all along its life cycle. Software specialization
(e.g., partial evaluation [47]) and reflection have a key role to play here.

3.2.2. From Objects to Aspects

The object-oriented and reflective communities, together, have clearly illustrated the potential of separation
of concerns in the fields of software engineering and open middleware [60]. Aspect-oriented programming as
well as aspect-oriented modeling is an extremely competitive field of research where people try to go beyond
the object model by providing:

e crosscutting concerns: These new units of independant behaviors called aspects, support the iden-
tification, the encapsulation and then the manipulation of a set of properties describing a specific
domain (such as distribution, transactions, security...),

e non invasiveness: When taking into account new concepts, goals, needs or services, and to accord to
the modularity principle, the added aspects should not pollute the base application. Consequently, the
aspects have to be specified as independent units and then woven with the associated base program
in a non intrusive way.

Historically, object-oriented languages have contributed to the field of separation of concern in - at least -
two different ways:

3.2.2.1. Reflection:
The reflective approach makes the assumption that it is possible to separate in a given application, its why
expressed at the base level, from its how expressed at the metalevel.

e In the case of a reflective programming language a la Smalltalk, the principle is to reify at the
metalevel its structural representation e.g., its classes, their methods and the error-messages but also
its computational behavior, e.g., the message sending, the object allocation and the class inheritance.
Depending on which part of the representation is accessed, reflection is said to be structural or
behavioral. Meta-objects protocols (MOPs) are specific protocols describing at the meta-level the
behavior of the reified entities. Specializing a given MOP by inheritance, is the standard way [44][48]
to extend the base language with new mechanisms such as multiple-inheritance, concurrency or
metaclasses composition [2].

Project-Team OBASCO 5

e In the case of an open middleware [7], the main usage of behavioral reflection is to control
message sending by interposing a metaobject in charge of adding extra behaviors/services (such
as transaction, caching, distribution) to its base object. Nevertheless, the introduction of such
interceptors/wrappers metaobjects requires to instrument the base level with some hooks in charge
of causally connecting the base object with its metaobject [9].

3.2.2.2. Model-View-Controller:
The MVC developed for Smalltalk [46] is the first design-pattern making the notion of aspects explicit. The
main idea was to separate, at the design level, the model itself describing the application as a class hierarchy
and two separate concerns: the display and the control, themselves described as two other class hierarchies.
At the implementation level, standard encapsulation and inheritance were not able to express these croscutting
concerns and not able to provide the coupling between the model, its view, and its controller. This coupling
necessitated:

e the introduction of a dependence mechanism in charge of notifying the observers when a source-
object changes. This mechanism is required to automatically update the display when the state of the
model changes.

e the instrumentation of some methods of the model to raise an event each time a given instance
variable changes its value.

On the one hand, object-oriented languages have demonstrated that reflection is a general conceptual
framework to clearly modularize implementation concerns when the users fully understand the metalevel
description. In that sense, reflection is solution oriented since it relies on the protocols of the language to build
a solution. On the other hand, the MVC design-pattern has provided the developer with a problem-oriented
methodology based on the expression and the combination of three separate concerns/aspects. The MVC was
the precursor of event programming - in the Java sense - and contributed to the emergence of aspect-oriented
programming by making explicit the notion of join-point, e.g., some well defined points in the execution of a
model used to dynamically weave the aspects associated to the view and the controller.

A first issue is now to have a better understanding of how to use reflective tools to model aspects
languages and their associated crosscutting languages and advice languages [31]. A second issue is to study
the integration of aspects and objects to propose an alternative to inheritance as a mechanism for reuse. A third
issue is to emphasize the use of reflection in the field of generic programming and component adaptation as
soon as self-reasoning is important. A fourth issue is to apply domain-specific languages to the expression of
aspects.

3.3. Domain-Specific Languages
Glossary

DSL: A domain-specific language (DSL) is a programming language dedicated to a particular
application domain, for instance the realization of specific drivers.

A DSL is obviously more restricted than a general-purpose language, such as Java or even C, but encapsulates
domain expertise making easier to verify important safety properties. DSLs are interesting because they can
be used as a model to describe specific and crosscutting aspects of a system.

A DSL is a high-level language providing constructs appropriate to a particular class of problems. The
use of such a language simplifies programming, because solutions can be expressed in a way that is natural
to the domain and because low-level optimizations and domain expertise are captured in the language
implementation rather than being coded explicitly by the programmer. The avoidance of low-level source
code in itself improves program robustness. More importantly, the use of domain-specific constructs facilitates
precise, domain-specific verifications, that would be costly or impossible to apply to comparable code written
in a general-purpose language (e.g. termination) [8] [59].

6 Activity Report INRIA 2003

The advantages of DSLs have drawn the attention of rapidly evolving markets (where there is a need for
building families of similar software, e.g., product lines), as well as markets where reactivity or software
certification are critical: Internet, cellular phones, smart cards, electronic commerce, embedded systems, bank
ATM, etc. Some companies have indeed started to use DSLs in their development process: ATT, Lucent
Technologies, Motorola, Philips, etc.

In the application domain of operating systems, network and middleware, we are investigating the appli-
cation of separation of concerns - as a unified methodology - to reengineer or dynamically evolve existing
complex legacy software. Our main goal is to develop new tools/methodologies based on the coupling of
aspect-oriented design and domain-specific languages for the structuring of an OS kernel, an OS itself, Web
caches and middleware.

4. Application Domains

4.1. Overview
Key words: telecommunication, enterprise information systems.

The goal of our research is to develop new methodologies based on the use of aspect-oriented programming
and components languages for developing adaptable and composable software architectures. We plan to apply
those methodologies and the associated tools in a systematic and uniform way from the OS to the enterprise
applications. We are currently working in the OS field to express process scheduling extension, Web caches
to dynamically adapt cache prefetch strategies and middleware to dynamically adapt components behaviors to
their execution context.

Because of its distributed nature, component-based technology is a key technology in the field of telecom-
munication and enterprise information systems. When industrializing just in time such software components,
it becomes strategic to define product lines for producing out components in an automatic way. With other
researchers in the domain of generative programming we are investigating new methodologies, tools and ap-
plications [45].

4.2. Operating Systems and Networks

The development of operating systems is traditionally considered to be an activity on the fringe of software
development. In fact, the lack of systematic methodologies for OS design often translates into closed systems
that are difficult to extend and modify. Too often generality is sacrificed for performance. The widespread use
of unsafe programming languages, combined with extensive manual optimizations, compromises the safety of
OS software.

The use of Domain-Specific Languages is a promising approach to address these issues [43][53].

A first application direction is to use DSLs to safely program OS behavior (strategies) independently of the
target system; a weaver automatically integrates the code of such an aspect into the relevant system compo-
nents. This approach separates strategies, which are programmed using aspects, from the underlying mecha-
nisms, and thus simplifies system evolution and extension. The combination of aspect-oriented programming
and domain-specific languages has been validated in the context of Bossa (see Section 5.1).

A second application, we are investigating in this arena is the applicability of AOP for re-engineering or
dynamically evolve existing complex system software such OS kernels and Web caches (see Section 5.3).

4.3. Middleware and Enterprise Information Systems

Stimulated by the growth of network-based applications, middleware technologies are taking an increasing
importance. They cover a wide range of software systems, including distributed objects and components, mo-
bile applications and finally ubiquitous computing. Companies and organizations are now using middleware
technologies to build enterprise-wide information systems by integrating previously independent applications,

Project-Team OBASCO 7

together with new developments. Since an increasing number of devices are participating in a global informa-
tion network, mobility and dynamic reconfiguration will be dominant features, requiring permanent adaptation
of the applications. For example, component-based applications working in highly dynamic environments,
where resource availability can evolve at runtime, have to fit their dynamic environment.

To adress this challenge, we propose that these applications must be self-adaptive, that is adapt themselves to
their environment and its evolutions. We consider adaptation to a specific execution context and its evolutions
as a aspect which should be treated separately from the rest of an application and should be expressed with a
DSL. A first application is the expresssion of adaptation policies to adapt EJB and Fractal components. (see
Section 6.1).

5. Software
5.1. Bossa

Participants: Gilles Muller [correspondant], Rickard A. Aberg, Hervé Duchesne, Jean-Marc Menaud, Julia
Lawall.

