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2. Overall Objectives

The VERTECS team is focussed on the reliability of reactive software using formal methods. By reactive
software we mean software that continuously reacts with its environment. The environment can be a human
user for a complete reactive system, or another software using the reactive software as a component. Among
these, critical systems are of primary importance, as errors occurring during their execution may have dramatic
economical or human consequences. Thus, it is essential to establish their correctness before they are deployed
in a real environment. Correctness is also essential for less critical applications, in particular for COTS
components whose behavior should be trusted before integration in software systems.

For this, the VERTECS team promotes the use of formal methods, i.e. formal specification and mathematically
founded analysis methods. During the analysis and design phases, correctness of specifications with respect
to requirements or higher level specifications can be established by formal verification. Alternatively, control
consists in forcing specifications to stay within desired behaviours by coupling with a supervisor. During va-
lidation, festing can be used to check the conformance of implementations with respect to their specifications.
Test generation is the process of automatically generating test cases from specifications.

More precisely, the aim of the VERTECS project is to improve the reliability of reactive systems by providing
software engineers with methods and tools for automating the test generation and controller synthesis from
formal specifications. We adapt or develop formal models for the description of testing and control artifacts,
e.g. specifications, implementations, test cases, supervisors. We formally describe correctness relations (e.g.
conformance or satisfaction). We also formally describe interaction semantics between testing artifacts. From
these models, relations and interaction semantics, we develop algorithms for automatic test and controller
synthesis that ensure desirable properties. We try to be as generic as possible in terms of models and techniques
in order to cope with a wide range of application domains. We implement prototype tools for distribution in
the academic world, or for transfer to industry.
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Our research is based on formal models and verification techniques such as model checking, theorem
proving, abstract interpretation, the control theory of discrete event systems, and their underlying models
and logics. The close connection between testing, control and verification produces a synergy between these
research topics and allows us to share theories, models, algorithms and tools.

3. Scientific Foundations

3.1. Underlying models.

Key words: labeled transition systems, symbolic, input/output events, controllable/uncontrollable events,
implicit transition relation.

The formal models we use are mainly automata-like structures such as labelled transition systems (LTS) and
some of their extensions: an LTS is a tuple M = (Q, A, —, ¢,) where () is a non-empty set of states; ¢, € Q)
is the initial state; A is the alphabet of actions, —C @) x A x (@ is the transition relation.

To model reactive systems in the testing context, we use Input/Output labeled transition systems (IOLTS for
short). In this setting, interactions between the system and its environment are modeled by input (controlled
by the environment) and output events (observed by the environment), and the internal behavior of the system
is modeled by internal (non observable) events. In the controller synthesis theory, we also distinguish between
controllable and uncontrollable events, observable and unobservable events. In testing, we also manipulate
input-output symbolic transition systems (IOSTS), which are extensions of IOLTS that operate on data (i.e.,
program variables, communication parameters, symbolic constants) through message passing, guards, and
assignments. An alternative to IOSTS to specify systems with data variables is the model of synchronous
dataflow equations.

Our research is based on well established theories: conformance testing, supervisory control, abstract inter-
pretation, and theorem proving. Most of the algorithms that we employ take their origins in these theories:

e graph traversal algorithms (breadth first, depth first, strongly connected components, ...). We use
these algorithms for verification as well as test generation and control synthesis.

e abstract interpretation algorithms, specifically in the abstract domain of polyhedraes (for example,
Chernikova’s algorithm for the computation of dual forms). Such algorithms are used in verification
and test generation.

e logical decision algorithms, such as satifiability of formulas in Presburger arithmetics. We use these
algorithms during generation and execution of symbolic test cases.

3.2. Automatic Test Generation

Conformance testing consists in checking whether an implementation under test (abbreviated as /UT) behaves
correctly with respect to its specification. In the line of model-based testing, we use formal specifications and
their underlying models to unambiguously define conformance testing and test case generation. One difficult
problem is to generate adequate test cases (the selection problem) that correctly identify faults (the oracle
problem). We use test purposes for selection, which allow to generate tests targeted to specific behaviours.
For solving the oracle problem we adapt a well established theory of conformanced testing [40], which
formally defines conformance as a relation between formal models of specifications and implementations.
This conformance relation, called ioco compares suspension traces of the specification and implementation.
Suspension traces are sequence of input, output or quiescence (absence of action), thus abstract away
internal behaviors that cannot be observed by testers. Roughly speaking, an implementation is conformant
if after a suspension trace of the specification, the implementation can only show outputs and quiescences of
specfication.
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We use IOLTS (or IOSTS) as formal models for specifications, implementations, test purposes, and test
cases. Most often, specifications are not directly given in such low-level models, but are written in higher-
level specification languages (e.g. SDL, UML, Lotos). The tools associated with these languages often contain
a simulation API that implements their semantics under the form of IOLTS. On the other hand, the IOSTS
model is expressive enough to allow a direct representation of most constructs of the higher-level languages.
Test purposes are specified directly as IOLTS (or IOSTS). They are associated with marked states, giving
them the status of automata or observers. When IOLTS are considered, test purposes are accepting sequences
of actions whose projection on visible actions are selected for test generation. When IOSTS are considered,
test purposes are extended automata that observe behaviors, i.e. sequences of actions and vectors of variables
of the specifications, whose projection is selected for test generation.

