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2. Overall Objectives
Keywords: hidden Markov model (HMM), localisation, navigation and tracking, particle filtering, rare event
simulation, risk evaluation.

The scientific objectives of ASPI are the design, analysis and implementation of interacting Monte Carlo
methods, also known as particle methods, with focus on

• statistical inference in hidden Markov models, e.g. state or parameter estimation, including particle
filtering,

• risk evaluation, including simulation of rare events.

The whole problematic is multidisciplinary, not only because of the many scientific and engineering areas
in which particle methods are used, but also because of the diversity of the scientific communities which have
already contributed to establish the foundations of the field : target tracking, interacting particle systems,
empirical processes, genetic algorithms (GA), hidden Markov models and nonlinear filtering, Bayesian
statistics, Markov chain Monte Carlo (MCMC) methods, etc. Intuitively speaking, interacting Monte Carlo
methods are sequential simulation methods, in which particles

• explorethe state space by mimicking the evolution of an underlying random process,

• learn the environment by evaluating a fitness function,

• and interactso that only the most successful particles (in view of the value of the fitness function)
are allowed to survive and to get offsprings at the next generation.

The effect of this mutation / selection mechanism is to automatically concentrate particles (i.e. the available
computing power) in regions of interest of the state space. In the special case of particle filtering, which has
numerous applications under the generic heading of positioning, navigation and tracking, in target tracking,
computer vision, mobile robotics, ubiquitous computing and ambient intelligence, sensor networks, etc. each
particle represents a possible hidden state, and is multiplied or terminated at the next generation on the basis of
its consistency with the current observation, as quantified by the likelihood function. In the most general case,
particle methods provide approximations of probability distributions associated with a Feynman-Kac flow, by
means of the weighted empirical probability distribution associated with an interacting particle system.
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ASPI will essentially carry methodological research activities, rather than activities oriented towards a single
application area, with the objective to obtain generic results with high potential for applications, and to bring
these results (and other results found in the literature) until implementation on a few appropriate examples,
through collaboration with industrial partners.

The main applications currently considered are geolocalisation and tracking of mobile terminals, calibration
of models for electricity price, and risk assessment for complex hybrid systems such as those used in air traffic
management.

3. Scientific Foundations
3.1. Introduction

The objective here is to explain how interacting Monte Carlo methods differ from classical Monte Carlo
methods, and to introduce the general and extremely fruitful framework of Feynman–Kac flows.

3.2. Monte Carlo methods
Monte Carlo methods are numerical methods that are widely used in situations where (i) a stochastic

(usually Markovian) model is given for some underlying process, and (ii) some quantity of interest should
be evaluated, that can be expressed in terms of the expected value of a functional of the process trajectory, or
the probability that a given event has occurred. Numerous examples can be found, e.g. in financial engineering
(pricing of options and derivative securities) [35], in performance evaluation in communication networks
(probability of buffer overflow), in statistics of hidden Markov models (state estimation, evaluation of contrast
and score functions), etc. Very often in practice, no analytical expression is available for the quantity of interest,
but it is possible to simulate trajectories of the underlying process. The idea behind Monte Carlo methods is
to generate independent trajectories of the underlying process, and to use as an approximation (estimator) of
the quantity of interest the average of the functional over the resulting independent sample. For instance, if

〈µn, f〉 = E[f(Xn)] ,

whereXn denotes a Markov chain with (possibly) time dependent transition kernelsQn and initial probability
distributionµ0, then

〈µn, f〉 ≈ 〈µN
n , f〉 =

1
N

N∑
i=1

f(ξi
n) i.e. µn ≈ µN

n =
1
N

N∑
i=1

δ
ξi
n

,

where(ξi
n , i = 1, · · · , N) is anN–sample whose common probability distribution is preciselyµn, which can

be easily achieved as follows : independently for anyi = 1, · · · , N

ξi
0 ∼ µ0(dx) and ξi

k ∼ Qk(ξi
k−1, dx′) ,

for anyk ≥ 1. By the law of large numbers, the above estimator〈µN
n , f〉 converges to〈µn, f〉 as the sizeN

of the sample goes to infinity, with rate1/
√

N and the asymptotic variance can be estimated. To reduce the
asymptotic variance of the estimator, many variance reduction techniques are routinely used, among which
importance sampling can be defined as follows : for any given importance decomposition