Key words: OS, process scheduling, Linux, DSL, AOP.

Bossa is a framework (DSL, compiler, run-time system) targeted towards easing the development of kernel
process scheduling policies that address application-specific needs. Bossa includes a domain-specific language
(DSL) that provides high-level scheduling abstractions that simplify the implementation of scheduling policies.
Bossa has been validated by reengineering the Linux kernel so that a scheduling policy can be implemented
as a kernel extension.

Emerging applications, such as multimedia applications and real-time applications, have increasingly
specialized scheduling requirements. Nevertheless, developing a new scheduling policy and integrating it
into an existing OS is complex, because it requires understanding (often implicit) OS conventions. Bossa
is a kernel-level event-based framework to facilitate the implementation and integration of new scheduling
policies [39][38]. Advantages of Bossa are:

e Simplified scheduler implementation: The Bossa framework includes a domain-specific language
(DSL) that provides high-level scheduling abstractions that simplify the implementation and evolu-
tion of scheduling policies. A dedicated compiler checks Bossa DSL code for compatibility with the
target OS and translates the code into C.

e Simplified scheduler integration: The framework replaces scheduling code scattered throughout the
kernel by a fixed interface made up of scheduling events. Integration of a new policy amounts to
linking a module defining handlers for these events with the kernel.

e Safety: Because integration of a new policy does not require any changes to a Bossa-ready kernel,
potential errors are limited to the policy definition itself. Constraints on the Bossa DSL, such as the
absence of pointers and the impossibility of defining infinite loops, and the verifications performed
by the Bossa DSL compiler provide further safety guarantees.

Concretely, a complete Bossa kernel comprises three parts:

e A standard kernel, in which all scheduling actions are replaced by Bossa event notifications. The
process of re-engineering a kernel for use with Bossa can be almost fully automated using AOP.
More precisely, we have proposed to guide the event insertion by using a set of rules, amounting to
an aspect, that describes the control-flow contexts in which each event should be generated. Only 38
rules are needed for the Linux 2.4.18 kernel so as to support Bossa [33][32].

e Programmer-provided scheduling policies that define event handlers for each possible Bossa event.
Policies can be structured in a hierarchy so as to provide application-specific scheduling behavior.

8 Activity Report INRIA 2003

e An OS-independent run-time system that manages the interaction between the rest of the kernel and
the scheduling policy.

A prototype of Bossa is publicly available at http://www.emn.fr/x-info/bossa. When evaluating the perfor-
mance of Bossa compared to the original Linux kernel on real applications such as kernel compilation or
multimedia applications, no overhead has been observed. Finally, Bossa is currently used at EMN in teaching
scheduling.

Bossa was initially developed in the context of a research contract between France Télécom R&D and the
Compose INRIA project. It is currently supported by Microsoft Research (see Section 7.2) and developed
jointly by EMN and the University of Copenhagen (DIKU). J.-F. Susini hosted by the project from January to
August 2003 has participated to this development.

5.2. EAOP

Participants: Mario Siidholt [correspondant], Rémi Douence, Bil Lewis.
Key words: Java, Recoder, Javassist, CPS.

The EAOP software provides a Java testbed for the definition of expressive aspect languages. It enables
weaving of aspect behavior during program execution based on relations between execution events. It supports
the definition of expressive aspect languages and a general notion of dynamic aspect composition.

Definition of expressive aspect languages is a major research issue of AOP. However, none of the common
approaches to AOP allows for the flexible and powerful definition of new language constructs.

We have developed the Event-based Aspect-Oriented Programming model (EAOP) as a general-purpose,
well-defined support for AOP with the following characteristics [6]:

e Execution events (e.g., method calls) represent points of interest of an application. Crosscuts, defined
as sequences of events, explicitly represent relationships between points of interest.

e Aspect weaving is defined by an execution monitor, that triggers an action when a crosscut (i.e.,
sequence of events) is detected. EAOP aims at a simple and intuitive semantics for applications, so
we use a fully synchronous event model. On event emission the base program suspends its execution,
yields control to the monitor, which in turn yields it to the aspects. After all actions have been applied,
control returns to the base program.

e Two aspects interact when two actions are triggered at the same point of interest. In order to
support conflict resolution, our model makes composition explicit through a tree whose nodes
are composition operators and leaves are aspects. Such operators realize aspect compositions by
controlling event propagation in the tree of aspect.

e EAOP supports an arbitrary number of aspect instances at runtime. Aspect instances may be created
and composed dynamically. Composition operators are responsible for dynamically creating aspects
and inserting (i.e., composing) them in the aspect tree.

e Aspects may be applied to other aspects and not only the base program: the monitor is re-entrant. In
this case, composition operators can filter events to be propagated and thus define scope of aspects.

We have implemented in Java the EAOP tool as a testbed for the definition of expressive aspect languages.
Aspect composition can be performed in EAOP by means of expressive and powerful composition operators.
In particular, composition operators can be used for resolution of aspect interactions, for aspect instantiation,
and for definition of aspects of aspects (see also Section 6.2).

The base program to be woven by our EAOP tool [23] can be either Java source code (by instrumentation
with the transformation tool gv Recoder http://sourceforge.net/projects/recoder) or Java byte code (by instru-
mentation using Reflex). Conceptually, aspects run in parallel with the base program. We have investigated two
implementations: a general one based on threads and an optimized one based on continuations (implemented
by B. Lewis). The distribution of the EAOP tool is publicly available at http://www.emn.fr/x-info/eaop. EAOP
is used for master lectures at EMN.

Project-Team OBASCO 9

5.3. MicroDyner

Participants: Marc Segura-Devillechaise, Jean-Marc Menaud [correspondant], Gilles Muller, Julia Lawall.
Key words: Web cache, Dynamic system evolution, AOP, C language.

MicroDyner is an AOP-based software that permits to dynamically evolve a system at runtime without
interrupting servicing. It is developed toward changing prefetching policies in Web caches.

Given the high proportion of HTTP traffic in the Internet, Web caches are crucial to reduce user access
time, network latency, and bandwidth consumption. Prefetching in a Web cache can further enhance these
benefits. For the best performance, however, the prefetching policy must match user and Web application
characteristics. Thus, new prefetching policies must be loaded dynamically as needs change.

Most Web caches are large C programs, and thus adding one or more prefetching policies to an existing
Web cache is a daunting task. The main problem is that prefetching concerns crosscut the cache structure.
Aspect-oriented programming is a natural technique to address this issue. Nevertheless, existing approaches
either do not provide dynamic weaving, incur a high overhead for invocation of dynamically loaded code, or
do not target C applications. When using the C language’, MicroDyner provides a low overhead for aspect
invocation, that meets the performance needs of Web caches [29][28][27].

A prototype of MicroDyner is publicly available at http://www.emn.fr/x-info/microdyner.

5.4. Reflex

Participants: Eric Tanter, Jacques Noyé [correspondant], Pierre Cointe, Patricio Salinas, Simon Denier.
Key words: Java, Javassist, metaobject protocol, behavioral reflection, partial reflection.

Reflex is an open behavioral reflective extension of Java. Compared to the Java reflection library, which
only offers a collection of low-level primitives for building reflective systems, Reflex provides naive users
of reflection with a ready-to-use and expressive metaobject protocol (MOP) and experienced users with an
architecture and building blocks for implementing and using application-specific MOPs.

Behavioral reflection makes it possible to control at the metalevel specific base-level operations (e.g.,
message send, instantiation, cast...). A great strength of behavioral reflection is to provide the means to
achieve a clean separation of concerns, including dynamic concerns, and hence to offer a modular support for
adaptation in software systems. This strength has already been exercised in a wide range of domains including
distribution, mobile objects, and fault-tolerance. The applicability of a naive implementation of behavioral
reflection is, however, limited by a number of issues:

e The definition of a unique, hardwired, metaobject protocol (MOP) unable to take into account
the specific requirements of various target applications and set the appropriate trade-off between
performance, expressiveness, and flexibility.

e A simplistic view of the link between the base level and the metalevel making it difficult to
appropriately structure real-life applications.

e The cost of reifying base-level operations.