A test case produces a verdict when executed on an implementation. These are formalized in IOLTS (or
IOSTS) by special states (or locations). A Fail verdict means that the IUT is rejected, a Pass verdict means
that the IUT exhibited a correct behavior and the test purpose has been satisfied, while an Inconclusive verdict
is given to a correct behavior that is not accepted by the test purpose. Based on these models, an interaction
semantics, and the conformance relation, one can then define correctness properties of test cases and test
suites (sets of test cases). Typical properties are soundness (no conformant implementation may be rejected)
and exhaustiveness (every non conformant implementation may be rejected).

We have developed test generation algorithms. These algorithms are based on the construction of a product
between the specification and test purpose, the computation of its visible behaviors involving the identification
of quiescence and determinization, and the selection of accepted behaviors. Selection can be seen as a model-
checking problem where one wants to identify states (and transition between them) that are reachable from
the initial state and co-reachable from the accepting states. We have proved that these algorithms ensure that
the (infinite) set of all possibly generated test cases is sound and exhaustive.

Apart from these theoretical results, our algorithms are designed to be as efficient as possible in order to be
able to scale up to real applications. Roughly speaking, test generation consists in computing the intersection
of the observable behavior of the specification (traces and quiescence) and the language accepted by the
test purpose. The computation of observable behaviors involves determinization, while language intersection
is based on computing the set of states that are reachable from initial states and co-reachable states from
accepting states.

Our first test generation algorithms are based on enumerative techniques, optimized to fight the state-space
explosion problem. We have developed on-the-fly algorithms, which consist in performing a lazy exploration
of the set of states that are reachable in both the specification and the test purpose. The resulting test case
is an IOLTS whose traces describe interactions with an implementation under test. This technique is now
mature and implemented in the TGV tool, which we often use in industrial collaborations. We are continuously
improving the technique. However, what characterizes this enumerative technique is that values of variables
and communication parameters are instantiated at test generation time.

More recently, we have explored symbolic test generation techniques. This is a promising technique whose
main objective is to avoid the state space explosion problem induced by the enumeration of values of variables
and communication parameters. The idea consists in computing a test case under the form of an IOSTS,
i.e., a reactive program in which the operations on data is kept in a symbolic form. However, most of the
operations involved in test generation (determinization, reachability, and coreachability) become undecidable.
For determinization we employ heuristics that allow us to solve the so-called bounded observable non-
determinism (i.e., the result of an internal choice can be detected after finitely many observable actions).
For the remaining operations, reachable and co-reachable sets of states are approximated using abstract
interpretation techniques. These techniques are implemented in the STG tool.

3.3. Controller Synthesis

3.3.1. The Supervisory Control Problem
is concerned with ensuring (not only checking) that a computer-operated system works correctly. More
precisely, given a specification model and a required property, the problem is to control the specification’s
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behavior, by coupling it to a supervisor, such that the controlled specification satisfies the property [36]. The
models used are LTS (and the associated language), which make a distinction between controllable and non-
controllable actions and between observable and non-observable actions. Typically, the controlled system
is constrained by the supervisor, which acts on the system’s controllable actions and forces it to behave as
specified by the property. The control synthesis problem can be seen as a constructive verification: building
a supervisor that prevents the system from violating a property. Several kinds of properties can be ensured
such as reachability, invariance, attractivity, etc. Techniques adapted from model checking are then used to
compute the supervisor w.r.t. the objectives. Optimality must be taken into account as one often wants to
obtain a supervisor that constrains the system as few as possible.

3.3.2. Optimal Control.
We are also interested in the Optimal Control Problem. The purpose of optimal control is to study the
behavioral properties of a system in order to generate a supervisor that constrains the system to a desired
behavior according to quantitative and qualitative requirements. In this spirit, we have been working on the
optimal scheduling of a system through a set of multiple goals that the system had to visit one by one [6].
We have also extended the results of [39] to the case of partial observation in order to handle more realistic
applications [33].

3.3.3. Control of Hierarchical Discrete Event System.

In many applications and control problems, FSM are the starting point to model fragments of a large scale
system, which usually consists of several composed and nested sub-systems. Knowing that the number of
states of the global systems grows exponentially with the number of parallel and nested sub-systems, we have
been interested in designing algorithms that perform the controller synthesis phase by taking advantage of
the structure of the plant without expanding the system [8]. In other words, given the modular structure of
the system, it becomes of interest, for computational reasons, to be able to synthesize a supervisor on each
sub-part of the system and then to infer a global supervisor from the local ones.

In order to reduce the complexity of the supervisor synthesis phase, several approaches have been considered
in the literature. Modular control [42] and modular plant [44] are natural ways to handle this problem.
Similarly, in order to take into account nested behaviors, some techniques based on model aggregation methods
[41][27] have been proposed to deal with hierarchical control problems. Another direction has been proposed
in [26]. Brave and Heimann in [26] introduced Hierarchical State Machines which constitute a simplified
version of the STATECHARTS. Compared to the classical state machines, they add orthogonality and hierarchy
features. Some other works dealing with control and hierarchy can be found in [30][32]. This is the direction
we have chosen in the VERTECS Team [8].

3.4. Verification

Both controller synthesis and conformance testing rely on the ability to solve reachability and coreachability
problems on a formal model. These problems are particular, but important cases of verification problems.
Verification in its full generality consists in checking that a system, which is specified in a formal model,
satisfies a required property. When the state space of the system is finite and not too large, verification can
be carried out by graph algorithms (model-checking). For large or infinite state spaces, we can perform
approximate computations, either by computing a finite abstraction and resort to graph algorithms, or
preferably by using more sophisticated abstract interpretation techniques. Another way to cope with large or
infinite state systems is deductive verification, which, either alone or in combination with compositional and
abstraction techniges, can deal with complex systems that are beyond the scope of fully automatic methods.

