
epor t

d ' c t i v i t y

2004

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team aoste

Models and Methods for the Analysis and
Optimization of Systems with Real-time and

Embedded Constraints

Sophia Antipolis - Rocquencourt

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/aoste.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-sop.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-rocq.en.html

Table of contents

1. Team 1
2. Overall Objectives 1
3. Scientific Foundations 2

3.1. High-Level Modeling 2
3.1.1. Synchronous formalisms 2
3.1.2. UML modeling diagrams for Real-Time Embedded applications 3

3.2. Transformations and analysis 5
3.2.1. Compilation/synthesis 5
3.2.2. Dynamic analysis, automatic verification and model-checking 6

3.3. Mapping onto Embedded platforms: The AAA methodology 6
3.3.1. Algorithm/Architecture/Implementation models 8

3.3.1.1. Algorithm 8
3.3.1.2. Architecture 8
3.3.1.3. Implementation 9

3.3.2. Optimization 10
3.3.3. Automatic code generation 11
3.3.4. Fault tolerance 12

4. Application Domains 12
4.1. Embedded systems 12
4.2. Mobile robotics, automotive and transportation 12
4.3. Mobile phones and other communicating objects 12
4.4. System-on-Chip design 13

5. Software 13
5.1. SyncCharts/Esterel 13
5.2. SynDEx 13
5.3. SynDEx-IC 14
5.4. Sep 14

6. New Results 14
6.1. Syntax-driven model checking 14
6.2. Esterel: from formal semantics to provably correct compilers 15
6.3. Reaction to Absence in a distributed context 15
6.4. SyncCharts improvements 16
6.5. UML Patterns for hardware/software architectures 16
6.6. AAA models 16
6.7. Scheduling and Optimization 17

6.7.1. Off-line scheduling 17
6.7.2. Mixing off-line and on-line scheduling 18
6.7.3. Memory reuse 18

6.8. Automatic code generation 19
6.9. Fault tolerance 19
6.10. Improvements in SynDEx 19

7. Contracts and Grants with Industry 20
7.1. ST MIcroelectronics 20
7.2. Texas Instruments 20
7.3. MBDA 20
7.4. Mitsubishi Electric ITE 21
7.5. Robosoft 21

2 Activity Report INRIA 2004

8. Other Grants and Activities 21
8.1. Regional collaborations 21

8.1.1. CIM PACA 21
8.1.2. Numatec Automotive (temporary name) 21
8.1.3. The JavaHASE project 21

8.2. Nation-wide collaborations 21
8.2.1. Relations with other INRIA teams 21
8.2.2. CARROLL project PROTES 22
8.2.3. RNTL project ECLIPSE 22

8.3. European collaborations 22
8.3.1. ITEA project EAST-EEA 22
8.3.2. ITEA project PROMPT2IMPLEMENTATION (P2I) 22
8.3.3. IST Network of Excellence ARTIST 22

8.4. Research exchange visits 23
9. Dissemination 23

9.1. Leadership within scientific community 23
9.2. Teaching 23

10. Bibliography 23

1. Team
Aoste is a joint project with the university of Nice (UNSA) and the CNRS, through the UMR I3S. It is also

spread between Sophia-Antipois and Rocquencourt, as a follow-up of the former INRIA Tick and Ostre teams,
and the I3S Sports team.

Head of project-team
Robert de Simone [Senior Researcher, Inria]

Vice-head of project team
Yves Sorel [Senior Researcher, Inria]

Administrative assistant
Sophie Honnorat [Sophia-Antipolis, part-time]
Nelly Maloisel [Rocquencourt, part-time]

Staff member UNSA
Charles André [professor]
Frédéric Mallet [associate professor]
Marie-Agnès Peraldi-Frati [associate professor]

Ph. D. student
Julien Boucaron [ST contract funding, since october 2004]
Liliana Cucu [INRIA scolarship, until may 2004]
Hamoudi Kalla [joint INRIA scolarship withBIP team, until december 2004]
Linda Kaouane [joint scolarship withESIEE, until december 2004]
Fabrice Peix [MENESR scholarship, until september 2004]
Nicolas Pernet [INRIA scolarship]
Mickaël Raulet [INSA/MITSUBISHI ELECTRIC scholarship]
Olivier Tardieu [Corps des Mines, until november 2004]
Eric Vecchié [PACA regional scholarship, until october 2004, then ATER]

Technical Staff
Cyril Faure [Project technical staff, Rocquencourt]
Julien Forget [Project technical staff, Rocquencourt, until november 2004]
Arnaud Rouanet [Software development staff, Rocquencourt]

Student interns
Belouaer Hadj [University Nice/Sophia-Antipolis]
Christophe Bourcier [University Versailles Saint-Quentin-en-Yvelines]
Xavier Cousin [ESIEENoisy-Le-Grand]
Omar El Ganaoui [INPG Grenoble]
Alain Mvié [University Littoral Côte d’Opale]

External collaborators
Thierry Grandpierre [Assistant ProfessorESIEENoisy-Le-Grand]
Christophe Lavarenne [EngineerUBIC]

2. Overall Objectives
Keywords: UML, adequation, architectural models, automatic verification, code distribution, code genera-
tion, codesign, compilation techniques, formal semantics, hardware synthesis, high-level modeling, mapping,
multiprocessors, optimization, program analysis, real-time embedded systems, scheduling, synchronous hy-
pothesis, synchronous reactive formalisms, systems-on-Chip.

The main goal of Aoste is to provide innovative approaches for the design of real-time and embedded
systems, based on powerful algorithmic methods applied to well-defined models with sound mathematical
semantics (in short: formal model-based design). Here “design” means altogether:

2 Activity Report INRIA 2004

High-Level Modeling
Model transformation and analysis

Implementation onto Embedded platforms
We shall try to promote our semantically sound, model-based approach at each of these three levels. In the

case ofhigh-level modeling, this translates into the need for offering appealing and familiar syntactic constructs
to help shape up modular semantic model construction; for thetransformation and analysis part, the goal is to
provide “correct-by-construction” synthesis techniques to transform models progressively from higher-level
to lower-level, and check otherwise their match against correctness properties; in theimplementation onto
embedded platformspart, we introduce an explicit architectural platform, and consider the optimized mapping
in time and space of models-as-programs onto this platform.

To cover this vast spectrum of topics we need to specialize the type of formalisms we shall con-
sider. We focus onsynchronous reactive languages, such as Esterel/SyncCharts, and on theApplica-
tion/Architecture/Adequation(AAA) methodology, as implemented in the SynDEx design environment. Typ-
ical application domains for our techniques are found in nowadays major embedded electronic fields, such as
mobile telephones and similar appliances branded as “secure communicating objects”, in mobile robotics, in
automotive and aircraft transportation, and in digital system-on-chip (SoC) design.

3. Scientific Foundations
3.1. High-Level Modeling

Keywords: Esterel, SyncCharts, UML, synchronous formalisms.

Participants: Charles André, Julien Boucaron, Robert de Simone, Frédéric Mallet, Marie-Agnès Péraldi.

3.1.1. Synchronous formalisms
Historically the so-calledsynchronous reactive formalisms[27][10] were developed, mostly inside French

research groups in the 1980’s (Esterel, Lustre, Signal was the trilogy), as foundational study of semantically
well-founded description languages for real-time embedded software systems. Meanwhile a number of
modeling languages were also introduced in this field, aiming more specifically at system simulation with
discrete time steps: HDLs for hardware circuits, Statecharts for embedded software modeling, Simulink
for signal and image processing and control theory. It should be recognized in our view that synchronous
languages brought exactly what these simulation formalisms lack: a clear sense of correct construction
properties, under which the instantaneous behavior (the reaction) can always be provably scheduled safely
in an intelligible way, and which makes executions deterministic and complete (because all valid scheduling
are essentially causally equivalent). With such an assumption there is a guaranteed match between the
simulation model and the executable code obtained through the implementation (“what you simulate is what
you execute”), and this opens the way to many important design activities, such as synthesis, verification, and
test generation activities, which are largely banned out of a setting where the simulation model may differ from
the actual implementation. Also, the precise scheduling in the case of synchronous formalisms is not required
from the designer, it is synthesized from the high-level correctness principles. Examples of such benefits are
theclock calculusin Signal, and in our case theconstructivesemantics of Esterel, and the optimized mapping
of application specified with these languages, onto architectural models of SynDEx.

Esterel [12][15] was developed jointly at INRIA and École des Mines de Paris, in the Meije research team
then headed by Gérard Berry. The language is of imperative nature, with syntactic features for precise descrip-
tion of reactive instants, conceptual parallelism (potential parallelism), signal broadcast and preemption. Its
scope is the representation of control-dominated reactive systems as hierarchical automata. Under a strict cor-
rectness condition ofconstructive causality[13] (signal presence values should be determined at any instant
before it is tested), it can be given formal interpretation, either in the form of synchronous circuits, or as Mealy
finite state machines. These, being classical mathematical models, allow design transformation activities such

Project-Team aoste 3

as optimization and automatic verification based on model-checking, and can produce target C code directly
simulating the behavior (of the circuit or the Mealy machine respectively).

SyncCharts [1][7] are syntactically and semantically different from Statecharts (and UML State Machines).
SyncCharts respect a strict state containment hierarchy, and transitions cannot cross a macrostate boundary.
This should be imposed by a constraint on the structure. Where SyncCharts and UML State Machines greatly
diverge is about their semantics. The execution semantics of UML State Machines is described in terms of the
operations of a hypothetical machine that implements a state machine specification. Events are dispatched and
processed by the state machine,one at a time. The UML specification (UML 1.4) mentions that “the order
of dequeuing in not defined, leaving open the possibility of modeling different priority-based scheme”. This
does not open the possibility to handle simultaneous occurrences of events, which are the rule in synchronous
models. Another cause of incompatibility is thesignalconcept. Signals in SyncCharts, like in Esterel, are the
unique abstraction of communication and synchronization. Each signal has a presence status, and a possible
value of a given type. When a signal can be emitted several times at the same instant, a special combination
function must be associated with the signal. The broadcast/combine operation on signals is typical of the
synchronous approach. In UML a signal is a special event, which cannot be taken as a super class for our
signals.

SyncCharts were developed inside the SPORTSproject-team at I3S (UNSA-CNRS). The synchronous se-
mantics of SyncCharts can be contrasted with the numerous variants of Statecharts semantics, proposed by
Harel, Pnueli and many others, in which microsteps and delayed reactions are introduced to avoid the con-
structive causality issue. Constructiveness is in fact a notion first studied by Sharad Malik (Princeton U.). Vari-
ants of Esterel borrowing syntax from general-purpose languages such as ECL (Esterel-C language) and Jester
(Java-Esterel) were designed inside Cadence Berkely Labs in the context of the POLIS codesign/cosimulation
project that ultimately led to the VCC product by Cadence. In Germany theSYNERGY project was conducted
at GMD in Axel Poigné’s group to build an environment merging features of Esterel, Lustre and Argos (a
synchronous variant of StateCharts less expressive as SyncCharts, developed at VERIMAG). Work on foun-
dational semantics of synchronous formalisms were also conducted in Germany (Quartz project of Klaus
Schneider at Karlsruhe U.) and in the UK (Michael Mendler and Gerard Lüttgen, Sheffield U.). Recently,
work on compilation schemes for Esterel (under additional conditions syntactically enforcing uniform causal-
ity) were developed in parallel at France Telecom Grenoble (Etienne Closse, Daniel Weilet al.), at Synopsys
and then Columbia U. (Stephen Edwards), and the INRIA Tick project (PhD thesis of Dumitru Potop); all
these works rely on intermediate models where control flow is made explicit from structural operators, but po-
tential concurrency arising from parallelism is preserved (even though signal communication might restrict it
to respect causal order); in our case the intermediate model is called aGRCgraph (for “GRaph Code”). At this
level important optimizations can be attempted based on static analysis techniques, thereby saving tremendous
algorithmic work in later stages on flat circuit descriptions. We started work in that direction, which should be
systematically pursued in AOSTEas a basis for distributed implementation satisfying real-time and embedding
contraints.