µ0(dx) = W ∗
0 (x) µ∗0(dx) and Qk(x, dx′) = W ∗

k (x, x′) Q∗
k(x, dx′) ,

for anyk ≥ 1, it holds

〈µn, f〉 = E[f(Xn)] = E∗[f(Xn)
n∏

k=0

W ∗
k (Xk−1, Xk)] ,
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with W ∗
0 (x, x′) = W ∗

0 (x′), hence the alternative Monte Carlo estimator

〈µn, f〉 ≈ 〈µN
n , f〉 =

N∑
i=1

wi
0:n f(ξi

n) i.e. µN
n =

N∑
i=1

wi
0:n δ

ξi
n

,

where independently for anyi = 1, · · · , N

ξi
0 ∼ µ∗0(dx) and ξi

k ∼ Q∗
k(ξi

k−1, dx′) ,

and

wi
0:k ∝

k∏
p=0

W ∗
p (ξi

p−1, ξ
i
p) ∝ wi

0:k−1 W ∗
k (ξi

k−1, ξ
i
k) ,

for anyk ≥ 1, i.e. independent trajectories are generated under an alternate wrong model, and are weighted
according to their likelihood for the true model. For a given test functionf , there are some adequate choices
of the importance decomposition for which the asymptotic variance of the alternative Monte Carlo estimator
is smaller than the asymptotic variance of the original Monte Carlo estimator. However, running independent
Monte Carlo simulations can lead to very poor results, because trajectoriesξi

0:n = (ξi
0, · · · , ξi

n) are generated
blindly, and only afterwards is the corresponding weightwi

0:n evaluated, which can happen to be negligible in
which case the corresponding trajectory is not going to contribute to the estimator, i.e. computing power has
been wasted.

3.3. Interacting Monte Carlo methods
A recent and major breakthrough, a brief mathematical presentation of which is given in3.4, has been the

introduction of interacting Monte Carlo methods, also known as sequential Monte Carlo (SMC) methods,
in which a whole (possibly weighted) sample, calledsystem of particles, is propagated in time, where the
particles

• explorethe state space under the effect of amutationmechanism which mimics the evolution of the
underlying process,

• and arereplicatedor terminated, under the effect of aselectionmechanism which automatically
concentrates the particles, i.e. the available computing power, into regions of interest of the state
space.

In full generality, the underlying process is a Markov chain, whose state space can be finite, continuous
(Euclidean), hybrid (continuous / discrete), constrained, time varying, pathwise, etc., the only condition being
that it can easily besimulated. The very important case of a sampled continuous–time Markov process, e.g.
the solution of a stochastic differential equation driven by a Wiener process or a more general Lévy process,
is also covered.

In the special case of particle filtering, originally developed within the tracking community, the algorithms
yield a numerical approximation of the optimal filter, i.e. of the conditional probability distribution of the
hidden state given the past observations, as a (possibly weighted) empirical probability distribution of the
system of particles. In its simplest version, introduced in several different scientific communities under
the name ofinteracting particle filter[28], bootstrap filter[38], Monte Carlo filter [47] or condensation
(conditional density propagation) algorithm [44], and which historically has been the first algorithm to
include a redistribution step, the selection mechanism is governed by the likelihood function : at each time
step, a particle is more likely to survive and to replicate at the next generation if it is consistent with the
current observation. The algorithms also provide as a by–product a numerical approximation of the likelihood
function, and of many other contrast functions for parameter estimation in hidden Markov models, such as the
prediction error or the conditional least–squares criterion.
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Particle methods are currently being used in many scientific and engineering areas : positioning, navigation,
and tracking [39], visual tracking [44], mobile robotics [32], ubiquitous computing and ambient intelligence
[42], sensor networks [43], risk evaluation and simulation of rare events [37], genetics, molecular dynamics,
etc. Other examples of the many applications of particle filtering can be found in the contributed volume
[21] and in the special issue ofIEEE Transactions on Signal Processingdevoted toMonte Carlo Methods for
Statistical Signal Processingin February 2002, which contains in particular the tutorial paper [22], and in the
textbook [57] devoted to applications in target tracking. Applications of sequential Monte Carlo methods to
other areas, beyond signal and image processing, e.g. to genetics, and molecular dynamics, can be found in
[54].

