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2. Overall Objectives

TANC is located in the Laboratoire d’Informatique de I’Ecole polytechnique (LIX).
The aim of the TANC project is to promote the study, implementation and use of robust and verifyable
asymmetric cryptosystems based on algorithmic number theory.

It is clear from this sentence that we combine high-level mathematics and efficient programming. Our main
area of competence and interest is that of algebraic curves over finite fields, most notably the computational
aspects of these objects, that appear as a substitute of good old fashioned cryptography based on modular
arithmetic. One of the reasons for this change appears to be the key-size that is smaller for an equivalent
security. We participate in the recent bio-diversity mood that tries to find substitutes for RSA, in case some
attack would appear and destroy the products that employ it.

Whenever possible, we produce certificates (proofs) of validity for the objects and systems we build. For
instance, an elliptic curve has many invariants, and their values need to be proved, since they may be difficult
to compute.

Our research area comprises:

e Fundamental algorithmic arithmetic: we are interested in primality proving algorithms based on
elliptic curves (F. Morain being the world leader in this topic), integer factorization, and the
computation of discrete logarithms over finite fields. These problems lie at the heart of the security
of arithmetic based cryptosystems.

o Complex multiplication: the theory of complex multiplication is a meeting point of algebra, complex
analysis and algebraic geometry. Its applications range from primality proving to the efficient
construction of elliptic cryptosystems.

e Algebraic curves over finite fields: the algorithmic problems that we tackle deal with the efficient
computation of group laws on Jacobians of curves, evaluation of the cardinality of these objects,
and the study of the security of the discrete logarithm problem in such groups. These topics are the
crucial points to be solved for potential use in real crypto-products.
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3. Scientific Foundations
Key words: Cryptology, arithmetic.

Once considered as beautiful and useless, arithmetic has proven incredibly efficient when asked to assist
the creation of a new paradigm in cryptography. Old cryptography was mainly concerned with symmetric
techniques: two principals wishing to communicate secretly had to share a common secret beforehand and this
same secret was used both for encrypting the message and for decrypting it. This way of communication was
enough when traffic was low, or when the principals could meet prior to communication.

It is clear that modern networks are too large for this to be efficient any longer. Hence the need for
cryptography without first contact. In theory, this is easy. Find two algorithms E and D that are reciprocal
(i.e., D(E(m)) = m) and in such a way that the knowledge of E does not help in computing D. Then F
is dubbed a public key available to anyone, and D is the secret key, reserved to a user. When Alice wants to
send an email to Bob, she uses his public key and can send the encrypted message to him, without asking for
this use beforehand. Though simplified and somewhat idealized, this is the heart of asymmetric cryptology.
Apart from confidentiality, modern cryptography gives good solutions to the signature problem, as well as
some solutions for identifying all parties in protocols, thus enabling products to be usable on INTERNET (ssh,
ssl/tls, etc.).

Of course, everything has to be presented in the modern language of complexity theory: computing £ and
D must be doable in polynomial time; finding D with E alone must be done only in exponential time (say),
without some secret knowledge.

Now, where do difficult problems come from? Lattice theory is one point, though the resulting cryptosys-
tems turned out to be too weak. Arithmetic is the next available field of problems. There we find the integer
factoring problem, the discrete logarithm problem, etc. All these now form cryptographic primitives that need
to be assembled in protocols, and finally in commercial products.

Our activity is concerned with the beginning of this process: we are interested in difficult problems arising
in computational number theory and the efficient construction of these primitives.

4. Application Domains

Our main field of applications is clearly that of telecommunications. We participate to the protection of
information. We are more on a theoretical level, but also ready to develop applications using modern techniques
and objects used in cryptology, with a main focus on elliptic curve cryptography.

5. Software

F. Morain has been improving his primality proving algorithm called ECPP. Binaries for version 6.4.5 are
available since 2001 on his web page. Proving the primality of a 512 bit number requires a few seconds on
a 700 MHz PC. His personal record is about ~ 8000 decimal digits, with the fast version he developped this
year.

