%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Arénaire

Computer Arithmetic

Rhone-Alpes

- THEME SYM -

ctivity

o=

Team

Table of contents

Overall Objectives

Scientific Foundations

3.1. Introduction

3.2. Hardware arithmetic operators

3.2.1.
3.2.2.
3.2.3.

Number representation
Algorithms
Architectures and tools

3.3. Floating-point arithmetic

3.3.1.
3.3.2.

Formal specifications and proofs
Elementary functions and correct rounding

3.4. Algorithms and arithmetics

3.4.1.
34.2.

Numerical algorithms using arbitrary precision interval arithmetic
Computational algorithms for exact linear algebra

Application Domains

Software

5.1. Crlibm: A library of elementary functions with correct rounding
5.2. Divgen: a divider circuit generator

5.3. FPLibrary: A library of operators for “real” arithmetic on FPGAs
5.4. A VHDL library for integer and modular arithmetic

5.5. LinBox: High performance software for matrix computation

5.6. MPFI: Multiple Precision Floating-point Interval arithmetic

5.7. Boost interval arithmetic library

5.8. MEPLIb : Machine-efficient polynomials library

5.9. PFF: Formal Proofs about Floats

5.10. Gappa: A tool for certifying numerical programs

New Results

6.1. Hardware Arithmetic Operators

6.1.1.
6.1.2.
6.1.3.
6.1.4.
6.1.5.
6.1.6.
6.1.7.
6.1.8.
6.1.9.

6.1.10.

Modular Arithmetic for FPGAs
Code-based Digital Signature
Hardware Function Evaluation
Complex Square Root
Hardware-oriented Algorithms for the Evaluation of Functions
Division Circuits (collaboration Inria/CEA-Léti)
Multiplication Algorithms and Implementations for Asynchronous Circuits
Modular Multiplication Algorithms
Opérateurs arithmétiques sur circuits FPGA
Low-power Arithmetic Operators

6.2. Correctly Rounded Elementary Functions
6.3. Fast Floating-point Arithmetic for Integer Processors
6.4. Properties and Proofs on Floating-point Arithmetic

6.4.1.
6.4.2.
6.4.3.
6.4.4.

Formalization of Floating-point Numbers as Vectors of Bits
Double-rounding

Functions Computable with a Fused Multiply-and-add Instruction
Taylor Models

6.5. Intervals and Guaranteed Proofs to Bound Variables and Errors

6.5.1.

Semi-Automatic Determination of Guaranteed Enclosures of a Result

O O 000 IO LN BB DWW W= -

Activity Report INRIA 2004

6.6.

6.7.
6.8.

6.5.2. Generating Formally Certified Bounds on Values and Roundoff Errors
6.5.3. PVS-guaranteed Proofs using Interval Arithmetic
6.5.4. Formal Certification of Arithmetic Filters for Geometric Predicates
Theory of Computer Arithmetic Algorithms
6.6.1. Analysis of Arithmetic Algorithms
6.6.2. Number Systems
Efficient Polynomial Approximation
Exact Linear Algebra, Algorithms and Software Components
6.8.1. Efficient Software Components
6.8.2. Algorithmic Complexity
6.8.3. Lattice-based Memory Allocation

7. Contracts and Grants with Industry

7.1.

Région Rhone-Alpes Grant

8. Other Grants and Activities

8.1.

8.2.

8.3.

National Initiatives
8.1.1. Ministry Grant ACI “Cryptology”
8.1.2. Ministry Grant ACI “Security in computer science”
8.1.3. Ministry Grant ACI “New interfaces of mathematics”
8.1.4. CNRS Grant “Numerical validation for embedded computations”
8.1.5. Working group on “Set methods for control theory”, CNRS GDR MACS
8.1.6. Roxane Initiative
European Initiatives
8.2.1. Mathlogaps Marie Curie Early Stage Training
International Initiatives
8.3.1. LinBox Initiative
8.3.2. Grant of the Japanese Society for the Promotion of Sciences
8.3.3. Certifications of properties of floating-point arithmetic (CNRS-NASA)
8.3.4. Contributions to standardization bodies (IEEE 754)

9. Dissemination

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.

Conferences, edition

Doctoral School Teaching

Other teaching and Service

Leadership within scientific community

Committees

Seminars, conference and workshop committees, invited conferences

10. Bibliography

14
14
15
15
15
15
15
16
16
16
16
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
19
19
19
19
20
20
21
21
21
22

1. Team

Arénaire is a joint project of the CNRS, the Ecole Normale Supérieure de Lyon, the Inria, and the Université
Claude Bernard de Lyon. Part of the Laboratoire de I’ Informatique du Parallélisme (Lip, UMR 5668), it is
located at Lyon in the buildings of the ENS.

Head of the team
Gilles Villard [Research Scientist, CR CNRS]

Administrative Assistant
Sylvie Boyer [TR Inria, 20% on the project]

Inria Scientists
Nicolas Brisebarre [Research Scientist CR, (on partial secondment), since 01/09/02]
Catherine Daramy-Loirat [Software Development Staff ODL, 01/09/02 to 31/08/04]
Claude-Pierre Jeannerod [Research Scientist, CR]
Nathalie Revol [Research Scientist, CR]
Arnaud Tisserand [Research Scientist, CR]

CNRS Scientists
Marc Daumas [Research Scientist, CR]
Jean-Michel Muller [Research Scientist, DR]

Faculty Member ENS Lyon
Florent Dupont de Dinechin [Associate Professor, Maitre de Conférences]

Post-Doctoral Fellow
Jean-Luc Beuchat [Post-doctoral fellow of the Fonds National Suisse de la Recherche Scientifique, since
01/11/01]

Ph. D. Students
Sylvie Boldo [ENS student Allocataire-monitrice ENS, Ph.D. defense 1 1/22/04]
Nicolas Boullis [ENS student Allocataire-moniteur INSA, 4th year|
Francisco Chdves [European Marie Curie grant Mathlogaps, 1st year (since 10/01/04)]
Jérémie Detrey [ENS student Allocataire-moniteur INSA, 2nd year]
Pascal Giorgi [Allocataire MESR, Ph.D. defense 12/20/04]
Guillaume Melquiond [ENS student Allocataire-moniteur INSA, 2nd year]
Romain Michard [Inria grant, 1st year (since 09/01/04)]
Saurabh Kumar Raina [Grant from the Région Rhone-Alpes, 2nd year]
Nicolas Veyrat-Charvillon [Allocataire-moniteur MESR ENS, 1st year (since 10/01/04)]

Student interns
Nathalie Dessart [ENS-Lyon, graduate internship, March/June 2004]
Matthieu Gallet [ENS-Lyon, undergraduate internship, June/August 2004]
Nicolas Gast [ENS, Paris, undergraduate internship, June/August 2004]
Gaétan Leurent [ENS, Paris, undergraduate internship, June/August 2004]
David Pritchard [Inria-MIT undergraduate internship, June/August 2004]
Julien Robert [ENS-Lyon, undergraduate internship, June/August 2004]
Xavier Roche [ENS-Lyon, undergraduate internship, June/August 2004]

2. Overall Objectives

Keywords: Computer arithmetic, FPGA circuit, VLSI circuit, approximated computation, computer algebra,
elementary function, finite field, floating-point representation, integer computation, interval arithmetic, linear
algebra, low-power operator, multiple-precision arithmetic, reliability of numerical software.

The Arénaire project aims at elaborating and consolidating knowledge in the field of Computer Arithmetic.
Reliability, accuracy, and performance are the major goals that drive our studies.

2 Activity Report INRIA 2004

We contribute to the improvement of the available arithmetic, at the hardware level as well as at the software
level, on computers, processors, dedicated or embedded chips, etc. Improving computing does not necessarily
mean getting more accurate results or getting them more quickly: we also take into account other constraints
such as power consumption, or the reliability of numerical software.

Whatever the target (hardware or software), the choice of the number system (and, more generally, of
the data representation) is of uttermost importance. Typical examples are the redundant number systems
(e.g., carry-save, borrow-save). Such systems are used inside multipliers, dividers, etc. The input and output
operands of these operators are represented in a conventional number system: only their internal calculations
are performed in redundant arithmetic. For a general purpose microprocessor, floating-point arithmetic seems
an unavoidable choice (even if current implementations can certainly be improved), but for special-purpose
systems, other ways of representing numbers might prove more useful (fixed-point format, some special
redundant systems). The ways of representing the elements of a finite field are not standardized, and have
strong impact on the performance of a special-purpose circuit. On a higher level, the performance of an interval
arithmetic depends on the underlying real arithmetic.

Computer designers have always needed to implement the basic arithmetic functions (with software
or hardware), for a medium-size precision (say, on words from 8 to 128 bits). Of course, addition and
multiplication have been much studied, but their performance is still critical concerning silicon area (for
multiplication) or speed (for both operations). Division and square-root are less critical, but with these
operations there certainly remains more room for possible improvement. When elementary functions are at
stake (cosine, sine, exponential, logarithm, etc.), algorithm designers have mainly focused on speed or savings
of physical resources. Research on algorithms and architectures for multiplication, division and elementary or
special functions is still very active. Implemented solutions are still evolving fast. The members of Arénaire
have a strong reputation in these domains and they intend to continue to work on them.

Designing a hardwired operator is not only assembling small parts. The designer must also take into account
numerous technological constraints and data. Due to the quick evolution of technologies, it is for instance
necessary to master the placement and routing tools, if one wishes to design efficient chips. The power
consumption of an integrated circuit depends, among other parameters, on its activity, which in turn depends
on the value of the inputs: this makes the choice of the number system crucial. Some encodings are used
specially in fast algorithms, some others allow to minimize energy consumption.

Validating numerical programs requires the ability to give formal proofs of algorithms, and control the
propagation of rounding errors in floating-point computations. For verifying our formal proofs, we use the Coq
proof assistant [67]. The formal specification of the operators in the assistant must be done with much care,
so that it faithfully reflects the usual associated semantics. Now, the semantics of the floating-point operations
is well defined. Indeed, the adoption of the IEEE-754 standard for floating-point arithmetic in 1985 was a
major step forward in computer arithmetic. The standard specifies the various formats and the behavior of the
floating-point operations. Thanks to the Arithmétique des Ordinateurs Certifiée (certified computer arithmetic)
Inria New Investigation Grant, we have worked with members of the Lemme and Spaces projects on the proof
of our arithmetic algorithms. This collaboration is still active.

Controlling round-off error propagation and, more generally, building systems that are numerically reliable
is a more and more important topic. One performs computations that are much bigger than in the Seventies,
whereas the accuracy of each individual operation only slightly improved. In many domains, the inaccuracy of
a floating-point operation may lead to tragedies. A first solution (that will not solve all problems) consists in
building our own floating-point libraries, so that they are better suited to the target applications. Such a library
is being developed in cooperation with ST-Microeletronics, in the scope of a project funded by the Région
Rhone-Alpes.