3.4.1. Abstract interpretation and numerical data handling

The techniques described above, which are dedicated to the analysis of LTSs, are already mature. It seems
natural to extend them to IOSTSs or data-flow applications that manipulate variables taking their values into
possibly infinite data domains.
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The techniques we develop for test generation or controller synthesis require to solve state reachability and
state coreachability problems (a state s is reachable from an initial stateb s; if an execution starting from s; can
lead to s; s is coreachable from a final state sy if an execution starting from s can lead to s ). These problems
can be solved by fixpoint computations (and also by deductive methods). From an algorithmic point of view,
those fixpoint computations are the core of the test generation and controller synthesis methods designed in
the team.

The big change induces by taking into account the data and not only the (finite) control of the systems
under study is that the fixpoints become not computable. The undecidability is overcomed by resorting to
approximations, using the theoritical framework of Abstract Interpretation [29].

Abstract Interpretation is a theory of approximate solving of fixpoint equations applied to program analysis.
Most program analysis problems, among others reachability analysis, come down to solving a fixpoint equation

x=F(x),zeC

where C' is a lattice. In the case of reachability analysis, if we denote by S the state space of the considered
program, C'is the lattice p(S) of sets of states, ordered by inclusion, and F' is roughly the “successor states”
function defined by the program.

The exact computation of such an equation is generally not possible for undecidability (or complexity)
reasons. The fundamental principles of Abstract Interpretation are:

1. to substitute to the concrete domain C' a simpler abstract domain A (static approximation) and
to transpose the fixpoint equation into the abstrat domain, so that one have to solve an equation
y=Gy),ye 4

2. to use a widening operator (dynamic approximation) to make the iterative computation of the least
fixpoint of G converge after a finite number of steps to some upper-approximation (more precisely,
a post-fixpoint).

Apprximations are conservative so that the obtained result is an upper-approximation of the exact result.
Those two principles are well illustrated by the Interval Analysis [28], which consists in associating to each
numerical variable of a program an interval representing an (upper) set of reachable values:

1. One subtitute to the concrete domain p(R"™) induced by the numerical variables the abstract domain
(Ir)™, where I denotes the set of intervals on real numbers; a set of values of a variable is then
represented by the smallest intervals containing it;

2. An iterative computation on this domain may not converge: it is indeed esasy to generate an infinite
sequence of intervals which is strictly growing. The “standard” widening operator extrapolates by
+00 the upper bound of an interval if the upper bound does not stabilize within a given number of
steps (and similarly for the lower bound).

In this example, the state space p(R™) that should be abstracted has a simple structure, but this may be
more complicated when variables belong to different data types (Booleans, numerics, arrays) and when it is
necessary to establish relations between the values of different types.

Programs performing dynamic allocation of objects in memory have an even more complex state space.
Solutions have been devised to represent in an approximate way the memory heap and pointers between
memory cells by graphs (shape analysis [38][37]). Values contained in memory cells are however generally
ignored.

In the same way, programs with recursive procedure calls, parameter passing and local variables are more
delicate to analyse with precision. The difficulty is to abstract the execution stacks which may have a complex
structure, particularly whenparameter passing by reference is allowed, as it induces aliasing on the stack [25].
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3.4.2. Theorem Proving

For verification we also use theorem proving and more particularly the PVS [34] and COQ [35] proof assistants.
These are two general-purpose systems based on two different versions of higher-order logic. A verification
task in such a proof assistant consists in encoding the system under verification and its properties into the logic
of the proof assistant, together with verification rules that allow to prove the properties. Using the rules usually
requires input from the user; for example, proving that a state predicate holds in every reachable state of the
system (i.e., it is an invariant) typically requires to provide a stronger, inductive invariant, which is preserved
by every execution step of the system. Another type of verification problem is proving simulation between a
concrete and an abstract semantics of a system. This too can be done by induction in a systematic manner,
by showing that, in each reachable state of the system, each step of the concrete system is simulated by a
corresponding step at the abstract level.

4. Application Domains

4.1. Panorama

Key words: Telecommunication, software embedded systems, transportation systems, smart-cards, control-
command Systems.

The methods and tools developed by the VERTECS project-team for test generation and control synthesis
of reactive systems are quite generic. This allows us to apply them in many application domains where the
presence of software is predominant and its correctness is essential. In particular, we apply our research in
the context of telecommunication systems, for embedded systems, for smart-cards application, and control-
command systems.

4.2. Telecommunication systems

Our research on test generation was initially proposed for conformance testing of telecommunication proto-
cols. In this domain, testing is a normalized process [24], and formal specification languages are widely used
(SDL in particular). Our test generation techniques have already proved useful in this context, going up to
industrial transfer. New standardized component-based design methodologies such as UML and OMG’s MDE
will certainly increase the need for formal techniques in order to ensure the composability of components, by
verification and testing. We believe that our techniques, by their genericity and adaptativity, will also prove
useful at different levels of these methodologies, from component testing to system testing.