The mpc library, developed by A. Enge in collaboration with P. Zimmermann, implements the basic
operations on complex numbers in arbitrary precision, which can be tuned to the bit. This library is based
on the multiprecision libraries gmp and mpfr. Each operation has a precise semantics, in such a way that the
results do not depend on the underlying architecture. Several rounding modes are available. This software,
licensed under the GNU Lesser General Public License (LGPL), can be downloaded freely from the URL

http://www.lix.polytechnique.fr/Labo/Andreas.Enge/Software.html This library is used in our team to build
curves with complex multiplication, and is de facto incorporated in the ECPP program.
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6. New Results

6.1. Complex multiplication
Participants: Andreas Enge, Frangois Morain.

Curves with complex multiplication (e.g., the curve of equation y? = 23 + x) are the main component of
the ECPP algorithm developed by F. Morain, whose aim is to give a primality proof for an arbitrary integer.
Though the decision problem ISPRIME? was recently shown to be in P (by the work of Agrawal, Kayal,
Saxena), practical primality proving is done only with ECPP. This work of AKS has motivated the work of
F. Morain on a fast variant of ECPP, called fastECPP, who led him to gain one order of magnitude in the
complexity of the problem. The complexity of this variant is heuristically O((log N)**¢). This method has
been implemented and was able to prove the primality of 10000 decimal digit numbers [27], as opposed
to 5000 for the basic (historical) version. By comparison, the best proven version of AKS has complexity
O((log N)®*€) and has not been implemented so far [17].

Curves with complex multiplication are very interesting in cryptography, since computing their cardinality
is easy. This is in contrast with random curves, for which this task is still cumbersome. These CM curves
enabled A. Enge, R. Dupont and F. Morain to give an algorithm for building good curves that can be used in
identity based cryptosystems (cf. infra).

CM curves are defined by algebraic integers, whose minimal polynomial has to be computed exactly, its
coefficients being exact integers. The fastest algorithm to perform these computations requires a floating point
evaluation of the roots of the polynomial to a high precision. F. Morain on the one hand and A. Enge (together
with R. Schertz) on the other, have developed the use of new class invariants that characterize the CM curves.
The union of these two families is actually the best that can be done in the field (see [5]). More recently,
F. Morain and A. Enge have designed a fast method for the computation of the roots of this polynomial over
a finite field using Galois theory [19]. These invariants, together with this new algorithm, are incorporated in
the working version of the program ECPP.

6.2. Algebraic curves over finite fields
Participants: Andreas Enge, Pierrick Gaudry, Nicolas Giirel.

In order to build a cryptosystem based on an algebraic curve over a finite field, one needs to efficiently compute
the group law (hence have a nice representation of the elements of the Jacobian of the curve). Next, computing
the cardinality of the Jacobian is required, so that we can find generators of the group, or check the difficulty
of the discrete logarithm in the group.

6.2.1. Effective group laws
A curve that interests us is typically defined over a finite field GF(p™) where p is the characteristic of the field.
Part of what follows does not depend on this setting, and can be used as is over the rationals, for instance.

The points of an elliptic curve E (of equation y?> = 2® + ax + b, say) form an abelian group, that was
thoroughly studied during the preceding millenium. Adding two points is usually done using what is called the
tangent-and-chord formulas. When dealing with a genus ¢ curve (the elliptic case being g = 1), the associated
group is the Jacobian (set of g-tuples of points modulo an equivalence relation), an object of dimension g.
Points are replaced by polynomial ideals. This requires the help of tools from effective commutative algebra,
as Grobner bases or Hermite normal forms.

A. Enge and N. Giirel have an active collaboration with J. -C. Faugere and A. Basiri (LIP 6) on the arithmetic
of superelliptic cubic curves (y* = f(z), with deg(f) prime to 3 and greater than 3). They have dramatically
improved the existing algorithms and have found and implemented new algorithms [29]. Their work, in part
based on Grobner basis computations, generalizes readily to other cubic curves [20].
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6.2.2. Cardinality

Once the group law is tractable, one has to find means of computing the cardinality of the group, which is not
an easy task in general. Of course, it has to be done as fast as possible, if changing the group very frequently
in applications is imperative.