When conventional floating-point arithmetic does not suffice, we use other kinds of arithmetics. We work on
an arbitrary precision interval arithmetic library, that allows to get certified and accurate bounds to solutions.
Such intervals give an “exact” answer when the problem is to bound the result of a computation (global
optimization). Algorithms dedicated to this arithmetic must be designed in order to get accurate solutions or
sometimes simply to avoid divergence, i.e. infinite intervals. We also investigate exact arithmetics in computer

Project-Team Arénaire 3

algebra, for computing in algebraic domains such as finite fields, unlimited precision integers, and polynomials
(linear algebra in mathematical computing).

3. Scientific Foundations

3.1. Introduction

Our goal is to improve arithmetic operators. Under various hardware and software constraints we focus on
reliability, accuracy, and speed. We identify three main directions: hardware arithmetic operators, floating-
point operations, and impact of the arithmetic on the algorithms. These three interrelated topics are described
below with the methodologies and techniques they implement.

3.2. Hardware arithmetic operators

A given computing application may be implemented using different technologies, with a large range
of tradeoffs between the various aspects of performance, unit cost, and non-recurring costs (including
development effort).

e A software implementation, targeting off-the-shelf microprocessors, is easy to develop and repro-
duce, but will not always provide the best performance.

e For cost or performance reasons, some applications will be implemented as application specific
integrated circuits (or ASIC). An ASIC provides the best possible performance and may have a very
low unit cost, at the expense of a very high development cost.

e An intermediate approach is the use of reconfigurable circuits, or field-programmable gate arrays
(FPGA).

In each case, the computation is broken down into elementary operations, executed by elementary hardware
elements, or arithmetic operators. In the software approach, the operators used are those provided by the
microprocessor. In the ASIC or FPGA approaches, these operators have to be built by the designer, or taken
from libraries. The design of hardware arithmetic operators is one of the goals of the Arénaire project.

A hardware implementation may lead to better performance than a software implementation for two main
reasons: parallelism and specialization. The second factor, from the arithmetic point of view, means that
specific data types and specific operators may be used which would require costly emulation on a processor.
For example, some cryptography applications are based on modular arithmetic and bit permutations, for
which efficient specific operators can be designed. Other examples include standard representations with non-
standard sizes, and specific operations such as multiplication by constants.

A circuit may be optimized for speed or area (circuit cost). In addition, power consumption is becoming an
increasingly important challenge in embedded applications. Here again, data and operator specialization has
to be combined with generic power-aware techniques to achieve the lowest power consumption.

Those considerations motivate the study of arithmetic operators for ASIC and FPGA. More specifically we
consider the following aspects.

4 Activity Report INRIA 2004

3.2.1. Number representation

3.2.2

3.2.3

The choice of a number representation system may ease the implementation of a given operation. A typical
example is the logarithmic number system, where a number is represented by its logarithm in radix 2. In
this system, the multiplication and the division are exact (involving no rounding) and easy, but the addition
becomes very expensive. A more standard example is that of redundant number systems, like carry-save and
borrow-save, often used within multipliers and dividers to allow very fast addition of intermediate results. We
also work on other number systems such as finite fields or residue number systems for cryptography. In the
case of computations on real values, we consider two different solutions with fixed-point and floating-point
number systems.

Algorithms
Many algorithms are available for the implementation of elementary operators. For example, there are two
classes of division algorithms: digit-recurrence and function iteration. The choice of an algorithm for the
implementation of an operation depends on (and sometimes imposes) the choice of a number representation.
Besides, there are usually technological constraints (area and power budget, available low-level libraries).
Research is active on algorithms for the following operations:

e Basic operations (addition, subtraction, multiplication), and their variations (multiplication and
accumulation, multiplication or division by constants, etc.);

e Algebraic functions (division, inverse, and square root, and in general powering to an integer, and
polynomials);

e Elementary functions (sine, cosine, exponential, etc.);

e Combinations of the previous operations (norm for instance).

Architectures and tools

Implementing an algorithm (typically defined by equations) in hardware is a non-trivial task. For example,
control signals are needed for correct initialization, most circuits involve memory elements and clock signals
which have to be managed carefully, etc.

In this process, computer-aided design tools play a major role. Unfortunately, such tools currently have very
poor arithmetic support (typically only radix-2 integer representations, with simple adders and sometimes
multipliers). Improving this situation by developing specific design tools is an important research direction.

Finally, even though an algorithm has been formally proven, its hardware realization needs to be checked, as
errors may be introduced by the synthesis process and in the physical realization. For this purpose, test vectors
are used to validate the final circuit. For small circuits, such vectors may exhaustively test all the combinations
of the inputs. When this exhaustive approach becomes impractical, it is the responsibility of the designer to
provide test vectors ensuring sufficient coverage of all the possible faults. This again is a non-trivial task.

3.3. Floating-point arithmetic

Floating-point numbers are represented by triplets (s, n, e) associated with

(_1)8 X n X /Bea

where 3 is the radix of the system. In practice, 5 = 2 or § = 10, however, studying the system independently
of the value of 3 allows a better understanding of its behaviour. An arithmetic operator handling floating-point
numbers is more complex than the same operator restricted to integer numbers. It is necessary to correctly
round the operation with one of the four rounding modes proposed by the IEEE-754 standard (this standard
specifies the formats of the numbers and the arithmetic operations), to handle at the same time the mantissa and
the exponent of the operands, and to deal with the various cases of exception (infinite, "denormal" numbers,
etc).

3.3.1

3.3.2

Project-Team Arénaire 5

Formal specifications and proofs

Very mediatized problems (Pentium’s bug, 2001!/2000! = 1 in Maple v7) show that arithmetic correctness
is sometimes difficult to handle or to establish on a computer. Few tools handle rigorous proofs on floating-
point data. However, thanks to the IEEE-754 standard, the arithmetic operations are completely specified,
which makes it possible to build proofs of algorithms and properties. But it is difficult to present a proof
including the long list of peculiar cases generated by these calculations. The formalization of the standard,
started with our collaboration with the Lemme project (ARC AOC) in year 2000, makes it possible to use a
proof assistant such as Coq [67] to guarantee that each particular case is considered and handled correctly.

Systems such as Coq make it possible to define new objects and to derive formal consequences of these
definitions. Thanks to higher order logic, we establish properties in a very general form. For example, we used
universal quantifiers to establish properties independently of the radix of the floating-point numbers or for
an arbitrary rounding mode. The proof is built in an interactive way by guiding the assistant with high level
tactics. At the end of each proof, Coq builds an internal object which contains all the details of derivations and
guarantees that the theorem is valid.

Elementary functions and correct rounding

Many libraries for elementary functions are currently available. The functions in question are typically those
defined by the C99 standard, and are offered by vendors of processors, compilers or operating systems. The
majority of these libraries attempts to reproduce the mathematical properties of the given functions: monotony,
symmetries and sometimes range.

Concerning the correct rounding of the result, it is not required by the IEEE-754 standard: during the
elaboration of this standard, it was considered that correctly rounded elementary functions was impossible
to obtain at a reasonable cost, because of the so called Table Maker’s Dilemma: An elementary function is
evaluated to some internal accuracy (usually higher than the target precision), and then rounded to the target
precision. What is the accuracy necessary to ensure that rounding this evaluation is equivalent to rounding
the exact result, for all possible inputs ? The answer to this question is generally unknown, which means
that correctly rounding elementary functions requires arbitrary multiple-precision, which is very slow and
resource-consuming.

Indeed, correctly rounded libraries already exist, such as MPFR (http://www.mpfr.org), the Accurate
Portable Library released by IBM in 2002, or the libmcr library, released by Sun Microsystems in late
2004. However they have worst-case execution time and memory consumption up to 10,000 worse than usual
libraries, which is the main obstacle to their generalized use.

We have focussed in previous years on computing bounds on the intermediate precision required for
correctly rounding some elementary functions in IEEE-754 double precision. This allows us to design
algorithms using a large but fixed precision instead of arbitrary multiple-precision. That makes it possible to
offer the correct rounding with an acceptable overhead: we have experimental code where the cost of correct
rounding is negligible in average, and less than a factor 10 in the worst case. It also enables to prove the
correct-rounding property, and to prove bounds on the worst-case performance of our functions. This proof
concern is mostly absent from IBM’s and Sun’s libraries, and indeed we have found many misrounded values
in each of them.

The design of a library with correct rouding also requires the study of algorithms in large (but not arbitrary)
precision, as well as the study of more general methods for the three stages of the evaluation of elementary
functions: argument reduction, approximation, and reconstruction of the result.

3.4. Algorithms and arithmetics

Today, scientific computing needs not only floating-point arithmetic or multi-precision arithmetic. On the
one hand, when validated results or certified enclosures of a solution are needed, interval arithmetic is the
arithmetic of choice. It enables to handle uncertain data, such as physical measures, as well as to determine
a global optimum of some criterion or to solve a set of constraints. On the other hand, there is an increasing

3.4.1.

3.4.2.

6 Activity Report INRIA 2004

demand for exact solutions to problems in various areas such as cryptography, combinatorics or algorithmic
geometry. Here, symbolic computation is used together with exact arithmetic.

General purpose computing environments such as Matlab or Maple now offer all these types of arithmetic
and it is even possible to switch from one to another in the middle of a computation. Of course, such
capabilities are quite useful and, in general, users already can enhance the quality of the answers to small
problems.

However, most general purpose environments are still poorly suited for large computations and interfacing
with other existing softwares remains an issue. Our goal is thus to provide high-performance easy-to-reuse
software components for interval, mixed interval/multi-precision, finite field, and integer arithmetics. We
further aim to study the impact of these arithmetics on algorithms for exact linear algebra and constrained
as well as unconstrained global optimization.

Numerical algorithms using arbitrary precision interval arithmetic

When validated results are needed, interval arithmetic can be used. New problems can be solved with this
arithmetic which computes with sets instead of numbers. In particular, we target the global optimization of
continuous functions. A solution to obviate the frequent overestimation of results is to increase the precision
of computations.

Our work is twofold. On the one hand, efficient software for arbitrary precision interval arithmetic is
developed, along with a library of algorithms based on this arithmetic. On the other hand, new algorithms
that really benefit from this arithmetic are designed, tested, and compared.

Computational algorithms for exact linear algebra

The techniques for solving linear algebra problems exactly have been evolving rapidly since a few years,
substantially improving the complexity of several algorithms. Our main focus is on matrices whose entries are
integers or univariate polynomials over a field. For such matrices, our main interest is how to relate the size
of the data (integer bit lengths or polynomial degrees) to the cost of solving the problem exactly. A first goal
is to design asymptotically faster algorithms for the most basic tasks (determinant, matrix inversion, matrix
canonical forms, ...), to incorporate matrix multiplication in a systematic way, and to relate bit complexity to
algebraic complexity. Another direction is to make these algorithms practically fast as well, especially since
applications yield very large matrices that are either sparse or structured. The techniques used to achieve our
goals are quite diverse: they range from probabilistic preconditioning via random perturbations to blocking, to
the baby step /giant step strategy, to symbolic versions of the Krylov-Lanczos approach, and to approximate
arithmetic.

Within the LinBox international project (see §5.5 and §8.3) we work on a software library that corresponds
to our algorithmic research mentioned above. Our goal is to provide a generic library that allows to plug
external components in a plug-and-play fashion. The library is devoted to sparse or structured exact linear
algebra and its applications; it further offers very efficient implementations for dense linear algebra over finite
fields. The library is being developed and improved, with a special emphasis on the sensitivity of computational
costs to the underlying arithmetic implementations. The target matrix entry domains are finite fields and their
algebraic extensions, integers and polynomials.