4.3. Software Embedded Systems

In the context of transport, software embedded systems are increasingly predominant. This is particularly
important in automotive systems, where software replace electronics for power train, chassis (e.g. engine
control, steering, brakes) and cabin (e.g. wiper, windows, air conditioning) or new services to passengers are
increasing (e.g. telematics, entertainment). Car manufacturers have to integrate software components provided
by many different suppliers, according to specifications. One of the problems is that testing is done late in
the life cycle, when the complete system is available. Faced with these problems, but also complexity of
systems, compositionality of components, distribution, etc, car manufacturers now try to promote standardized
interfaces and component-based design methodologies. They also develop virtual platforms which allows for
testing components before the system is complete. It is clear that software quality and trust are one of the
problems that have to be tackled in this context. This is why we believe that our techniques (testing and
control) can be useful in such a context.

4.4. Smart-card applications

We have also applied our test generation techniques in the context of smart-card applications. Such applications
are typically reactive as they describe interactions between a user, a terminal and a card. The number and
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complexity of such applications is increasing, with more and more services offered to users. The security of
such applications is of primary interest for both users and providers and testing is one the means to improve it.

4.5. Control-command Systems

The main application domain for controller synthesis is control-command systems. In general, such systems
control costly machines (see e.g. robotic systems, flexible manufacturing systems), that are connected to an
environment (e.g. a human operator). Such systems are often critical systems and errors occurring during
their execution may have dramatic economical or human consequences. In this field, the controller synthesis
methodology (CSM) is useful to ensure by construction the interaction between 1) the different components
2) the environment and the system itself. For the first point, the CSM is often used as a safe scheduler, whereas
for the second one, the supervisor can be interpreted as a safe discrete tele-operation system.

5. Software
5.1. Tgv

Participants: Thierry Jéron [contact], Valéry Tschaen, Erwan Demairy, Simon Pickin.
Key words: Conformance Testing, TGV, ObjectGéode, CADP, SDL, Lotos, TTCN, UML, IF.

TGV (Test Generation with Verification technology) is a tool for test generation of conformance test suites
from specifications of reactive systems [3]. It is based on the IOLTS model, a well defined theory of testing,
and on-the-fly test generation algorithms coming from verification technology. Originally, TGV allows test
generation focussed on well defined behaviors formalized by test purposes. The main operations of TGV are
(1) a synchronous product which identifies sequences of the specification accepted by a test purpose , (2)
abstraction and determinization for the computation of next visible actions, (3) selection of test cases by the
computation of reachable states from the initial states and co-reachable states from accepting states. TGV has
been developed in collaboration with Vérimag Grenoble and uses libraries of the CADP toolbox (VERIMAG
and VASY). TGV can be seen as a library that can be linked to different simulation tools through well defined
APIs. An academic version of TGV is distributed in the CADP toolbox and allows test generation from Lotos
specifications by a connection to its simulator API. The same API is used for a connection with the UMLAUT
validation framework of UML models. This version has been transfered in the SDL ObjectGéode toolset as
part of the TestComposer tool. A new version of TGV is currently adapted to a new API of the IF simulator
(VERIMAG) allowing test generation from IF and UML models (via a compilation from UML to IF). This
new version extends the previous one with new functionalities for coverage based test generation combined
with test purposes based test generation. TGV is protected by APP (Agence de Protection des Programmes)
Number IDDN.FR.001.310012.00.R.P.1997.000.2090.

5.2. Nbac

Participant: Bertrand Jeannet [contact].
Key words: Abstract Interpretration, polyhedra, Reactive Systems, boolean and numerical types.

NBAC is a verification/slicing tool developed in collaboration with Vérimag. This tool analyses synchronous
and deterministic reactive systems containing combination of Boolean and numerical variables and conti-
nuously interacting with an external environment. Its input format is directly inspired by the low-level seman-
tics of the LUSTRE dataflow synchronous language. Asynchronous and/or non-deterministic systems can be
compiled in this model. The kind of analyses performed by NBAC are: reachability analysis from a set of
initial states, which allows to compute invariants satisfied by the system; coreachability analysis from a set of
final states, which allows to compute sets of states that may lead to a final state; and combination of the above.
The result of an analysis is either a set of states together with a necessary condition on states and inputs to stay
in this set during an execution, either a verdict of a verification problem. The tool is founded on the theory of
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abstract interpretation: sets of states are approximated by abstract values belonging to an abstract domain, on
which fix-point computations are performed. The originality of NBAC resides in

e the use of a very general notion of control structure in order to very precisely tune the tradeoff
between precision and efficiency;

e the ability to dynamically refine the control structure, and to guide this refinement by the needs of
the analysis.

e sophisticated methods for computing postconditions and preconditions of abstract values.

5.3. Stg
Participants: Vlad Rusu [contact], Elena Zinovieva, Frangois-Xavier Ponscarme, Thierry Jéron.
Key words: test de conformité, test et vérification symboliques.

STG (Symbolic Test Generation) [2] is a prototype tool for the generation and execution of test cases
using symbolic techniques. It takes as input a specification and a test purpose described as IOSTS, and
generates a test case program also in the form of IOSTS. Test generation in STG is based on a syntactic
product of the specification and test purpose IOSTS, an extraction of the subgraph corresponding to the test
purpose, elimination of internal actions, determinization, and simplification. The simplification phase now
relies on NBAC, which approximates reachable and coreachable states using abstract interpretation. It is used
to eliminate unreachable states, and to strengthen the guards of system inputs in order to eliminate some
Inconclusive verdicts. After a translation into C++ or Java, test cases can be executed on an implementation in
the corresponding language. Constraints on system input parameters are solved on-the-fly during execution.

