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2. Overall Objectives

The TROPICS team is at the junction of two research domains:

e AD: On one hand, we study software engineering techniques, to analyze and transform programs
semi-automatically. In the past, we developed semi-automatic parallelization strategies aiming at
SPMD parallelization. Presently, we focus on Automatic Differentiation (AD). AD transforms a
program P that computes a function F', into a program P’ that computes some derivatives of F’,
analytically. In particular, the so-called reverse mode of AD yields gradients. However, this reverse
mode remains very delicate to use, and requires time and care.

e CFD application of AD: On the other hand, we study the application of AD, and particularly
of the adjoint method, to Computational Fluid Dynamics. This involves necessary adaptation of
optimization strategies. This work applies to two real-life problems, optimal shape design and mesh
adaption.

The second aspect of our work (optimization in Scientific Computing), is thus at the same time the
motivation and the application domain of the first aspect (program analysis and transformation, and gradients
through AD). Concerning AD, our goal is to automatically produce derivative programs that can compete with
the hand-written sensitivity and adjoint programs which exist in the industry. We implement our ideas and
algorithms into the tool TAPENADE, which is developed and maintained by the project. Apart from being
an AD tool, TAPENADE is also a platform for other analyses and transformations of scientific programs.
TAPENADE is easily available. We provide a web server, and alternatively a version can be downloaded from
our web server. Practical details can be found in section 5.1.

Our present research directions are :

e Modern numerical methods for finite elements or finite differences: multigrid methods, mesh
adaption.

e  Optimal shape design, in the context of fluid dynamics: for example shape optimization of the wings
of a supersonic aircraft, to reduce sonic bang. Also, new optimization tactics combining interior
point, SQP or one-shot algorithms.
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e Automatic Differentiation : reduce runtime and memory consumption when computing adjoints or
Jacobian matrices, differentiate parallel programs, differentiate particular algorithms in a specially
adapted manner, validate the derivatives.

e Common tools for program analysis and transformation: adequate internal representation, Call
Graphs, Flow Graphs, Data-Dependence Graphs.

3. Scientific Foundations

3.1. Automatic Differentiation

Key words: program transformation, automatic differentiation, scientific computing, simulation, optimization,
adjoint models.

Participants: Mauricio Araya-Polo, Rose-Marie Greborio, Laurent Hascoét, Valérie Pascual.

Glossary

automatic differentiation (AD) Automatic transformation of a program, that returns a new program
that computes some derivatives of the given initial program, i.e. some combination of the partial
derivatives of the program’s outputs with respect to its inputs.

adjoint model Mathematical manipulation of the partial derivative equations that define a problem,
that returns new differential equations that define the gradient of the original problem’s solution.

checkpointing General trade-off technique, used in the reverse mode of AD, that trades duplicate
execution of a part of the program to save some memory space that was used to save intermediate
results. Checkpointing a code fragment amounts to running this fragment without any storage
of intermediate values, thus saving memory space. Later, when such an intermediate value is
required, the fragment is run a second time to obtain the required values.

Automatic or Algorithmic Differentiation (AD) differentiates programs. An AD tool takes as input a source
computer program P that, given a vector argument X € IR™, computes some vector function Y = F(X) €
IR™. The AD tool generates a new source program that, given the argument X, computes some derivatives of
F. In short, AD first assumes that P represents all its possible run-time sequences of instructions, and it will
in fact differentiate these sequences. Therefore, the control of P is put aside temporarily, and AD will simply
reproduce this control into the differentiated program. In other words, P is differentiated only piecewise.
Experience shows that this is reasonable in most cases, and going further is still an open research problem.
Then, any sequence of instructions is identified with a composition of vector functions. Thus, for a given
control:

P is  {I1;Iy;--- 1y b, )

F = fyofp-10---0fi,
where each fj, is the elementary function implemented by instruction [j. Finally, AD simply applies the chain
rule to obtain derivatives of F'. Let us call X, the values of all variables after each instruction I, i.e. Xg = X
and Xy, = fx(Xy_1). The chain rule gives the Jacobian F” of F’

FI(X) = fp(Xp-1) - fp1(Xp2). -+ . fi(X0) (2

which can be mechanically translated back into a sequence of instructions I, and these sequences inserted
back into the control of P, yielding program P’. This can be generalized to higher level derivatives, Taylor
series, etc.
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In practice, the above Jacobian F’(X) is often far too expensive to compute and store. Notice for instance
that equation (2) repeatedly multiplies matrices, whose size is of the order of m x n. Moreover, some problems
are solved using only some projections of F’(X). For example, one may need only sensitivities, which are
F'(X) X fora given direction X in the input space. Using equation (2), sensitivity is

F'(X).X = fo(Xp1) - fp1(Xp—2) . -+ . f1(Xo) X, 3)

which is easily computed from right to left, interleaved with the original program instructions. This is the
principle of the tangent mode of AD, which is the most straightforward, of course available in TAPENADE.

However in optimization, data assimilation [38], inverse problems, or adjoint problems [31], the appropriate
derivative is the gradient F"*(X).Y . Using equation (2), the gradient is

FU(X).Y = f{"(Xo).f5" (X1). S 1 (Xp—2)- £y (Xp-1).Y, 4)

which is most efficiently computed from right to left, because matrix x vector products are so much cheaper
than matrix x matrix products. This is the principle of the reverse mode of AD.