4. Application Domains

Keywords: arithmetic operator, control, cypher, dedicated circuit, hardware implementation, numerical
software, proof, validation.

Our expertise covers application domains for which the quality, such as the efficiency or safety, of the
arithmetic operators is an issue. On the one hand, it can be applied to hardware oriented developments, for
example to the design of arithmetic primitives which are specifically optimized for the target application and
support. On the other hand, it can also be applied to software programs, when numerical reliability issues

Project-Team Arénaire 7

arise: these issues can consist in improving the numerical stability of an algorithm, computing guaranteed
results (either exact results or certified enclosures) or certifying numerical programs.

e Developments in Coq are used to formally contain values and round-off errors for safety critical
applications such as flight control [33]. Our automatic tool (see §5.10) checks for overflows and
performs forward error analysis with interval arithmetic. It generates all the necessary assessments
and proofs related to each variable of a given program. Such technique has been coined as invisible
formal methods. Our tool also refers to our growing library of validated properties to enhance the
containment intervals.

e Developments of correctly rounded elementary functions is critical to the reproducability of
floating-point computations. Exponentials and logarithms, for instance, are routinely used in ac-
counting systems for interest calculation, where roundoff errors have a financial meaning. Our cur-
rent focus is on bounding the worst-case time for such computations, which is required to allow their
use in safety critical applications.

e Arbitrary precision interval arithmetic can be used in two ways to validate a numerical result.
To quickly check the accuracy of a result, one can replace the floating-point arithmetic of the
numerical software that computed this result by high-precision interval arithmetic and measure the
width of the interval result: a tight result corresponds to good accuracy. When getting a guaranteed
enclosure of the solution is an issue, then more sophisticated procedures, such as those we develop,
must be employed: this is the case of global optimization problems.

e The application domains of hardware arithmetic operators are digital signal processing, image
processing, embedded applications and cryptography.

5. Software

5.1. Crlibm: A library of elementary functions with correct rounding
Keywords: correct rounding, double precision arithmetic, elementary function, libm.
Participants: C. Daramy-Loirat, F. de Dinechin, J.-M. Muller.

This library is partially funded by an Inria ODL (C. Daramy-Loirat).
The Crlibm project [58] aims at developing a mathematical library (1ibm) which provides:
- implementations of the double-precision C99 standard elementary functions,
- correctly rounded in the four IEEE-754 rounding modes,
- with a comprehensive proof of both the algorithms used and their implementation,
- sufficiently efficient in average time, worst-case time, and memory consumption to replace existing 1ibms
transparently.

In 2004, we added to the two functions already present (exp and log), the hyperbolic sine and cosine
(M. Gallet ENS student), the arctangent (N. Gast ENS student), and the trigonometric functions (sine, cosine
and tangent). Besides the crlibm project is beginning to serve as a testbench for experimenting with novel
techniques [40][52][53]. Included in the distribution is an extensive documentation with the proof of each
function (currently more than 90 pages), as well as all the Maple scripts used to develop the functions. This
makes this library an excellent tutorial on software elementary function development.

The crlibm library also includes a lightweight library for multiple precision, scslib—Software Carry
Save Library. This library has been developed specifically to answer the needs of the crlibm project: preci-
sion up to a few hundred bits, portability, compatibility with IEEE floating-point, performance comparable to
or better than GMP, small footprint. It uses a data-structure which allows to avoid carry propagations during
multiple-precision multiplications. Supported operations are essentially addition/subtraction and multiplica-
tion, and conversions. This library is independent from crlibm.

8 Activity Report INRIA 2004

The library has been downloaded more than 200 times. It is used in the LHC@home project of CERN
(http://Ihcathome.cern.ch/), and is considered for inclusion as the default libm in several open-source compiler
projects.

Status: Beta release / Target: ia32, ia64, Sparc, PPC / License: LGPL / OS: Unix,Linux / Programming Language: C / URL:
http://www.ens-lyon.fr/LIP/Arenaire

5.2. Divgen: a divider circuit generator
Keywords: ASIC, FPGA, circuit, division.
Participants: R. Michard, A. Tisserand, N. Veyrat-Charvillon.

Divgen is a divider generator. It generates synthesizable VHDL descriptions of division units. Various al-
gorithms, representations, radices, and parameters are supported. Both ASIC and FPGA targets are supported.
This generator is developped within a collaboration between Inria and CEA-Léti (see §6.1).

Status: Beta release / Target: ASIC, FPGA / License: GPL / OS: Unix, Linux, Windows (Cygwin) / Programming Language: C++,
VHDL / URL: http://lipforge.ens-lyon.fr/projects/divgen

5.3. FPLibrary: A library of operators for “real’”’ arithmetic on FPGAs
Keywords: FPGA, LNS, arithmetic operators, floating-point.
Participants: J. Detrey, F. de Dinechin.

FPLibrary is a VHDL library that describes arithmetic operators (addition, subtraction, multiplication,
division, and square root) for two formats of representation of real numbers: floating-point, and logarithmic
number system. The ultimate purpose is to allow the comparison of these number systems on a per-application
basis [15][48]. These operators are parameterized in terms of precision and dynamic range, and are available
in combinatorial and pipelined versions. Operators for format conversion are also provided. In 2004, the LNS
operators were greatly improved to track the state of the art of the litterature.

The FPLibrary package has been used by several research teams from, among others, NASA, Los Alamos
National Observatory and Honk-Kong University, although most of them only used the floating point opera-
tors.

Status: stable / Target: FPGA and ASIC / License: LGPL / OS: any / Programming Language: VHDL / URL: http://www.ens-
lyon.fr/LIP/Arenaire

5.4. A VHDL library for integer and modular arithmetic
Keywords: FPGA, arithmetic operators, modular arithmetic.
Participant: J.-L. Beuchat.

This library provides a collection of arithmetic operators described in synthesizable VHDL for RNS or

cryptographic applications:

- adders based on carry-ripple addition or prefix networks;

- multi-operand adders;

- modulo M addition and multiplication-addition;

- modulo (2" — 1) addition and multiplication;

- modulo (2n + 1) addition, subtraction, and multiplication.
Status: Beta release / Target: FPGA / License: GPL / OS: any / Programming Language: VHDL / URL: http://www.ens-
lyon.fr/LIP/Arenaire

5.5. LinBox: High performance software for matrix computation

Keywords: black box, exact arithmetic, finite field, generic library, integer, matrix computation, polynomial,
rational number, sparse or structured matrix.

Project-Team Arénaire 9

Participants: P. Giorgi, G. Villard.

This software library is developped within an international initiative between Canada, United States, and
France (see §8.3).

LinBox is a C++ template library for exact and high-performance linear algebra computation with sparse
and structured matrices. Base domains for the matrix coefficients are finite fields, the rational numbers, and
univariate polynomials. Implementing standard interfaces the library uses a plug-and-play methodology [68],
offers connections to external softwares like MAPLE, and provide online servers for homology computing.
LinBox 0.2.0 (June 2004) is available. In addition to the general evolution and polishing of the software, in
2004 we have augmented the functionalities with BLAS-based fast linear algebra routines over finite fields,
and with a toolbox for linear system and Diophantine linear system solving (see §6.8 and [35][6]). LinBox is
part of the Roxane project, cf. §8.1.

5.6. MPFI: Multiple Precision Floating-point Interval arithmetic
Keywords: arbitrary precision, correct rounding, interval arithmetic.
Participant: N. Revol.

MPFI is a C library specifically developed for interval arithmetic using arbitrary precision [37][25]. For
efficiency and portability reasons, it is based on GMP and MPFR and the implementation takes advantage of
these specific libraries. MPFI implements the arithmetic and algebraic operations and elementary functions
described for instance in the mathematical library of the C99 standard, along with classical set operations on
intervals. It is part of the Roxane project, cf. §8.1.

So far, MPFI has been used by scientists both from France and abroad (Belgium, Germany, Great Britain,
USA, India, Colombia, ...).

Ongoing developments concern the stabilization and completion of the C++ interface, and the development
of automatic differentiation.

Status: stable (alpha for the C++ interface) / Target: x86, PPC / License: GPL / OS: Unix, Windows (Cygwin) / Programming
Language: C, C++ / Dependencies: GMP v4.0 or higher, MPFR v2.0.1 or higher / URL: http://www.ens-lyon.fr/LIP/Arenaire

5.7. Boost interval arithmetic library
Keywords: generic C++ library, interval arithmetic, policy-based design.
Participant: G. Melquiond.

In collaboration with H. Bronnimann (Polytechnic U. Brooklin, NY USA) and S. Pion (Géométrica team,
Sophia Antipolis).

This library of the Boost project (http://www.boost.org) is a C++ library designed to efficiently handle
mathematical intervals in a generic way. Our design is unique in that it uses policies to specify three
independent variable behaviors: rounding, checking, comparisons. As a result, with the proper policies, this
interval library is able to emulate almost any of the specialized libraries available for interval arithmetic,
without any loss of performance nor sacrificing the ease of use. The version 1.32 has been released and the
library is now considered fully operational.

The interval arithmetic library is an integral part of the Boost project. This project aims at providing free
peer-reviewed C++ libraries and the last release has been downloaded more than 90,000 times.

Status: stable / Target: x86, PPC, Sparc / License: Boost Software License 1.0 / OS: Unix, Linux, Windows / Programming Language:
C++ / URL: http://www.boost.org

5.8. MEPLib : Machine-efficient polynomials library

Keywords: fixed-point arithmetic, floating-point arithmetic, linear programming, minimax approximation,
polynomial approximation, polytopes.

Participants: N. Brisebarre, C.-P. Jeannerod, J.-M. Muller, A. Tisserand.

10 Activity Report INRIA 2004

This software library is developped within a national initiative Ministry Grant ACI “New interfaces of
mathematics” (see §8.1).

MEPLIb is a library for automatic generation of polynomial approximations of functions under various
constraints, imposed by the user, on the coefficients of the polynomials. The constraints may be on the size in
bits of the coefficients or the values of these coefficients or the form of these coefficients. It should be useful
to engineers or scientists for software and hardware implementations.

Status: Beta release / Target: various processors, DSP, ASIC, FPGA / License: GPL / OS: Unix, Linux, Windows (Cygwin) /
Programming Language: C / URL: http:/lipforge.ens-lyon.fr/projects/meplib

5.9. PFF: Formal Proofs about Floats

Keywords: Cogq, floating-point arithmetic, formal proof.
Participants: S. Boldo, M. Daumas, G. Melquiond, L. Théry.

Our library of theorems and proofs about floating-point arithmetic is based on the library originated in the
ARC AOC and distributed by L. Théry (http://www-sop.inria.fr/lemme/AOC/coq). The theorems are in the
most possible general form. Most of them do not depend on the radix or on the rounding mode. We based our
results on many lemmas from the literature. This allows any reader to understand and use our results without
having to learn our formalism. S. Boldo keeps the library of proof scripts up-to-date. The last properties added
are some of the ones described in §6.5, §6.4 and [5].