5.4. Sigali
Participant: Hervé Marchand [contact].
Key words: Controller Synthesis, verification, symbolic techniques.

SIGALI is a model-checking tool that operates on ILTS (Implicit Labeled Transition Systems, an equational
representation of an automaton), an intermediate model for discrete event systems. It offers functionalities for
verification of reactive systems and discrete controller synthesis. It is developed jointly by the ESPRESSO
and VERTECS teams. The techniques used consist in manipulating the system of equations instead of the sets
of solution, which avoids the enumeration of the state space. Each set of states is uniquely characterized by
a predicate and the operations on sets can be equivalently performed on the associated predicates. Therefore,
a wide spectrum of properties, such as liveness, invariance, reachability and attractivity can be checked.
Algorithms for the computation of predicates on states are also available [7]. SIGALI is connected with the
Polychrony environment (as well as the Matou environment), thus allowing the modeling of reactive systems
by means of Signal Specification or Mode Automata and the visualization of the synthesized controller by
an interactive simulation of the controlled system. SIGALI is protected by APP (Agence de Protection des
Programmes).

5.5. Syntool
Participants: Benoit Gaudin, Hervé Marchand [contact].
Key words: Controller Synthesis, structured systems.

SYNTOOL is a tool dedicated to the control of structured discrete systems event. It implements the theory
developed in [16][22]. SYNTOOL has an API allowing the user to graphically describe the different LTS
modeling the plant, to perform some controller synthesis computations solving e.g. the forbidden state
avoidance problem for structured systems and finally to simulate the result (i.e. the behavior of the controlled
system). This tool is currently under testing.
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5.6. rapture

Participant: Bertrand Jeannet [contact].
Key words: Markov Decision Processes, Probabilistic verification.

RAPTURE is a verification tool developed jointly by BRICS and INRIA [31]. The tool is designed to verify
reachability properties on Markov Decision Processes (MDP), also known as Probabilistic Transition Systems.
This model can be viewed both as an extension to classical (finite-state) transition systems extended with
probability distributions on successor states, or as an extension of Markov Chains with non-determinism. We
have developed a simple automata language that allows to describe a set of processes communicating over a
set of channels a la CSP. Processes can also manipulate local and global variables of finite type. Probabilistic
reachability properties are specified by defining two sets of initial and final states together with a probability
bound. The originality of the tool is to provide two reduction techniques that limit the state space explosion
problem: automatic abstraction and refinement algorithms, and the so-called essential states reduction [43].

6. New Results
6.1. Controller Synthesis

6.1.1.

Key words: controller synthesis methodology, Hierarchical models, symbolic methods.

Supervisory Control of Structured Discrete Event Systems
Participants: Benoit Gaudin, Hervé Marchand.

Following our preliminary results on control of hierarchical systems [8], we first enriched the model by
considering interactions between the components of the system in order to handle more realistic applications.
In particular, given a system modeled as a structured discrete event systems, we have proposed a method
solving the State avoidance Control Problem for a set of configurations of the system. Based on a particular
decomposition of the set of forbidden configurations, we locally solve the control problem (i.e. on each
component without computing the whole system) and we produce a global supervisor ensuring the desired
property. This supervisor can be seen as an oracle that will activate/deactivate local supervisors according
to the current configuration of the global system and some conditions that can be easily computed on the
fly. Moreover, we make the necessary efforts to keep the structure of the plant in the global supervisor,
hence improving the readability and the understanding of the supervisor effect as well as its memory
storage [15][16][22]. We also developed a methodology allowing to control structured discrete event systems,
when the control objectives are expressed in terms of languages. This work is still under progress.
These techniques has been implemented in a prototype, named SYNTOOL. It is currently under testing.

6.1.2. A Model for the Automatic Generation of Safe Task Handlers

Participant: Hervé Marchand.

In collaboration with the BIP Project (now POP-ART) and VERIMAG, we have been interested in the
programming of real-time control systems, such as in robotics or avionics. These systems are designed
with multiple tasks, each with multiple modes. We propose a model of tasks in terms of transition systems,
designed especially with the purpose of applying existing discrete controller synthesis techniques (based on
the SIGALI framework). This provides us with a systematic methodology, for the automatic generation of
safe task handlers, with the support of synchronous languages and associated tools for compilation and formal
computation. This work is still under progress.

6.2. Test generation on enumerative and symbolic models

6.2.1.

Key words: testing, test generation, models, transition systems, symbolic transition systems.

Test generation based on coverage directives
Participants: Thierry Jéron, Valery Tschaen, Erwan Demairy.
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Our test generation techniques were previously based on a selection by test purposes. However, this approach
necessitates to specify those test purposes. Users sometimes want more automatic ways to generate test
cases, from more general selection mechanisms. In the context of the Agedis european project (see 7.1),
we have defined more general selection mechanisms, called test selection directives. They allow to describe
both coverage directives (on states, transitions and more generally expressions on variables), test purposes
(extended to more general observers) and constraints on data values, and to combine them. Taking into
account these test directives involved a deep modification in some test generation algorithms. We also designed
algorithms that generate test cases randomly, without any test directive. All these algorithms are incremental
in the sense that they produce test cases when these are computed, without waiting the end of the process, thus
allowing users to interupt the process with a partial result. These results are still unpublished.