This turns out to make a very efficient program, at least theoretically [33]. The computation time required
for the gradient is only a small multiple of the run time of P, multiplied by the number of outputs m, which is
usually small for optimization. It is independent from the number of parameters n.

We can observe that the X, are required in the inverse of their computation order. If the original program
overwrites a part of X}, the differentiated program must restore X}, before it is used by £}, (Xy). There are
two strategies for that:

e Recompute All (RA): the X}, is recomputed when needed, restarting P on input X until instruction
Ii.. The TAF [29] tool uses this strategy. Brute-force RA strategy has a quadratic time cost with
respect to the total number of run-time instructions p.

e Store All (SA): the X are restored from a stack when needed. This stack is filled during a
preliminary run of P, that additionally stores variables on the stack just before they are overwritten.
The ADIFOR [24] and TAPENADE tools use this strategy. Brute-force SA strategy has a linear memory
cost with respect to p.

Both RA and SA strategies need a special storage/recomputation trade-off in order to be really profitable,
and this makes them become very similar. This trade-off is called checkpointing. Since TAPENADE uses the
SA strategy, let us describe checkpointing in this context. The plain SA strategy applied to instructions I; to
1, builds the differentiated program sketched on figure 1, where

I] 12 13 p-2  p-1

time l

y

~

I, T
Figure 1. The “Store-All” tactic

an initial “forward sweep” runs the original program and stores intermediate values (black dots), and is
followed by a “backward sweep” that computes the derivatives in the reverse order, using the stored values
when necessary (white dots). Checkpointing a fragment p of the program is illustrated on figure 2. During
the forward sweep, no value is stored while in p. Later, when the backward sweep needs values from p, the
fragment is run again, this time with storage. One can see that the maximum storage space is grossly divided by
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2. This also requires some extra memorization (a “snapshot”), to restore the initial context of p. This snapshot
is shown on figure 2 by slightly bigger black and white dots.

Figure 2. Checkpointing p with the “Store-All” tactic

Checkpoints can be nested. In that case, a clever choice of checkpoints can make both the memory size and
the extra recomputations grow like only the logarithm of the size of the program.

3.2. Static Analyses and Transformation of programs

Key words: static analysis, program transformation, compilation, abstract syntax tree, control flow graph,
data flow analysis, data dependence graph, abstract interpretation.

Participants: Mauricio Araya-Polo, Rose-Marie Greborio, Laurent Hascoét, Valérie Pascual.

Glossary

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses, or
separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known
as basic blocks, contain each a list of instructions to be executed in sequence, and whose arcs
represent all possible control jumps that can occur at run time.

abstract interpretation Model that describes program static analyses as a special sort of execution,
in which all branches of control switches are taken simultaneously, and where computed values
are replaced by abstract values from a given semantic domain. Each particular analysis gives
birth to a specific semantic domain.

data flow analysis Program analysis that studies the itinerary of values during program execution,
from the place where a value is generated to the places where it is used, and finally to the place
where it is overwritten. The collection of all these itineraries is often stored as a data dependence
graph, and data flow analysis most often rely on this graph.

data dependence graph Directed graph that relates accesses to program variables, from the write
access that defines a new value to the read accesses that use this value, and conversely from the
read accesses to the write access that overwrites this value. Dependences express a partial order
between operations, that must be preserved to preserve the program’s result.

The most obvious example of a program transformation tool is certainly a compiler. Other examples are
program translators, that go from one language or formalism to another, or optimizers, that transform a
program to make it run better. AD is just one such transformation. These tools use sophisticated analyses [22]
to improve the quality of the produced code. These tools share their technological basis. More importantly,
there are common mathematical models to specify and analyze them.

An important principle is abstraction: the core of a compiler should not bother about syntactic details of the
compiled program. In particular, it is desirable that the optimization and code generation phases be independent
from the particular input programming language. This can generally be achieved through separate front-ends,
that produce an internal language-independent representation of the program, generally a abstract syntax tree.
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For example, compilers like gcc for C and g77 for FORTRAN77 have separate front-ends but share most of
their back-end.

One can go further. As abstraction goes on, the internal representation becomes more language independent,
and semantic constructs such as declarations, assignments, calls, IO operations, can be unified. Analyses
can then concentrate on the semantics of a small set of constructs. We advocate an internal representation
composed of three levels.

e At the top level is the call graph, whose nodes are the procedures. There is an arrow from node A
to node B iff A possibly calls B. Recursion leads to cycles. The call graph captures the notions of
visibility scope between procedures, that come from modules or classes.

e At the middle level is the control flow graph. There is one flow graph per procedure, i.e. per node in
the call graph. The flow graph captures the control flow between atomic instructions. Flow control
instructions are represented uniformly inside the control flow graph.

o At the lowest level are abstract syntax trees for the individual atomic instructions. Certain semantic
transformations can benefit from the representation of expressions as directed acyclic graphs, sharing
common sub-expressions.

To each basic block is associated a symbol table that gives access to properties of variables, constants,
function names, type names, and so on. Symbol tables must be nested to implement lexical scoping.

Static program analyses can be defined on this internal representation, which is largely language inde-
pendent. The simplest analyses on trees can be specified with inference rules [25][35][23]. But many analyses
are more complex, and are thus better defined on graphs than on trees. This is the case for data-flow analyses,
that look for run-time properties of variables. Since flow graphs are cyclic, these global analyses generally
require an iterative resolution. Data flow equations is a practical formalism to describe data-flow analyses.
Another formalism is described in [26], which is more precise because it can distinguish separate instances
of instructions. However it is still based on trees, and its cost forbids application to large codes. Abstract
Interpretation [27] is a theoretical framework to study complexity and termination of these analyses.