Reflex provides a powerful Java infrastructure on which to implement reflective applications by solving the
above-mentioned issues as follows:

e Reflex is an open behavioral reflective extension of Java. As opposed to other reflective extensions, it
does not impose any specific MOP, thanks to a layered architecture. Indeed, Reflex allows metalevel
architects to define their own MOP, based on the framework provided by Core Reflex, possibly
reusing parts of a standard MOP library. This library, built on top of Core Reflex, provides a standard
MOP and turns Java into a ready-to-use behavioral reflective system. All this is is done without
compromising portability: Reflex relies on load-time bytecode transformation, using Javassist, and
can therefore be delivered as a portable Java library.

3is a fist study to apply our approach to C++

10 Activity Report INRIA 2003

e Core Reflex provides the means to independently define hooksets, i.e., sets of execution points to
be reified, metaobjects, and links, associating hooksets and metaobjects. All these elements can
be defined and configured either statically, using configuration classes or XML configuration files,
or dynamically. This makes it possible to relate several execution points and handle crosscutting
concerns in a very flexible way.

e Configuration also includes the possibility to define where and when reflection is useful, through
spatial and temporal selection. Spatial selection deals with selecting the operation of interest, as
well as their occurrences of interest, based on their location in the code. Temporal selection refers
to the possibility of a lazy creation of reflective objects, and to the notion of link activation, which
makes it possible to connect a hookset to the metalevel only when needed. This implements partial
reflection.

A prototype of Reflex is available at http://www.emn.fr/x-info/reflex, and more information on the ideas
behind Reflex can be found in [31]. Reflex has been used for teaching reflection at the Master level within our
EMOOSE and DEA curricula (see Section 9.2) as well as at the University of Chile. It is developed jointly by
EMN and the University of Chile.

6. New Results

6.1. Components

Key words: objects, modules, components, communications, encapsulation, interfaces, protocols, services,
life cycle, adaptation, composition, interaction, specialization.

Participants: Jacques Noyé, Jean-Claude Royer, Thomas Ledoux, Gustavo Bobeff, Andrés Farias, Pierre-
Charles David, Sebastian Pavel.

At the theoretical level, we study two component model extensions: explicit interaction protocols including the
notion of substitutability, and asynchronous and synchronous communications with property checking. On a
more practical side, we work on techniques to better adapt component-based applications to their environment.
We also experiment with a first integration of aspects and components.

6.1.1. Explicit Protocols

As part of his Ph.D. thesis, Andrés Faréas has developed the CWEP (Component with Explicit Protocols)
model based on the principle of explicit interaction protocols. These interaction protocols are defined on the
basis of finite-state automata. They provide explicit operations for the management of component identities
for communication as well as security purposes, such as role-based access control [12].

This model includes a formal notion of substitutability of components derived from [54]. This notion
of substitutability has been extended to validate the correctness notions between the specifications of such
components and their respective implementations [24].

The EAOP model and especially its associated analysis techniques have been used to prototype an aspect
language for the dynamic manipulation of the CWEP components and to formally investigated the preservation
of the substitutability property.

6.1.2. Property Checking

We are also interested in more general ways to check properties about components and their associated
architectures. In this approach the dynamic behavior of a component is represented as a structured symbolic
transition system. We compute the global dynamic behavior of an architecture using the principle of the
synchronous product. We have defined a general mixed technique [19] to formally describe the data part
and the dynamic behavior of such a concurrent and communicating architecture. Previous experiences show
that proof assistants like Larch Prover or PVS may allow us to prove general properties, even temporal logic
ones [25].

Project-Team OBASCO 11

Often concurrent systems consider an abstract point of view with synchronous communications. However
it seems more realistic and precise to consider asynchronous communicating systems, since it provides a
more primitive communication protocol and maximizes the concurrency. The technique of [19] is extended
with buffer for queued messages, message emissions and message receipts. This extension provides a uniform
model allowing asynchronous and synchronous communications. Asynchronous communications lead to more
complex dynamic behavior, it increases the need for verification tools. We also define an algorithm [26]
devoted to an analysis of the dynamic behavior of the system. This algorithm decides if the system has bounded
mailboxes and computes the reachable mailbox contents of the system.

6.1.3. Adaptation

6.1.4

In [20] we have shown that adaptability is a key feature of components, and proposed a definition of
components taking this feature into account. We have discussed the fact that the standard implementations
of components are limited to a shallow adaptation of components, limited to wrapper code around the initial
component implementation, which is left intact. We have shown that the implementation can be adapted, too,
without breaking component encapsulation by relying on specialization techniques (more precisely, we are
interested in combining partial evaluation and slicing). A key to not breaking encapsulation is then to use
specialization scenarios, as introduced, in the context of C, by Le Meur et al. [52]. This can be complemented
with the use of component generators in order to further decouple component production and use. We are
currently working on a component model, language, and infrastructure based on these ideas (see S. Pavel’s
Ph.D. and the master theses [40][35]).

This first kind of adaptation is automatic and takes place at assembly time. We are also interested in a
second, very different, kind of adaptation that is programmed and takes place at runtime.

In [21], we propose to build self-adaptive component-based applications to fit their evolving environment.
We present the general approach we recommend and the corresponding Java development framework we
developed to support it. The approach follows the separation of concerns principle where the adaptation logic
of an application is developed separately from the rest of it.

The proposed framework is mainly based on a context-awareness service and an adaptation policies
development framework. The context-awareness service provides information about the execution context
(network connection, available memory...). This information is used by adaptation policies which capture the
adaptation concern and allow the dynamic reconfiguration of component-based applications. These policies are
Event/Condition/Action rules expressing: the event of interest, the needed condition to satisfy before realizing
the associated action (i.e., a reconfiguration). The adaptation mechanism is based on a weaving process that
dynamically binds the adaptation policies to the components, making them self-adaptive. This framework has
been used to adapt Java objects (RAM), Entreprise Java Beans (Jonas) and more recently Fractal components.
The next step, presented in the body of P.-C. David’s Ph.D. thesis, will be the expression of adaptation policies
with a DSL.

Integrating Aspects with Components

We have validated the EAOP model [6] for e-commerce applications in the context of the European project
EASYCOMP (see Sections 6.2 and 8.3). Concretely, we have integrated EAOP with the Vienna Component
Framework (VCF) developed at TU Wien, Austria. This integration enables crosscutting concerns to be
added dynamically to industrial component models, such as EJB and .NET components. Finally, a German
compagny, H.E.I. GmbH, has developed an e-commerce application using VCF and EAOP. This case study
has allowed the unanticipated introduction of an aspect for business rules (rebate policies) into an existing
application.

6.2. Aspects

Participants: Mario Siidholt, Rémi Douence, Pierre Cointe, Jean-Marc Menaud, Gilles Muller, Julia Lawall,
Marc Segura-Devillechaise, Luc Teboul, Eric Tanter, Simon Denier.

6.2.1.

6.2.2

12 Activity Report INRIA 2003

Key words: separation of concerns, events, trace, monitor, join points, crosscutting, aspects weaving, static
analysis, Aspect], EAOP, Reflex.

Glossary

(Aspect]) join points: are well defined points in the execution of a program.

(Aspect]) pointcuts: are a means of referring to collections of join points and certain values at those
join points.

Crosscut: a specification of where aspect actions should be woven in a base program.

Advices a.k.a Actions: A specification of what an aspect computes. In Aspect], they are method-like
constructs used to define additional behavior at join points.

Aspect: a concern crosscutting a set of standard modular units (classes, packages, modules, compo-
nents...); it defines some crosscuts and actions. In AspectJ, aspects are units of modular cross-
cutting implementation, composed of pointcuts advice, and ordinary Java member declarations.

Weaver: a tool that takes a base program and several aspects and produces a new program.

Aspect conflicts: two aspects may conflict, in particular when they share crosscuts.

We continue the development and the implementation EAOP model. We investigate its application in the
field of OS. In order to compare the reflective and AOP approaches, we apply the Reflex infrastructure to an
alternative implementation of EAOP.

Event-based AOP is an approach to aspect-oriented programming, based on the concept of a central monitor
that receives synchronous events from join points in the application and possibly triggers some actions on
sequences of related events [6]. The great expressive power of EAOP makes it possible to reason about events
patterns, thus supporting temporal reasoning.