6.2.2. From Safety Verification to Safety Testing

Participants: Vlad Rusu, Hervé Marchand, Valery Tschaen, Thierry Jéron, Bertrand Jeannet.

In this work, we define a methodology that combines verification and conformance testing for validating safety
requirements of reactive systems. The safety requirements, specified as observers of visible behaviors, are
first automatically verified on the system’s specification. Then, test cases are automatically derived from the
specification and the requirements, and executed on a black-box implementation of the system. This allows
to check whether the requirements hold on the implementation as well. It is shown that an implementation
conforms to its specification (for the conformance relation of Tretmans) if and only if it satisfies all the relevant
safety requirements that are satisfied by the specification. The main differences with our previous works on
test generation from test purposes is that test purposes express reachability properties, while requirements
express safety properties, which are the most used type of property used in verification, and our methodology
establishes a direct link between verification and test generation as what is tested on the implementation is
exactly what is verified on the specification. This work will be presented in Testcom in 2004.

6.2.3. Symbolic test generation

Participants: Elena Zinovieva, Vlad Rusu, Bertrand Jeannet, Thierry Jéron.

The PhD. thesis of Elena Zinovieva describes the integration of the approximated reachability and co-
reachability algorithms embodied into the NBac tool, into the general symbolic test generation algorithm
of the STG tool. The new reachability/co-reachability algorithms allow for a precise handling of data, and as a
result, the new version of the tool is able to generate better test cases (i.e., having less Inconclusive verdicts).

6.3. Interaction between test, control and verification

6.3.1. Ensuring the conformance by means of supervisors
Participants: Thierry Jéron, Hervé Marchand, Vlad Rusu, Valéry Tschaen.

The problem addressed here is how to force a known implementation model to conform to a reference
specification. The proposed solution is to control the implementation with an internal controller and to
compute it by control synthesis techniques, considering conformance with the specification as a control
objective. The problem is attacked in the context of total and partial observation of the controller on the
implementation [18][17]. This work is still under progress.

6.3.2. Robustness testing.
Participants: Thierry Jéron, Hervé Marchand, Valery Tschaen.

Robustness is the ability of a system to behave acceptably in the presence of hazards. One problem is the
generation of test cases for testing robustness. Given a specification with modes (normal and degraded) and
hazards, and required robustness properties, we propose an approach in two phases. First the specification
should at least ensure robustness properties, which is achieved by control. Then test cases are selected,
focussed on robustness. This is done by using a TGV-like technique on the controlled specification, but
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focussed on mode changes and hazards, using test purposes derived from properties, and results of the control
problem.

Testing and Control of Real-Time Systems
Participants: Ahmed Khoumsi, Thierry Jéron, Hervé Marchand, Vlad Rusu.

Before visiting us, Ahmed Khoumsi had contributed to the testing and control of real-time systems, based
on a transformation of classes of Timed Automata (TA) into equivalent finite state automata called SetExp
Automata (SEA). During his visit, we used this transformation as a basis for the generalization of two problems
adressed in the project. First, for a class of Determinizable TA, we extended the TGV method to the real-time
case [20]. Second, we extended the work on control for conformance for real-time discrete event systems and
for a real-time extension of the ioco conformance relation.

Combining Formal Verification and Conformance Testing
Participant: Vlad Rusu.

This work [13] presents yet another combination of verification and conformance testing techniques to
support the formal validation of reactive systems. The idea is to use symbolic test selection techniques to
extract subgraphs (components) from a specification, and to perform the verification on the components
rather than on the whole specification. Under reasonable sufficient conditions, this constitutes a sound
compositional verification technique, in the sense that a property verified on the components also holds on
the whole specification. This may considerably reduce the global verification effort. Moreover, once verified,
a component forms the basis of an adequate test case, i.e., when executed on an implementation, it will
not issue false positive or negative verdicts with respect to the verified properties. The approach has been
implemented using the STG test selection tool STG and the PVS theorem prover, and demonstrated on a
smart-card application (an electronic purse system).

6.4. Applications of theorem proving

6.4.1.

6.4.2.

Participant: Vlad Rusu.

Compositional verification of an ATM protocol

In this work [21] an approach based on compositionality, partial-order verification, and interactive theorem
proving for verifying communication protocols is presented. The approach is implemented in PVS. Its
originality lies more in the combination of the methods than in the methods themselves; and its value is that it
scales up to real-size systems. It is demonstrated by verifying a real ATM protocol whose main requirement is
to perform a reliable data transfer over an unreliable communication medium.

Extracting a Data Flow Analyser in Constructive Logic

This work has been done in cooperation with David Cachera, Thomas Jensen, and David Pichardie from
the Lande project-team of Irisa. We show how to formalise a constraint-based data flow analysis in the
specification language of the COQ proof assistant. This involves defining a dependent type of lattices together
with a library of lattice functors allowing for a modular construction of complex abstract domains. Constraints
are expressed via an intermediate representation that allows for efficient constraint resolution. Correctness with
respect to an operational semantics is proved formally. The proof of existence of a correct, minimal solution
of the constraints is constructive, which means that the extraction mechanism of COQ provides a provably
correct data flow analyser in OCAML. The library of lattices together with the intermediate representation of
constraints are defined in an analysis-independent fashion, thus providing a generic framework for proving
and extracting static analysers in COQ. This work will be presented at ESOP in 2004.