Three research teams use their developer’s privilege to add their proofs and theorems to PFF. Other teams
download the library anonymously or use a more stable version available as a Coq contribution.

Status: stable / License: LGPL / Programming Language: Coq / URL: http://lipforge.ens-lyon.fr/www/pff

5.10. Gappa: A tool for certifying numerical programs
Keywords: certification, floating-point arithmetic, formal proof, round-off error.
Participant: G. Melquiond.

Given a low-level description of a floating-point application on which arithmetic properties have to be
certified, the tool generates a formal proof stating and verifying these properties from some hypotheses on
the input variables. These hypotheses and properties encompass ranges of computed values and bounds on
absolute or relative round-off errors.

The tool is developed in C++. It is still at a very early stage: formal proofs are generated for the Coq proof
checker only, and only a few basic floating-point operations are handled at present.

Status: prototype not yet appropriate for distribution.

6. New Results

6.1. Hardware Arithmetic Operators
Keywords: ASIC, FPGA, LNS, addition, arithmetic operators, cryptography, digital signature, division,
floating-point, low-power consumption, modular arithmetic, multiplication.

Participants: J.-L. Beuchat, J. Detrey, F. de Dinechin, R. Michard, J.-M. Muller, A. Tisserand, N. Veyrat-
Charvillon, G. Villard.

6.1.1. Modular Arithmetic for FPGAs
Modular arithmetic plays a crucial role in various fields such as cryptography or residue number system
arithmetic. Several researchers described algorithms allowing to build an adder or a multiplier according to
the required modulus. There are also dedicated architectures for specific moduli such as (2" —1) and (2™ +1).

6.1.2.

6.1.3.

6.1.4.

Project-Team Arénaire 11

J.-L. Beuchat and J.-M. Muller presented two variants of a modular multiplication algorithm originally
due to Ko¢ and Hung [69], that are especially suited for FPGA implementation, and that allow to compute
(XY + W) modulo M, where there is no need to know M at design-time [8].

J.-L. Beuchat described an improved modulo (2" + 1) addition algorithm suited to FPGA and ASIC
implementations. Then, he proposed three implementations of a modulo (2™ + 1) multiplication algorithm
based on a paper by A. Wrzyszcz and D. Milford [74]. The first operator is based on an n X n multiplication
and a subsequent modulo (2™ 4 1) correction, and takes advantage of the arithmetic logic embedded in Xilinx
Spartan or Virtex FPGAs. The second operator computes a sum of modulo-reduced partial products by means
of a multioperand modulo (2" + 1) adder. Finally, radix-4 modified Booth recoding reduces the number of
partial products, while making their generation more complex [41].

Code-based Digital Signature

An algorithm producing cryptographic digital signatures less than 100 bits long with a security level
matching nowadays standards has been recently proposed by Courtois, Finiasz, and Sendrier [63]. This scheme
is based on error correcting codes and consists in generating a large number of instances of a decoding problem
until one of them is solved (about 9! = 362880 attempts are needed). A careful software implementation
requires more than one minute on a 2GHz Pentium 4 for signing.

J.-L. Beuchat, N. Sendrier, A. Tisserand, and G. Villard proposed a first hardware architecture which allows
to sign a document in 0.86 second on an XCV300E-7 FPGA, hence making the algorithm practical [42].

Hardware Function Evaluation

A. Tisserand and F. de Dinechin have completed a study of multipartite table methods initiated in 2001.
Improvements include comparisons with other table-and-addition methods, a study of table compression, and
an argument of near-optimality of the generalized multipartite method among first-order methods [28].

J. Detrey and F. de Dinechin have then developed a new table-based method for the hardware evaluation
of arbitrary continuous functions. This method is based on a piecewise second-order minimax approximation,
which is implemented using only one small multiplier and a multioperand adder. The second-order term is
stored in a table indexed by as few input bits as possible. For the first-order term, a tradeoff has to be reached
between using a multiplier and tabulating products. Analytical formulas for all the error terms have been
derived, so that the navigation in the parameter space is easy. The method is thus very flexible and general.
When implemented on FPGAs, the resulting operators are both smaller and faster (despite the multiplier) than
all previous table-and-addition methods [34].

Then the same authors have tried to generalize these ideas to higher-order approximations. This leads to
more complex operators with further improvements in area and size, with a diminishing return. For the FPGA
implementation of the studied functions, operator delay begins to increase between degree 3 and degree 4
polynomial approximation, while area still decreases. Using these higher-order methods allows the practical
implementation of 24-bit operators on a fraction of the area of current FPGAs [49].

Complex Square Root

M. Ercegovac (University of California at Los Angeles) and J.-M. Muller have suggested a hardware-
oriented algorithm for evaluating complex square roots [36]. Their algorithm is derived from the real digit-
recurrence iteration, and uses a prescaling technique for making the root digit selection simple. Complex
square root appears in numerical computations such as complex Givens rotation, complex singular value
decomposition, and in applications such as principal component analysis, quantum defect theory and wave
propagation. M. Ercegovac and J.-M. Muller have received the ASAP’2004 best paper award for their
contribution.

6.1.5. Hardware-oriented Algorithms for the Evaluation of Functions

A. Pineiro (Intel Barcelona), S. Oberman (NVIDIA Santa Clara), J.-M. Muller and J. Bruguera (Univ.
Santiago de Compostela) have studied an architecture for evaluating some functions in single precision using
quadratic approximations [23].

12 Activity Report INRIA 2004

6.1.6. Division Circuits (collaboration Inria/CEA-Léti)

R. Michard, A. Tisserand and N. Veyrat-Charvillon have developed a software for the generation of
division circuits (see §5.2). This software allows the comparison of various parameters (radix, algorithm type,
optimizations...) for architecture exploration. This work has been done within a collaboration between Inria
and CEA-Léti.

6.1.7. Multiplication Algorithms and Implementations for Asynchronous Circuits

6.1.8.

6.1.9.

N. Veyrat-Charvillon and A. Tisserand have designed and compared various multiplication schemes for
asynchronous circuits. The corresponding results are published in the intership report [59].
Modular Multiplication Algorithms

A. Tisserand and L. Imbert (ATIPS, University of Calgary) have worked on new algorithms for modular
multiplication. They have started an FPGA implementation.

Opérateurs arithmétiques sur circuits FPGA

J.-L. Beuchat and A. Tisserand wrote a chapter entitled Opérateurs arithmétiques sur circuits FPGA [9] in
the book Calcul et arithmétique des ordinateurs [4].

6.1.10. Low-power Arithmetic Operators

A. Tisserand wrote a chapter [27] on the design of low-power arithmetic operators in the book Low Power
Electronics Design, CRC Press.

6.2. Correctly Rounded Elementary Functions

Keywords: correct rounding, double precision arithmetic, double-extended precision, elementary function,
libm.

Participants: N. Brisebarre, C. Daramy-Loirat, F. de Dinechin, J.-M. Muller, N. Revol.

A former work on range reduction has been completed in [12]. To evaluate an elementary function f(z) for
any z, x is usually transformed into z* such that it is known how to evaluate g(z*) and how to deduce f(x)
from g(z*). Range-reduction is the transformation that determines z* from z. The proposed algorithm is fast
for most cases and accurate over the full range. Furthermore, the statistical distribution of these cases has been
determined.

F. de Dinechin, C. Daramy-Loirat and J.-M. Muller have continued the work on the crlibm library, with
contributions by D. Defour, associate professor at Perpignan University, and three undergraduate students, M.
Gallet (ENS—Lyon), N. Gast (ENS), and C. Lauter (TU Miinchen).

The specificity of this library is that it aims at providing a comprehensive proof of the correct rounding
property for each function, along with the code. As of end 2004 the technical document which describes the
methodology used, along with the proofs themselves, has more than 90 pages [58].

Each function evaluation consists of two distinct steps: a first step accurate to 60-64 bits provides correct
rounding most of the time. This is decided by a rounding test, which depends on a bound on the overall relative
error of the first step, computed statically. If this test fails, a second, more accurate step is launched and always
returns the correctly rounded result.

An extensive experimentation of this methodology on the logarithm function has shown that unexpectedly,
this quest for correctness also allows to improve performance, by helping the management of performance
tradeoffs involved in this two-step approach [40].

In the portable version of crlibm, the average time will be that of a standard elementary function, but
the worst-case time is typically two orders of magnitude slower, which may still be considered prohibitively
expensive for real-time applications. F. de Dinechin, C. Lauter and D. Defour developed a technique to reduce
this worst-case time in the case when (non-portable) double-extended precision is available: using double-
double-extended arithmetic provides 128 bits of precision. Lefévre and Muller found many cases where more

Project-Team Arénaire 13

accuracy is needed for correct rounding (up to 157 bits) but these cases can be shown to be degenerate so that
they can be handled using double-double-extended arithmetic only [52].

Of course, when double-extended precision is available it should be used to speed up the first step as
well. N. Gast and F. de Dinechin studied practical issues such as the implementation of the rounding test
in this case, the possibility of sharing computations between both steps, and the implication it has on the
precision-performance tradeoffs. Two representative functions (exponential and arctangent) were studied on
two processors (Pentium and Itanium). The result is consistently that the average case is that of the best
available faithful implementation, while the worst case time is within a factor two to 7 [53].

This study lifts the last technical obstacle to a standardization of correct rounding for at least some
elementary functions. D. Defour (Perpignan U.), G. Hanrot (Spaces team), V. Lefevre (Spaces team), J.-
M. Muller, N. Revol and P. Zimmermann (Spaces team) have published guidelines for the future possible
specification of functions in floating-point arithmetic [14]. They are based on correct rounding for the
implementation of elementary functions or at least on a guaranteed quality (i.e. bounded error and compliance
with the mathematical properties of the computed function).

In a very different context, namely the context of arbitrary precision floating-point arithmetic, a study has
been led on the error function erf(z). An efficient algorithm has been proposed to evaluate the error function
in arbitrary precision and this algorithm returns the correctly rounded result [54].

6.3. Fast Floating-point Arithmetic for Integer Processors
Keywords: DSP, VLIW, integer processor, single precision floating-point arithmetic.
Participants: N. Brisebarre, C.-P. Jeannerod, J.-M. Muller, S.-K. Raina, A. Tisserand.

We have focused on the design and software implementation of very fast single precision floating-point
operations for processors having integer units only. The processors studied so far are the ST200 VLIW
processors from STMicroelectronics, whose main property is the ability to execute four instructions in parallel
(two of which can be 16 x 32 — 32 multiplications). We have proposed and implemented new fast algorithms
for the five basic operations (addition, subtraction, multiplication, division and square root) on such processors;
the resulting C library, which provides several levels of compliance to the IEEE 754 floating-point standard,
is faster than the native ST200 library by 20% to 40% [29].

This work is joint work with STMicroelectronics’ Compilation and Simulation Expertise Center (Grenoble,
France) and is funded by the Région Rhone-Alpes within the “Arithmétique flottante pour circuits DSP
project.

6.4. Properties and Proofs on Floating-point Arithmetic
Keywords: Coq, floating-point arithmetic, formal proof, fused multiply-and-add.
Participants: S. Boldo, N. Brisebarre, M. Daumas, G. Melquiond, J.-M. Muller.