This model offers different variants according to the languages used to define crosscuts and
advices/actions [17]. We currently consider two main variants. In the first variant, static EOAP, cross-
cuts definitions are restricted to regular expressions. This limits expression power but allows formal studies
(e.g., static analysis of interactions). In the second variant, dynamic EAOP, crosscuts are defined in a Turing
complete language. This allows very expressive crosscuts to be defined, however aspect conflicts must be
detected and resolved dynamically.

Static EAOP

Based on our previous work [5], we have extended the language of crosscut definitions while keeping static
analysis capabilities. We still focus on sequences (of execution events) defined as a regular expression, but we
allow equality constraints between several events to be expressed with variables. We have also developed more
expressive support for conflict resolution that takes into account equality constraint variables and proposed a
notion of enriched interface that makes explicit the family of base programs which can be woven with an
aspect. This extension provides support for reuse of aspects [22].

This static version of EAOP has also been used in the Ph.D. thesis of Andrés Farias [12] in order to extend
components with explicit protocols (see Section 6.1).

This research is currently pursued in two further directions: the definition of a general DSL for expressing
crosscut definitions (Luc Teboul’s Ph.D.) based on a generalization of the Aspect]’s cflow operator, and the
definition (in collaboration with S. Conchon hosted by the project from January to August 2003) of a calculus
for EAOP according to the tradition of process calculi.

Dynamic EAOP

We have implemented a prototype for the EAOP model for Java. It was exemplified in [23] with a toy e-
commerce application as a first demo. In order to deal with more realistic applications, the original prototype
has been optimized by introducing a continuation passing style transformation for aspects. This prototype has

6.2.3

6.2.4

Project-Team OBASCO 13

allowed us to show how different mechanisms such as aspect composition, aspect instantiation and aspect
scope can be defined uniformly as general composition operators of aspects.

Reflection and EAOP

In [31], we have discussed the possibility of using a reflective infrastructure such as Reflex as a basis for
providing runtime AOP, with the possibility of very easily introducing new join points and implementing
crosscutting metaobjects. Then EAOP can be seen as a particular instantiation of partial behavioral reflection,
where all hooks forward control to a unique omnipotent metaobject called the monitor (see Section 6.3). This
work has allowed us to apply EAOP to base programs available in byte-code only and initiate a study about
AOP and reflection.

Aspects in OS

Furthermore, we have applied the EAOP model in order to automatically evolve Linux kernel code to
support the Bossa system (see Section 5.1). Concretely, we have defined an aspect for instrumentation of
the Linux kernel with event generation statements for the Bossa runtime system. The aspect definition has
been formalized in terms of rules in a temporal logic and the corresponding transformation system has been
implemented [32][33].

In this approach, the transformation process is performed on the kernel source code at compile time. In
the context of Web caches (see Section 5.3), we have developed another strategy for dynamically changing
cache prefetch strategies without interrupting request servicing [29][28][27]. The evolution is then performed
at binary level at run time. We are investigating on how to unify both approaches in a common framework.

6.3. Post-Objects

Key words: opening, specialization, Java, java.lang.reflection, Reflex, design patterns, Eclipse.

Participants: Pierre Cointe, Jacques Noyé, Thomas Ledoux, Hervé Albin-Amiot, Pierre-Charles David,
Simon Denier, Eric Tanter.

Glossary

to reify: making object.

to reflect: diving an object into the data flow.

spatial selection: consists in selecting what will be reified in an application.
temporal selection: consists in selecting when reifications are effectively active.

hook: the base level piece of code responsible for performing a reification and giving control to the
metaobject. To be compared with an AOP jointpoint.

hookset: to gather execution scattered in various objects.

We are investigating some new directions in the field of Object-Oriented languages. Our general purpose is to
open these languages in order to introduce extra mechanisms such as revisited encapsulation and inheritance,
reflection, crosscutting aspects, objects interaction and composition. At that time we are prototyping with Java
via the Reflex infrastructure.

6.3.1. Design Pattern Reifications

The two theses of H. Albin and Y-G. Guéhéneuc were dedicated to the reification and analysis of design-
patterns. There goals were to fill in the gap between programming languages a /a Java, and modeling languages
ala UML by providing on one hand automatic code generation from a given model [11] and on the other hand
detection of complete and distorted forms of design-pattern in Java sources [13].

These theses have developed the common PDL (Pattern Description Language) meta-model for the descrip-
tion of patterns. A first tool, PatternsBox, uses this meta-model to describe meta-patterns, to instantiate these
meta-patterns into abstract patterns, to parameterize these abstract patterns, and to generate associated source

6.3.2.

6.3.3.

14 Activity Report INRIA 2003

code. A second tool, Ptidej, uses the same meta-model to represent re-engineered libraries and collaborates
with an explanation-based constraint solver to detect complete and distorted forms of patterns

Reflex: Partial Behavioral Reflection in Java

Reflection is a powerful approach for adapting the behavior of running applications and to provide the means
to achieve a clean separation of concern. Nevertheless the applicability of (behavioral) reflection is limited by
the lack of a widely accepted appropriate infrastructure on which to implement reflective applications. Our
main results presented in [31] are as follows:

e a comprehensive approach to reflection based on the model of hooksets. The idea consists of
grouping reified execution points into composable sets, possibly crosscutting object decomposition
and attaching at the metalevel some behavior to these sets through an explicit configurable link,

e in the context of Java, the implementation of the Reflex open architecture supporting this approach
and making it possible to combine static and dynamic configuration of reflection (see also Section
5.4).

The [30] explores how Reflex could be used to deal with interactive inspection. Work in progress includes:

e an implementation of the EAOP model in Reflex to demonstrate that dynamic/runtime AOP can be
seen as a subset of partial behavioral reflection. More generally, using Reflex as an infrastructure to
model in Java (and then to compare) different AOP approaches (this is S. Denier’s Ph.D. work),

e explicit support for the roles of assembler and metalevel architect in addition to that of metapro-
grammer (see E. Tanter’s upcoming Ph.D. thesis).

Reflection and Aspects in Smalltalk
In the tradition of ObjVlisp and ClassTalk [4][2], we have also investigated the use of reflection to support
AOP in Smalltalk. In [14], T. Ledoux and N. Bouraqadi introduce the MetaclassTalk MOP and discuss one
possible approach to isolate aspects as explicit metaclasses and then weave them together by using metaclass
composition.

Taking advantage of the great malleability of this dynamically typed language, we plan to investigate
TRAITS as defined in [42] to provide a clean Smalltak/Squeak MOP, which would then be used in turn to
integrate traits, aspects and components in a uniform way.

6.4. AOP for OS Kernels

6.4.1.

Key words: OS, process schedulers, Web caches, proxies, C language.

Participants: Gilles Muller, Thomas Ledoux, Jean-Marc Menaud.

Scheduler Policies

The Bossa framework has been publicly available for one year. It is fully compatible with the Linux 2.4.18
kernel and can be used as a direct replacement. Most of our work has been done to improve performance and
add functionalities such as the support of a hierarchy of schedulers which allows an application to customize
the global behavior of the OS to specific needs [39][38]. As an example we have designed policies for
multimedia applications and teaching labs.

Our first Bossa kernels were manually re-engineered. This process is tedious, error prone and requires a
lot of work (the Linux kernel currently amounts to over I00MB of source code). We have experimented
an AOP-based approach to transform the Linux kernel (see [33][32] and Section 5.1). Additionally, we
have investigated the extension of Bossa to multiprocessors [37] and the integration of Bossa in the .NET
framework [36].

Project-Team OBASCO 15

6.4.2. Prefetching and extensible Caches

Our work on MicroDyner has focused on the design and implementation of a robust prototype that can be made
publicly available [29][28]. We are currently experimenting with applying MicroDyner to SQUID - the most
used free-software Web cache - so as to dynamically change its internal cache strategies, such as prefetching.
Preliminary evaluations show no performance degradation [27].

7. Contracts and Grants with Industry
7.1. IBM Eclipse Fellowships

Participants: Pierre Cointe, Yann-Gaél Guéhéneuc.