6.5. Verification and Abstract Interpretation
6.5.1. Abstracting Call-Stacks for interprocedural verification of imperative programs

Participants: Bertrand Jeannet, Wendelin Serwe.
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Key words: Interprocedural Verification.

In the context of the ARC Modocop, we have proposed a new approach to interprocedural analysis/verification
of programs, consisting in deriving an interprocedural analysis method by abstract interpretation of the
standard operational semantics of programs [23]. The advantages of this approach are twofold. From a
methodological point of view, it provides a direct connection between the concrete semantics of the program
and the effective analysis, which facilitates implementation and correction proofs. Moreover, this method
subsumes/integrates two main, distincts methods for interprocedural analysis, namely the call-string and
the functional approaches introduced by Sharir and Pnueli. This enables strictly more precise analysis and
additional flexibility in the tradefoff between efficiency and precision of the analysis.

A tool is currently being implemented. Our final goal is to extend to recursive programs the sophisticated
techniques implemented in the tool NBAC for reactive programs.

6.5.2. Interprocedural Shape Analysis

Participant: Bertrand Jeannet.
Key words: Interprocedural Verification, Shape Analysis.

This work has been done in cooperation with Thomas Reps, of the University of Wisconsin—-Madison, during
my three months stay in this place. The goal of the shape analysis is to analyze the possible memory
configurations occuring during the execution of a program performing dynamic allocation of objects in the
memory heap. Of course the configurations computed by such an analysis abstracts the concrete memory
configurations, usually by using graphs representing memory cells and their pointer relations. We have
applied the interprocedural analysis method described above to shape analysis, using the abstract lattice of
3-valued logical structures developped by Thomas Reps, M. Sagiv and R. Wilhelm. The challenge was to
apply the interprocedural method with a very complex abstract lattice, and to extend the abstract lattice with
interprocedural operations.

6.5.3. Automatic state reaching for debugging reactive programs
Participant: Bertrand Jeannet.

Key words: Debugging, Verification, Testing.

This work has been done in collaboration with the synchronous team of VERIMAG [14]. Reactive systems
are made of programs that permanently interact with their environment. Debuggers generally provide support
for data and state inspection, given a sequence of inputs. But, because the reactive programs and their
environments are interdependent, a very useful feature is to be able go the other way around; namely, given
a state, obtain a sequence of inputs that leads to that state. The main technical contribution of this work
is to propose an efficient solution to this problem for systems with numerical variables and inputs, which
works well in practice, although the problem is equivalent to general safety properties verification, which is
notoriously undecidable in presence of numeric variables. Three tools cooperate in order to solve the problem:
the debugger LUDIC isolates the relevant parts of the program using slicing techniques. Then the verification
tool NBAC computes the set of states that are both reachable from the starting (or initial) state and coreachable
from the states satisfying the property P (or final states). Last, the sequence generator LURETTE uses this
information for an efficient search for a (short) execution starting from the initial state and leading to some
final state.

7. Contracts and Grants with Industry
7.1. Agedis

Participants: Thierry Jéron, Valery Tschaen, Erwan Demairy.

Key words: fest, test generation, distributed softwares, UML.
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Agedis [11/2000-01/2004] is an European project IST (http://www.agedis.de/) on the automated generation
and execution of test suites for distributed component based software. The goal of the project is to propose
a toolset for test generation, test execution and test result analysis, starting from UML models of distributed
software. This project allows us to improve the TGV technology by extending it with coverage based test
generation (see 6.2.1) using a more complete API to the IF simulation tool of VERIMAG. It also gives us a
new opportunity to connect our technology to the UML world. Partners are IBM Haifa, IBM Hursley, France
Télécom R& D, IntraSoft, Imbus, Oxford University and Vérimag. We are subcontractors of Vérimag in this
project.

7.2. ITEA EAST-EEA, Embedded Electronic Architecture

Participants: Thierry Jéron, Hervé Marchand.

The EAST-EEA project (ITEA-Project-No. 00009, http://east-eea.test.k-k.de/) is about the Embedded Elec-
tronic Architecture study with European leading automotive industry (PSA, Renault, Daimler, Volvo, etc ) and
suppliers (Valéo, Siemens, Bosch, etc) and academic groups. We were previously partners in AEE Develop-
ment Initiative (htmladdnormallinkhttp://aee.inria.fr/http://aee.inria.fr/) 2000-2001 on Embedded Electronic
Architecture with French automotive industry and suppliers. In both cases, the budget is managed by Inria
Rocquencourt and for the moment we use it for travel only. Our motivation in this project is to improve the
validation of embedded software, and in particular improve robustness testing of such software. In this context,
we try to introduce automatic test generation in the design process of the automotive industry.

8. Other Grants and Activities

8.1. National grants & contracts

8.1.1.

8.1.2.

8.1.3.

Carroll-Mutation
Participant: Thierry Jéron.
The objective of this project with CEA LIST, Thales Airborne Systems and Thalés R & D, is to automate

testing from UML models in the context of Model Driven Engeneering. Our participation consists in expertise
for test generation and the use of the TGV tool, in collaboration with the Triskell project-team.

INRIA ARC Modocop

Participants: Bertrand Jeannet, Thierry Jéron, Vlad Rusu, Wendelin Serwe, Frangois-Xavier Ponscarme.