Two parameters enter the scene: the genus g of the curve, and the characteristic p of the underlying finite
field. When ¢ = 1 and p is large, the only current known algorithm for computing the number of points of
E/GF(p) is that of Schoof—Elkies—Atkin. Thanks to the works of the project (actually, before joining INRIA),
world-widespread implementations are able to build cryptographically strong curves in less than one minute
on a standard PC.

When p is small, with one of the most interesting cases for hardware implementation in smart cards being
p = 2, the best current methods are p-adic methods, following the breakthrough of T. Satoh with a method
working for p > 5. The first version of this algorithm for p = 2 was proposed independently by M. Fouquet,
P. Gaudry and R. Harley and by B. Skjernaa. J. -F. Mestre has designed the current fastest algorithm using
an AGM approach. Developped by R. Harley and P. Gaudry, it led to new world records. Then, P. Gaudry
combined this method together with other approaches, to make it competitive for cryptographic sizes [30].

When g > 1 and p is large, polynomial time algorithms exist, but their implementation is not an easy task.
P. Gaudry and E. Schost have modified the best existing algorithm so as to make it more efficient. They were
able to build the first random cryptographically strong genus 2 curves, defined over a large prime field [24].

When p = 2, p-adic algorithms led to striking new results. First, the AGM approach extends to the case
g = 2 and are competitive in practice (only three times slower than in the case ¢ = 1). In another direction,
Kedlaya has introduced a new approach, based on the Monsky-Washnitzer cohomology. His algorithm works
originally when p > 2. P. Gaudry and N. Giirel implemented this algorithm and extended it to superelliptic
curves, which had the effect of adding these curves to the list of those that can be used in cryptography.

Closing the gap between small and large characteristic leads to pushing the p-adic methods as far as possible.
In this spirit, P. Gaudry and N. Giirel have adapted Kedlaya’s algorithm and exhibited a linear complexity in
p, making it possible to reach a characteristic of around 1000 (see [16]). For larger p’s, one can use the
Cartier-Manin operator. Recently, A. Bostan, P. Gaudry and E. Schost have found a much faster algorithm
than currently known [21]. Primes p around 10?2 are now doable.

6.3. Identity based cryptosystems
Participants: Régis Dupont, Andreas Enge.

This is a new direction for our project. Everybody knows that the most difficult problem in modern cryptogra-
phy, and more precisely its would-be widespread use, is the key authentification problem, or more generally
that of authenticating principals on an open network. The “classical” approach to this problem is that of a
public key infrastructure (PKI), in which some centralized or decentralized authority issues certificates for
authenticating the different users. Another approach, less publicized, is that of identity based cryptography
(ID), in which the public key of a user can be built very easily from his email address for instance. The cryp-
tographic burden is then put on the shoulders of the private key generator (PKG) that must be contacted by
the users privately to get his secret key and open their emails. The ID approach can be substituted to the PKI
approach in some cases, where some form of ideal trustable PKG exists (private networks, etc.).

This ID idea is not new, but no efficient and robust protocol was known prior to the ideas of Boneh et
al. using pairings on elliptic curves. R. Dupont and A. Enge have worked on such an ID-system. They have
defined a notion of security for such a protocol and have given a proof of security of a generalization of a
system of Sakai, Ohgishi and Kasahara’ in this model [18].

6.4. Computing discrete logarithms over finite fields

Participant: Emmanuel Thomé.
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E. Thomé has recently devoted most of his time to the finishing of his PhD thesis, defended on May 12, 2003
(he got the Prix de thése de 1'Ecole polytechnique for it). The dissertation’s title is “Algorithmes de calcul de
logarithme discret dans les corps finis”. More precisely, this encompasses a thorough work on the computation
of discrete logarithms in finite fields of characteristic 2, which led to a record-size computation of discrete
logs in GF(2%°7). A part of his work has in fact a broader application range, concerning the solving of very
large sparse linear systems defined over large prime fields. The algorithm used for solving discrete logarithm
problems over GF(2") is a rather standard index-calculus procedure invented by Coppersmith, and augmented
with several theoretical and practical improvements that have come over the years. E. Thomé contributed
some such improvements. For the linear algebra computation, which is in fact a sub-problem of the discrete
logarithm computation, E. Thomé used a “block” version of the Wiedemann iterative method for sparse linear
systems. This “block™ version is due to Coppersmith. Using the “block™ nature of the algorithm, E. Thomé
investigated and exploited the possibility of achieving big computations by distributing the work across several
machines, and also by taking advantage of the multiprocessor capabilities of the different machines used.
Problems previously considered infeasible can now be tackled using “cheap” hardware (in comparison to the
hardware typically used for dealing with huge linear systems). The biggest linear algebra problem solved by
E. Thomé using this algorithm is a 500,000 x 500, 000 linear system defined over GF(2%°7 — 1), where the
modulus 2%°7 — 1 is here a 182-digit prime.