Data flow analyses must be carefully designed to avoid or control combinatorial explosion. The classical
solution is to choose a hierarchical model. In this model, information, or at least a computationally expensive
part of it, is synthesized. Specifically, it is computed bottom up, starting on the lowest (and smallest) levels
of the program representation and then recursively combined at the upper (and larger) levels. Consequently,
this synthesized information must be made independent of the context (i.e., the rest of the program). When
the synthesized information is built, it is used in a final pass, essentially top down and context dependent,
that propagates information from the “extremities” of the program (its beginning or end) to each particular
subroutine, basic block, or instruction.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge of
actual run-time values. Most of them are undecidable; that is, there always exists a particular program for
which the result of the analysis is uncertain. This is a strong, yet very theoretical limitation. More concretely,
there are always cases where one cannot decide statically that two variables are equal. This is even more
frequent with two pointers or two array accesses. Therefore, in order to obtain safe results, conservative over-
approximations of the computed information are generated. For instance, such approximations are made when
analyzing the activity or the TBR status of some individual element of an array. Static and dynamic array
region analyses [42][28] provide very good approximations. Otherwise, we make a coarse approximation
such as considering all array cells equivalent.

When studying program transformations, one often wants to move instructions around without changing
the results of the program. The fundamental tool for this is the data dependence graph. This graph defines an
order between run-time instructions such that if this order is preserved by instructions rescheduling, then the
output of the program is not altered. Data dependence graph is the basis for automatic parallelization. It is also
useful in AD. Data dependence analysis is the static data-flow analysis that builds the data dependence graph.
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3.3. Automatic Differentiation and Computational Fluid Dynamics

Key words: computational fluid dynamics, linearization, optimization, adjoint methods, adjoint state, gra-
dient.

Participants: Francois Courty, Alain Dervieux, Laurent Hascoét, Bruno Koobus, Mariano Vazquez.

Glossary

linearization The mathematical equations of Fluid Dynamics are Partial Derivative Equations, that
are discretized and then solved by a computer program. Linearization of these equations, or
alternatively linearization of the computer program, gives a modelization of the behavior of the
flow when small perturbations are applied. This is useful when the perturbations are effectively
small, like in acoustics, or when one wants the sensitivity of the system with respect to one
parameter, like in optimization.

adjoint state Consider a system of Partial Derivative Equations that define some characteristics of a
system with respect to some input parameters. Consider one particular scalar characteristic. Its
sensitivity, (or gradient) with respect to the input parameters can be defined as the solution of
“adjoint” equations, deduced from the original equations through linearization and transposition.
The solution of the adjoint equations is known as the adjoint state.

Computational Fluid Dynamics is now able to make reliable simulations of very complex systems. For example
it is now possible to simulate completely the 3D air flow around a plane that captures the physical phenomena
of shocks and turbulence. The next step in CFD appears to be optimization. Optimization is one degree higher
in complexity, because it repeatedly simulates, evaluates directions of optimization and applies optimization
steps, until an optimum is reached.

We restrict here to gradient descent methods. One risk is obviously to fall into local minima before reaching
the global minimum. We do not address this question, although we believe that more robust approaches, such
as evolutionary approaches, could benefit from a coupling with gradient descent approaches. Another well-
known risk is the presence of discontinuities in the optimized function. We investigate two kinds of methods
to cope with discontinuities: we can devise AD algorithms that detect the presence of discontinuities, and we
can design optimization algorithms that solve some of these discontinuities.

We investigate several approaches to obtain the gradient. There are actually two extreme approaches:

e  One can write an adjoint system, then discretize it and program it by hand. The adjoint system is a
new system, deduced from the original equations, and whose solution, the adjoint state, leads to the
gradient. A hand-written adjoint is very sound mathematically, because the process starts back from
the original equations. This process implies a new separate implementation phase to solve the adjoint
system. During this manual phase, mathematical knowledge of the problem can be translated into
many hand-coded refinements. But this may take an enormous engineering time. Except for special
strategies (see [31]), this approach does not produce an exact gradient of the discrete functional, and
this can be a problem if using optimization methods based on descent directions.

e A program that computes the gradient can be built by pure Automatic Differentiation in the reverse
mode (cf 3.1). It is in fact the adjoint of the discrete functional computed by the software, which
is piecewise differentiable. It produces exact derivatives almost everywhere. Theoretical results
[30] guarantee convergence of these derivatives when the functional converges. This strategy gives
reliable descent directions to the optimization kernel, although the descent step may be tiny, due to
discontinuities. Most importantly, AD adjoint is generated by a tool. This saves a lot of development
and debug time. But this systematic approach leads to massive use of storage, requiring code
transformation by hand to reduce memory usage. Mohammadi’s work [36] [39] illustrates the
advantages and drawbacks of this approach.
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The drawback of AD is the amount of storage required. Can we avoid this using the fact that the model is
steady? Actually this is possible, as shown in [32], where computation of the adjoint state uses the iterated
states in the direct order. Alternatively, most researchers (see for example [36]) use only the fully converged
state to compute the adjoint. This is usually implemented by a hand modification of the code generated by
AD. But this is delicate and error-prone. The TROPICS team investigate hybrid methods that combine these
two extreme approaches.