Guéhéneuc’s thesis [13] explores models and algorithms to identify semi-automatically micro-architectures in
source code, which are similar to design-patterns and to ensure their traceability between implementation
and reverse engineering phases. Metamodeling is used to describe design-patterns and Java programs. It
leads to characterize certain interclass relations (association, aggregation and composition) offered by design
languages such as UML, to precise their properties (access type, lifetime, exclusivity and multiplicity) and to
identify them with static and dynamic analyses. It also leads to translate design-patterns into constraint systems
and to identify micro-architectures, which are similar to design-patterns (complete and distorted forms), by
solving constraint satisfaction problems. Explanation-based constraint programming allows guiding the solve
interactively and explaining identified micro-architectures.

The Ptidej tool suite implements the proposed models and algorithms and is publicly available at
http://www.emn.fr/x-info/ptidej. Ptidej has been supported by an IBM Eclipse Fellowships grant of 35 000
US $ for the period July 2002 to December 2003 (see http://www.eclipse.org/technology/research.html).

7.2. Microsoft Research
Participants: Gilles Muller, Jean-Marc Menaud, Mario Siidholt, Rickard A. Aberg, Arnaud Denoual.

Our work on the development of Bossa (see Section 5.1) is currently supported by Microsoft Research via
two grants. The first grant of 30 000 euros is related to our AOP-based approach for re-engineering existing
kernel [32][33] and the integration of Bossa within the .NET framework [36].

The second grant of 25 000 US $ is an award resulting from a world-wide Embedded Systems Request for
Proposal (RFP) that MSR has run. The topic of this grant is a port of Bossa to Windows XP embedded.

8. Other Grants and Activities

8.1. Regional Actions

The OBASCO team participates in the COM project funded by the Pays de la Loire council to promote
research in computer science in the region in particular the creation of LINA (Laboratoire d’Infomatique de
Nantes Atlantique), a FRE between CNRS, University of Nantes and Ecole des Mines de Nantes.

OBACO partipates with the Triskell and Atlas teams in the Club Objet de I’Ouest which fosters cooperation
in object technologies between public research laboratory and industry.

8.2. National Projects
8.2.1. ANVAR Componentifying Multi-Agent Libraries

Participants: Jean-Claude Royer, Pierre Cointe, Jacques Noyé, Thomas Ledoux, Gustavo Bobeff, Pierre-
Charles David.

This joint project is funded by ANVAR via ARMINES for an amount of 19 Keuros (2003/2004). The
participants come from the group of Ecoles des Mines (Alés, Douai, Nantes and Saint-Etienne). The goal

16 Activity Report INRIA 2003

is to evaluate the “semantic gap” between components and agents. To reach it, we are investigating a common
model integrating components and agents. The model will be integrated in the Eclipse IDE and used as a
test-bed to re-implement a library for multi-agent previously developed by the team from Saint-Etienne. The
project started in 2003 with a general state of the art about component and agent technologies. On this basis,
we elaborate the general principles of a component model with asynchronous communications, hierarchical
components and explicit dynamic behavior (see also Section 6.1).

8.2.2. RNTL ARCAD

Participants: Thomas Ledoux, Pierre-Charles David, Pierre Cointe, Jacques Noyé, Jean-Marc Menaud, Eric
Tanter, Patricio Salinas.

The ARCAD project is an RNTL project running from December 2000 to December 2003 with a 107 Keuros
funding for our team.

The project federates work between five partners: France Télécom R&D, INRIA Rhone-Alpes (Sardes
project), INRIA Sophia-Antipolis (Oasis project), laboratoire 13S (CNRS et Université de Nice, Rainbow
team) and ourself.

The goal of ARCAD is to propose a component-based software architecture enabling the building of
distributed adaptable applications. Experiments are realized in the ObjectWeb context with JOnAS and Fractal
(see http://www.objectweb.org).

In 2003, the main results were REFLEX [31] (see also Section 5.4), a DSL for Fractal to describe adaptation
policy [21] (see also Section 6.1), and a new Fractal ADL.

The default Fractal ADL, developed by France Telecom R&D, uses an XML syntax to describe the initial
architecture of a Fractal application. This makes the language very flexible, easily extensible, and amenable to
automated processing using XML technologies (like XSLT). But even with the appropriate tools like XML-
aware editors, simple architecture descriptions can quickly become difficult to read, understand and maintain.
P.-C. David has developed an alternative language (and the corresponding parser) with a much more concise
and readable syntax but without extra cost induced by component sharing, attribute values specification, exter-
nal templates, ...This ADL is publicly available at: http://fractal.objectweb.org/tutorials/simple-adl/index.html.

8.2.3. Action incitative CORSS

Participants: Gilles Muller, Jean-Marc Menaud.

The aim of this research action, funded by the French ministry of research and started in October 2003, is
to establish a cooperation between research groups working in the domains of operating systems and formal
methods. Our goal is to study methods and tools for developing OS services that guarantee by design safety and
liveness properties. Targeted applications are phone systems, kernel services, and composition of middleware
services. Our specific interest is generalizing the Bossa framework to multiple types of OS resources such as
energy, disk and network.

Our partners are the FERIA/SVF project at the University Paul Sabatier (coordinator), the INRIA Arles
project, the INRIA Compose project, and the LORIA Mosel project.

8.2.4. Action incitative DISPO
Participants: Jacques Noyé, Sebastian Pavel, Jean-Claude Royer, Mario Siidholt.

The aim of this research action, funded by the French ministry of research and started in October 2003, is
to contribute to the design and implementation of better component-based software in terms of security and
more precisely service availability. This will be based, on the one hand, on formalizing security policies using
modal logic (e.g., temporal logic or deontic logic), and, on the other hand, on modular program analysis
and program transformation techniques making it possible to enforce these possibilities. We are in particular
interested in considering a security policy as an aspect and using aspect-oriented techniques to inject security
into components implemented without taking security into account (at least in a programmatic way).

Project-Team OBASCO 17

Our partners are the FERIA/SVF project at the University Paul Sabatier (Toulouse), the INRIA Lande
team (coordinator), and the RSM team of the ENSTB (Ecole Nationale Supérieure de Télécommunications)
Bretagne.

8.3. European Projects
8.3.1. EASYCOMP IST Project

Participants: Mario Siidholt, Gustavo Bobeft, Pierre Cointe, Rémi Douence, Jacques Noyé, Andrés Farias.

The EASYCOMP project is an IST project running from June 2000 to November 2003 funded by the European
Union (350 Keuros for our team). The goal of this project is to provide a uniform composition model and
corresponding infrastructure facilitating composition of software artifacts over all of the component lifecycle
(see http://www.easycomp.org). The project federates work by 10 partners, 7 academic and 3 industrial
ones, from 6 countries: apart from EMN, University of Karlsruhe, University of Kaiserslautern, Linképing
University, Twente University, Technical University of Vienna, Budapest University of Technology and
Economics, H.E.I. GmbH, ILOG S.A., and Q-Labs S.A.

In 2003, OBASCO group has produced two kinds of result. First, the EAOP model has been completed and a
corresponding publicly-available tool developed (see Section 5.2). Second, program specialization techniques
in the context of component-based software engineering have been investigated.

8.3.2. ELASTEX ALFA Project

Participant: Jacques Noyé.

The European project ELASTEX (European And Latin American Students EXchange) of the ALFA (América
Latina, Formacion Académica) programme gathers ten partners from Latin America and Europe: Universidad
de Chile (Chile), Universidade Federal do Rio de Janeiro (Brazil), Pontificia Universidade Catdlica do
Parand (Brazil), Universidad Nacional de la Plata (Argentina), Universidad de Los Andes (Columbia),
Vrije Universiteit Brussel (Belgium), Universidade Nova de Lisboa (Portugal), Universiteit Twente (The
Netherlands). The objectives of the project were to contribute to the organization of the EMOOSE Master
program and to strengthen the scientific relationship between the partners through teacher and student
exchanges. This project, started in September 2001, came to an end in August 2003.

9. Dissemination

9.1. Animation of the community

9.1.1. Animation

9.1.1.1. ACM/Sigops:
G. Muller is the vice-chair of the ACM/Sigops, and the chair of the French Sigops Chapter (ASF).

9.1.1.2. CNRS/RTP Distributed System:
G. Muller is a member of the board of the CNRS Réseau Thématique Prioritaire on Distributed Systems. He
also chairs an Action Spécifique on methodologies and tools for the design of operating systems.