Esterel/SyncCharts and Lustre/SCADE are now developed and commercialized in an industrial context by
Esterel Technologies, an INRIA spin-off founded partially by former members of the Tick research group (and
scientifically headed by Gérard Berry).

3.1.2. UML modeling diagrams for Real-Time Embedded applications
The UML consists of a variety of models (or “diagrams”), aiming at covering modeling concerns during

the whole lifespan of software engineering. Of particular interest to us are some models ofstructural or
behavioralnature, and in the later casestateandsequencediagrams. State diagrams may represent components
behaviors, in a way inspired from StateCharts. Sequence diagrams represent possible interaction scenarios
between components, in a way inspired from Message Sequence Charts.

The only “semi-formal” semantics of models is usually given in natural language, with high risks
of ambiguity and, even worse, inconsistencies; there is a uniform lack of clear relationshipbetween

4 Activity Report INRIA 2004

the various models; currently, sequence diagrams have poor expressiveness. A number of research ef-
forts address this demand for rigourous semantics of the UML models, such as thePrecise UMLgroup
(http://www.cs.york.ac.uk/puml) or the Neptune (Nice Environment with a Process and Tools Using Norms
and Example) project (http://neptune.irit.fr). Umlaut(J-M. Jezequel, INRIA Triskell team) is a UML transfor-
mation framework allowing complex manipulations to be applied to a UML model, where manipulations are
expressed as algebraic compositions of reified elementary transformations.

The weak expressivity of sequence diagrams as models of interactions is currently tackled by researchers
proposing extensions ofMessage Sequence Charts(MSC) to this end (thus outside the UML standardization
community). Work on “High-Level MSCs” (for instance in INRIA Triskell and S4 teams) or on “Live
Sequence Charts” (LSC, by D. Harel and W. Damm) fall into this category. WithLSCsone can express
possible, but also mandatory or even forbidden interaction scenarios. Prototypical tools at the University of
Oldenburg/OFFIS provide semantic interpretation into timed automaton.

While the standard UML is aimed at general-purpose object-oriented software engineering, specific exten-
sions (or “profiles”) have been proposed to deal specifically with real-time aspects. Just to mention a few such:
UML-RT (B. Selic) used in the Rational Rose-RT development environment, RT UML (B. Douglass) used in
Rhapsody (I-Logix), and ACCORD/UML (F. Terrier, CEA). UML-RT is based on the first success story of
ROOM (Real-time Object-Oriented Modeling), introduced in 1994 by Selic, Gullekson, and Ward, and put
on the market by ObjecTime. The RTAD (Real-Time Analysis and Design) working group of the OMG has
been especially created to promote real-time issues within the OMG, and to specialize the UML to be suitable
for different real-time domains. The newly adopted UML-SPT profile is a first visible result, enabling mod-
els that support Scheduling, Performance, and Time evaluation. However, it fulfils different needs than ours
(quantitative performance analysis rather than executable specifications). We are taking part in the elaboration
of a Request-For-Proposal (RFP) for a new profile in this field, named MARTE (Modeling and Analysis of
Real-Time Embedded systems). In this context we shall try if possible to promote models relevant to our goals.

There is a growing interest in integrating synchronous concepts into UML (or UML profiles). The former
PAMPA and Ep-Atr teams (IRISA) once proposed the BDL formalism, to study a mixed synchronous-
asynchronous semantics. The UML here plays the role of a federator notation. The I3S SPORTS project
has adopted another point of view [3]: the direct use of synchronous (imperative) models. The question is
whether these enrichments are “lightweight” (stereotypes or tag values) or “heavyweight” changes to the
UML. Heavyweight here means that synchronous hypotheses are at places incompatible with some basic
current assumptions made in UML. A UML state machine, which is a variant of Statecharts, has a queue
for incoming events, an event dispatcher that selects and de-queues event instances one at a time, and an
event processor which processes dispatched event instances under a run-to-completion scheduling policy. This
definitely excludes simultaneous occurrences. Interaction models raise similar difficulties. Introducing our
synchronous models to UML (SyncCharts as state-based model, and SIB as interaction model) would need
changes at the meta model level.

The newUML2.0 standard should improve the ability and utility of the UML with respect to architecture
and scalability (through its “Superstructure” RFP). In the new versionclassescan be structured and reuse
other classes playing specific “parts” roles. Portsare introduced for architectural modeling, as (instantiable)
connection points through whichpart instance export specific services or operations accross the class
boundary.Interfacesshould be also expanded to allow specification of arequired interface(from the distant
other end) in addition to the usual notion of (local)offered interface. Moreover, the specification of allowable
sets of sequences of service invocations might be specified with “protocol state machine”. Almost all these new
possibilities were present in the ROOM’scapsulenotion, a major influence. Such a model can play the role of
an ADL (Architecture Description Language). Other improvements are related to behavioral models:sequence
diagramsmight now be broken up into “interaction fragments”, with nesting capabilities and extended control
constructs, making them closer to MSC and LSC. Last but not least, a form ofData Flow Diagramsshould be
introduced (sinceactivity diagramsaddress only partially this issue).

To summarize, new UML trends meet our concerns about system architecture, components, and behavior.
UML offers rich and standard notations, but lacks semantic rigor at places. This should not hinder our

http://www.cs.york.ac.uk/puml
http://neptune.irit.fr

Project-Team aoste 5

objectives of rigorous system design. Whenever an official model semantics will appear as not defined well
enough, we shall feel free to adapt it:strict UML compliance is not our goal !

3.2. Transformations and analysis
Keywords: Compilation, formal verification, synthesis.

Participants: Robert de Simone, Fabrice Peix, Olivier Tardieu, Eric Vecchié.

The fact that syntactic constructs in synchronous languages are fully defined in terms of corresponding
semantic operations immediately pays off in that all kinds of compilation/synthesis, analysis and verification,
or optimization methods can readily be caracterized as formal transformations of mathematical models [47].
Therefore we realized, far in advance, the announced programme of Model-driven Architecture, in our case
with true meaningful algorithmic transformations. To this end we extensively use a number of well-defined
mathematical models, such as (hierarchical) finite-state Mealy machines, synchronous circuits as Boolean gate
netlists, or data-control flowgraphs. The various steps of compilation (or static analysis, or dynamic analysis
seen as model-checking, or optimization at each model level) are always formally defined, and thuscorrect-
by-construction, discarding altogether issues of “synthetizability subsets”, or discrepancy between simulation,
that limit the application of syntactic formalisms without clear unambiguous semantics in the field.

3.2.1. Compilation/synthesis
Synchronous languages raise specific issues regarding efficient compilation of programs onto various

targets (when producing hardware descriptions, one usually talks of “synthesis” rather than compilation).
This is due to the strong demand on semantic preservation across models. The case of compilation onto
distributed embedded architectures, where compilation requires an architecture model description and fancy
mapping/scheduling techniques shall be further described as part of the AAA methodology.

Concerning Esterel/SyncCharts, compilation was first realized in the 1980’s as an expansing into flat global
Mealy FSMs; this produces efficient, but often unduly large code size. Then in the 1990’s a translation was
defined into Boolean equation systems (BES), with Boolean register memories encoding active control points.
While such models are known in the hardware design community as Boolean gatenetlists, they can be used in
our context for software code production. Here the code produced in quasi-linear in size (worst-case quadratic
in rare cases), but the execution consists in a linear evaluation of the whole equation system (thus each
reaction requires an exceution time proportional to the whole program, even when only a small fragment
is truly active). Thus in the early 2000’s new implementation frameworks were thought, relying on high-level
control-data flowgraphs selecting the active parts before execution at each instant. This scheme is both fast and
memory-efficient, but cannot cope with all programs (as the full constructive causality analysis underlying the
synchronous assumption cannot then be realized at “compile time”, and this check is of utterly importance for
program correctness). Correctnes is in this context ensured by a stronger, more restrictiveacyclicitycriterion,
which provides a static evaluation order for signal propagation.

Some of the specific issues of Esterel/SyncCharts compilation are:
- the potential existence ofinstantaneous loops, diverging so that the instant never reaches completion (“non-
zeno” behaviors);
- shizophrenicproblems, where signals and other variables may assume several distinct values, and be
instanciated multiply in the same reaction. This calls for program fragmentreincarnation for efficient
implementation (with single-static assignment techniques);
- constructive causalityissues, when a static order to signal propagation cannot be defined, as this order may
vary through time. This may call for the symbolic computation of the reachable state space (RSS) covering all
potential control configurations, to establish computability of behaviors.

In fact these issues are sometimeslessspecific than can be thought on first glance, and the interplay between
our specialized techniques, and more general compilation methods, is a subject of current studies. This si useful
to help synchronous languages get rid of this false “niche topic” image. In particular,static analysistechniques
are getting momentum in the justification of several compilation steps for Esterel, allowing to smoothly derive

6 Activity Report INRIA 2004

compiler specification from (extended) formal semantics, thus paving the way to true mathematical compiler
certification.

One advantage of compilation schemes transforming programs from formal models to formal models
is that one can benefit (and sometimes contribute) to a rich body of optimization and analysis techniques
developed for these models. Circuit and FSM optimization/minimization, equivalence-checking and temporal
logic model-checking are instances of this.

3.2.2. Dynamic analysis, automatic verification and model-checking
Formal finite state semantics paves the way to model-checking, which has reached its largest success in

synchronous hardware verification. Here the most famous tool is SMV, a symbolic BDD-based model-checker
developed at CMU (E. Clarke, K. McMillan), although a number of other similar tools exists, both in public
domain or industrial proprietary versions. Recently a standardization of temporal property syntax named
SUGAR was achieved at international level. In the past dedicated model-checkers were developed for all
synchronous languages: XEVE for Esterel, LESAR/NBAC for Lustre, SIGALI for Signal. In all cases they are
symbolic BDD-based model-checkers, avoiding temporal logic formalisms by stating generic properties, and
adding synchronous parallel processes to test and monitor observed systems so that large classes of properties
can be reduced to generic ones on combined systems. In the last decade model-checking techniques, mostly
based on symbolic state space constructions, were extended to cover other problems than mere satisfaction
of properties. In Esterel they were used to enforce “state-conscious” constructive causality, and in designing
more efficient (but costly) optimization techniques on circuit descriptions. In Lustre, and then Esterel, they
were used for automatic test pattern generation with the aim of covering specified portions of the state space
(actually those techniques using explicit state spaces originated in the context of asynchronous languages,
in the work of INRIA Pampa team for instance). In Signal they were extended to the problem ofcontroller
synthesis, in which a synchronous parallel supervisor is algorithmically built to keep the observed system from
reaching pathological or forbidden states.

Recently, new techniques for “bounded” model-checking using efficient SAT-solvers were introduced (SAT
being the well-known SATisfiability problem for propositional logic). They sacrify completeness (one must
know “up to what depth” the property is meant to hold, or provide non-automatically some sort of recursion
invariant assumption to be proved) to the sake of efficiency; in fact the economic pressure of hardware
verification led to new advances in the algorithmic heuristics involved in SAT-solving methods, with the so-
called Stalmark method in Sweden (by Prover Technologies), and iterative learning methods as implemented
in Schaff (Malik, Princeton U.), BerkMin and predecessors.

3.3. Mapping onto Embedded platforms: The AAA methodology
Keywords: RTL, Rapid prototyping, distributed, embedded, executive, fault tolerance, graph, hard-
ware/software co-design, multiprocessor, off-line, on-line, optimization, parallel, partial order, partitioning,
real-time, real-time operating system, real-time scheduling, specific integrated circuit, synchronous languages,
system level CAD.

Participants: Liliana Cucu, Thierry Grandpierre, Rémy Kocik, Christophe Lavarenne, Yves Sorel.