4. Application Domains

4.1. Panorama

Automatic Differentiation of programs gives sensitivities or gradients, that are useful for many types of
applications. We will detail some of them in the next sections:

e first-order linearization of complex systems,

e reduced models for simulation of complex systems around a given state,
o mesh adaption with gradients or adjoints,

e  sensitivity analysis,

e  propagation of truncation errors,

e equation solving with the Newton method,

e inverse problems, such as data assimilation or parameter estimation,

e optimum shape design, under constraints, and more generally any algorithm based on local lineari-
zation

These applications require an AD tool that differentiates programs written in classical imperative languages,
FORTRAN77, FORTRANOX, C, or C++. We also consider our AD tool TAPENADE as a platform to implement
other program analyses and transformations. TAPENADE does the tedious job of building the internal repre-
sentation of the program, and then provides an API to build new tools on top of this representation. One
application of TAPENADE is therefore to build prototypes of new program analyses.

4.2. Multidisciplinary optimization

A CFD program computes the flow around a shape, starting from a number of inputs that define the shape
and other parameters. From this flow, it computes an optimization criterion, such as the lift of an aircraft.
To optimize the criterion by a gradient descent, one needs the gradient of the output criterion with respect
to all the inputs, and possibly additional gradients when there are constraints. The reverse mode of AD is a
promising way to compute these gradients.

4.3. Inverse problems

Inverse problems aim at estimating the value of hidden parameters from other measurable values, that depend
on the hidden parameters through a system of equations. For example, the hidden parameter might be the
shape of the ocean floor, and the measurable values the altitude and speed of the surface. Another example
is data assimilation in weather forecasting. The initial state of the simulation conditions the quality of the
weather prediction. But this initial state is largely unknown. Only some measures at arbitrary places and times
are available. The initial state is found by solving a least squares problem between the measures and a guessed
initial state which itself must verify the equations of meteorology. This rapidly boils down to solving an adjoint
problem, which can be done though AD [41].
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4.4. Linearization

To simulate a complex system often requires solving a system of Partial Differential Equations. This is
sometimes too expensive, in particular in the context of real time. When one wants to simulate the reaction
of this complex system to small perturbations around a fixed set of parameters, there is a very efficient
approximate solution: just suppose that the system is linear in a small neighborhood of the current set of
parameter. The reaction of the system is thus approximated by a simple product of the variation of the
parameters with the Jacobian matrix of the system. This Jacobian matrix can be obtained by AD. This is
especially cheap when the Jacobian matrix is sparse. The simulation can be improved further by introducing
higher-order derivatives, such as Taylor series, which can also be computed through AD. The result is often
called a reduced model.

4.5. Mesh adaption

It has been noticed that some approximation errors can be expressed by an adjoint state. Mesh adaption can
benefit from this. The classical optimization step can give an optimization direction not only for the control
parameters, but also for the approximation parameters, and in particular the mesh geometry. The ultimate goal
is to obtain optimal control parameters up to a precision prescribed in advance.

5. Software
5.1. TAPENADE

Participants: Laurent Hascoét [correspondant], Mauricio Araya-Polo, Rose-Marie Greborio, Valérie Pascual.

TAPENADE is the Automatic Differentiation tool developed by the TROPICS team. TAPENADE progressively
implements the results of our research about models and static analyses for AD. From this standpoint,
TAPENADE is a research tool. Our objective is also to promote the use of AD in the scientific computation
world, and therefore in the industry. Therefore the team constantly maintains TAPENADE to meet the
demands of our industrial users. TAPENADE can be simply used as a web server, available at the URL
http://tapenade.inria.fr:8080/tapenade/index.jsp It can also be downloaded and installed from our FTP server
ftp://ftp-sop.inria.fr/tropics. A documentation is available on our web page http://www-sop.inria.fr/tropics/.

TAPENADE differentiates computer programs according to the model described in section 3.1. It supports
three modes of differentiation:

e the fangent mode that computes a directional derivative F”(X).X,

e the vector tangent mode that computes F’ (X )X » for many directions X,, simultaneously, and can
therefore compute Jacobians, and

e the reverse mode that computes the gradient F"*(X).Y.

A obvious fourth mode could be the vector reverse mode, which is not yet implemented. Many other
modes exist in the other AD tools in the world, that compute for example higher degree derivatives or
Taylor expansions. For the time being, we restrict ourselves to first-order derivatives and we put our efforts
on the reverse mode. But as we said before, we also view TAPENADE as a platform to build new program
transformations, in particular new differentiations. This could be done in cooperation with other teams.

Like any program transformation tool, TAPENADE needs sophisticated static analyses in order to produce an
efficient output. Concerning AD, the following analyses are a must, and TAPENADE now performs them all:

e Activity: The end-user has the opportunity to specify which of the output variables must be differen-
tiated (called the dependent variables), and with respect to which of the input variables (called the
independent variables). Activity analysis propagates the dependent, backward through the program,
to detect all intermediate variables that possibly influence the dependent. Conversely, activity analy-
sis also propagates the independent, forward through the program, to find all intermediate variables
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that possibly depend on the independent. Only the intermediate variables that both depend on the
independent and influence the dependent are called active, and will receive an associated derivative
variable. Activity analysis makes the differentiated program smaller and faster.

e In-Out: Each procedure has a number of arguments, that may be inputs, outputs, or both. Compilers
use this to remove useless arguments. TAPENADE uses In-Out information more specifically to detect
aliasing, which is very harmful in AD, and to reduce the size of snapshots needed by checkpointing in
the reverse mode. In-Out analysis makes the differentiated program safer and less costly in memory
space.

e TBR: The reverse mode of AD, with the Store-All strategy, stores all intermediate variables
just before they are overwritten. However this is often unnecessary, because derivatives of some
expressions (e.g. linear expressions) only use the derivatives of their arguments and not the original
arguments themselves. In other words, the local Jacobian matrix of an instruction may not need
all the intermediate variables needed by the original instruction. The To Be Restored (TBR) analysis
finds which intermediate variables need not be stored during the forward sweep, and therefore makes
the differentiated program smaller in memory.