9.1.1.3. CNRS/GDR ALP:
The team is a member of the CNRS Groupe de Recherche “Algorithms, Languages and Programming” (see
http://www.liafa.jussieu.fr/~alp). As such, we participated to the special day organized in conjunction with the
LMO conference in Vannes (see http://Imo.iu-vannes.fr/).

9.1.1.4. OCM 2003:
Following the Objet XX and OCM XX series, OCM 2003 was organized this year in Rennes, on June
5th, in cooperation with the Triskell and Atlas projects. The theme was Software migration and software
interoperability. See http://www.ocm-ouest.org for more details.

18 Activity Report INRIA 2003

9.1.1.5. Les jeudis de I’ objet:
This bimonthly industrial seminar organized by our group is now seven years old. Together with the annual
conference OCM, it has become a great place for local industry to learn, exchange ideas, share experiences
around the technologies associated with objects and components. Each seminar presents either a state of the art
of an emerging technology (XML, .NET, etc.) or feedback on an industrial project in the field of large software
architectures (mobility-based applications in a small enterprise, open source middleware...). For more details
on the past/future agenda, go to http://www.emn.fr/jeudis-objet.

9.1.2. Steering, journal, conference committees

9.1.2.1. P. Cointe:
He is a member of the ECOOP and LMO steering committees (http://www.ecoop.org). He is a member of the
RSTI L’ Objet journal editorial board. He has reviewed papers for TOPLAS and TSI.

He co-organized the workshop on Software Composition in the context of ETAPS 2003 in Warsaw with the
main partners of the EASYCOMP project (U. Assmann, E. Pulvermueller, I. Borne and N. Bouraqadi). He is
a program committee member of the OOPS special technical track at the 19th ACM Symposium on Applied
Computing (see http://oops.disi.unige.it).

He will serve as a program committee member of the eTX (eclipse Technology Exchange) and SC (Software
Composition) workshops at ETAPS (Barcelona, March/April 2004, see http://www.lsi.upc.es/etaps04). He will
be a track leader, on Generative Programming and Aspects, at the Unconventional Programming Paradigms
workshop (Saint-Malo, September 2004, see http://upp.lami.univ-evry.fr/).

9.1.2.2. T. Ledoux:
He reviewed papers for the TSI special issue on Systemes a composants adaptables et extensibles. He was a
program committee member of the LMO 2003 conference (Langages et Modeéles a Objets, Vannes, February
2003).

9.1.2.3. G. Muller:
He was a program committee member of DSN 2003 (IEEE Conference on Dependable Systems and Networks,
San Francisco, June 2003), CFSE-3 (3rd French Conference on Operating Systems, La Colle sur Loup,
October 2003), DAIS 2003 (4th IFIP International Conference on Distributed Applications & Interoperable
Systems, Paris, November 2003).

He was a jury member for the award of the best French Ph.D. in operating systems issued in October 2003
during CFSE-3, and a jury member for the Atlantitiel Innovation Award, which was awarded to four innovating
companies in the Pays de la Loire council.

He is a program committee member of DSN 2004 (IEEE Conference on Dependable Systems and Networks,
Firenze, June 2004), and FTDCS 2004 (International Workshop on Future Trends of Distributed Computing
Systems, Suzhou, China, May 2004).

9.1.2.4. J. Noyé:
He was a program committee member of LMO 2003 (Langages et Modeéles a Objets, Vannes, February 2003).
He is a program committee member of LMO 2004 (Lille, March 2004)

9.1.2.5. J-C. Royer:
He is an editor-in-chief of the RSTI L’Objet journal, a member of the editorial board of the Journal of Object
Technology (JOT), and a member of the steering committee of RSTI (Revue des Sciences et Technologies de
I’Information, Hermes-Lavoisier).

9.1.2.6. M. Siidholt:
He was a program committee member of AOSD 2003 (Aspect Oriented Software Design, Boston, March
2003), and a program committee member of the workshops ACP4IS at AOSD 2003, and SC at ETAPS 2003.
He is a program committee member of AOSD 2004 (Lancaster, March 2004), and of the workshops FOAL at
AOSD 2004 and SC at ETAPS 2004.

Project-Team OBASCO 19

9.1.3. Thesis committees

9.1.3.1. P. Cointe:
He has been the scientific advisor of Hervé Albin-Amiot (thesis defense on 6/2/2003) [11] and Yann-
Gaél Guéhéneuc (thesis defense on 23/6/2003) [13]. He reviewed the HDR of M. Huchard (U. Montpel-
lier/LIRMM, 4/04/03), and participated in the HDR committees of O. Boissier (EMSE/U. StEtienne, 12/2/03)
and N. Beldiceanu (University of Paris 6, 28/4/03). He served in the Ph.D. committees of T. Quinot (University
of Paris 6, 24/3/03) and Andres Farias (EMN/U. of Nantes, 18/12/2003).

9.1.3.2. T. Ledoux:
Was chair of the Ph.D. committee of Victor Budau (INT Evry, 19/11/2003).

9.1.3.3. G. Muller:
He has been the advisor of Luciano P. Barreto (thesis defense on 30/8/2003, U. of Rennes I/INRIA Compose
group). He reviewed the Ph.D. of S. Patarin (U. of Paris 6/LIP6, 4/6/2003), the Ph.D. of A. Sénart (INPG,
6/11/2003), and the Ph.D. of Christian Khoury (U. of Paris 6/LIP6, 12/2003).

9.1.3.4. J-C. Royer:
He participated in the HDR of M. Huchard (U. Montpellier/LIRMM, 4/04/03).

9.1.3.5. M. Siidholt:
He has been the scientific advisor of A. Farias (thesis defense on 18/12/2003) [12].

9.1.4. Evaluation committees and expertise

9.14.1. P. Cointe
He was a member of the Grand Jury organized by France Telecom R&D in charge of evaluating the theme
“Architectures and Software Infrastructures” in October. As INRIA, he was a member of the CR2 hiring
committee organized by the Rhones Alpes UR (Grenoble, June 2003) and reviewed one proposal for the ACI
Security. As a member of the MSTP, he was in charge of evaluating proposals for the ACI Young Researchers.
He evaluated some LIRMM proposals submitted to the Languedoc Roussillon council.

9.2. Teaching

9.2.1. EMOOSE:

In September 1998, the team set up, in collaboration with a network of partners, an international Master
of Science program EMOOSE (European Master of Science on Object-Oriented and Software Engineering
Technologies). This program is dedicated to object-oriented software engineering in a broad sense, including
component-based and aspect-oriented software development. The network of partners, SENSO, includes the
partners of the ELASTEX project (see 8.3) together with the Technische Universitdt Darmstadt (Germany)
and the Monash University (Australia). The program is managed by the team and the courses take place in
Nantes. The students receive a Master of Science degree of the Vrije Universiteit Brussel and a Certificat
d’études spécialisées de I’Ecole des Mines de Nantes. The fifth promotion graduated in September 2003 while
the sixth promotion was about to start their first semester. See also: http://www.emn.fr/EMOOSE.

9.2.2. DEA infomatique de Nantes
The faculty members of the team participate to this master program and give lectures about new trends in the
field of object-oriented software engineering.
EMOOSE and the DEA are two opportunities to welcome student interns for their master thesis:

e DEA (February - July 2003):
Arnaud Denoual, Sebastian Pavel and Hervé Duchesne [36][40][37].

e EMOOSE (February - July 2003):
Diego De Sogos, Kaiye Xu and Yan Chen [35][41][34].

20 Activity Report INRIA 2003

9.3. Collective Duties

9.3.1. P. Cointe:

He is chairman of the Computer Science Department at EMN and as such the co-chair of the pdle informatique
associated to the CPER 2000-2006. He is also a member of the MSTP (Mission Scientifique Technique
Pédagogique) since March 2003. He was a member of the CNU (the French University National Council)
until September 2003.