The AAA methodology (Algorithm-Architecture Adequation) allows to specify “application algorithms”
(functionalities) and redundant “multicomponent architectures” (composed of processors and specific inte-
grated circuits all together interconnected) with graph models. Consequently, all the possible implementations
of a given algorithm onto a given architecture is described in terms of graphs transformations. An implemen-
tation consists in distributing and scheduling a given algorithm onto a given architecture. Adequation amounts
to chose one implementation among all the possible ones, such that the real-time and embedding constraints
are satisfied and the hardware redundancy is fully used. Furthermore, from the adequation results our graph
models allow to generate automatically, as an ultimate graphs transformation, two types of codes: dedicated
distributed real-time executives or configuration of standard distributed real-time executives (RTlinux, OSEK,
etc) for processors, and net-lists (structural VHDL) for specific integrated circuits. Finally fault tolerance is

Project-Team aoste 7

of great concern because the applications we are dealing with are often critical, that is to say, may lead to
catastrophic consequences when they fail. The AAA methodology provides a mathematical framework for
rapid prototyping and hardware/software co-design taking into account fault tolerance.

From the optimization point of view, real-time systems are, first of all, “reactive systems” which mandatorily
must react to each input event of the infinite sequence of events it consumes, such that “cadence” and “latency”
constraints are satisfied. The latency corresponds to the delay between an input event consumed by the system
and an output event produced by the system in reaction to this input event. The cadence corresponds to the
delay between two successive input events, i.e. a period. The term event is used in a broad sense, it may refers
to a periodic or to an aperiodic discrete (sampled) signal. When hard (critical) real-time is considered, off-
line approaches are preferred due to their predictability and best performances, and when on-line approaches
are unavoidable, mainly to take into account aperiodic events, we intend to minimize the decisions taken
during the real-time execution. When soft real-time is considered off-line and on-line approaches are mixed.
The application domains we are involved in, e.g. automobile, avionic, lead to consider scheduling problems
for systems of tasks with precedence, latency and periodicity constraints. We seek optimal results in the
mono-processor case where distribution is not considered, and sub-optimal results through heuristics in
the multiprocessor case, because the problems are NP-hard due to distribution consideration. Also, in
addition to these timing constraints, embedded systems must satisfy technological constraints, such as power
consumption, weight, volume, memory, etc, leading in general to minimize hardware resources. In the most
general case architectures are distributed, and composed of several programmable components (processors)
and several specific integrated circuits (ASIC1 or FPGA2) all together interconnected with possibly different
types of communication media. We call such heterogeneous architectures “multicomponent” [36].

The complexity, not only of the algorithms that must be implemented, but also of the hardware architectures,
and also the multiple constraints, imply to use methodologies when development cycle time must be minimized
from the high level specification until the successive prototypes which ultimately will become a commercial
product. In order to avoid gaps between the different steps of the development cycle our AAA methodology
is based on a global mathematical framework which allows to specify the application algorithms as well
as the hardware architecture with graph models, and the implementation of algorithms onto architectures
in terms of graphs transformations. This approach has the benefit on the one hand to insure traceability
and consistency between the different steps of the development cycle, and on the other hand to perform
formal verifications and optimizations which decrease real-time tests, and also to perform automatic code
generation (real-time executives for processors and net-list for specific integrated circuits). All these benefits
contribute to minimize the development cycle. Actually, the AAA methodology provides a framework for
hardware/software co-design where safe design is achieved by construction, and automatic fault-tolerance is
possible only by specifying the components that the user accepts to fail.

To summarize, we are interested in the optimization of distributed real-time embedded systems according
to four research topics:

1. models for specifying, with graphs and partial orders, application algorithm, hardware architecture,
and optimized implementation,

2. implementation optimization:

– real-time scheduling algorithms in the case of mono-processor,

– real-time distribution and scheduling heuristics in the case of multiprocessor,

– heuristics for resources minimization in the case of multiprocessor and specific integrated
circuit,

1ASIC : Application Specific Integrated Circuit
2FPGA : Field Programmable Gate Array

8 Activity Report INRIA 2004

3. automatic code generation for processor (dedicated or standard RTOS configuration) and for specific
integrated circuit (net-list),

4. fault tolerance.

Beside these researches, we propose a tool implementing the AAA methodology. It is a system level
CAD software called SynDEx (http://www.syndex.org). This software, coupled with a high level specification
language, like one of the Synchronous Languages or Scicos, leads to a seamless environment allowing to
perform rapid prototyping and hardware/software co-design while reducing drastically the development cycle
duration and providing safe design.

3.3.1. Algorithm/Architecture/Implementation models
3.3.1.1. Algorithm

Our algorithm model is an extension of the well known data-flow model from Dennis [58]. It is a
directed acyclic hyper-graph (DAG) [57] that we call “conditioned factorized data dependence graph”
[32], whose vertices are “operations” and hyper-edges are directed “data or control dependences” between
operations. Hyper-edges are necessary in order to model data diffusion since a standard edge only relates
a pair of operations. The data dependences defines a partial order on the operations execution [67], called
“potential operation-parallelism”. Each operation may be in turn described as a graph allowing a hierarchical
specification of an algorithm. Therefore, a graph of operations is also an operation. Operations which are
the leaves of the hierarchy are said “atomic” in the sense that it is not possible to distribute each of them
on more than one computation resource. The basic data-flow model was extended in three directions, firstly
infinite (resp. finite) repetitions in order to take into account the reactive aspect of real-time systems (resp.
“potential data-parallelism” similar to loop or iteration in imperative languages), secondly “state” when
data dependence are necessary between repetitions introducing cycles which must be avoided by specific
vertices called “delays” (similar toz−n in automatic control), thirdly “conditioning” of an operation by a
control dependence similar to conditional control structure in imperative languages. Delays combined with
conditionings allow to specify FSM (Finite State Machine) necessary for specifying “mode changes”, e.g.
some control law is performed when the motor is the state “idle” whereas another one is performed when
it is in the state “permanent”. Repetition and conditioning are both based on hierarchy. Indeed, a repeated
or “factorized graph of operations” is a hierarchical vertex specified with a “repetition factor” (factorization
allows to display only one repetition). Similarly, a “conditioned graph of operations” is a hierarchical vertex
containing several alternative operations, such that for each infinite repetition, only one of them is executed,
depending on the value carried by the “conditioning input” of this hierarchical vertex. Moreover, the proposed
model has the synchronous language semantics [60], i.e. physical time is not taken into account. This means
that it is assumed an operation produces its output events and consumes its inputs events simultaneously, and
all the input events are simultaneously present. Thus, by transitivity of the execution partial order associated to
the algorithm graph, outputs of the algorithm are obtained simultaneously with its inputs. Each input or output
carries an infinite sequence of events taking values, which is called a “signal”. Here, the notion of event is
general, i.e. signals may be periodic as well as aperiodic. The union of all the signals defines a “logical time”,
where physical time elapsing between events are not considered.

3.3.1.2. Architecture
The typical coarse-grain architecture models such as the PRAM (Parallel Random Access Machines) and the

DRAM (Distributed Random Access Machines) [68] are not enough detailed for the optimizations we intend to
perform. On the other hand the very fine grain RTL-like (Register Transfer Level) [66] models are too detailed.
Thus, our model of multicomponent architecture is also a directed graph [23], whose vertices are of four types:
“operator” (computation resource or sequencer of operations), “communicator” (communication resource
or sequencer of communications, e.g. DMA), memory resource of type RAM (random access) or SAM
(sequential access), “bus/mux/demux/(arbiter)” (choice resource or selection of data from or to a memory)
possibly with arbiter (arbitration of memory accesses when the memory is shared by several operators), and
whose edges are directed connections. For example, a typical processor is a graph composed of an operator,

http://www.syndex.org

Project-Team aoste 9

interconnected with memories (program and data) and communicators, through bus/mux/demux/(arbiter). A
“communication medium” is a linear graph composed of memories, communicators, bus/mux/demux/arbiters
corresponding to a “route”, i.e. a path in the architecture graph. Like for the algorithm model, the architecture
model is hierarchical but specific rules must be carefully observed, e.g. a hierarchical memory vertex may be
specified with bus/mux/demux and memories (e.g. several banks), but not with operator. Although this model
seems very basic, it is the result of several studies in order to find the appropriate granularity allowing, on
the one hand to provide accurate optimization results, and on the other hand to quickly obtain these results
during the rapid prototyping phase. Data communications can be precisely modeled through shared memory
or through message passing possibly using routes. Furthermore, complex interactions between operators and
communicators can be taken into account through bus/mux/demux/arbiter, e.g. when communications with
DMA require the sequencer of a processor.

Our model of integrated circuit architecture is the typical RTL model. It is a directed graph whose vertices
are of two types: combinatorial circuit executing an instruction, and register storing data used by instructions,
and whose edges are data transfers between a combinatorial circuit and a register, and reciprocally.

In order to unify both multicomponent and integrated circuit models we extend the RTL model in a new
one called “macro-RTL”. Thus, an operator executes “macro-instructions”, i.e. operations, which consume and
produce data in “macro-registers”. This model allows to encapsulate specific details related to the instructions
set such as cache, pipe-line and other non deterministic features of processors that are difficult to take into
account.

3.3.1.3. Implementation
An implementation of a given algorithm onto a given multicomponent architecture corresponds to a

distribution and a scheduling of, not only the algorithm operations onto the architecture operators, but also
a distribution and a scheduling of the data transfers between operations [25].

The distribution consists in distributing each operation of the algorithm graph onto an operator of the
architecture graph. This leads to a partition of the operations set, in as much as sub-graphs that there
are of operators. Then, for each operation two vertices called “alloc” for allocating program (resp. data)
memory must be added, and each of them is allocated to a program (resp. data) RAM connected to the
corresponding operator. Moreover, each “inter-operator” data transfer between two operations distributed onto
two different operators, is distributed onto a route connecting these two operators. In order to actually perform
this data transfer distribution, according to the element composing the route we create and insert as much as
“communication operations” that there are of communicators, as much as “identity” vertices that there are of
bus/mux/demux, and as much as “alloc” vertices for allocating data to communicate that there are of RAM
and SAM. Finally, communication operations, identity and alloc vertices are distributed onto the corresponding
vertices of the architecture graph. All the alloc vertices, those for allocating data and program memories as
well as those for allocating data to communicate, allow to determine the amount of memory necessary for each
processor of the architecture.

The scheduling consists in transforming the partial order of the corresponding subgraph of operations
distributed onto an operator, in a total order. This “linearization of the partial order” is necessary because
an operator is a sequential machine which executes sequentially the operations. Similarly, it also consists
in transforming the partial order of the corresponding subgraph of communications operations distributed
onto a communicator, in a total order. Actually, both schedulings amount to add edges, called “precedence
dependences” rather than data dependences, to the initial algorithm graph. To summarize, an implementation
corresponds to the transformation of the algorithm graph (addition of new vertices and edges to the initial
ones) according to the architecture graph.

Finally, the set of all the possible implementations of a given algorithm onto a given architecture may be
modeled, in intention, as the composition of three binary relations: namely the “routing”, the “distribution”,
and the “scheduling” [38]. Each relation is a mapping between two pairs of graphs (algorithm graph,
architecture graph). It also may be seen as a external compositional law, where an architecture graph operates
on an algorithm graph in order to give, as a result, a new algorithm graph, which is the initial algorithm

10 Activity Report INRIA 2004

graph distributed and scheduled according to the architecture graph. Then the implementation graph is of type
algorithm which may in turn be composed with another architecture graph, allowing complex combinations.

The set of all the possible implementations of a given algorithm onto a specific integrated circuit is different
because we need a transformation of the algorithm graph into an architecture graph which is directly the
implementation graph. This graph is composed of two parts: the data-path obtained by translating each
operation in a corresponding logic function, and the control path obtained by translating each control structure
in a “control unit”, which is a finite state machine made of counters, multiplexers, demultiplexers and
memories, managing repetitions and conditionings [18].