Modocop (http://www-sop.inria.fr/lemme/modocop) is an ARC (Action de Recherche Coopérative de 1'Inria),
that started in January 2002. Modocop deals with the Model checking Of Concurrent Object-oriented
Programs. The focus is on analysis, verification and test generation for Java programs. Partners are Inria
project-teams LANDE, LEMME, OASIS, and VASY and CNRS Lab VERIMAG. VERTECS works on the
analysis of Java programs and interfaces STG with (Synchronous) Java, as output for execution of test cases,
and as input to allow a direct specification in a Java-like language. W. Serwe made his Post-Doc in this context.

CNRS Action Spécifique Test no. 23

Participants: Thierry Jéron, Hervé Marchand.

AS STIC 23 (http://www.laas.fr/TSF/AS23/) is a working group (‘“Action spécifique”) in the context of CNRS
networks RTP SECC and SdF, on “Advanced test techniques for complex systems”. Partners are LAAS
(Toulouse), LABRI (Bordeaux), LRI (Orsay), VERIMAG (Grenoble) and TRISKELL (Inria Rennes, 1C).
The objective is to define properly what robustness testing is, and to define new techniques for test generation
for robustness. In this context, we proposed a new approach based on a combination of control synthesis and
conformance test generation (see 6.3.2).
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8.2. Collaborations

8.2.1. Collaborations with other INRIA project-teams:

We collaborate with several Inria project-teams. With ESPRESSO project-team for the development of
the SIGALI tool inside the Polychrony environment. With the POP-ART project-team on the use of the
controller synthesis methodology for the control of control-command systems (e.g. robotic systems). With
the TRISKELL project-team we have different collaborations on testing, in particular on the connection of
TGV and UMLAUT, and on symbolic distributed test generation. With the S4 project-team on the use of
control and game theory for test generation. With the VASY project-team on the use of CADP libraries in
TGV and the distribution of TGV in the CADP toolbox.

8.2.2. Collaborations with French research groups outside INRIA:

Our main collaborations are with Vérimag. Beyond formalized collaborations (IST Agedis, CNRS AS Test,
ARC Modocop), we also collaborate on the connection of NBAC with Lurette for the analysis of Lustre
programs, as well as the connection of SIGALI and Matou.

8.2.3. International Collaborations

Aalborg University in Denmark (K. G. Larsen) and University of Twente (P. Katoen) on probabilistic
verification. We participate in the development of the Rapture tool.

University of South Carolina in USA (D. Clarke) on symbolic test generation with emphasis on the STG
tool.

CNR Pisa in Italy (A. Bertolino) on using TGV for test generation for software architectures.

University of Wisconsin (T. Reps) on shape analysis. Bertrand Jeannet visited Tom Reps during spring
2003.

ENIS Sfax in Tunisia (M. Tahar Bhiri). Thierry Jéron is co-supervisor of a master student Hatem Hamdi
working on robustness testing.

8.2.4. Networks of Excellence
We have been involved in three proposals for Networks of Excellence in the 6th PCRD: Define
(http://www.laas.fr/DeSIRE&DeFINE/index.html) on Dependability that was not selected for the Ist
call, and Artist (http://www.artist-embedded.org/) on Embedded Systems, and Testnet (http://www-lor.int-
evry.fr/testnet/) on Integration of Testing Methodologies which have been submitted to the 2nd call.

9. Dissemination

9.1. University courses

e T. Jéron: is responsible of a course in Master of Computer Science in University of Rennes 1, and of
a course in the engineering school DIIC in University of Rennes 1. He also teaches in the engineering
school EnstB in Rennes and Brest. The topics of all lectures are testing and model-checking, He is
also member of the “Comissions de Spécialistes” of ENS Cachan and University Rennes 1.

e V. Rusu teaches in the Master of Computer Science in Rennes, on deductive verification methods.
e B. Jeannet teaches in the Master of Computer Science in Rennes, on abstract interpretation,

e B. Gaudin is teaching in DEUG and DIIC 2 in University of Rennes 1 (64h/year).

e V. Tschaen is teaching in DEUG and DIIC 3 in University of Rennes 1 (64h/year).

e E. Demairy is teaching compilation and project management in IUP-2 and IUP-3 in University of
Rennes 1 (40h).
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9.2. PhD Thesis and Trainees
Current PhD. thesis:

1. Benoit Gaudin, « Control of Structured Discrete Event Systems »
2. Valéry Tschaen, « Automatic test generation: Models and Techniques »

3. Elena Zinovieva « Generation and simplification of symbolic testing »
Trainees :

1. Laurent Payen, « Syntool a Tool dedicated to the controller synthesis for Structured Discrete Event
Systems », DESS Trainee (6 months).

2. Sophie Quinton, « Deductive proof with PVS », ENS Cachan (3 months).

3. Mbolatiana Rafamantanantsoa, « Robustness testing », Master student (6 months).

9.3. Participation to jurys

Thierry Jéron was member of the PhD. jurys of Manuel Aguilar (INPG Grenoble) and Armelle Prigent (Ecole
Centrale de Nantes).

9.4. Conferences, Seminars, invited talks

Thierry Jéron is PC member of Fates’03 (Montréal, 10/03), Testcom 2004 (Oxford, 3/04), Tacas’05 (Edin-
burgh, 4/04). He is Financial Chair of ISSRE 2004 (St Malo, 11/04). He is member of the Organizing Com-
mittee of the Movep School (Liege, 12/04) .

Thierry Jéron was invited to give a tutorial on test generation in the school ETR’03 (Ecole Temps Réél,
Toulouse).
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