Several other strategies are implemented in TAPENADE to improve the differentiated code. For example,
a data-dependence analysis allows TAPENADE to move instructions around safely, gathering instructions to
reduce cache misses. Also, long expressions are split in a specific way, to minimize duplicate sub-expressions
in the derivative expressions.

The input languages of TAPENADE today are FORTRAN77 and FORTRANI9X. Notice however that the
internal representation of programs is language-independent, as shown on figure 4, so that extension to other
languages should be easier. The first prototype of a TAPENADE for C is planned for next year.

There are two user interfaces for TAPENADE. One is a simple command that can be called from a shell
or from a Makefile. The other is interactive, using HTML pages. The interactive interface displays the diffe-
rentiated programs, with HTML links that implement source-code correspondence, as well as correspondence
between error messages and locations in the source. This is shown on figure 3

Figure 4 shows the architecture of TAPENADE. It is implemented mostly in JAVA, apart from the front-ends
which are separated and can be written in their own languages.

Notice the clear separation between the general-purpose program analyses, based on a general representa-
tion, and the differentiation engine itself. Other tools can be built on top of the Imperative Language Analyzer
platform.

The end-user can also specify properties of external or black-box routines. This is essential for real industrial
applications that use many libraries. The source of these libraries is generally hidden. However AD needs some
information about these black-box routines in order to produce efficient code. TAPENADE lets the user specify
this information in a separate signature file.

6. New Results
6.1. New Static Analyses for AD

Key words: static analyses, dead code, reverse mode of AD, checkpointing, snapshots.
Participants: Mauricio Araya-Polo, Laurent Hascoét, Valérie Pascual.

In addition to the activity, in-out, and TBR analyses described in section 5.1, we are investigating other analyses
that could improve further the reverse code produced by TAPENADE. In particular, experiments by Paul Cusdin,
at Queen’s University in Belfast, showed that TAPENADE could take advantage of detecting instructions in
the forward sweep which are not needed by the reverse sweep, and only contribute to compute the original
program’s output. Since this output is generally not wanted, these instructions can be considered dead code,
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Figure 4. Overall Architecture of TAPENADE

and therefore removed. Experiments made by Cusdin with TAPENADE on one particular application showed a
potential speed up of 40%.

This year, we began to study the static analysis that will detect this sort of dead code. It is an extension
of the classical liveness analysis. Indeed, a classical liveness analysis can in theory do the job. However,
differentiated programs are more than twice as large as their original program, and the analysis would take
time. More importantly, we consider it a poor strategy because this would not take into account specificities of
reverse differentiated code. We believe that a better strategy is to define a specific liveness analysis that detects
dead code in the reverse program by simply looking at the original program. We are currently specifying the
data-flow equations for this analysis.

It is interesting to notice that these data-flow equations involve information from the TBR and activity
analysis. In fact these analyses are linked. This is also promising because simplified reverse code often does
not use all of the original procedure arguments. Since the snapshot which is taken to checkpoint a procedure
(cf figure 2) is a subset of the procedure’s arguments, this new analysis will lead to smaller snapshots, and thus
will improve memory consumption as well as run time.

More generally, if we call P a procedure and P its differentiated procedure in the reverse mode, we can show
that the I'n (resp. Out) sets of the variables needed (resp. overwritten) by P are such that:

In(P) C In(P) and Out(P) C Out(P)

This comes from the above dead code detection, as well as from the stack mechanism that is used to store
intermediate values. This can help us define even smaller snapshots when checkpointing procedure P. We
started specification of the static analyses that yield these sets. This is part of the PhD work of Mauricio
Araya-Polo.

6.2. Automatic estimation of the validity domain of derivatives
Key words: discontinuities, validity of derivatives.
Participants: Mauricio Araya-Polo, Laurent Hascoét.

This is the principal topic of the PhD research of Mauricio Araya-Polo, which started this year. The program
generated by AD always returns derivatives, even if the mathematical function computed by the program
is discontinuous or non differentiable at the current point. Discontinuities can also be introduced by the
translation from the math equations to the computer program. In fact, most computer programs are only
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piecewise differentiable. When the current program execution comes very “close” to a discontinuity, then
the derivatives may be invalid. Following these derivatives, for example in an optimization process, may go
across a discontinuity and thus can actually degrade the solution.

Automatic resolution of this discontinuity problem is probably out of reach. However this problem hampers
the confidence that users can put into AD. We think it is desirable to design differentiation modes which, if
they don’t solve the discontinuity problem, at least they can warn the end-user when such a discontinuity is
coming close.

More precisely, for any particular run of a differentiated program, we want to estimate which tests came
too close to their breaking point, and we want to summarize this information in terms of the program’s inputs
(resp. outputs). Thus, along with the returned derivative, we could give a neighborhood of the inputs (resp.
outputs) inside which no discontinuity occurs and the derivative is valid.