3.3.2. Optimization
We must choose among all the possible implementations a particular one for which the constraints are

satisfied and possibly some criteria are optimized.
In the case of multiprocessor architecture the problem consisting in distributing and scheduling the

algorithm onto the architecture such that the execution time of the algorithm is minimum, is known to
be of NP-hard complexity [63]. This amounts to consider, in addition to precedences constraints specified
through the algorithm graph model, one latency constraint between the first operation(s) (without predecessor)
and the last operation(s) (without successor), equal to a unique periodicity constraint (cadence) for all the
operations. We propose several heuristics based on the characterization of the operations (resp. communication
operations) relatively to the operators (resp. communicators), e.g. execution durations of operations and
data transfers, amount of memory, etc, in order to minimize the execution duration of the algorithm graph
on the multiprocessor architecture, taking into account communications, possibly concurrent [25]. The
characterization amounts to relate the logical time described by the interleaving of events with the physical
time. We prefer “greedy heuristics” because they are very fast [64] giving results in a time well suited to rapid
prototyping of realistic industrial applications. In this type of applications the algorithm graph may have five
thousand vertices and the architecture graph may have some tens of vertices. We also extend these greedy
heuristics to iterative versions [37] which are much slower, due to back-tracking, but give better results for the
final commercial product.

New applications in the automobile, avionic, or telecommunication domains, lead us to consider more
complex constraints. In such applications it is not sufficient to consider the execution duration of the algorithm
graph. We need also to consider periodicity constraints for the operations, possibly different, and several
latency constraints imposed possibly on whatever pair of operations. Presently there are only partial and simple
results for such situations in the multiprocessor case, and only few results in the mono-processor case. Then,
we began few years ago to investigate this research area, by interpreting, in our algorithm graph model, the
typical scheduling model given by Liu and Leyland [65] for the mono-processor case. This leads us to redefine
the notion of periodicity through infinite and finite repetitions of an operations graph (i.e. the algorithm), thus
generalizing the SDF (Synchronous Data-Flow) model [61] proposed in the software environment Ptolemy.
For simplicity reason and because this is consistent with the application domains we are interested in, we
presently only consider that our real-time systems are non-preemptive, and that “strict periodicity” constraints
are imposed on operations. In this case we give a schedulability condition for graph of operations with
precedence and periodicity constraints in the non-preemptive case [17]. We also formally define the notion
of latency which is more powerful [16], for the applications we are interested in, than the usual notion of
“deadline” that does not allow to impose directly a timing constraint on a pair of operations, connected by at
least one path, like it is necessary for “end-to-end constraints”. In order to study schedulability conditions for
multiple latency constraints we defined three relations between pair of paths, such that for each pair a latency
constraint is imposed on its extremities. Using these relations calledII , Z andX, we give a schedulability
condition for graph of operations with precedence and latency constraints in the non-preemptive case. Then
by combining both previous results we give a schedulability condition for graph of operations with precedence,
periodicity and latency constraints in the non-preemptive case, using an important result which gives a relation
between periodicity and latency. We also give an optimal scheduling algorithm in the sense that, if there is a
schedule the algorithm will find it.

Project-Team aoste 11

On the other hand, thanks to these results obtained in the mono-processor case, we study extensions of our
heuristics for one latency constraint equal to a unique periodicity constraint, in order to solve the distribution
and scheduling problem for graph of operations with precedence, periodicity and latency constraints in the
multiprocessor case. However, the aforementioned scheduling problems do not take into account aperiodic
operations for which there is no off-line solution, at least to our best knowledge, but there are on-line solutions.
These aperiodic operations come from aperiodic events, usually related to control. Presently we take them
into account off-line by integrating the control-flow in our data-flow model, well suited to distribution, and
by maximizing the control effects. We study relations between control-flow and data-flow in order to better
exploit their respective advantages. Finally, for soft real-time applications, we study the possibilities in order
to mix off-line and on-line approaches in order to take benefit of a better cooperation of control-flow and
data-flow.

In the case of integrated circuit the potential parallelism of the algorithm corresponds exactly to the actual
parallelism of the circuit. However, this may lead to exceed the required surface of an ASIC or the number
of CLB (Combinatorial Logic Block) of a FPGA, and then some operations must be sequentially repeated
several times in order to reuse them, reducing in this way the potential parallelism to an actual parallelism
with less logic functions. But reducing the surface has a price in terms of time, and also in terms of surface but
of a lesser importance, due to the sequentialization itself (instead of parallelism) performed by the finite state
machines (control units) necessary to implement the repetitions and the conditionings. Then, we are seeking
a compromise taking into account surface and performances. Because these problems are again of NP-hard
complexity, we propose greedy and iterative heuristics in order to solve them [18].

Finally, we plan to work on the unification of multiprocessor heuristics and integrated circuit heuristics in
order to propose “automatic hardware/software partitioning” for co-design, instead of the usual manual one.
The most difficult issue concerns the integration in the cost functions of the notion of “flexibility” which is
crucial for the choice of software versus hardware.

3.3.3. Automatic code generation
As soon as an implementation is chosen among all the possible ones, it is straightforward to automatically

generate executable code through an ultimate graphs transformation leading to a distributed real-time executive
for the processors, and to a structural hardware description, e.g. synthetizable VHDL, for the specific integrated
circuits.

For a multicomponent each operator (resp. each communicator) has to execute the sequence of operations
(resp. communication operations) described in the implementation graph. Thus, this graph is translated in
an “executive graph” [26] where new vertices and edges are added in order to manage the infinite and
finite loops, the conditionings, the inter-operator data dependences corresponding to “read” and “write”
when the communication medium is a RAM, or to “send” and “receive” when the communication medium
is a SAM. Specific vertices, called “pre” and “suc”, which manage semaphores, are added to each read,
write, send and receive vertices in order to synchronize the execution of operations and of communication
operations when they must share, in mutual exclusion, the same sequencer as well as the same data. These
synchronizations insure that the real-time execution will satisfy the partial order specified in the algorithm.
Executives generation is proved to be dead-lock free [23] maintaining the properties, in terms of events
ordering, shown thanks to the synchronous language semantics. This executive graph is directly transformed in
a macro-code [24] which is independent of the processor. This macro-code is macro-processed with “executive
kernels” libraries which are dependent of the processors and of the communication media, in order to produce
as much as source codes that there are of processors. Each library is written in the best adapted language
regarding the processors and the media, e.g. assembler or high level language like C. Finally, each produced
source code is compiled in order to obtain distributed executable code satisfying the real-time constraints.

For an integrated circuit, because we associate to each operation and to each control unit an element of a
synthetizable VHDL library, the executable code generation relies on the typical synthesis tools of integrated
circuit CAD vendors like Synopsis or Cadence.

12 Activity Report INRIA 2004

3.3.4. Fault tolerance
For the applications we are dealing with, if real-time constraints are not satisfied, this may have catastrophic

consequences in terms of human beings lost or pollution, for example. When a fault occurs despite formal
verifications which allow safe design by construction, we propose to specify the level of fault the user accepts
by adding redundant processors and communication media. Then, we extended our optimization heuristics in
order to generate automatically the redundant operations and data dependences necessary to make transparent
these faults [21]. As soon as the redundant hardware is fully exploited, “degraded modes” are necessary. They
are specified at the level of the algorithm graph using conditionings. Presently, we only take into account
“fail silent” faults. They are detected using “watchdogs”, the duration of which depends on the operations
and data transfers durations. We obtained solid results in the case of processor failures only, i.e. in this
case the communication media are assumed error free. We propose two approaches in order to achieve this
goal. The first approach is based on spatial redundancy, of operations and data transfers, for point-to-point
communication media [22]. The second approach is based on spatial redundancy of operations and temporal
redundancy of data transfers for multi-point communication media.

4. Application Domains
4.1. Embedded systems

Our generic field of applications is termed as “Embedded Systems”, meaning all kind of equipments in-
cluding software and electronical parts, apart from regular mainstream computers. This includes transporta-
tion vehicles (cars, aircrafts,...), mobile robotics, communicating appliances such as mobile telephones, or
System-on-Chip design. These fields are further described in their particular aspects below.

Common to all embedded systems are: thereactivity aspect (supervising or simply interacting with an
outside environment); the demand forsafety (often critical); theheterogeneity of models, incumbing a
multiplicity of engineering techniques from different scientific disciplines. Large development projects usually
involve many providers for components, and the design flow is far less linear as in traditional software: it
includes customarily various stages of modeling, prototyping, simulation/evaluation/dimensioning, manual
reencoding, and iterative (re)design space exploration. Component reuse is also usually a great concern (as
components might be physical preexisting parts). Here formal models and notations can greatly help keep the
traceability of the design process, and justify some of its steps for soundness and accurary across the flow and
its various actors.

4.2. Mobile robotics, automotive and transportation
Keywords: .., embedded automotive electronics.

With increasing functionality demands in powertrain, body comfort or telematics applications, modern cars
are becoming complex systems including Real-Time OS (OSEK), complex data buses (CAN or TTP/FlexRay),
with distributed intelligent sensors and powerful computing power. Software and electronic are now becoming
a prominent part of both the price and added value. Still, no “ideal” hardware/software architecture is yet
standardized, and the development methodologies are still at infancy. Proposals for high-level modeling and
infrastructure platform organization have been proposed, as in the EAST-EEA and AutoSar consortium.
We are taking part in the first initiative, mostly through the AAA methodology which proposes computer-
aided mapping of synchronous applications onto heterogeneous platforms. This methodology was amply
demonstrated in the framework of CyCab mobile robotic applications.

4.3. Mobile phones and other communicating objects
Such systems usually combine intensive (multimedia) data processing with mode control switching, and

wireless or on-chip communications. The issue is often here to integrate design techniques for the three
domains (data, control, communications), while preserving modular independence of concern as much as

Project-Team aoste 13

possible. At high-level modeling this translate into combining models of computations that are state-oriented
(imperative) or datapath-oriented (declarative), with appropriate communication models, while preserving the
sound semantics of the systems built from all such kinds of components. Dedicated architecture platforms here
usually associate general-purpose processor (ARM) with specific DSP coprocessors. In the future the level of
integration should become even higher, with the corresponding challenges for design methodologies.

4.4. System-on-Chip design
While design of digital circuits is already a fairly complex development process, involving many modeling

and programming stages, together with intensive testing and involved low-leval synthesis and place-and-route
techniques, SoC desig adds yet new complexity dimensions to this process. Fully synchronous designs are not
feasible anymore, and custon IP reuse becomes mandatory to integrate full processor cores into a new designs.
New aproaches are being proposed, which try to depart only as little as possible form the synchronous/cycle-
accurate prevailing design techniques, while allowing more timing flexibility at interfaces between blocks.
These aaproaches are generally flagged as GALS (Globally-Asynchronous/Locally-Synchronous). They usu-
ally put a stress on proper mathematical modeling at every stage, thereby revisiting and associating known
models with new intent. Synthesis seen as model-transformation seems here a nice way to bring some of the
OMG MDA schemes into true existence.

5. Software
5.1. SyncCharts/Esterel

Keywords: Esterel, SyncCharts, compilation, static analysis, verification.

Participants: Charles André, Robert de Simone, Olivier Tardieu, Eric Vecchié.

The main software development activities concerning synchronous formalisms went to the ESTEREL

TECHNOLOGIEScompany as it was spun-off from the former Meije team. We still carrry some experimental
development on the former academic versions of Esterel and SynCharts, mostly to validate new algorithmic
model transformations or analysis.

5.2. SynDEx
Participants: Julien Forget, Arnaud Rouanet, Yves Sorel.

SynDEx is a system level CAD software implementing the AAA methodology for rapid prototyping and for
optimizing distributed real-time embedded applications. It can be downloaded free of charge, under INRIA
copyright, at the url:http://www.syndex.org. It provides the following functionalities:

• specification and verification of an application algorithm as a directed acyclic graph (DAG) of
operations, or interface with specification languages such as the synchronous languages providing
formal verifications, AIL a language for automobile architectures, Scicos a Simulink-like language,
AVS for image processing, CamlFlow a functional data-flow language, etc,

• specification and verification of a “multicomponent” architecture as a graph composed of pro-
grammable components (processors) and/or specific non programmable components (ASIC, FPGA),
all interconnected through communication media (shared memory, message passing),

• specification of the algorithm characteristics, relative to the hardware components (execution and
transfer time, period, memory, etc), and specification of the real-time constraints to satisfy (latencies,
periodicities),

• exploration of possible implementations (distribution and scheduling) of the algorithm onto the mul-
ticomponent, performed manually or automatically with optimization heuristics, and visualization
of a timing diagram simulating the distributed real-time implementation,

http://www.syndex.org

14 Activity Report INRIA 2004

• generation of dedicated distributed real-time executives, or configuration of general purpose real-
time operating systems: RTlinux, Osek, etc. These executives are deadlock free and based on off-line
policies. Dedicated executives which induce minimal over-head are built from processor-dependent
executive kernels. Presently executives kernels are provided for: ADSP21060, TMS320C40,
TMS320C60, i80386, MC68332, MPC555, i80C196 and Unix/Linux workstations. Executive
kernels for other processors can be easily ported from the existing ones.