Some previous results that we had submitted to journals have finally been published [11][10][13]. All the
formally proved results are available in the PFF library described in §5.9.

6.4.1. Formalization of Floating-point Numbers as Vectors of Bits
S. Boldo has enriched the Coq library with a formalization of floating-point numbers as vectors of bits.
It means that we can now formally prove hardware-level algorithms [62] with the proof assistant and that
hardware-level operations can interact with high-level properties. It also adds trust in our initial formalization
as the translation from it to vector of bits is now possible [30].

6.4.2. Double-rounding

Double-rounding consists in a first rounding in an intermediate extended precision and then in a second
rounding in the working precision [66]. The natural question is then of the accuracy and correctness of the
final result. S. Boldo and G. Melquiond proved an efficient algorithm for the double rounding to give the

6.4.3.

6.4.4.

14 Activity Report INRIA 2004

correct rounding to the nearest value assuming the first rounding is to odd. As this rounding is unusual and
this property is surprising, we formally proved this property using the Coq automatic proof checker [43].

Functions Computable with a Fused Multiply-and-add Instruction

The fused multiply-and-add instruction (fma) that is available on some current processors such as the Power
PC or the Itanium eases some calculations.

S. Boldo and J.-M. Muller have given examples of some floating-point functions (such as ulp(z) or
Nextafter(z,y)), or some useful tests, that are easily computable using a fma. Then, they have shown that,
assuming the available arithmetic rounds to the nearest, the error of a fma instruction is exactly representable
as the sum of two floating-point numbers. They have given an algorithm that computes that error [44].

N. Brisebarre and J.-M. Muller have shown that the fma instruction can sometimes be used for performing
correctly-rounded multiplication by a constant C' that is not exactly representable in floating-point arithmetic.
They give methods for checking whether, for a given value of C' and a given floating-point format, this
algorithm returns a correctly rounded result for any = [45].

Taylor Models

Computing with a Taylor model amounts to determine a Taylor expansion of arbitrary order, often
high, along with an interval which encloses both Lagrange remainder and roundoff errors due to previous
computations. These models are implemented in the Cosy [70] software. Using the properties of the IEEE-754
floating-point arithmetic, proofs that the algorithms implemented in Cosy do indeed determine an enclosure
of roundoff errors have been built and completed [24], the latter algorithms have been improved [57].

6.5. Intervals and Guaranteed Proofs to Bound Variables and Errors

6.5.1.

6.5.2.

6.5.3.

Keywords: Taylor model, floating-point arithmetic, formal proof, proof, property.
Participants: S. Boldo, F. Chaves, M. Daumas, G. Melquiond, N. Revol.

Semi-Automatic Determination of Guaranteed Enclosures of a Result

Convergent linear recurrences can have divergent behaviour when interval arithmetic is used for simulation.
Indeed, the condition for convergence are more stringent than when usual (exact or floating-point) arithmetic
is employed. However, the convergence of such recurrences, using interval arithmetic, can be studied if only
one step every k steps is simulated. The proof of this result and the determination of k£ have been presented in
[38]. This result can be applied to linear infinite impulse response filters used in control theory, the value of k
corresponds then to a better choice of the sampling time.

Generating Formally Certified Bounds on Values and Roundoff Errors

Some pen-and-paper proofs contain errors. In order to circumvent this situation, certifications by automatic
proof checkers have already been used to detect or prevent errors in algorithms and implementations [60]. This
work [33] aims at creating a tool (see §5.10) able to generate bounds on the values and the roundoff errors
for programs relying on floating-point arithmetic. The tool is based on forward error analysis and interval
arithmetic. The novelty of our tool is that it produces a formal proof of the bounds. Furthermore, this proof
can be checked independently using an automatic proof checker such as Coq and using a complete model of
floating point arithmetic. We can easily certify that simple numerical programs such as the ones usually found
in real-time applications do not overflow and that roundoff errors are contained within limits we determine.

PVS-guaranteed Proofs using Interval Arithmetic

We have arranged with C. Mufioz (National Institute of Aerospace), a set of tools for mechanical reasoning
using interval arithmetic in PVS proof assistant [72]. The tools implement two techniques for reducing
variable dependency: interval subdivisions and Taylor expansions. Although the tools are designed for the
proof assistant system PVS, expertise on PVS is not required. The ultimate goal of the tools is to provide
guaranteed proofs of numerical properties with a minimal human-theorem prover interaction.

6.5.4.

Project-Team Arénaire 15

Formal Certification of Arithmetic Filters for Geometric Predicates

Floating-point arithmetic provides a fast but inexact way of computing geometric predicates. In order
for these predicates to be exact, it is important to rule out all the numerical situations where floating-point
computations could lead to wrong results [73]. Taking into account all the potential problems is a tedious
and error-prone work to do by hand. In collaboration with S. Pion (Géométrica team), we have studied a
floating-point implementation of the 2D orientation predicate, and we have put in evidence how a formal
and partially automatized verification of this algorithm avoided many pitfalls [56]. The presented method is
not limited to this particular filter though, it can easily be used to produce correct semi-static floating-point
filters of other geometric predicates. These filters have been added to the latest release of the CGAL software
http://www.cgal.org/.

6.6. Theory of Computer Arithmetic Algorithms

Keywords: E-method, Newton-Raphson iteration, floating-point arithmetic, number systems, number theory,
rational approximation.

Participants: N. Brisebarre, J.-M. Muller.

6.6.1. Analysis of Arithmetic Algorithms

6.6.2.

P. Kornerup (Southern Danish University, Denmark) and J.-M. Muller have continued their 2003 work on
the choice of seed values for some Newton-Raphson iterations [21]. They give formulas for finding the best
possible seed values when computing f(a) = ar using the Newton-Raphson iteration in a given interval (the
aim is to minimize the maximum possible distance between z,, and f(a)).

J.-L. Nicolas, X. Roblot (UCB Lyon) and J.-M. Muller have published their work of last year on the integer
solutions to the equation A% + B2 = 2 + C, where A and B belong to the same binade [22]. This allows to
bound the accuracy that is required in the intermediate calculations to round the function f(z,y) = /22 + y?
(in the case 1 < z,y < 2) in floating-point arithmetic.

N. Brisebarre and J.-M. Muller have shown transformations that allow to evaluate most rational functions
using Ercegovac’s E-method [64]. This might make the E-method an interesting solution for average-precision
hardware implementation of regular enough functions [31].

Number Systems

P. Kornerup (Southern Danish University, Denmark) and J.-M. Muller have introduced the notion of “RN
coding”, studied the properties of these codings, and suggested applications and conversion algorithms [50].
An RN-coding (where “RN” stands for “Round to Nearest”) is a radix-f signed-digit representation of
numbers for which rounding to the nearest is always identical to truncation.

6.7. Efficient Polynomial Approximation

Keywords: Chebyshev polynomials, automatic generation, floating-point arithmetic, linear programming,
minimax approximation, polynomial approximation, polytopes.

Participants: N. Brisebarre, J.-M. Muller, A. Tisserand.

Polynomial approximations are almost always used when implementing functions on a computing system.
In most cases, the polynomial that best approximates (for a given distance and in a given interval) a function
has coefficients that are not exactly representable with a finite number of bits. And yet, the polynomial
approximations that are actually implemented do have coefficients that are represented with a finite - and
sometimes small - number of bits: this is due to the finiteness of the floating-point representations (for software
implementations), and to the need to have small, hence fast and/or inexpensive, multipliers (for hardware
implementations). We then have to consider polynomial approximations that fit these constraints of form and
size in bits. In [46], N. Brisebarre, J.-M. Muller and A. Tisserand provide a general and efficient method for
finding the best polynomial approximation under such constraints. Moreover, this method also applies if some
other constraints (such as requiring some coefficients to be equal to some predefined constants, or minimizing

16 Activity Report INRIA 2004

relative error instead of absolute error) are required. The method described in [46] is currently implemented
in the C library MEPLIib (cf. §5.8).

In [32], N. Brisebarre, J.-M. Muller and A. Tisserand apply the results of [46] to get automatic generation
of the best polynomial approximations dedicated to hardware implementation. The generated approximations
yield high-speed and small hardware operators because of the presence of fixed strings of zeros in the binary
representation of the coefficients. Our first results show that up to 47% smaller coefficients compared to
standard minimax approximations for comparable accuracy.

6.8. Exact Linear Algebra, Algorithms and Software Components

Keywords: Diophantine linear system, arithmetic and bit complexity, exact arithmetic, finite field, integer
matrix, linear algebra, polynomial matrix, software library, sparse or structured matrix.

Participants: P. Giorgi, C.-P. Jeannerod, N. Revol, G. Villard.

6.8.1. Efficient Software Components

This work is a twofold contribution to the LinBox software library (see §5.5). With FFPACK (Finite Field
PACKage) we offer matrix routines that reflect theoretical reductions to matrix multiplication for small enough
prime fields. Our highly optimized C++ routines allow to solve linear systems and to compute various matrix
factorizations over finite fields with timings approaching BLAS (http://www.netlib.org/blas) performance.
This is a joint work with J.-G. Dumas and C. Pernet (IMAG Grenoble) [35][6]. Our second contribution
concerns linear system solution over rational numbers, including lifting, minimal denominator solutions and
Diophantine solving [71]. We offer a toolbox providing various strategies and optimizations, and a high level
interface to deal with different types of matrices. In particular, in the dense case we show how to efficiently
use BLAS routines in an exact computation fashion [6]. D. Pritchard has been involved in this work during his
MIT/Inria internship.

Interval arithmetic and algorithms specific to this arithmetic allow one to solve linear systems with
guaranteed results. Preliminary to the study and development of linear system solving using arbitrary precision
interval arithmetic, the required data structures have been added to MPFI (cf. §5.6), using LinBox (cf. §5.5),
by N. Dessart during her graduate internship [55] and N. Revol. This is an example of interoperability of two
components of Roxane, cf. §8.1.

6.8.2. Algorithmic Complexity

We study the interaction between matrix multiplication and other basic linear algebra problems over
univariate polynomials. Few decades after the case of matrices over an abstract field [61], the relation to
the polynomial matrix product has been established recently [65]. We solve the following problems over K[z],
with about the same number of operations as required for the polynomial matrix problem plus the output
size: column (basis) reduction (see also [7]); generic matrix inversion [17]; certified rank and small degree
nullspace basis [51]. We have started to investigate how these techniques could be carried over to the integer
case.

In [18] we establish the best known complexity estimate n2-%® for computing the determinant, the adjoint,
and the characteristic polynomial of an n X n matrix in terms of ring operations (without divisions).

We have worked on final versions of previously obtained results [16][19][20][26].

6.8.3. Lattice-based Memory Allocation

We pursue our collaboration with A. Darte (Compsys Inria team) and R. Schreiber (Hewlett Packard,
Palo Alto, USA) on memory allocation. In [47][39] we have extended and further studied our mathematical
framework based on integer critical lattices. The goal is new insights and strategies for solving the problem of
memory reuse in the context of compilation of dedicated processors.