This probably requires a special mode of AD, close to the reverse mode. A first theoretical analysis shows
this new mode may have a high computational cost, unless tradeoffs can be found. We shall experiment such
tradeoffs in the years to come, between execution cost and precision of the returned neighborhood of validity.

6.3. Common sub-expressions in derivatives
Key words: common sub-expression elimination, reverse mode of AD.
Participant: Laurent Hascoét.

Naive differentiation of large expressions often give birth to even larger expressions, containing many copies
of parts of the original expression. Consider the product a.b.c.d. Its derivatives are a.b.c, a.b.d, a.c.d and b.c.d,
which share a number of common sub-expressions. Detection of common sub-expression is a classical activity
in optimizing compilers. Unfortunately its complexity is NP. When AD is concerned, many previous works
[34] have considered the so-called computation graph of a differentiated program, and looked for the optimal
order of atomic operations to minimize the computational cost. Again this is NP-hard, and in our opinion, does
not take into account the way these derivative expressions are built.

Our goal is not to improve the original expression. We can freely consider that it is sort of optimal, or at least
the user is satisfied with it. What we want to minimize is the complexity of the new operations introduced by
differentiation. Put that way, the problem can be solved cheaper. Moreover, in real situations, it is not necessary
to find the really best sub-expressions splitting, and a good approximate solution is probably just as good. We
propose a heuristic whose complexity is about n2, where n is the size of the original expression. We have no
theoretical figures yet about the cost of the differentiated expressions, but experiments give a 10% speedup on
industrial codes, and far more than that on specific examples with large expressions.

We implemented this algorithm inside TAPENADE. Currently, it is available only for the reverse mode, but
should be extended to the other modes soon.

6.4. Multi-directional differentiation
Key words: tangent mode of AD, Jacobian matrix, loop fusion.
Participants: Laurent Hascoét, Bertrand Iooss [CEA Cadarache, France].

Last year we have been developing the multi-directional tangent mode, known as the fangent vector mode, in
TAPENADE. This year we experimented this mode on an industrial code from the CEA in Cadarache. The code
is a part of a larger code named MARGARET, and simulates the behavior of bars of nuclear fuel. The in-hose
optimization algorithm requires a Jacobian matrix. Three paths were available to get this Jacobian: divided
differences, tangent differentiation, and tangent vector differentiation.

Divided differences evaluates

P(X +¢e.dX)—-P(X)
9
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for a “well chosen” ¢. If we forget about the poor precision of this approximation, it return us a Jacobian with
M rows at the cost of M + 1 executions of P, and therefore the time needed is

Tag = (M +1)T(P).

Tangent differentiation returns one row of the Jacobian matrix, analytically. However, the run time of the
tangent program P’ is generally more than twice the run time of P, i.e. T(P’) = T'(P) + n.T'(P), where n is a
small factor. Therefore the time needed is

Tia = M.T(P) + M.n.T(P).

Tangent Vector differentiation is equivalent to running many times the tangent program at the same point for
different directions. The part that computes the original function is done only once, and therefore the time
needed is

Ty, = T(P) + M.n.T(P).

The experiments on MARGARET gave the following figures: T;;q = 25s, T;q = 40s for M = 34. This gives
us an estimation of n = 0.65 for the ratio between the computation time of the derivatives compared to
the computation time of the original function. Besides, this shows that tangent differentiation is, unfortunately,
slower than divided differences. Yet, it returns more precise derivatives! From this estimation, we would expect
that 73, = 16.5. The measured result is not as good, giving T3, = 19.8, probably due to loop overhead. In
any case T}, < Tgq which means that AD does better than divided differences! Further improvements of the
vector mode could yield even better results, and we plan to study them in the years to come.

6.5. Extensions and new functionalities in tapenade
Key words: aliasing, fortran95, tapenade.
Participant: Mauricio Araya-Polo, Rose-Marie Greborio, Laurent Hascoét, Valérie Pascual.

TAPENADE now accepts the modular structure of FORTRANIX. In particular module, interface, use
statements are taken into account and differentiated correctly. The internal representation has been extended to
accept modular files, and is now closer to accepting classes. This is an important step towards differentiation
of object-oriented programs. Nested symbol tables can now handle public and private declarations, and
multiple inheritance due for example to the use declaration.

Some features of FORTRAN had been disregarded in the alpha version of TAPENADE. Some real applications
have required that we treat them correctly. For example function names can be passed as arguments, and some
codes use this extensively. TAPENADE now handles this and differentiates this correctly.

The problem of aliasing has been treated. Aliasing occurs when two apparently different memory references
sometimes refer to the same memory location. This occurs for instance when a procedure is called with the
same actual argument given to two different formal arguments. This is forbidden by most language standards,
but compilers don’t check it. As could be expected then, this “technique” is widely used in real programs.
TAPENADE now detects potential aliasing at each procedure call, and prints a warning message. Aliasing can
occur in a single assignment. The following table shows an example where the two variables present in an
assignment are certainly the same, certainly different, or possibly the same. In the third case, TAPENADE
inserts a temporary variable, otherwise the reverse program would be wrong.