The distribution and scheduling heuristics, as well as the timing diagram, help the user to parallelize his
algorithm and to explore architectural solutions while satisfying real-time constraints. Since SynDEx provides
a seamless framework from the specification to the distributed real-time execution, formal verifications
obtained during the early stage of the specification, are maintained along the whole development cycle.
Moreover, since the executives are automatically generated, part of tests and low level hand coding are
eliminated, decreasing the development cycle duration.

SynDEx was evaluated by the main companies involved in distributed real-time embedded systems, and is
presently used to carry out new applications at Robosoft, MBDA and Mitsubishi Electric ITE.

5.3. SynDEx-IC
Participants: Mohamed Akil [ProfessorESIEE Noisy-Le-Grand], Julien Forget, Thierry Grandpierre, Linda
Kaouane, Pierre Niang [Ph. D. StudentESIEENoisy-Le-Grand], Yves Sorel.

SynDEx-IC is a CAD software for the design of non programmable components such as ASIC or FPGA for
which the application algorithm to implement is specified with the graph model of the AAA methodology. It
is developed in collaboration with the team A2SI of ESIEE. It allows to specify the application algorithm like
in SynDEx and automatically synthesizes the data path and the control path of the specific integrated circuit as
a synthetizable VHDL program while real-time and surface constraints are satisfied. Because these problems
are again of NP-hard complexity, we propose greedy and iterative heuristics based on "loop-unrolling" of the
algorithm graph, in order to solve them. Non programmable components designed with SynDEx-IC may
be in turn used in SynDEx in order to specify complex multicomponent architectures composed of non
programmable and programmable components all together interconnected. Presently, both softwares SynDEx
and SynDEx-IC are separated, consequently the hardware/software partitioning of co-design must be done
manually. We plan in the future to integrate them in an unique software environment, and also to provide
heuristics to automatically carry out hardware/software partitioning.

5.4. Sep
Keywords: Architecture, component, simulation, validation.

Participant: Frederic Mallet.

SEP is an object-oriented modeling and simulation environnement that allows for an incremental modeling
of hardware architectures at different levels of abstraction. Validation of a given software execution on this
hardware is mainly performed using simulation. But, more sensitive parts that require more formal approaches
are validated using algebraic simulations and when possible interoperability with synchronous models (Esterel,
SyncCharts or S-Grafcet). Most of the Sep methodology has been transferred into the JavaHase environment
which is currently developed at the University of Edinburgh. A local copy is maintained to validate new UML-
based model transformations.

6. New Results
6.1. Syntax-driven model checking

Participants: Robert de Simone, Eric Vecchié.

Project-Team aoste 15

We considered the issue of exploiting the structural form of ESTERELprograms to partition the algorithmic
Reachable State Space fix-point construction used in model-checking techniques. The basic idea sounds utterly
simple, as seen on the case of sequential composition: inP ;Q, first compute entirely the states reached inP ,
and then only carry on toQ, each time using only the relevant transition relation part. Difficulties appear in our
decomposition approach when scheduling the different parts of the transition relation in presence of parallelism
and local signal exchanges. Program blocks (or “Macro-states”) put in parallel can be synchronized in various
ways, due to dynamic behaviors, and considering all possibilities may lead to an excessive division complexity.
The goal was here to find a satisfactory trade-off between compositional and global approaches.

We proposed an efficient algorithm for this type of partitionned model-checking, based on identified fron-
tiers, computed by static analysis of the structural program description. Frontiers are withhold progressively
to compute the full RSS in a highly constrained way, each time using only local transitional parts.

This research was the main topic of Eric Vecchié PhD thesis [42], defended in July 2004. The results were
presented by Eric at the SLAP workshop [56], and a longer version is now accepted for journal publication
[46]. A BDD-based model-checker prototype has been implemented, showing true promising experimental
gain on large examples.

6.2. Esterel: from formal semantics to provably correct compilers
Participants: Robert de Simone, Olivier Tardieu.

Based on the synchronous paradigm, Esterel semantics relies on a clear distinction of instants of com-
putation. All primitives of the language, safe thepause unit-cycle delay instruction, execute in zero time.
Execution is thus a sequence of instantaneous computations separated by explicit pauses. Arbitrary loops in
this context are troublesome, potentially leading to a non-termination problem or a schizophrenia issue: first,
instantaneous loops may prevent the instant to end; second, program blocks may be traversed several times
within the same instant, thus having a "schizophrenic" behavior. Instantaneous loops are forbidden by the
semantics. Such errors have to be anticipated, and programs rejected by compilers on this behalf. Moreover,
efficient code generation for schizophrenic program patterns is complex. While many existing compilers al-
ready generate correct code for loops, the efficient implementations available today are neither generic (i.e.
target-independent) nor formally specified or verified.

We thoroughly considered loop handling in Esterel, starting from the operational semantics of the language,
all the way down to a provably correct implementation. We formally characterized the related issues and define
efficient static analysis techniques to detect them in Esterel code. In order to get rid of schizophrenic behaviors
by source-to-source rewriting - "cure schizophrenia" - we introduced in the Esterel language a new primitive,
which we call "gotopause". It behaves as a non-instantaneous jump instruction compatible with concurrency.
We described a first program transformation that systematically replaces loops by the mean of gotopause
statements, providing a loop-free equivalent program for any correct Esterel program. By combining static
analysis and rewriting techniques, we obtained a preprocessor for Esterel that rejects incorrect loops and cure
schizophrenia, which we have implemented. Due to our source-to-source transformation methodology, our
preprocessor is highly generic; because of static analysis, it is very efficient; thanks to our fully formalized
approach, we could formally establish its correctness. We view this as an important example of deriving actual
compiler specifications from the formal language semantics, by extracting static analysis techniques which
focus on specific steps on the compilation process.

These studies were reported in Olivier Tardieu’s PhD thesis [41], as well as in conference or journal
publications [55][53][54][48]

6.3. Reaction to Absence in a distributed context
Participants: Robert de Simone, Fabrice Peix.

The translation of Esterel programs to SynDEx poses a specific problem, coming from the fact the the same
signal event can be emitted from several distinct locations, some active and some not.Here the issue of efficient

16 Activity Report INRIA 2004

mapping involves the problem of determining in a distributed framework which emissions are still feasible.
We studied this problem, and proposed extensions to SynDEx in order to cope with the issue in a clean fashion
while fully exploiting SynDEx conditioning operators. The results were reported in part as Fabrice Peix PhD
thesis [40].

6.4. SyncCharts improvements
Participants: Charles André, Julien Boucaron, Daniel Gaffé (I3S Lab.).

An XML format of SyncCharts, defined by an XML Schema, is now available, and thus facilitates model
reuse in other applications.

SynDEx has been the first software to make use of this capability in interfacing. The experimental
compiler of SyncCharts developed by Julien Boucaron and Daniel Gaffé also takes this format as input and
generates a circuit without intermediate translation into the Esterel language. This direct translation has several
advantages: a better use of the structure of the syncChart, a more efficient translation, and is independent of
the commercial Esterel compiler. However, this compiler suffers from some limitations and has been applied
only to toy examples. This study should be pursued.

6.5. UML Patterns for hardware/software architectures
Participants: Frédéric Mallet, Charles André.

In the field of Real-Time Embedded systems, the research community is looking for a methodology to
model at different levels of abstraction (from Transaction Level down to RTL) both hardware and software
parts of architectures. This approach needs to provide mechanisms allowing for reusability of existing
models, interoperability with existing tools, formal verification of composite behaviours, deployment on actual
systems.

Several UML-based approaches (SysML, UML4Soc, AADL) have been proposed to address these issues,
either providing UML-profiles or meta-models. These approaches always provide mechanisms to describe the
structural part of systems and either rely on languages like SystemC for the behaviour part or gives some
description of the behaviour but without any strong links to connect with the structural description.

As a first step toward a synchronous UML-profile for Real-Time Embedded Systems, we proposed a set of
analysis patterns that allow for annotation of existing hardware and software models. These patterns contain
both a structural and a behavioural description of different identified actors, these two descriptions being very
closely related. Additionnally, as much as possible, UML activity diagrams used to describe the behaviour are
stereotyped to give an equivalent execution semantics with synchronous models.

In a short future, we intend to use these patterns to facilitate interoperability between existing models and
tools used in the synchronous community.

6.6. AAA models
Participants: Liliana Cucu, Julien Forget, Nicolas Pernet, Mickaël Raulet, Yves Sorel.

We studied the differences between our algorithm model and the typical model used by the real-time
community in the mono-processor case. We justified that “release time” and “deadline” are not necessary
and that “strict periodicity” is sufficient, for the applications of signal, image and control processing we are
interested in. Also, we justified that “multiple latency constraints” are more powerful than “deadlines” for the
same applications. We studied how to introduce the “preemption” in our algorithm model to take into account
its cost in off-line scheduling.

We proposed a new version of the architecture model which takes into account program and data memories.
This model is simpler than the hierarchical one described in [23] but is sufficient to be exploited by the code
generator in order to minimize the number of buffers, and then the amount of memory when an embedded
processor is targetted.

Project-Team aoste 17

We studied the possibility to modify the implementation model in order to take benefit, during the
adequation and the code generation, of the capability to specify repetitive sub-graphs in the algorithm model.
Presently the user will have to explicitely specify whether he wants to minimize code generation, and in
this case each repetitive sub-graph will be coded as a loop. If it is not the case the adequation will exploit
parallelism as much as possible and the code generator operates as usual.

6.7. Scheduling and Optimization
Participants: Liliana Cucu, Omar El Ganaoui, Julien Forget, Nicolas Pernet, Yves Sorel.

6.7.1. Off-line scheduling
We continued the studies on non-preemptive real-time systems with precedence, periodicity and latency

constraints in the case of several operators, i.e. several processors [39].
After proving the NP-hardness of our scheduling and distribution problem for systems with precedence and

periodicity constraints, we proposed a heuristic which takes into account the communication times. We proved
that operations with periods which are not co-prime can not be scheduled on the same operator. Therefore,
we defined classes of operations which may be scheduled on the same operator relatively to the periodicity
constraints. These classes are not mutually exclusive. In order to schedule operations which may be scheduled
on the same operator, the heuristic uses the main idea of the algorithm we proposed in the case of one operator
(monoprocessor case) [17]. This way the first repetition of an operation is scheduled before the first repetitions
of all operations which have a larger period [49].

After proving the NP-hardness of our scheduling and distribution problem for systems with precedence
and latency constraints, we proposed a heuristic which takes into account the communication times. This
heuristic uses the schedulability results obtained in the case of one operator concerning the three relations
II , Z andX between pairs of operations, on which latency constraints are defined. These latter results prove
that the best way of scheduling operations is to avoid scheduling, between the first and the last operation of a
latency constraint, operations which do not belong to this latency constraint. Therefore, we defined classes of
operations which may be scheduled on the same operator relatively to the latency constraints. These classes
are not mutually exclusive. In order to schedule operations which may be scheduled on the same operator, the
heuristic uses the main idea of the algorithm we proposed in the case of one operator [50]. This way we used a
marking algorithm which allows us to "predict" the operations which are important for the latency constraints.
The available operations are scheduled on the same operator in the increasing order of their marks.