Project-Team Arénaire 17

7. Contracts and Grants with Industry

7.1. Région Rhone-Alpes Grant

Keywords: emulation of floating-point, integer processor.
Participants: N. Brisebarre, C.-P. Jeannerod, J.-M. Muller, S. K. Raina, A. Tisserand.

A joint project with ST-Microelectronics has started in September 2003 and is supported by the Région
Rhone-Alpes. The goal is to design floating-point arithmetic algorithms (basic operations as well as elementary
functions) suitable for an implementation on circuits that only have integer arithmetic units. The main issue
here is to speed up computations by exploiting both the characteristics of the circuits (and especially, for a first
design, those of the ST200 family processors) and possibilities of specialization due to applications.

8. Other Grants and Activities

8.1. National Initiatives

8.1.1.

Ministry Grant ACI “Cryptology”
Keywords: FPGA, encryption, hardware operator for cryptography.

Participants: J.-L. Beuchat, A. Tisserand, G. Villard.

The OPAC—OPérateurs Arithmétiques pour la Cryptographie) project 2002-2005, is a collaboration
with the team Arithmétique Informatique of the Lirmm laboratory and the GTA team of the University
of Montpellier (see http://www.lirmm.fr/~bajard/ACI_CRYPTO). The goal is the development of hardware
operators for cryptographic applications on FPGAs. The project focuses in particular on problems related to
finite fields and elliptic curves.

8.1.2. Ministry Grant ACI “Security in computer science’

Keywords: FPGA, arithmetic operator, digital signature.
Participants: J.-L. Beuchat, A. Tisserand, G. Villard.

The Ministry Grant ACI “Security in computer science” funds the OCAM—Opérateurs Cryptographiques
et Arithmétique Matérielle— project 2003-2006 in collaboration with the Codes team (Inria Rocquen-
court) and the team Arithmétique Informatique of the Lirmm laboratory at Montpellier (see http://www-
rocq.inria.fr/codes/OCAM). The goal of OCAM is the development of hardware operators for cryptographic
applications based on the algebraic theory of codes. The FPGA implementation of a new digital signature
algorithm is used as a first target application [42].

8.1.3. Ministry Grant ACI “New interfaces of mathematics”

8.1.4.

Keywords: floating-point arithmetic, linear programming, minimax approximation, polynomial approxima-
tion, polytope.

Participants: N. Brisebarre, C.-P. Jeannerod, J.-M. Muller, A. Tisserand.

The GAAP—-¢tude et outils pour la Génération Automatique d’Approximants Polynomiaux efficaces en
machine—project, started in 2004, is a collaboration with the LArAl laboratory of the University of Saint-
Etienne. The goal is the development of a C library MEPLib aimed at obtaining very good polynomial
approximants under various constraints on the size in bits and the values of the coefficients. The applications
targeted are software and hardware implementations, such as embedded systems for instance.

CNRS Grant “Numerical validation for embedded computations”
Keywords: embedded computation, restricted computing precision, safety.

Participants: M. Daumas, G. Melquiond, J.-M. Muller, N. Revol.

8.1.5.

8.1.6.

18 Activity Report INRIA 2004

This CNRS New Investigation Initiative (AS Stic), 2003-2004, aims at listing the numerical difficulties
encountered with embedded computing. Existing methods to study and validate the numerical quality of such
computations will also be listed and assessed. This action involves teams from Lip6 (Université Pierre et Marie
Curie - Paris 6), Mano (Université de Perpignan), List (CEA Saclay), Lasti (Enssat Lannion), LE2I (Université
de Bourgogne) and Lip (ENS Lyon).

Working group on “Set methods for control theory”, CNRS GDR MACS

Keywords: control theory, set computing.
Participant: N. Revol.

This working group 2003-2005 focuses on the topic of set computing with applications to control theory.
The goal of this group is to stimulate exchanges between researchers in computer science and researchers
in control theory. It is part of the CNRS GDR MACS (Modélisation, Analyse et Conduite des Systemes
dynamiques). It is headed by S. Lesecq (Lag, INPG Grenoble) and N. Revol.

Roxane Initiative

Keywords: algebraic computation, efficiency, numerical computation, open-software, reliability.
Participants: P. Giorgi, N. Revol, G. Villard.

Roxane stands for Reliable Open Software-Components for Algebraic and Numeric Efficiency. The goal of
this project is to mutualize the efforts of implementation that are done in different groups (in France for the time
being). Roxane integrates, in a homogeneous environment, tools to build dedicated and efficient components
for solving real problems, mainly in computer algebra. These tools can interoperate, or will be able to do so
in a near future. The promotion of Roxane is done via the site http://www-sop.inria.fr/galaad/logiciels/roxane,
and via schools, software distribution CDs etc.

8.2. European Initiatives

8.2.1.

Mathlogaps Marie Curie Early Stage Training
Keywords: Mathematical logic, PVS, applications, formal proof, interval arithmetic.
Participants: M. Daumas, F. Chéves.

Mathlogaps is a multi-participant effort to offer Early Stage Research Training in Logic and Applications
with three partners: (1) the Universities of Leeds and Manchester; (2) Université Claude Bernard Lyon 1
and the Ecole Normale Supérieure at Lyon; (3) Ludwig Maximilians Universitit Miinchen. It is led by
D. Macperson (Leeds) and our local leader is P. Koiran (Lip).

One PhD was started in Arenaire project in November 2004. F. Chaves will develop the use and certification
of interval arithmetic with PVS automatic proof checker (see the related result in §6.5). M. Hofmann acts as a
distant expert and a future host in Munich for this PhD.

8.3. International Initiatives

8.3.1.

8.3.2.

LinBox Initiative

Keywords: exact arithmetic, finite field, generic software library, matrix computation, rational number, sparse
or structured matrix.

Participants: P. Giorgi, C.-P. Jeannerod, G. Villard.

LinBox is an ongoing collaborative research project for efficient algorithms and a software library in exact
linear algebra (see §5.5 and §6.8). About thirty researchers from nine institutions in Canada, the USA and
France are participating—http://www.linalg.org.

Grant of the Japanese Society for the Promotion of Sciences
Keywords: automatic differentiation.

8.3.3.

8.3.4.

Project-Team Arénaire 19

Participant: N. Revol.

N. Revol obtained a grant of the Japanese Society for the Promotion of Sciences for a short stay in Japan,
to collaborate with Prof. K. Kubota, Chuo Univ., Tokyo, on automatic differentiation.

Certifications of properties of floating-point arithmetic (CNRS-NASA)
Keywords: Cogq, PVS, floating-point, formal method, interval arithmetic.

Participants: S. Boldo, M. Daumas, G. Melquiond.

CNRS PICS 2533 on “certifications of properties and uses of floating-point arithmetic” supports our
collaboration with the National Institute of Aeropsace in Hampton, Virginia. It also involves the Ecole
Polytechnique (G. Dowek) and the University of California at Berkeley (W. Kahan). French funding is matched
on a mission basis by a Research Cooperative Agreement awarded by NASA Langley Research Center to NIA.

Funding started in Fall 2004 with the visit of Professor Kahan (1989 ACM Turing Award) in Arenaire
project. He animated a series of workshops.

Contributions to standardization bodies (IEEE 754)
Keywords: Cogq, floating-point, formal method.
Participants: S. Boldo, M. Daumas, G. Melquiond.

The Department of Development and Industrial Relations (DirDRI) of the INRIA has supported our
participation to the ongoing revision of the IEEE Standard for Binary Floating-Point Arithmetic (ANSI-IEEE
754). We have managed many opportunities to raise the impact of results from our project and from the Spaces
project.

9. Dissemination

9.1. Conferences, edition

e M. Daumas is co-program chair of the French symposium on computer architecture (SympA) to be
held in 2005.

e M. Daumas and J.-M. Muller are members of the Steering Committee of RNC (Real Numbers and
Computers).

e M. Daumas and N. Revol are guest editors of a special issue of Theoretical Computer Science on
Real Numbers and Computers, that will appear in 2005.

e F de Dinechin was a member of the Program Committee for the << 2004 IEEE International
Conference on Field-Programmable Technology >> (FPT 04).

e C.-P. Jeannerod was a member of the Poster Committee for the << 2004 International Symposium on
Symbolic and Algebraic Computation >> (ISSAC’04). He is in charge of the tutorials at ISSAC’05
and, with A. Enge (Inria, Lix) and A. Sedoglavic (UST Lille, LIFL), of the next Journées Nationales
de Calcul Formel (Luminy, November 21-25, 2005).

e J.-M. Muller is member of the Steering Committee of the IEEE Symposium on Computer Arithmetic
(ARITH). He is a member of the Program Committee of ARITH17, ASAP’2004 (15th IEEE
International Conference on Application-specific Systems, Architectures and Processors).

e N. Revol co-organized the 2004 edition of the forum of young mathematician and computer scientist
women on mathematics, computer science and life science in January 2004, Paris. She co-organizes
a seminar in Dagstuhl “Reliable Implementation of Real Number Algorithms: Theory and Practice”
(January 2006).

20 Activity Report INRIA 2004

e G. Villard is member of the Steering Committee of the << International Symposium on Symbolic and
Algebraic Computation (ISSAC) >> (2003-2005). He was member of the Program Committee of Is-
SAC’04, Santander, Spain, Jul. 2004, and of CASC’04 (Computer Algebra in Scientific Computing),
Saint Petersburg, Russia, July 2004.

General public meetings:
e S. Boldo, M. Daumas, C.-P. Jeannerod, A. Tisserand, and N. Revol have been involved in the 2004
Science Festival in Vaulx-en-Velin (October 13-16, 2004).
e S. Boldo and M. Daumas gave an interview for the “Télévision Lyon Métropole” local TV channel.

e N. Brisebarre, C.-P. Jeannerod, C. Loirat, N. Revol, and A. Tisserand participated to the animation
of S8ieme Mondial des Métiers in Lyon (January 29-30, 2004).

e N. Revol gave tutorial presentations on computer arithmetic and computational complexity for
high-school students and for a wider audience after the screening of a movie on neuro-sciences in
Die (Drome), she visited high-schools in Buis-les-Baronnies (Drome), Charlieu (Loire), Gex (Ain)
and forums in Lyon (Mondial des Métiers), Dijon (Academic Forum on Young Women Curricula
for Technological and Scientific Professions) and Paris (Cité des Sciences) for making teenagers
sensitive to scientific careers. Her professional portrait appears in a document dedicated to high
school students. She discussed these initiatives in Grenoble (Le Goflit des Sciences) and she presented
faculty and research scientist careers to PhD students at Valorithese. N. Revol and N. Portier (Lip,
ENS Lyon) gave an interview for the “Télévision Lyon Métropole” local TV channel.

9.2. Doctoral School Teaching

e F. de Dinechin gives a 30h ENSL Master course “Hardware Arithmetic Operators” (2004 / 2005).

e N. Revol organizes a course of the Doctoral School MATHIF, “Applications of Computer Science to
Research and Technological Development”.

e A Tisserand gives a 30h ENSL Master course “Digital Integrated Circuits” (2004 / 2005).
e G. Villard is the head of the ENSL Master2 Informatique Fondamentale.