E. Thomé has also started a cooperation with G. White, a PhD student at the department of mathematics of
the university of Sydney, whose aim is to bring to the computer algebra system MAGMA the best of the current
technology for computing discrete logarithms in finite fields. In 2001, E. Thomé had already contributed
to MAGMA a port of his implementation of Coppersmith’s algorithm. E. Thomé and GW started working
therefore on the “next step”, which is an implementation of the more general function field sieve algorithm,
which allows computation of discrete logarithms in fields like GF(3™) (a strong demand does exist from the
cryptologic community to investigate what is in feasible in this area, the interest being spurred in particular by
ID-systems based on elliptic curves over GF(3™)).

Additionally, E. Thomé is currently designing a software library dedicated to computations in p-adic rings
and fields. The goal of this library is to achieve high-speed computations on all types of p-adic rings. The
speed achieved is evaluated versus handcrafted implementations dedicated to some given problem. While a
generic software library cannot be faster than such handcrafted implementations, the objective is to have the
library stay on a par with them.

Starting October 1st, 2003, E. Thomé has a permanent research position in the SPACES group at INRIA
Lorraine.

7. Contracts and Grants with Industry

e ACI CRYPTO p-ADIQUE: use p-adic numbers un cryptology, especially for computing the cardi-
nality of algebraic curves over finite fields.

e  Gemplus : thesis of E. Brier on the use of hyperelliptic curves in cryptology.
e ACISECURITE CESAM : elliptic curves for the security of mobile networks.
e AS of the RTP13 : new trends in cryptography.

8. Other Grants and Activities

Together with the CODES project at INRIA Rocquencourt, the project TANC participates in ECRYPT, a NoE
in the Information Society Technologies theme of the 6th European Framework Programme (FP6).
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9. Dissemination

9.1. Program committees
F. Morain was a member of the program committee of WCC-03, held in Rocquencourt.

9.2. Teaching

Francois Morain is the head of the 1st year course “Introduction a I’informatique et a la programmation” at
Ecole polytechnique, and gives a cryptology course in Majeure 2. He teaches algorithmic number theory in
the DEA-Algo (with G. Hanrot, P. Gaudry).

Andreas Enge participated in the course “Programmation et Algorithmique” of 1st year at Ecole polytech-
nique.

9.3. Seminars and talks

Andreas Enge was invited to present his work at the school of young researchers in cryptology at Bedlewo,
Pologne: "Cryptology - Fundamentals and Frontiers" (05/03).

Pierrick Gaudry presented his work during the Workshop “Next generation cryptography and related
mathematics” (Tokyo, Japan, 02/03), in the Workshop “Computational aspects of algebraic curves, and
cryptography” (Gainesville, Florida, 03/03), to the Workshop “Cryptography number theory” (London, 04/03),
to the conference “Finite Fields and Applications, Fq7” (Toulouse, 05/03), and during the “Rencontres
Arithmétiques” (Caen, 06/03). He gave talks at Ecole de cryptologie de Bordeaux (02/03).

Frangois Morain was invited to speak on primality in Lille (31/01/03), to the séminaire Bourbaki (15/03/03).
He was invited speaker in Journées du Calcul Formel (Luminy, 01/03). He presented his work with A. Enge
on algorithmic Galois theory during the international workshop AAECC-15 (Toulouse, 05/03). He gave a
colloquium in Paris 7 (22/05/03) on integer factorization.
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