After proving the NP-hardness of our scheduling and distribution problem of systems with precedence,
periodicity and latency constraints, we proposed a heuristic which takes into account the communication
times. We proved that operations belonging to the same latency constraint must have the same period. A direct
consequence is that the operations belonging to the same pair or to pairs which are in relationII , Z or X must
have the same period. So, the heuristic may use the main ideas of the heuristic for the case of precedence
and latency constraints and of the heuristic for the case of precedence and periodicity constraints. Therefore,
we defined classes of operations which may be scheduled on the same operator relatively to the periodicity
constraints and the latency constraints. These classes are not mutually exclusive. The operations which belong
to the same latency constraint are scheduled on the same operator as the operations with periods not co-prime
with the period of operations belonging to the latency constraint. This way the first repetition of an operation
is scheduled before the first repetitions of all operations which have a larger period and a smaller mark.

The performances of these three heuristics were compared to those of exact algorithms. The numerical
results show that the heuristics are definitely faster then the exact algorithms for all cases when the heuristics
find a solution.

We continued also our studies on preemtive real-time systems with precedence, periodicity and latency
constraints in the monoprocessor case. We proved that it is not possible to find a schedule which verifies
all the constraints for operations with co-prime periods. Then, in this case we proved that the scheduling
policy which schedules operations according to the increasing order of their periods is sufficient. With these
restrictions we proposed a scheduling algorithm which gives the number of preemtions to introduce.

18 Activity Report INRIA 2004

6.7.2. Mixing off-line and on-line scheduling
The AAA methodology is presently based on off-line scheduling because it allows to be deterministic,

and thus consistent with the synchronous semantics which provides formal verifications. This approach is
perfectly suited for hard real-time systems. Moreover, it induces a very low overhead which is crucial in
embedded systems. The main drawback of off-line scheduling is that it does not allow on the one hand to take
into account aperiodic events which occur totally randomly, and on the other hand the dynamic creation of
new operations during the execution of the algorithm. Because we intend more and more to take into account
control [33], and because control is usually aperiodic, e.g. it is impossible to know when the car driver will
turn on the starting key, and consequently when the corresponding event will trigger the transition from the
state “stop” to “start”, we need to mix aperiodic on-line scheduling with periodic off-line scheduling.

Most works on scheduling which mix periodic and aperiodic events concern on-line approaches. For
example, in the typical “aperiodic server” approach a new periodic operation is added which will be devoted
to manage aperiodics operations. In the monoprocessor case, with RM (Rate Monotonic) or EDF (Earliest
Deadline First) scheduling algorithms, it is simple to determine exactly the period and the duration of this
new operation such that the new set of operations is schedulable, because there are well known schedulability
bounds. However, in distributed systems we are interested in, such bounds do not exist. Lehoczky and Ramos-
Thuel propose an alternative to aperiodic server called “slack stealing” [62] which relies on the knowledge
of the slack of each operation, that is to say how many times an operation may be delayed without causing
a missed deadline. The drawback of this approach is its overhead. Nevertheless off-line scheduling, we are
interested in, has some advantages for aperiodic scheduling: every execution date is known, every CPU
inactivity too. Fohler proposes “slot shifting” [59] which is close to slack stealing but uses off-line scheduling
for periodic operations and in-line scheduling for aperiodic operations. The knowledge of the periodic
scheduling eases to process, in-line, the slack of periodic operations. This strongly reduces the overhead.
Slot shifting consists in splitting the scheduling in “execution intervals”. These intervals are delimited by the
deadlines of operations, and of interprocessor communications. Then, the slack of each interval, called “spare
capacity”, is processed. This approach is independent of the scheduling algorithm used to perform the off-line
scheduling.

We aim at extending the slot shifting approach in order to deals with the specific features of our model,
that is to say multiple latency constraints, stict periodicity and conditionning. A first slot shifting extension
was proposed in the monoprocessor case for multiple latency constraints but with a unique period for every
operation. This period must be equal or greater than the sum of all the operations durations. A latency
constraint on a pair of operations imposes a maximum duration between the beginning of the first operation
of the pair and the end of the second operation. Our extension consists in deducing deadlines from the latency
constraints. But, such a deadline may move if the first operation of the latency constraint is delayed due to the
execution of an aperiodic operation. This is the reason why the proposed extension allows to keep the spare
capacities consistent when the deadlines move.

We also performed new experiments on the Cycab in order to tune the PID parameters of the “adaptive
scheduling” algorithm that we proposed last year in order to take into account aperiodic operations mainly in
the context of soft real-time only.

Finally, because mixing hard and soft real-time relates to support GALS (Globally Asynchronous Locally
Synchronous) systems where synchronous (periodic) sub-systems are scheduled off-line, but these sub-
systems asynchronously communicate through aperiodic events and are globally scheduled on-line, we started
to establish links with the community of GALS in order to better understand these relationships.

6.7.3. Memory reuse
Because the amount of memory is usually limited in embedded processors we aim at minimizing memory

utilization. Presently the RAMs necessary for storing local data memory (inside the processor) and for storing
data to transfer (between processors) are specified in the implementation model by as manyalloc vertices
as there are of data dependences. A buffer is associated to eachalloc vertex during the code generation. We

Project-Team aoste 19

studied the possibility to reuse a buffer as soon as it is not used latter on. We state this problem with colored
graphs and proposed an algorithm which allows to reuse the buffers.

6.8. Automatic code generation
Participants: Julien Forget, Thierry Grandpierre, Linda Kaouane, Yves Sorel.

Again because the amount of memory is limited in embedded processors we started to study how to calculate
the amount of program memory necessary when code is generated in order to compare it to the actual program
memory of the processors.

Concerning the executive kernels, we worked on two executive kernels for processors: one for the PowerPC
G4 processor, used in a multiprocessor architecture from Mercury, and communicating through the Raceway
crossbar (collaboration with MBDA), and one for the TMS320C55 digital signal processor, the Arm general
purpose processor, and the Xilinx FPGA, all together used in the Omap multiprocessor architecture from Texas
Instrument, communicating through a shared memory (collaboration with Thales in the P2I european project).

We worked also on an executive kernel for synthetizable VHDL which is compiled for Xilinx FPGA circuit
[44]. This code generation was tested on image processing applications.

6.9. Fault tolerance
Participants: Hamoudi Kalla, Yves Sorel.

We proposed several heuristics which are extensions of the one used in AAA/SynDEx.
The first one tolerates a fixed number of arbitrary processors and links (point-to-point communication

medium) failures. Because of the resource limitation in the embedded systems this heuristic implements a
software solution. It is based on the redundancy of the operations (resp. data dependences) of the algorithm
onto the processors (rep. links) of the architecture [52][43].

The second one tolerates a fixed number of arbitrary processors and buses (multipoint communication
medium) failures. This heuristic implements also a software solution but is based on the active redundancy
of the operations and the passive redundancy of the communications with the fragmentation in several packets
of the transfered data on the buses.

The third one tolerates a fixed number of arbitrary processors and communication media (point-to-point or
multipoint) failures. It is based on a quite different approach. This heuristic generates as much distributions and
schedulings as there are of different architecture configuration corresponding to the possible failures. Then, all
the distributions and schedulings are merged together to finally obtain a resulting distribution and a scheduling
which tolerates all the faults [51]. This technique asks for carefully canceling duplicated informations.

Finally, we proposed a heuristic for generating reliable distributions and schedulings. The software redun-
dancy is used to maximize the reliability of the distribution and scheduling taking into account two criteria:
the minimization of the latency (execution duration of the distributed and scheduled algorithm onto the archi-
tecture) and the maximization of the reliability of the processors and the communication media.

6.10. Improvements in SynDEx
Participants: Julien Forget, Arnaud Rouanet, Yves Sorel.

Version 6 of SynDEx was the latest major release. It was completely redesigned, in OCaml instead of C++
which was used previously. It provides new features such as hierarchical modularity (essential for top-dow
design of huge application), repetition constructs (equivalent toFor...Do...) and conditionals (equivalent
to If...Then...Else...). SynDEx-6.0 is available since April 2002. In 2004 we had a lively of bug-fixing
activity, mainly due to the success met by this software environment, and the many reports by industrial
users developing practical applications for innovative products [45]. We provide further details on the kind of
applications conducted at MBDA and Mitsubishi Electric ITE in the contractual section below.

Besides bug fixes, the complexity of the applications carried through led to improvements both in the
hierarchy flattening techniques and in the optimization heuristics, in order to provide results in reasonable

20 Activity Report INRIA 2004

time. For the most complex application at MBDA we succeeded in dividing the adequation matching time
by an order of magnitude, providing the results in about half an hour, which is considered acceptable in an
approach of “rapid prototyping”.

We had to improve the code generator part of SynDEx, mainly because the real-time distributed executives
that were automatically generated did increase dramatically with the size of the application. In the context
of ITEA P2I (se below), Thales telecommunication develops a JPEG2000 application onto a TI Omap
architecture consisting of an ARM RISC processor and a TMS320C50 DSP coprocessor, with very little
memory on chip. To decrease the memory required for generated code, we introduced a new type of
input/outputport; this allows to reuse the same buffer for an input and an output port of the same operation.
While this type of port proved useful for image applications such as JPEG2000, it associates more complex
synchronizations to this type of operation, but decreases the amount of memory needed. We are currently
working on more general formulation of the reuse of buffers, which remains a hard problem due to the intricate
synchronization modifications involved.

The software architecture of the OCaml SynDEx program was completely revised, to help with its
maintenance and its further evolutions. Modules were modified to offer better separation and communication
between them, through cleaner and saner APIs, using .mli files. Also, genericity was added whenever possible,
e.g. on the graph module used for displaying the three types of graphs we have in SynDEx: algorithm,
architecture, adequation. A maintenance guide was written for the next developers of SynDEx.

Some users wanted to use SynDEx without its GUI, for example to run the adequation heuristic inside a
meta-heuristic. We propose now a “SynDEx toplevel” which allows to execute only the adequation or the code
generator.

We installed the Bugzilla toolhttp://bugzilla.irisa.frto manage more easily the bugs of SynDEx.

7. Contracts and Grants with Industry
7.1. ST MIcroelectronics

Participants: Julien Boucaron, Robert de Simone.

This collaboration takes place in a much larger setting of a focused support program agreement between
this company and the PACA regional public authorities. We collaborate with the team of Marc Benveniste,
from ST Smart Card division, to study abstraction/refinement of SoC specification in a way inspired from the
B Method, but using synchronous languages concepts instead. Julien Boucaron PhD thesis is funded largely
on this contract.

7.2. Texas Instruments
Participants: Julien Boucaron, Dumitru Potop, Robert de Simone.

This contract was initiated by Texas Instruments because of a need they felt to better understand the theory
of Latency-insensitivesystems, in its connexions with synchronous semantics and more generally GALS
description models. So we are conducted an extensive bibliographic survey, checking all along the potential
(good or bad) implications for efficient SoC modeling, according to our previous experience gathered on the
field.

7.3. MBDA
Participants: Julien Forget, Arnaud Rouanet, Yves Sorel.

MBDA develops with AAA/SynDEx a new automatic guidance application involving an algorithm with
more than 6000 operations executed at different periods, whereas the architecture is made of several PowerPC
and ASICs all interconnected through a crossbar.

http://bugzilla.irisa.fr

Project-Team aoste 21

7.4. Mitsubishi Electric ITE
Participants: Julien Forget, Arnaud Rouanet, Yves Sorel.

Mitsubishi Electric ITE develops with AAA/SynDEx software radio applications which involve a lot of
modes supported by the conditioning feature and in each mode a lot of signal processing algorithms, each
algorithm uses processing repetition feature, whereas the architecture is composed of several TMS320C60
DSP (Digital Signal Processor).

7.5. Robosoft
Participants: Julien Forget, Arnaud Rouanet, Yves Sorel.

This company is the maker of the CyCab automatic vehicle. SynDEx is used as high-level CAD software
for new CyCab applications, and also as code generator for CyCab multi MPC555 platforms.

8. Other Grants and Activities
8.1. Regional collaborations
8.1.1. CIM PACA

Participant: Robert de Simone.

This initiative is intended to favor the development of collaborations between local PACA industry and
academia partners on the topics of microelectronic design. In this context we are planning to gather a pool of
PhD students, with coordinated research programs built in conjunction between INRIA, I3S, and local industry
partners Texas Instruments, Philips, ST Microelectronics, and Esterel Technologies, on a project named
Spec2RTL. This group of students should be funded on a par basis between industry and local authorities.