9.3. Other teaching and Service

e N. Brisebarre, C.-P. Jeannerod and G. Villard give a 30h Master course “Algorithms for Computer
Algebra and Applications” at Université Claude Bernard - Lyon 1 (2004 /2005).

e F. de Dinechin teaches Computer Architecture and Computer Science for Non-Computer Scientists
in Licence, ENSL.

e M. Daumas, C.-P. Jeannerod and N. Revol have been examiner for the ENS admissions.
e C.-P. Jeannerod has been in charge of the Lip bimonthly seminar from October 2003 to June 2004.

e S. Boldo, N. Boullis, J. Detrey, G. Melquiond and N. Veyrat-Charvillon are teaching assis-
tants—moniteurs—they give courses at the ENS and INSA.

Project-Team Arénaire 21

9.4. Leadership within scientific community

e M. Daumas is a member of the board of the CNRS Nationwide Initiative GDR ARP.

e J.-M. Muller is head of the Lip laboratory (joint laboratory - UMR - of CNRS, Ecole Normale
Supérieure de Lyon, Inria and Lyon 1 University, about 90 persons).

e N.Revol and S. Lesecq (Lag, INPG Grenoble) are heads of a CNRS working group on “Set methods
for control theory”, which is part of the GDR MACS—Modélisation, Analyse et Conduite des
Systemes dynamiques.

e A.Tisserand installs and maintains the computers and softwares of CAD tools for the Lip laboratory.

9.5. Committees

e Hiring Committees. N. Brisebarre, Math. Comm., U. J. Monnet Saint-Etienne. F. de Dinechin, Comp.
Sc. Comm., ENS Lyon. J.-M. Muller, Comp. Sc. Comm., ENS Lyon. N. Revol, App. Math. Comm.,
UJF Grenoble and Comp. Sc. Comm., ENS Lyon. G. Villard, App. Math. Comm., U. Sc. Tech. Lille
and Comp. Sc. Comm., U. Perpignan.

e J.-M. Muller was in the Ph. D. Advisory Committee of P. Guigue (U. Nice, December 2003) and in
the Habilitation boards of examiners of L. Grandyvilliers (U. Nantes, June 2004) and J.-L. Lamotte
(U. Paris 6, november 2004).

e G. Villard was in the Ph. D. Advisory Committee of M. Finiasz (Ecole Polytechnique, October
2004).

9.6. Seminars, conference and workshop committees, invited conferences

The team members regularly give talks at the Department Seminar and at other French Institutions Seminars
(Amiens, Grenoble, Lyon, Nancy, Perpignan, Orsay, Paris 6, Saint-Etienne).

National meeting:
e S. Boldo spoke during the colloquium Calcul formel, algorithmes certifiés, preuves constructives of
the MAP group, Luminy, January 2004.

e N. Revol organized a session on Computer Arithmetic at the School for Young Researchers on
Algorithms and Computer Algebra in Grenoble, April 2004. During this school A. Tisserand and
N. Revol gave a lecture and P. Giorgi gave a research talk.

e G. Villard spoke during the Days on Sensibilisation et formation aux outils de calculs, aux ressources
numériques en ligne et aux nouvelles technologies, Université de Montpellier II, June 15-24 2004.
He is invited to give a talk a the “33rd Theoretical Computer Science Spring School, Computational
Complexity”, Montagnac-les-truffes, France, June 2005.

International:

e J.-L. Beuchat was an invited speaker at the “CryptArchi 2004 Workshop”, Labussiére-Sur-Ouche,
June 2004. He has been invited for a series of talks on cryptographic algorithms at the Univer-
sité du Québec a Chicoutimi, November 2004. He was invited to give a talk at id Quantique
(http://www.idquantique.com), November 2004.

e S.Boldo gave a talk at the “*Hewlett Packard math library status meeting” in Cupertino (California),
in teleconference with Richardson (Texas).

22 Activity Report INRIA 2004

e M. Daumas was invited for two weeks at the National Institute of Aerospace, Virginia, in Aug 2004.
He also gave a talk during the seminar on “Air Trafic Control” held by Thales Chair of Complex
Industrial Systems in the Ecole Polytechnique in November 2004.

e F de Dinechin gave an invited talk at the Intel Nizhniy Novgorod Lab (Russia) in July 2004.

e C.-P.Jeannerod gave an invited talk at the Mathematics Department Seminar of Kingston University,
Kingston, U.K., March 2004.

e N. Revolis an invited speaker at the 76th Annual Meeting of GAMM (Gesellschaft fiir Angewandte
Mathematik und Mechanik) in Luxemburg, April 2005.

e G. Villard was an invited speaker at the conference ‘“Mathematics of Computer Algebra and
Analysis”, Waterloo, Ontario, Canada, May 2004. He has been asked to give a talk at the “Workshop
on Real Number Complexity, Foundations of Computational Mathematics FoCM’05, Santander,
Spain, July 2005; and at the workshop “Challenges in Linear and Polynomial Algebra in Symbolic
Computation Software”, Banff, Canada, October 2005.

10. Bibliography
Major publications by the team in recent years

[1] M. DAUMAS, J.-M. MULLER (editors). Qualité des calculs sur ordinateur : vers des arithmétiques plus fiables,
Masson, 1997, http://perso.ens-lyon.fr/jean-michel.muller/livre_masson.html.

[2] M. DAUMAS, L. RIDEAU, L. THERY. A generic library of floating-point numbers and its application to
exact computing, in "14th International Conference on Theorem Proving in Higher Order Logics, Edinburgh,
Scotland", 2001, p. 169-184, http://perso.ens-lyon.fr/marc.daumas/SoftArith/DauRidTheO1.ps.

[3] J.-M. MULLER. Elementary functions, algorithms and implementation, Birkhauser, 1997, http://perso.ens-
lyon.fr/jean-michel.muller/book_functions.html.

Books and Monographs

[4] J.-C. BAJARD, J.-M. MULLER (editors). Calcul et Arithmétique des Ordinateurs, IC 2, Hermes Science
Publishing, 2004.

Doctoral dissertations and Habilitation theses

[5] S. BOLDO. Preuves formelles en arithmétiques a virgule flottante, Ph. D. Thesis, Ecole Normale Supérieure de
Lyon, Lyon, France, November 2004.

[6] P. GIORGI. Algorithmique et arithmétique pour 1’algeébre linéaire exacte a partir de la bibliotheque LinBox,
Ph. D. Thesis, Ecole Normale Supérieure de Lyon, Lyon, France, December 2004.

Articles in referred journals and book chapters

[7] B. BECKERMANN, G. LABAHN, G. VILLARD. Normal forms for general polynomial matrices, in "Journal of
Symbolic Computation”, to appear.

Project-Team Arénaire 23

[8]1J.-L. BEUCHAT, J.-M. MULLER. Modulo M Multiplication-Addition: Algorithms and FPGA Implementation,
in "Electronics Letters", vol. 40, n° 11, May 2004, p. 654—-655.

[9] J.-L. BEUCHAT, A. TISSERAND. Opérateurs arithmétiques sur circuits FPGA, in "Calcul et arithmétique des
ordinateurs", J.-C. BAJARD, J.-M. MULLER (editors)., Traité IC2, Lavoisier, 2004, p. 109-152.

[10] S. BoLDO, M. DAUMAS. A simple test qualifying the accuracy of Horner’s rule for polynomials, in
"Numerical Algorithms", vol. 37, n° 1, December 2004, p. 45-60.

[11] S. BoLDO, M. DAUMAS. Properties of two’s complement floating point notations, in "International
Journal on Software Tools for Technology Transfer", vol. 5, n® 2-3, 2004, p. 237-246, http://perso.ens-
lyon.fr/marc.daumas/SoftArith/BolDau04a.pdf.

[12] N. BRISEBARRE, D. DEFOUR, P. KORNERUP, J.-M. MULLER, N. REVOL. A new range reduction algorithm,
in "IEEE Transactions on Computers", to appear.

[13] N. BRISEBARRE, J.-M. MULLER, S. RAINA. Accelerating Correctly Rounded Floating-Point Division when

the Divisor is Known in Advance, in "IEEE Transactions on Computers”, vol. 53, n® 8, August 2004, p.
1069-1072.

[14] D. DEFOUR, G. HANROT, V. LEFEVRE, J.-M. MULLER, N. REVOL, P. ZIMMERMANN. Proposal for
a Standardization of Mathematical Function Implementation in Floating-Point Arithmetic, in "Numerical
Algorithms", vol. 37, n° 1-4, 2004, p. 367-375.

[15]J. DETREY, F. DE DINECHIN. Qutils pour une comparaison sans a priori entre arithmétique logarithmique et
arithmétique flottante, in "Technique et science informatiques", to appear.

[16] C.-P. JEANNEROD. On matrix perturbations with minimal leading Jordan structure, in "Journal of Computa-
tional and Applied Mathematics", vol. 162(1), 2004, p. 113-132.

[17] C.-P. JEANNEROD, G. VILLARD. Essentially optimal computation of the inverse of generic polynomial
matrices, in "Journal of Complexity", to appear, http://dx.doi.org/10.1016/j.jc0.2004.03.005.

[18] E. KALTOFEN, G. VILLARD. On the complexity of computing determinants, in "Computational Complexity",
to appear.

[19] E. KALTOFEN, G. VILLARD. Computing the sign or the value of the determinant of an integer matrix, a
complexity survey, in "J. Comp. Applied Math", vol. 162, n° 1, 2004, p. 133-146.

[20] P. KOIRAN, N. PORTIER, G. VILLARD. A rank theorem for Vandermonde matrices, in "Linear Algebra and
its Applications", vol. 378, 2004, p. 99-107.

[21] P. KORNERUP, J.-M. MULLER. Choosing Starting Values for Certain Newton-Raphson Iterations, in "Theo-
retical Computer Science", to appear.

24 Activity Report INRIA 2004

[22]J.-M. MULLER, J.-L. NICOLAS, X. ROBLOT. Nombre de Solutions dans une Binade de I’Equation a’+b% =
¢ + ¢ (in French), in "I’Enseignement Mathématique", vol. 50, 2004, p. 147-182.

[23] J. A. PINEIRO, S. F. OBERMAN, J.-M. MULLER, J. D. BRUGUERA. High-Speed Function Approximation
using a Minimax Quadratic Interpolator, in "IEEE Transactions on Computers", to appear.

[24] N. REvVOL, K. MAKINO, M. BERZ. Taylor models and floating-point arithmetic: proof that arithmetic
operations are validated in COSY, in "Journal of Logic and Algebraic Programming", to appear.

[25] N. REvOL, F. ROUILLIER. Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library,
in "Reliable Computing", vol. 11, 2005, p. 1-16.

[26] B. D. SAUNDERS, A. STORJOHANN, G. VILLARD. Matrix rank certification, in "Elect. J. Linear Algebra",
vol. 11,2004, p. 16-23.

[27] A. TISSERAND. Low Power Electronics Design, chap. Low-Power Arithmetic Operators, CRC Press, 2004.

[28] F. DE DINECHIN, A. TISSERAND. Multipartite table methods, in "IEEE Transactions on Computers", to
appear.