10. Bibliography
Major publications by the team in recent years

[1] M. AKSIT, A. BLACK, L. CARDELLI, P. COINTE, AL. Strategic Research Directions in Object Oriented
Programming. in « ACM Computing Surveys », number 4, volume 28, December, 1996, pages 691-700.

[2] M. BOURAQADI-SAADANI, T. LEDOUX, F. RIVARD. Safe Metaclass Programming. in « Proceedings of
OOPSLA 1998 », number 10, volume 33, ACM-Sigplan, ACM Press, C. CHAMBERS, editor, pages 84-96,
Vancouver, British Columbia, USA, October, 1998.

[3] P. COINTE. Les langages a objets. in « Technique et Science Informatique », number 1-2-3, volume 19, 2000,
pages 139-146.

[4] P. COINTE. Metaclasses are First Class: The ObjVlisp Model. in « Proceedings of the second ACM SIGPLAN
conference on Object-oriented programing, systems, languages, and applications (OOPSLA 1987) », number
12, volume 22, ACM Press, J. L. ARCHIBALD, editor, pages 156—167, Orlando, Florida, USA, October, 1987.

[5] R. DOUENCE, P. FRADET, M. SUDHOLT. A framework for the detection and resolution of aspect interac-
tions. in « Proceedings of the Ist ACM SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering (GPCE’02) », pages 173-188, Pittsburgh, USA, October, 2002.

[6] R. DOUENCE, O. MOTELET, M. SUDHOLT. A formal definition of crosscuts. in « Proceedings of the 3rd
International Conference on Reflection 2001 », series Lecture Notes in Computer Science, volume 2192,
Springer-Verlag, A. YONEZAWA, S. MATSUOKA, editors, pages 170-186, Kyoto, Japan, September, 2001.

[71T. LEDOUX. OpenCorba: a Reflective Open Broker. in « ACM Meta-Level Architectures and Reflection, Second
International Conference, Reflection’99 », series Lecture Notes in Computer Science, volume 1616, Springer-
Verlag, P. COINTE, editor, pages 197-214, Saint-Malo, France, July, 1999.

[8] F. MERILLON, L. REVEILLERE, C. CONSEL, R. MARLET, G. MULLER. Devil: An IDL for Hardware Pro-
gramming. in « Proceedings of the Fourth Symposium on Operating Systems Design and Implementation »,
USENIX Association, pages 17-30, San Diego, California, October, 2000.

[9] E. TANTER, M. BOURAQADI-SAADANI, J. NOYE. Reflex - Towards an Open Reflective Extension of Java. in
« Proceedings of the 3rd International Conference on Reflection 2001 », series Lecture Notes in Computer
Science, volume 2192, Springer-Verlag, A. YONEZAWA, S. MATSUOKA, editors, pages 25-42, Kyoto, Japan,
September, 2001.

Project-Team OBASCO 21

Books and Monographs

[10] P. COINTE, editor, Les langages a objets. series Traité multi-volumes sur les sciences de I’ingénieur, série 4C.,
Hermes, to appear.

Doctoral dissertations and ‘“Habilitation’ theses

[11] H. ALBIN-AMIOT. Idiomes et patterns Java: Application a la syntheése de code et a la détection. Ph. D. Thesis,
Ecole des Mines de Nantes and Université de Nantes, February, 2003.

[12] A. FARIAS. Un modeéle de composants avec des protocoles explicites. Ph. D. Thesis, Ecole des Mines de
Nantes and Université de Nantes, December, 2003.

[13] Y.-G. GUEHENEUC. Un cadre pour la tragabilité des motifs de conception. Ph. D. Thesis, Ecole des Mines
de Nantes and Université de Nantes, June, 2003.

Articles in referred journals and book chapters

[14] N. M. BOURAQADI-SAADANI, T. LEDOUX. Supporting AOP Using Reflection. M. AKSIT, S. CLARKE, T.
ELRAD, R. E. FILMAN, editors, in « Aspect-Oriented Software Development », Addison-Wesley, 2003, to
appear.

[15] P. COINTE, J. NOYE, R. DOUENCE, T. LEDOUX, J.-M. MENAUD, G. MULLER, M. SUDHOLT. Program-
mation post-objets : des langages d’aspects aux langages de composants. in « RSTI L’Objet, colloque en
I’honneur de Jean-Francois Perrot », number 4, volume 10, http://www.lip6.fr/colloque-JFP/, to appear.

[16] R. DOUENCE, P. FRADET. The next 700 Krivine machines. in « Higher-Order and Symbolic Computation »,
to appear.

[17] R. DOUENCE, P. FRADET, M. SUDHOLT. Trace-Based Aspects. M. AKSIT, S. CLARKE, T. ELRAD, R. E.
FILMAN, editors, in « Aspect-Oriented Software Development », Addison-Wesley, 2003, to appear.

[18] G. MULLER, J. LAWALL, S. THIBAULT, R. E. V. JENSEN. A Domain-Specific Language Approach to
Programmable Networks. in « IEEE Transactions on Systems, Man and Cybernetics », number 3, volume
33, August, 2003, pages 370-381.

[19] J.-C. ROYER. The GAT Approach to Specify Mixed Systems. in « Informatica », number 1, volume 27, 2003,
pages 89—103, http://ai.ijs.si/informatica/, ISSN 0350-5596.

Publications in Conferences and Workshops
[20] G. BOBEFF, J. NOYE. Modeling Components using Program Specialization Techniques. in « Eighth Inter-

national Workshop on Component-Oriented Programming », J. BOSCH, C. SZYPERSKI, W. WECK, editors,
Darmstadt, Germany, July, 2003, In conjunction with ECOOP 2003.

[21] P.-C. DAvID, T. LEDOUX. Towards a Framework for Self-Adaptive Component-Based Applications. in
« Proceedings of DAIS’03 », series Lecture Notes in Computer Science, Federated Conferences, Springer-

22 Activity Report INRIA 2003

Verlag, pages 1-14, Paris, November, 2003.

[22] R. DOUENCE, P. FRADET, M. SUDHOLT. Composition, Reuse and Interaction Analysis of Dynamic Aspects.
in « Proceedings of the 3rd International Conference on Aspect-Oriented Software Development (AOSD
2004) », ACM Press, Lancaster, UK, March, to appear.

[23] R. DOUENCE, M. SUDHOLT. Un modele et un outil pour la programmation par aspects événementiels. in
« LMO 2003 », Hermes, pages 105-117, Vannes, February, 2003, Version anglaise disponible en rapport
interne.

[24] A. FARIAS, Y.-G. GUEHENEUC. On the Coherence of Component Protocols. in « Workshop on Software
Composition associated to ETAPS 2003 », number 5, volume 82, Elsevier Science (Electronic Notes in
Theoretical Computer Science), U. ASSMANN, E. PULVERMUELLER, I. BORNE, N. BOURAQADI, P.
COINTE, editors, April, 2003.

[25] J.-C. ROYER. Temporal Logic Verifications for UML: the Vending Machine Example. in « RSTI - L’ objet, 4™
Rigorous Object-Oriented Methods Workshop », number 4, volume 9, Lavoisier, K. LANO, A. EVANs, T.
CLARK, editors, pages 73-92, 2003.

[26] J.-C. ROYER, M. XU. Analysing Mailboxes of Asynchronous Communicating Components. in « On The Move
to Meaningful Internet Systems 2003: Coopis, DOA, and ODBASE », series LNCS, volume 2888, Springer
Verlag, D. C. S. R. MEERSMAN, AL., editors, pages 1421-1438, 2003.

[27] M. SEGURA-DEVILLECHAISE, J.-M. MENAUD, J. LAWALL, G. MULLER. Extensibilitée Dynamique dans

les Caches Web : une Approche par Aspects. in « 3eme Conférence Francaise sur les Systemes d’Exploitation
(CFSE’03) », pages 477-487, La Colle sur Loup, October, 2003.

[28] M. SEGURA-DEVILLECHAISE, J.-M. MENAUD, G. MULLER, J. LAWALL. Web Cache Prefetching as an
aspect: Towards a Dynamic-Weaving Based Solution. in « Proceedings of the 2nd international conference on
Aspect-oriented software development », ACM Press, pages 110-119, Boston, Massachusetts, USA, March,
2003.