8.1.2. Numatec Automotive (temporary name)
Participants: Robert de Simone, Yves Sorel.

We have been attending the first meetings of this newborn project, trying to set up collaborations with
automotive manufacturers and suppliers. Prospects are still at a preliminary stage.

8.1.3. The JavaHASE project
Participant: Frederic Mallet.

HASE and JavaHASE [28] are systems developed at the University of Edinburgh to support, through
simulation, the visualisation of activities taking place inside computer architectures as they execute programs.
Both systems are based on the same ADL called EDL, the behavourial part are described in different languages
but automatic translations are provided when required. The French part of this project consists in defining
modeling abstractions that allow for giving precise semantics to component collaboration and generalization
mechanisms. The proposed abstractions are UML-based and environment independent. JavaHASE will be
used to implement these mechanisms. Some automatic model transformation tools will be provided to
interoperate with other environment like SystemC.

8.2. Nation-wide collaborations
8.2.1. Relations with other INRIA teams

We have strong ties with INRIA teams ESPRESSO and DaRT through the PROTES initiative on syn-
chronous and more generally RTE (Real-Time Embedded) modeling in UML. We conduct joint work with
POP-ART on fault tolerance and adaptive scheduling for robotic applications. Together with the S4 team we
regularly attend the same events gathering teh “Synchronous languages” community.

22 Activity Report INRIA 2004

We also collaborate with IMARA on applications of SynDEx into automatic vehicles such as the CyCab,
and with METALAU on coupling of Scilab/Scicos with AAA/SynDEx. Historical links are preserved with the
team SOSSO, on adaptive scheduling for applications mixing soft and hard real-time.

8.2.2. CARROLL project PROTES
Participants: Charles André, Robert de Simone, Yves Sorel.

CARROLL is a joint initiative between Thales, CEA, and INRIA to launch collaborative projects, mostly
on UML and/or MDA based topics. In this context we are trying in the PROTES project to promote a specific
UML profile for Real-Time Embedded systems. This profile should borrow extensively from results of the
ITEA P2I project (see below), and promote rigorous synchronous behaviors semantics, as well as high-level
architecture modeling of computer-aided application mapping. We benefit here from the experience gathered
by Thales in the governing policies of the OMG, and the procedural steps required for acceptance of our “RFP”
(Request-For-Proposal) document. This should be done by january 2005.

8.2.3. RNTL project ECLIPSE
Participant: Yves Sorel.

The goal of Eclipse is to providea seamless environment from specification/modeling/simulation with
Scilab/Scicos to optimized implementation with AAA/SynDEx. It was started in 2003 for a duration of two
years and a half. The partners are: PSA, CS-SI, CRIL, ESIEE, INRIA.

8.3. European collaborations
8.3.1. ITEA project EAST-EEA

Participants: Charles André, Yves Sorel.

This consortium aims at improving the management of complex electronic functions in the automotive
domain, with an open architecture based on interoperable software and hardware components. It started
beginning of 2002, with a three years duration. Partners are: PSA, RENAULT, AUDI, BMW, Daimler-Chrysler,
FIAT, OPEL, VOLVO, BOSCH, Magneti-Marelli, SIEMENS, ZF, ETAS, VECTOR, Paderborn University,
Linkoping University, Malardalen University, Technical University of Darmstadt, IrCCyn Nantes, LORIA
Nancy and INRIA.labla

AOSTE actively contributes to the definition of the EAST-EEA language for automotive embedded elec-
tronic architecture description, its metamodel and the code generation model.

8.3.2. ITEA project PROMPT2IMPLEMENTATION (P2I)
Participants: Julien Forget, Fabrice Peix, Robert de Simone, Yves Sorel.

This projet gathered in its consortium the following partners: Thales Telecommunication, Nokia, Esterel
Technology, Tampere University, Turku University, LIFL Lille, INRIA. Its goal is to establish a specific UML
profile for Real-Time Embedded systems, designed as to: 1) allow the modeling of synchronous applications
in a way borrowed from SCADE and SyncCharts formalisms; 2) allow the abstract modeling of architectural
platforms and non-functional performance features, in a way fit to apply AAA optimized mapping methods
with the SynDEx tools. An extensive case study advocating the design flow was realized, including JPEG2k
coding/decoding functions, and wireless transmission. The results were presented (and apparently appraised)
at the ITEA global symposium in Sevilla in october 2004.

8.3.3. IST Network of Excellence ARTIST
Participants: Robert de Simone, Yves Sorel.

Our participation here consists essentially (as for many other partners) in attending working group presen-
tation meetings (without real collaborative work so far). We follow particularly the work of Working Group
1 on Hard Real-Time, with focus on Synchronous languages, Time-Triggered architectures and fixed priority
scheduling.

Project-Team aoste 23

8.4. Research exchange visits
We obtained in the end of 2004 a grant under the INRIA Associated Team exchange program, together with

the research group of Stephen Edwards at Columbia University (New York).

9. Dissemination
9.1. Leadership within scientific community

Robert de Simone was editor of the TSI French journal, and is now on the International Advisory Board for
the CRC Press on embedded systems. He was Program Member for Memocode’04 and MSR’04. He is also
member of theCommission de Spécialiste UNSA 27e section, and INRIA representative to the CIM PACA
regional initiative on Microelectrnics design. In his role as INRIA leader of the CARROLL PROTES project
he attended several OMG Technical Meetings at various locations in the US.

Yves Sorel leads the Theme C Working Group (Adequation Algorithme Architecture) of the PRC-GDR
ISIS (Information Signal Images et viSion). He was Program Member for the following conferences and
workshops: JFAAA, ERTS, EUSIPCO, GRESTSI, JEAI, SYMPA, RTS.

Frederic Mallet was responsible for a session on Java and object-oriented technologies for Electrical
Engineering at the annual Summer School of GEII in Montlucon. He was selected as an expert on UML
technologies for producing result assessments on two TEMPUS-TACIS projects involving the University of
Nice, the Glasgow Caledonian University and three Ukrainian Universities.

9.2. Teaching
Charles André is a Professor at the University of Nice-Sophia Antipolis, department of Electrical Engineer-

ing. He teaches sequential circuits, discrete event systems, computer architecture and real-time programming.
He also teaches “synchronous programming” and “UML for systems” in the university’s engineer schools
(ESINSA: electrical engineering and ESSI: computer science) and in the STIC research master.

Robert de Simone taught courses on Formal Methods and Models for embedded systems, at UNSA in the
STIC research master and the Math-info DEA, as well as at ISIA (an engineering school located in Sophia-
Antipolis).

Yves Sorel teaches at ESIEE (an engineering school located in Noisy-le-Grand), in the Research Master
cursus at the University of Orsay Paris 11, and at ENSTA (an engineering school located in Paris), on topics
comprising the AAA methodology, formal modeling and specification of distributed embedded systems.

Both Eric Vecchié and Fabrice Peix hoed part-time ATER positions at UNSA during the final duration of
their PhD period. Eric Vecchié taught lab classes in programming languages (Java/C/Scheme) and Unix to
computer science major students, for a global duration of 92 hours. Fabrice Peix taught classes at IUT for the
same time amount.

Frederic Mallet teaches object-orientation and UML at the master Level of ESINSA (45h), javacard
technology (24h) in the Master of Telecommunications in Sophia Antipolis. For undergraduate students,
he teaches hardware architecture foundations (42h) in the Informatics Department in Nice and gives an
introduction to Embedded Java (9h).

10. Bibliography
Major publications by the team in recent years

[1] C. ANDRÉ. Semantics of SSM (Safe State Machine), Esterel Technologies, April 2003,http://www.esterel-
technologies.com.

http://www.esterel-technologies.com
http://www.esterel-technologies.com

24 Activity Report INRIA 2004

[2] C. ANDRÉ, F. BOULANGER, A. GIRAULT. Software Implementation of Synchronous Programs, in "Proceed-
ings of the Second International Conference on Application of Concurrency to System Design, Newcastle upon
Tyne, UK, June 25–29, 2001", IEEE Computer Society Press Order Number PR01071 Library of Congress
Number 2001090878 ISBN 0-7695-1071-X, IEEE Computer Society, 2001, p. 133-142.

[3] C. ANDRÉ, M.-A. PERALDI-FRATI , J.-P. RIGAULT. Integrating the Synchronous Paradigm into UML:
Application to Control-Dominated Systems, in "UML �2002�, Dresden (D)", Springer-Verlag, October
2002, p. 163–178.

[4] C. ANDRÉ, J.-P. RIGAULT. Variations on the Semantics of Graphical Models for Reactive Systems, in
"SMC’02, ISBN: 2-9512309-4-x, Hammamet (TN)", On CD-ROM, index: TA2L2, IEEE Press, October 2002.

[5] C. ANDRÉ, R. DE SIMONE. Synchronous Programming : Properties within a Reaction, in "JESA", vol. 36, no

7, 2002, p. 891–903.

[6] C. ANDRÉ, R. DE SIMONE. Towards a Synchronous UML Profile ?, in "Proceedings of the first Workshop
on Specification and Validation of UML models for Real-Time and Embedded Systems (SVERTS’03)",
Electronically available, 2003.

[7] C. ANDRÉ. Representation and Analysis of Reactive Behavior: a Synchronous Approach, in "Computational
Engineering in Systems Applications (CESA)", IEEE-SMC, 1996, p. 19–29.

[8] C. ANDRÉ, F. BOULANGER, M.-A. PERALDI , J.-P. RIGAULT, G. VIDAL -NAQUET. Objects and Synchronous
Programming, in "RAIRO-APII-JESA", vol. 31, no 3, 1997.

[9] C. ANDRÉ, M.-A. PERALDI-FRATI , J.-P. RIGAULT. Scenario and Property Checking of Real-Time Systems
Using a Synchronous Approach, in "4th International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2001), Magdeburg, Germany", IEEE, May 2001.

[10] A. BENVENISTE, G. BERRY. The Synchronous Approach to Reactive and Real-Time Systems, in "Proceedings
of the IEEE", vol. 79, no 9, September 1991, p. 1270-1282.

[11] A. BENVENISTE, P. CASPI, S. EDWARDS, N. HALBWACHS, P. L. GUERNIC, R. DE SIMONE. Synchronous
Languages Twelve Years Later, in "Proceedings of the IEEE", January 2003.

[12] G. BERRY. The Foundations of Esterel, Foundations of Computing Series, MIT Press, 2000,http://www-
sop.inria.fr/esterel.org/Html/Downloads/Doc/StartDocument.htm.

[13] G. BERRY. The Constructive Semantics of Pure Esterel, electronic version only, 1999,http://www-
sop.inria.fr/esterel.org/Html/Downloads/Doc/StartDocument.htm.

[14] G. BERRY. The Esterel Language Primer, version electronique, 1999,http://www-sop.inria.fr/esterel.org/Html/Downloads/Doc/StartDocument.htm.

[15] F. BOUSSINOT, R. DE SIMONE. The Esterel Language, in "Proceedings of the IEEE", September 1991.

http://www-sop.inria.fr/esterel.org/Html/Downloads/Doc/StartDocument.htm
http://www-sop.inria.fr/esterel.org/Html/Downloads/Doc/StartDocument.htm
http://www-sop.inria.fr/esterel.org/Html/Downloads/Doc/StartDocument.htm
http://www-sop.inria.fr/esterel.org/Html/Downloads/Doc/StartDocument.htm
http://www-sop.inria.fr/esterel.org/Html/Downloads/Doc/StartDocument.htm

Project-Team aoste 25

[16] L. CUCU, R. KOCIK, Y. SOREL. Real-time scheduling for systems with precedence, periodicity and latency
constraints, in "Proceedings of 10th Real-Time Systems Conference, RTS’02, Paris, France", March 2002.

[17] L. CUCU, Y. SOREL. Schedulability condition for systems with precedence and periodicity constrainsts
without preemption, in "Proceedings of 11th Real-Time Systems Conference, RTS’03, Paris", March 2003.

[18] A. D IAS, C. LAVARENNE, M. AKIL , Y. SOREL. Optimized Implementation of Real-Time Image Processing
Algorithms on Field Programmable Gate Arrays, in "Proceedings of Fourth International Conference on Signal
Processing, ICSP’98, Beijing, China", October 1998.