Publications in Conferences and Workshops

[29] C. BERTIN, N. BRISEBARRE, B. D. DE DINECHIN, C.-P. JEANNEROD, C. MONAT, J.-M. MULLER, S.-
K. RAINA, A. TISSERAND. A floating-point library for integer processors, in "Proceedings of SPIE’s 49th
Annual Meeting, Denver, Colorado, U.S.A.", August 2004.

[30] S. BOLDO. Bridging the gap between formal specification and bit-level floating-point arithmetic, in "Proceed-
ings of the 6th Conference on Real Numbers and Computers, Schloss Dagstuhl, Germany", November 2004,
p. 22-36.

[31] N. BRISEBARRE, J.-M. MULLER. Functions Approximable by E-Fractions, in "Proc. 38th IEEE Conference
on Signals, Systems and Computers", IEEE, November 2004.

[32] N. BRISEBARRE, J.-M. MULLER, A. TISSERAND. Sparse-Coefficient Polynomial Approximations for

Hardware Implementations, in "Proc. 38th IEEE Conference on Signals, Systems and Computers", IEEE,
November 2004.

[33] M. DAUMAS, G. MELQUIOND. Generating formally certified bounds on values and round-off errors, in "6th
Conference on Real Numbers and Computers, Schloss Dagstuhl, Germany", November 2004, p. 55-70.

[34] J. DETREY, F. DE DINECHIN. Second Order Function Approximation Using a Single Multiplication
on FPGAs, in "14th Intl Conference on Field-Programmable Logic and Applications, Antwerp, Bel-
gium", Improved version of Inria Research report 5140 available, LNCS 3203, August 2004, p. 221-230,
http://www.inria.fr/rrrt/rr-5140.html.

Project-Team Arénaire 25

[35]J.-G. DUMAS, P. GIORGI, C. PERNET. FFPACK: Finite Field Linear Algebra Package, in "Proc. International
Symposium on Symbolic and Algebraic Computation, Santander, Spain", ACM Press, July 2004, p. 119-126.

[36] M. D. ERCEGOVAC, J.-M. MULLER. Complex Square Root with Operand Prescaling (best paper award),
in "Proc. 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors,
Galveston, Texas", IEEE Computer Society Press, September 2004.

[37] M. GRIMMER, K. PETRAS, N. REVOL. Multiple Precision Interval Packages: Comparing Different Ap-
proaches, in "Lecture Notes in Computer Science", vol. 2991, 2004, p. 64-90, http://www.inria.fr/rrrt/rr-
4841 .html.

[38] N. REVOL. Convergent linear recurrences (with scalar coefficients) with divergent interval simulations, in
"SCAN 2004 (11th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic
and Validated Numerics), Fukuoka, Japan", 2004.

[39] G. VILLARD. Lattice based memory allocation (invited talk), in "Mathematics of Computer Algebra and
Analysis, Waterloo, Ontario, Canada", May 2004.

[40] F. DE DINECHIN, C. LOIRAT, J.-M. MULLER. A proven correctly rounded logarithm in double-precision, in
"RNC6, Real Numbers and Computers, Schloss Dagstuhl, Germany", November 2004.

Internal Reports

[41] J.-L. BEUCHAT. A Family of Modulo (2™ + 1) Multipliers, Research report, n° 5316, Institut National de
Recherche en Informatique et en Automatique, September 2004.

[42] J.-L. BEUCHAT, N. SENDRIER, A. TISSERAND, G. VILLARD. FPGA Implementation of a Recently
Published Signature Scheme, Research report, n° 5158, Institut National de Recherche en Informatique et
en Automatique, March 2004, http://www.inria.fr/rrrt/rr-5158. html.

[43] S. BoLDO, G. MELQUIOND. When double rounding is odd, Research report, n° 2004—48, Laboratoire de
I’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07,
November 2004.

[44]S. BOLDO, J.-M. MULLER. Some Functions Computable with a Fused Mac, submitted to the 17th IEEE Sym-
posium on Computer Arithmetic, Research Report, n® 5320, INRIA, October 2004, http://www.inria.fr/rrrt/rr-
5320.html.

[45] N. BRISEBARRE, J.-M. MULLER. Correctly rounded multiplication by arbitrary precision constants, sub-
mitted to the 17th IEEE Symposium on Computer Arithmetic, Research Report, n® 5354, INRIA, November
2004, http://www.inria.fr/rrrt/rr-5354 . html.

[46] N. BRISEBARRE, J.-M. MULLER, A. TISSERAND. Computing machine-efficient polynomial approximations,
submitted, Technical report, 2004, http://perso.ens-lyon.fr/jean-michel.muller/publications.html.

[47] A. DARTE, R. SCHREIBER, G. VILLARD. Lattice based memory allocation, Research report, n® 2004-23,
Laboratoire de I'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364

26 Activity Report INRIA 2004

Lyon Cedex 07, April 2004, http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2004/RR2004-23.ps.gz.

[48] J. DETREY, F. DE DINECHIN. A fool for unbiased comparison between logarithmic and floating-point
arithmetic, Research report, n°® 2004-31, Laboratoire de I’'Informatique du Parallélisme, Ecole Normale
Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, March 2004.

[49] J. DETREY, F. DE DINECHIN. Table-based polynomials for fast hardware function evaluation, Submitted to
Arith’17., Technical report, n°® RR2004-52, LIP, November 2004.

[50] P. KORNERUP, J.-M. MULLER. RN-Codings of Numbers: definition and some properties, Technical report, n®
2004-44, LIP, ENS-Lyon, 2004.

[51] A. STORJOHANN, G. VILLARD. Computing the rank and a small nullspace basis of a polynomial matrix,
Research report, Laboratoire de I'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, 46 Allée
d’Italie, 69364 Lyon Cedex 07, 2004.

[52] F. DE DINECHIN, D. DEFOUR, C. LAUTER. Fast correct rounding of elementary functions in double precision
using double-extended arithmetic, Submitted to TOMS., Research report, n® 5137, INRIA, March 2004,
http://www.inria.fr/rrrt/rr-5137 html.

[53] F. DE DINECHIN, N. GAST. Towards the post-ultimate 14bm, Submitted to Arith’17, Research report, n® 5367,
INRIA, November 2004, http://www.inria.fr/rrrt/rr-5367 .html.

Miscellaneous

[54] S. CHEVILLARD, N. REVOL. Computation of the error functions erf and erfc in arbitrary precision with
correct rounding, 2004, Submitted to the 17th IMACS World Congress on Scientific Computation, Applied
Mathematics and Simulation, Paris, July 2005.

[55] N. DESSART. Arithmétique par intervalles, résolution de systémes linéaires et précision, Mé-
moire de DEA, Ecole Normale Supérieure de Lyon, Lyon, France, 2004, http://www.ens-
lyon.fr/LIP/Pub/Rapports/DEA/DEA2004/DEA2004-04.pdf.

[56] G. MELQUIOND, S. PION. Formal certification of arithmetic filters for geometric predicates, 2004, Submitted
to the 17th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, Paris,
July 2005.

[57]1 N. REVOL. Bounding roundoff errors in Taylor models arithmetic, 2004, Submitted to the 17th IMACS World
Congress on Scientific Computation, Applied Mathematics and Simulation, Paris, July 2005.

[58] THE ARENAIRE PROJECT. CR-Libm, A library of correctly rounded elementary functions in double-precision,
2004, http://lipforge.ens-lyon.fr/projects/crlibm/.

[59] N. VEYRAT-CHARVILLON. Algorithmes de multiplication pour circuits asynchrones, Mé-
moire de DEA, FEcole Normale Supérieure de Lyon, Lyon, France, 2004, http:/www.ens-
lyon.fr/LIP/Pub/Rapports/DEA/DEA2004/DEA2004-02.pdf.

Project-Team Arénaire 27

Bibliography in notes

[60] W. R. ADRION, M. A. BRANSTAD, J. C. CHERNIAVSKY. Validation, verification and test-
ing of computer software, in "ACM Computing Surveys", vol. 14, n® 2, 1982, p. 159-192,
http://www.acm.org/pubs/articles/journals/surveys/1982-14-2/p159-adrion/p159-adrion.pdf.

[61] P. BURGISSER, M. CLAUSEN, M. SHOKROLLAHI. Algebraic Complexity Theory, Volume 315, Grundlehren
der mathematischen Wissenschaften, (Chapter 16), Springer-Verlag, 1997.

[62] J. T. COONEN. Specification for a proposed standard for floating point arithmetic, Memorandum, n® ERL
M78/72, University of California, Berkeley, 1978.

[63] N. COURTOIS, M. FINIASZ, N. SENDRIER. How to achieve a McEliece-based Digital Signature Scheme, in
"Advances in Cryptology — ASTACRYPT 2001", C. BOYD (editor)., Lecture Notes in Computer Science, n°
2248, Springer, 2001, p. 157-174.

[64] M. D. ERCEGOVAC. A general hardware-oriented method for evaluation of functions and computations in a
digital computer, in "IEEE Transactions on Computers", vol. C-26, n°® 7, July 1977, p. 667—680.

[65] P. GIORGI, C. JEANNEROD, G. VILLARD. On the complexity of polynomial matrix computations, in "Proc.
Int. Symp. Symb. and Alg. Comput., Philadelphia, PE, USA", ACM Press, August 2003, p. 135-142.

[66] D. GOLDBERG. What every computer scientist should know about floating point arithmetic, in "ACM
Computing Surveys", vol. 23, n° 1, 1991, p. 5-47.

[67] G. HUET, G. KAHN, C. PAULIN-MOHRING. The Coq Proof Assistant: A Tutorial: Version 6.1, Technical
Report, n® 204, Inria, 1997, http://www.inria.fr/rrrt/rt-0204.html.

[68] E. KALTOFEN. Challenges of symbolic computation: my favorite open problems, in "J. Symbolic Computa-
tion", vol. 29, n° 6, 2000, p. 891-919.

[69] C. K. Kog, C. Y. HUNG. Carry-save adders for computing the product AB modulo N, in "Electronics Letters",
vol. 26, n° 13, June 1990, p. 899-900.

[70] K. MAKINO, M. BERZ. Higher order verified inclusions of multidimensional systems by Taylor models, in
"Nonlinear Analysis", vol. 47, 2001, p. 3503-3514.

[71] T. MULDERS, A. STORJOHANN. Certified dense linear system solving, in "J. Symb. Comput.", vol. 37, n°® 4,
2004, p. 485-510.

[72] S. OWRE, J. M. RUSHBY, N. SHANKAR. PVS: a prototype verification system, in "11th International
Conference on Automated Deduction, Saratoga, New-York", D. KAPUR (editor)., Springer-Verlag, 1992, p.
748-752, http://pvs.csl.sri.com/papers/cade92-pvs/cade92-pvs.ps.

[731 J. R. SHEWCHUK. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geo-
metric Predicates, in "Discrete and Computational Geometry", vol. 18, 1997, p. 305-363,

28 Activity Report INRIA 2004

http://link.springer.de/link/service/journals/00454/papers97/18n3p305.pdf.

[74] A. WRZYSZCZ, D. MILFORD. A New Modulo 2° + 1 Multiplier, in "Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and Processors", 1993, p. 614-617.