The Store All strategy of TAPENADE requires that intermediate variables be stored on a stack, and retrieved
from this stack. The size of this stack is not known statically. Therefore it is implemented in C to perform
dynamic allocation. Surprisingly enough, most compilers generate inefficient code when FORTRAN calls C. To
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original instruction reverse mode differentiation
a=3.2*b + 1.5 b=">b+ 3.2*%a
a=20.0
a = 3.2*%a + 1.5 a = 3.2*a
a(i) = 3.2*a(j) + 1.5 tmp = 3.2*a (i)
a(i) 0.0
a(j) = a(j) + tmp
Figure 5.

cope with that, we modified TAPENADE’s stack mechanism: we introduce a stack buffer in FORTRAN, which
is then flushed to the C stack when full. The actual calls from FORTRAN to C are thus reduced to a minimum.
The above improvements, plus many bug corrections, are available in the new version 2.0.7 of TAPENADE.

6.6. Adjoint-based optimal control
Key words: optimum design, optimal control, gradient, adjoint model.

Participants: Francois Courty, Bruno Koobus, Alain Dervieux, Laurent Hascoét, Mariano Vazquez, Bijan
Mohammadi.

Now that simulation is well mastered by research groups in industry, optimization is naturally the next frontier.
Optimization problems in aerodynamics are still very difficult, because they require a enormous computing
power. To meet these needs, our investigations in AD are focused on the reverse mode, which is an elegant
way to obtain the adjoints that optimization uses.

The reverse mode, and the subsequent adjoint state, are the best way to get the gradients when the number
of parameters is large. This corresponds to what happens in industry. For example, the optimization of a dozen
of real parameters will not produce an optimal shape for an aircraft, because an accurate description of a shape
requires hundreds of parameters. The type of parameter can be a function defined on a surface or a volume.
Therefore the number of parameters depends on the discretization chosen, and is a priori large.

Therefore, practical application of AD to control problems requires that we consider the following issues:

e efficient computation of a large scale adjoint system
e efficient optimization algorithms for large scales systems

e efficient preconditioners for this optimization.

This year, we concluded the work done in the previous years about differentiation of loops with independent
iterations (/I-loops). We published an article about differentiation of //-loops in an international journal [3],
and we presented an application to a full-size example in [10]. Figure 6 shows the principal result for this
application, which is the gradient of the sonic boom under a plane, with respect to the shape of the skin of
a supersonic aircraft. Darker colors indicate places where modifying the shape has a maximal impact on the
reduction of the sonic boom on the ground.

The method was demonstrated, together with TAPENADE inside the European project AEROSHAPE, that
reached its final phase in 2003. Globally, this improvement to the reverse mode of AD led us to develop a
set of new algorithms, especially in program static analysis and in optimization methods for steady-state flow
solvers.

We provided an efficient demonstrator, ALYA, for the French program Comité d’Orientation Supersonique.
ALYA has been the support or experimental platform of a set of necessary innovation in disciplines that are
complementary to AD in the context of application of adjoints to optimal control.



Project-Team tropics 15

GRAD
231

l 1.8761
16422
-1.3083
- 0.97446

- 064057

0.30668
-0.027199
-0.36108
-0.69494

Figure 6. Gradient of the “Sonic Boom” cost functional on the skin

6.7. SQP-One-Shot optimization
Key words: optimization, Sequential Quadratic Programming, One-shot.
Participants: Francois Courty, Alain Dervieux.

The class of methods that applies best to optimal control with a state equation is the Sequential Quadratic
Programming. We refer for example to the monography of Nocedal and Wright [40].

SQP methods are sophisticated ones combining a lot of useful heuristics. They enjoy robustness properties
due for example to Trust Region heuristics relying on powerful theory (Wolfe criteria for gradient conver-
gence), and due to quasi Newton formulas such as BFGS. However, they are not well adapted to large scale
systems such as those handled in Optimal Control loops with adjoints. Indeed, the standard SQP methods
involve at each main iteration to solve several linearized state systems. This difficult point has been identified
by many researchers in optimal shape design and the result is that SQP methods have been not always applied,
but instead, either less modern but less complex algorithms like gradient algorithm were applied [37], or al-
gorithms for the simultaneous solution of the KKT optimality equations were proposed [43]. The latter class
of algorithm is in fact an important key for large scale optimization. However, existing one-shot algorithm are
deprived of the many robustness heuristics that are involved in SQP modern algorithms. We have then derived
a family of one-shot-SQP algorithm devoted to the robust application of the one-shot principle:

e they solve progressively the three equations of optimality, yielding a good complexity for obtaining
the final result,

e they involve some important features of SQP allowing for a quasi-black box resolution of a new
problem.

This new method has been presented in the main meetings of the European Project “AEROSHAPE” and is
the center of an article submitted in an international journal.
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6.8. Multilevel optimization and reduced models
Key words: optimization, multilevel, gradient, reduced models.
Participants: Francois Courty, Alain Dervieux, Bruno Koobus, Mariano Vazquez.

As stated already, the optimal control problems of interest for an adjoint approach, the (large) number of
parameter is derived from the discretization of a functional parametrization. Not only we have to take into
account the number of parameters, but only we should take some benefit from the information we can get
concerning the functional parametrization. This can in particular exploited for designing an efficient functional
preconditioner. One word about “functional preconditioners”. In contrast to algebraic ones, they are not derived
from the operator to precondition by some algebraic transformation. They are derived from an analysis of the
functional context at the origin of the discrete problem. The functional preconditioner we have built for shape
design application is an additive multilevel preconditioner. An article on this research has been submitted for
publication. The multilevel basis is also applied to the derivation of reduced models that can be introduced in
sophisticated optimizers [18].