[19] S. F. MALLET R.N. IBBETT. An Extensible Clock mechanism for Computer Architecture Simulations, in
"Proceedings of the 13th International Conference on Modeling and Simulation, los angeles", may 2002.

[20] A. GIRAULT, H. KALLA , M. SIGHIREANU, Y. SOREL. An Algorithm for Automatically Obtaining Distributed
and Fault-Tolerant Static Schedules, in "Proceedings of International Conference on Dependable Systems and
Networks, DSN’03, San Francisco, California, USA", June 2003.

[21] A. GIRAULT, C. LAVARENNE, M. SIGHIREANU, Y. SOREL. Fault-Tolerant Static Scheduling for
Real-Time Distributed Embedded Systems, Rapport de recherche, no 4006, INRIA, septembre 2000,
http://www.inria.fr/rrrt/rr-4006.html.

[22] A. GIRAULT, C. LAVARENNE, M. SIGHIREANU, Y. SOREL. Fault-Tolerant Static Scheduling for Real-Time
Distributed Embedded Systems, in "Proceedings of 21st International Conference on Distributed Computing
Systems, ICDCS’01, Phoenix, USA", April 2001.

[23] T. GRANDPIERRE. Modélisation d’architectures parallèles hétérogènes pour la génération automatique
d’exécutifs distribués temps réel optimisés, Ph. D. Thesis, Université de Paris Sud, Spécialité électronique,
30/11/2000.

[24] T. GRANDPIERRE, C. LAVARENNE, Y. SOREL. Modèle d’exécutif distribué temps réel pour SynDEx, Rapport
de Recherche, no 3476, INRIA, August 1998,http://www.inria.fr/rrrt/rr-3476.html.

[25] T. GRANDPIERRE, C. LAVARENNE, Y. SOREL. Optimized Rapid Prototyping For Real-Time Embedded
Heterogeneous multiprocessors, in "Proceedings of 7th International Workshop on Hardware/Software Co-
Design, CODES’99, Rome, Italy", May 1999.

[26] T. GRANDPIERRE, Y. SOREL. From Algorithm and Architecture Specification to Automatic Generation of
Distributed Real-Time Executives: a Seamless Flow of Graphs Transformations, in "Proceedings of First ACM
and IEEE International Conference on Formal Methods and Models for Codesign, MEMOCODE’03, Mont
Saint-Michel, France", June 2003.

[27] N. HALBWACHS. Synchronous Programming of Reactive Systems, in "Computer Aided Verification", 1998, p.
1-16,http://citeseer.ist.psu.edu/10686.html.

[28] F. M. R. IBBETT. JavaHase: Automatic Generation of Applets from HASE Simulation Models, in "Proceedings
of the 2003 Summer Computer Simulation Conference, montreal", august 2003.

http://www.inria.fr/rrrt/rr-4006.html
http://www.inria.fr/rrrt/rr-3476.html
http://citeseer.ist.psu.edu/10686.html

26 Activity Report INRIA 2004

[29] L. K AOUANE, M. AKIL , Y. SOREL, T. GRANDPIERRE. From algorithm graph specification to automatic
synthesis of FPGA circuit: a seamless flow of graph transformations, in "Proceedings of 13th international
conference on Field-Programmable Logic and Applications, FPL’03, Lisbon, Portugal", September 2003.

[30] C. LAVARENNE, O. SEGHROUCHNI, Y. SOREL, M. SORINE. The SynDEx Software Environment for Real-
Time Distributed Systems, Design and Implementation, in "Proceedings of European Control Conference,
ECC’91, Grenoble, France", July 1991.

[31] C. LAVARENNE, Y. SOREL. Performance Optimization of Multiprocessor Real-Time Applications by Graph
Transformations, in "Proceedings of Parallel Computing Conference, PARCO’93, Grenoble, France", Septem-
ber 1993.

[32] C. LAVARENNE, Y. SOREL. Modèle unifié pour la conception conjointe logiciel-matériel, in "Traitement du
Signal", vol. 14, no 6, 1997.

[33] N. PERNET, Y. SOREL. From Specification to Optimized Implementation of Distributed Real-Time Embedded
Systems Mixing Control and Data Processing, in "Proceedings of ISCA 16th International Conference:
Computer Applications in Industry and Engineering, CAINE’03, Las Vegas Nv", November 2003.

[34] F. M. S. ALAM . Performance Evaluation of Local Communications: A Case-study, in "Proceedings of the
15th International Conference on Parallel Distributed Computings and Systems, CA,USA", november 2003.

[35] Y. SOREL. Massively Parallel Systems with Real Time Constraints, the Algorithm Architecture Adequation
Methodology, in "Proceedings of Conference on Massively Parallel Computing Systems, MPCS’94, Ischia,
Italy", May 1994.

[36] Y. SOREL. Real-Time Embedded Image Processing Applications using the AAA Methodology, in "Proceedings
of IEEE International Conference on Image Processing, ICIP’96, Lausanne, Switzerland", September 1996.

[37] A. V ICARD, Y. SOREL. Formalization and Static Optimization for parallel implementations, in "Proceedings
of Workshop on Distributed and Parallel Systems, DAPSYS’98, Budapest, Hungary", September 1998.

[38] A. V ICARD. Formalisation et optimisation des systèmes informatiques distribués temps réel embarqués, Ph.
D. Thesis, Université de Paris Nord, Spécialité informatique, 5/07/1999.

Doctoral dissertations and Habilitation theses

[39] L. CUCU. Ordonnancement non préemptif et condition d’ordonnançabilité pour système embarqués à
contraintes temps réel, Ph. D. Thesis, Université de Paris Sud, Spécialité électronique, 28/05/2004.

[40] F. PEIX . Distribution de programmes synchrones : Le cas d’Esterel, Ph. D. Thesis, Université de Nice-Sophia
Antipolis, Juillet 2004.

[41] O. TARDIEU. De la sémantique opérationnelle à la spécification formelle de compilateurs : l’exemple des
boucles en Esterel, Ph. D. Thesis, Ecole des Mines de Paris, 2004.

Project-Team aoste 27

[42] E. VECCHIÉ. Calcul des états atteignables de programmes Esterel partitionné se lon la syntaxe, Ph. D. Thesis,
Université de Nice – Sophia Antipolis, July 2004.

Articles in referred journals and book chapters

[43] A. GIRAULT, H. KALLA , Y. SOREL. A Scheduling Heuristics for Distributed Real-Time Embedded Systems
Tolerant to Processor and Communication Media Failures, in "International Journal of Production Research",
vol. 42, no 14, July 2004, p. 2877–2898.

[44] L. K AOUANE, M. AKIL , T. GRANDPIERRE, Y. SOREL. A methodology to implement real-time applications
onto reconfigurable circuits, in "Journal of Supercomputing", vol. 30, no 3, December 2004, p. 362-376.

[45] Y. SOREL. SynDEx: System-Level CAD Software for Optimizing Distributed Real-Time Embedded Systems, in
"Journal ERCIM News", vol. 59, October 2004, p. 68-69.

[46] E. VECCHIÉ, R. DE SIMONE. Syntax-driven optimizations for Reachable State Space construction of E sterel
programs, in "International Journal of Embedded Systems – Special Issue on Design and Verification of Real-
Time Embedded Software", April 2005,http://www.cs.ccu.edu.tw/~pahsiung/ijes-rtes/.

[47] R. DE SIMONE, D. POTOP, J.-P. TALPIN . The Synchronous Hypothesis and Synchronous Languages, chapter
of the Embedded Systems Handbook, CRC Press, 2005.

[48] R. DE SIMONE, O. TARDIEU. Loops in Esterel, accepted for publication in Transactions on Embedded
Computing Systems, 2005.

Publications in Conferences and Workshops

[49] L. CUCU, Y. SOREL. Non-preemptive multiprocessor scheduling for strict periodic systems with precedence
constraints, in "Proceedings of the 23rd Annual Workshop of the UK Planning and Scheduling Special Interest
Group, PlanSIG’04", December 2004.

[50] L. CUCU, Y. SOREL. Ordonnancement non-préemptif pour systèmes temps réel à contraintes de précédences
et de latences, in "Actes de la Conférence internationale en Recherche Opérationnelle, FRANCORO IV,
Fribourg, Suisse", august 2004.

[51] C. DIMA , A. GIRAULT, Y. SOREL. Static fault-tolerant real-time scheduling with “pseudo-topological”
orders, in "Proceedings of Joint Conference on Formal Modelling and Analysis of Timed Systems and Formal
Techniques in Real-Time and Fault Tolerant System, FORMATS-FTRTFT’04, Grenoble, France", LNCS,
Springer-Verlag, September 2004.

[52] A. GIRAULT, H. KALLA , Y. SOREL. An Active Replication Scheme that Tolerates Failures in Distributed
Embedded Real-Time Systems, in "Proceedings of IFIP Working Conference on Distributed and Parallel
Embedded Systems, DIPES’04, Toulouse, France", Kluwer Academic, August 2004.

[53] O. TARDIEU, R. DE SIMONE. Curing Schizophrenia by Program Rewriting in Esterel, in "Proc. MEM-
OCODE’04", IEEE Press, 2004.

http://www.cs.ccu.edu.tw/~pahsiung/ijes-rtes/

28 Activity Report INRIA 2004

[54] O. TARDIEU. A Deterministic Logical Semantics for Esterel, in "Proc. SOS Workshop", Electronic Notes in
Theoretical Computer Science, Elsevier, 2004.

[55] O. TARDIEU. Goto and Concurrency: Introducing Safe Jumps in Esterel, in "Proc. SLAP’04", Electronic
Notes in Theoretical Computer Science, Elsevier, 2004.

[56] E. VECCHIÉ, R. DE SIMONE. Syntax-driven behavior partitioning for model-checking of Esterel progr ams,
in "Proceedings of the Third International Workshop on Synchronous Language s, Applications, and Programs
(SLAP’04), Barcelona", March 2004,http://www.inrialpes.fr/pop-art/people/girault/Slap04/.

Bibliography in notes

[57] R. BALAKRISNAN , K. RANGANATHAN . A Textbook of Graph Theory, Springer, 2000.

[58] J. DENNIS. First Version of a Dataflow Procedure Language, in "Lecture Notes in Computer Sci.", vol. 19,
Springer-Verlag, 1975, p. 362-376.

[59] G. FOHLER. Joint Scheduling of Distributed Complex Periodic and Hard Aperiodic Tasks in Statically
Scheduled Systems, in "Procedings of IEEE Real-Time Systems Symposium", 1995, p. 152-161.

[60] N. HALBWACHS. Synchronous programming of reactive systems, Kluwer Academic Publishers, Dordrecht
Boston, 1993.

[61] E. LEE, M. D.G..Synchronous Data Flow, in "Proceedings of the IEEE", 1987, vol. 75, no. 9.

[62] J. LEHOCZKY, S. RAMOS-THUEL. Scheduling periodic and aperiodic tasks using the slack stealing algo-
rithm, Advances in Real-Time Systems, chap. 8, Prentice-Hall, 1995, p. 175–198.

[63] J. LEUNG, W. J..On the complexity of fixed-priority scheduling of periodic real-time tasks, in "Performance
Evaluation(4)", 1982.

[64] Z. L IU , C. CORROYER. Effectiveness of heuristics and simulated annealing for the scheduling of concurrent
task. An empirical comparison, in "PARLE’93, 5th international PARLE conference, June 14-17, Munich,
Germany", November 1993, p. 452-463.

[65] C. LIU , J. LAYLAND . Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment, in
"Journal of the ACM", 1973.

[66] C. MEAD, L. CONWAY. Introduction to VLSI systems, Addison-Wesley, 1980.

[67] V. PRATT. Modeling concurrency with partial orders, in "International Journal of Parallel Programming", vol.
15, no 1, 1986.

[68] A. ZOMAYA . Parallel and distributed computing handbook, McGraw-Hill, 1996.

http://www.inrialpes.fr/pop-art/people/girault/Slap04/