[29] M. SEGURA-DEVILLECHAISE, J.-M. MENAUD. MicroDyner : Un noyau efficace pour le tissage dynamique
d’aspects sur processus natif en cours d’exécution. in « LMO 2003 », Hermes, pages 109-133, Vannes,
February, 2003.

[30] E. TANTER, P. EBRAERT. A Flexible Approach to Interactive Runtime Inspection. in « ECOOP Workshop on
Advancing the State-of-the-Art in Runtime Inspection (ASARTI 2003) », Darmstadt, Germany, July, 2003.

[31] E. TANTER, J. NOYE, D. CAROMEL, P. COINTE. Partial Behavioral Reflection: Spatial and Temporal Selec-
tion of Reification. in « Proceedings of the 18th ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applications (OOPSLA 2003) », number 11, volume 38, ACM Press, R. CROCKER,
G. L. STEELE, JR., editors, pages 27-46, Anaheim, California, USA, October, 2003.

[32] R. A. ABERG, J. LAWALL, M. SUDHOLT, G. MULLER, A.-F. LE MEUR. On the automatic evolution of
an OS kernel using temporal logic and AOP. in « Proceedings of the 18th IEEE International Conference on
Automated Software Engineering 2003 (ASE 2003) », pages 196-204, Montreal, Canada, October, 2003.

Project-Team OBASCO 23

[33] R. A. ABERG, J. LAWALL, M. SUDHOLT, G. MULLER. Evolving an OS Kernel using Temporal Logic and
Aspect-Oriented Programming. in « The Second AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS) », March, 2003.

Internal Reports

[34] Y. CHEN. Aspect-Oriented Programming (AOP): Dynamic Weaving for C++. Technical report, EMOOSE:
Vrije Universiteit Brussel and Ecole des Mines de Nantes, August, 2003.

[35] D. DE S0G0S. Component Generators: Towards Adaptable and Efficient Software Components. Technical
report, EMOOSE: Vrije Universiteit Brussel and Ecole des Mines de Nantes, August, 2003.

[36] A. DENOUAL. Intégration de Bossa dans .NET. Technical report, DEA: Université et Ecole des Mines de
Nantes, September, 2003.

[37] H. DUCHESNE. Conception d’ordonnanceurs pour systemes multiprocesseurs. Technical report, DEA: Uni-
versité et Ecole des Mines de Nantes, September, 2003.

[38] J. L. LAWALL, G. MULLER, A.-F. L. MEUR. Domain-Specific Verification for Efficient Operating System
Extensions. Technical report, number 03/03/INFO, Ecole des Mines de Nantes, 2003.

[39] G. MULLER, J. L. LAWALL, L. P. BARRETO, J.-F. SUSINI. A Framework for Simplifying the Development
of Kernel Schedulers: Design and Performance Evaluation. Technical report, number 03/2/INFO, Ecole des
Mines de Nantes, 2003.

[40] S. PAVEL. Lignes de Produits Logiciels en ArchJava (Software Product Lines in ArchJava). Technical report,
DEA: Université et Ecole des Mines de Nantes, September, 2003.

[41] K. XU. Analysis and Implementation Asynchronous Component Model. Technical report, EMOOSE: Vrije
Universiteit Brussel and Ecole des Mines de Nantes, August, 2003.

Bibliography in notes

[42] A. P. BLACK, N. SCHARLI, S. DUCASSE. Applying Traits to the Smalltalk Collection Classes. in
« Proceedings of the 18th ACM SIGPLAN conference on Object-oriented programing, systems, languages,
and applications (OOPSLA 2003) », ACM Press, R. CROCKER, G. L. STEELE, JR., editors, pages 47-64,
Anaheim, California, USA, October, 2003.

[43] S. CHANDRA, B. RICHARDS, J. LARUS. Teapot: Language Support for Writing Memory Coherence
Protocols. in « Proceedings of the ACM SIGPLAN ’96 Conference on Programming Language Design and
Implementation », ACM SIGPLAN Notices, 31(5), pages 237-248, Philadelphia, PA, May, 1996.

[44] P. COINTE. CLOS and Smalltalk - A comparison. A. PAEPCKE, editor, in « Object-Oriented Programming:
The CLOS Perspective », MIT PRESS, 1993, chapter 9, pages 216-250.

[45] K. CZARNECKI, U. W. EISENECKER. Generative Programming. Methods, Tools and Applications. edition 2
rd printing, Addison Wesley, 2000.

24 Activity Report INRIA 2003

[46] A. GOLDBERG, D. ROBSON. SMALLTALK-80. THE LANGUAGE AND ITS IMPLEMENTATION. Addison
Wesley, 1983.

[47] N. JONES, C. GOMARD, P. SESTOFT. Partial Evaluation and Automatic Program Generation. series
International Series in Computer Science, Prentice Hall, 1993.

[48] G. KICZALES, J. M. ASHLEY, L. RODRIGUEZ, A. VAHDAT, D. BOBROW. Metaobject protocols: Why we
want them and what else they can do. A. PAEPCKE, editor, in « Object-Oriented Programming: The CLOS
Perspective », MIT PRESS, 1993, chapter 4, pages 101-118.

[49] G. KICZALES, J. LAMPING, A. MENDHEKAR, C. MAEDA, C. LOPES, J.-M. LOINGTIER, J. IRWIN. Aspect-
Oriented Programming. in « ECOOP’97 - Object-Oriented Programming - 11th European Conference », series
Lecture Notes in Computer Science, volume 1241, Springer-Verlag, M. AKSIT, S. MATSUOKA, editors, pages
220-242, Jyviskyld, Finnland, June, 1997.

[50] M. MCILROY. Mass produced software components. in « Proceedings of the NATO Conference on Software
Engineering », NATO Science Committee, P. NAUR, B. RANDELL, editors, pages 138-155, Garmish,
Germany, October, 1968.

[51] N. MEDVIDOVIC, R. TAYLOR. A Classification and Comparison Framework for Software Architecture
Description Languages. in « IEEE Transactions on Software Engineering », number 1, volume 26, January,
2000, pages 70-93.

[52] A. L. MEUR, C. CONSEL, B. ESCRIG. An Environment for Building Customizable Software Components. in
« IFIP/ACM Working Conference - Component Deployment », Springer-Verlag, pages 1-14, Berlin, Germany,
June, 2002.

[53] G. MULLER, C. CONSEL, R. MARLET, L. BARRETO, F. MERILLON, L. REVEILLERE. Towards Robust
OSes for Appliances: A New Approach Based on Domain-Specific Languages. in « Proceedings of the ACM
SIGOPS European Workshop 2000 (EW2000) », pages 19-24, Kolding, Denmark, September, 2000.

[54] O. NIERSTRASZ. Regular Types for Active Objects. O. NIERSTRASZ, D. TSICHRITZIS, editors, in « Object-
Oriented Software Composition », Prentice Hall, 1995, chapter 4, pages 99-121.

[55] R. PRIETO-DI1AZ, J. NEIGHBORS. Module Interconnection Languages. in « The Journal of Systems and
Software », number 4, volume 6, November, 1986, pages 307-334.

[56] M. SHAW, D. GARLAN. Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall, 1996.

[57]1 B. SMITH. Procedural reflection in programming languages. Ph. D. Thesis, Massachusetts Institute of
Technology, 1982.

[58] C. SZYPERSKI. Component Software. ACM Press, 2003, 2nd edition.

[59] S. THIBAULT, C. CONSEL, G. MULLER. Safe and Efficient Active Network Programming. in « 17th IEEE
Symposium on Reliable Distributed Systems », pages 135—-143, West Lafayette, IN, October, 1998.

Project-Team OBASCO 25

[60] D. THOMAS. Reflective Software Engineering - From MOPS to AOSD. in « Journal Of Object Technology »,
number 4, volume 1, October, 2002, pages 17-26, http://www.jot.fm/issues/issue_2002_09/column1.

[61] P. WEGNER. Dimension of Object-Based Language Design. in « Proceedings of the second ACM SIGPLAN
conference on Object-oriented programing, systems, languages, and applications (OOPSLA 1987) », number
12, volume 22, ACM Press, J. L. ARCHIBALD, editor, pages 168—182, Orlando, Florida, USA, October, 1987.