6.9. Multidisciplinary optimization
Key words: optimization, gradient, fluid, structure.

Participants: Alain Dervieux, Bruno Koobus, Mariano Vazquez, Bijan Mohammadi, Charbel Farhat [Univer-
sity of Colorado, Boulder].

The optimization of a complex product as an airplane needs to be done by taking in account simultaneously
as much as different physical effects as possible. It is useless to determine the optimal aerodynamic shape of
an aircraft if the fact the the airflow will act on the structure and deform this shape is not anticipated. Many
of the physics to take into account are described by complex and computer intensive models. The team have
proposed a new coupling algorithm for the aerodynamic shape optimization of an aircraft geometry deformed
by the wind. Article submitted for publication.

6.10. Mesh adaptation

Key words: optimization, mesh adaptation, adjoint.
Participants: Alain Dervieux, Frangois Courty.

The innovative derivation of the adjoint and the resolution of the related optimum problem can be used in
a slightly different context of the shape design, the mesh adaptation. This will be possible if we can map
the mesh adaptation problem into a differentiable optimal control problem. We have introduced to do this a
new methodology that consists in setting the mesh adaptation problem under the form of a purely functional
one: the mesh is reduced to a continuous property of the computational domain, the continuous metric, and
we minimize a continuous model of the error resulting from that continuous property. Then the problem of
searching an adapted mesh is transformed in the research of an optimal metric.

In the case of mesh interpolation minimization, the optimum is given by a close formula and gives access
to a rather complete theory demonstrating that second order accuracy can be obtained on discontinuous field
approximation. An article on this work has been submitted in a journal.

In the case of adaptation for Partial Differential Equations, an Optimal Control is obtained. It involves a
state equation and the optimality is expressed in terms of an adjoint state that can be derived by AD. In our
first prototypes, the one-shot-SQP algorithm has been applied successfully. An article on this work has been
submitted in a journal.

9. Dissemination
9.1. Links with Industry, Contracts

The TAPENADE web server has received connections from more than one hundred users this year. A few
of them have then started to use TAPENADE on a regular basis. This year, two license contracts have been
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signed between INRIA and industrial partners, concerning the use of TAPENADE: one with Rolls-Royce
and the University of Oxford, on the “HYDRA” code, the other with Airbus-UK and Cranfield University,
on the “FLITE3D” code. Also the French Commissariat a I’Energie Atomique (CEA) has successfully used
TAPENADE in vector mode on their “MARGARET” code.

The European project “Aeroshape”, coordinated by V. Selmin, Alenia (I), and finished this year, was
dedicated to the elaboration of methods for the shape design of aircrafts, to the building of demonstrators, and
to comparison between them on test cases. In the Aeroshape consortium, the Tropics Team has contributed by
proposing AD tools, by working for their demonstration, from differentiation to complete gradient assembly,
and proposing the new one-shot-SQP algorithm. See in particular the two book chapters [19], [16].

The “Plan d’Etudes Amont” of Dassault-Aviation involved several important actions for the optimal control
of flows. The Tropics team has contributed to a new class of reduced models relying on hierarchical basis and
first-order derivatives. A second subject concentrated on the use of these bases in preconditioners.

The team was leader of a project “Optimisation d’un avion souple” supported by the Comité d’Orientation
Supersonique of the French ministry of Research. Our partner is the university of Montpellier. During this
project we have developed the 3D prototype ALYA, introduced the new multilevel preconditioner, applied the
new methods to shape design and to the coupled fluid-structure shape design. Three articles reporting on this
work are submitted for publication.

TROPICS is leader of a new project “Optimisation de forme et adaptation de maillage pour le bang
supersonique’ supported by the Comité d’Orientation Supersonique of the French ministry of Research. Our
partner is the university of Montpellier and the Gamma project in Rocquencourt.

9.2. Conferences and workshops

e Laurent Hascoét presented TAPENADE at several seminars and conferences:
on January 16™ at the “Journées INRIA-industrie” in Rocquencourt, France;
on April 2" at the “ERCOFTAC Introductory Course to Design Optimization” in Munich, Germany;
on May 15% invited by Paul Hovland’s team at Argonne National Lab., Illinois;
on June 5™ at the Automatic Differentiation workshop in Cranfield University, UK;

e Laurent Hascoét presented the team’s results on the sonic boom reduction problem at several
conferences and workshops:
on February 11t at the AD workshop of the AMAM’03 conference in Nice, France;
on May 19" at the AD minisymposium of the ICCSA’03 conference in Montreal, Canada;
on June 6™ at the Automatic Differentiation workshop in Cranfield University, UK;
on September 17% at the “Deutsche Mathematiker-Vereinigung” in Rostock, Germany;

e TAPENADE was used as an example AD tool in several “hands-on” sessions and tutorials on
Automatic Differentiation organized by Uwe Naumann, and in a course on adjoints given by Olivier
Pironneau in Japan.

e Alain Dervieux presented our works on adjoint-based optimum design and adjoint-based mesh
adaptation:
on February 12" at the optimum design minisymposium of the AMAM’03 conference in Nice,
France;
on March 26™ in an invited seminar in Ecole Normale Supérieure in Cachan, France;
on April 23" during an invited stay at University of Prague, Tchequia;
on July 9" in an invited conference at the “colloque optimisation de forme” in Marseille-Luminy,
France;
on November 27" in an invited conference at the “Espace Jacques-Louis Lions”, in Saint-Cloud,
France;
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