Particle methods are very easy to implement, since it is sufficient in principle to simulate independent
trajectories of the underlying process. The whole problematic is multidisciplinary, not only because of the
already mentioned diversity of the scientific and engineering areas in which particle methods are used, but
also because of the diversity of the scientific communities which have contributed to establish the foundations
of the field : target tracking, interacting particle systems, empirical processes, genetic algorithms (GA), hidden
Markov models and nonlinear filtering, Bayesian statistics, Markov chain Monte Carlo (MCMC) methods.

3.4. General framework : Particle approximations of Feynman–Kac flows
The following abstract point of view, developed and extensively studied by Pierre Del Moral [27][23], has

proved to be extremely fruitful in providing a very general framework to the design and analysis of numerical
approximation schemes, based on systems of branching and / or interacting particles, for nonlinear dynamical
systems with values in the space of probability distributions, associated with Feynman–Kac flows of the form

〈µn, f〉 =
〈γn, f〉
〈γn, 1〉

where 〈γn, f〉 = E[f(Xn)
n∏

k=0

gk(Xk)] ,

whereXn denotes a Markov chain with (possibly) time dependent state spacesEn and with transition kernels
Qn, and where the nonnegative potential functionsgn play the role of selection functions. Feynman–Kac
flows (FK) naturally arise whenever importance sampling is used, as seen from (IS) above : this applies for
instance to simulation of rare events, to filtering, i.e. to state estimation in hidden Markov models (HMM), etc.
Clearly, the unnormalized linear flow satisfies the dynamical system

〈γn, f〉 = 〈γn−1, Qn(gn f)〉 = 〈γn−1, Rn f〉 ,

with the nonnegative kernelRn(x, dx′) = Qn(x, dx′) gn(x′), and the associated normalized nonlinear flow
of probability distributions satisfies the dynamical system

〈µn, f〉 =
〈µn−1, Qn(gn f)〉
〈µn−1, Qn gn〉

= Rn(µn−1)(f) where Rn(µ) =
µRn

µRn(1)
,

which can be decomposed in the following two steps

µn−1 7→ ηn = µn−1 Qn 7→ µn = gn · ηn ,

i.e.

µn−1(dx) 7→ ηn(dx′) = µn−1 Qn(dx′) =
∫

En−1

µn−1(dx)Qn(x, dx′)

7→ µn(dx′) = (gn · ηn)(dx′) = gn(x′) ηn(dx′)
〈ηn, gn〉

.

Conversely, the normaling constant〈γn, 1〉, hence the unnormalized (linear) flow as well, can be expressed
in terms of the normalized (nonlinear) flow : indeed〈γn, 1〉 = 〈η0, g0〉 · · · 〈ηn, gn〉. To solve these equations
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numerically, and in view of the basic assumption that it is easy tosimulater.v.’s according to the probability
distributionsQn(x, dx′), i.e. to mimic the evolution of the Markov chain, the original idea behind particle
methods consists of looking for an approximation of the probability distributionµn in the form of a (possibly
weighted) empirical probability distribution associated with a system of particles :

µn ≈ µN
n =

N∑
i=1

wi
n δ

ξi
n

with
N∑

i=1

wi
n = 1 .

The approximation is completely characterized by the setΣn = (ξi
n, wi

n , i = 1, · · · , N) of particle positions
and weights, and the algorithm is completely described by the mechanism which buildsΣk from Σk−1. In
practice, in the simplest version of the algorithm, known as thebootstrapalgorithm, particles

• are selected according to their respective weights (selection step),

• move according to the Markov kernelQk (mutation step),

• are weighted by evaluating the fitness functiongk (weighting step).

The algorithm yields a numerical approximation of the probability distributionµn as the weighted empirical
probability distributionµN

n associated with a system of particles, and many asymptotic results have been
proved as the numberN of particles (sample size) goes to infinity, using techniques coming from applied
probability (interacting particle systems, empirical processes [63]), see e.g. the survey article [27] or the recent
textbook [23], and references therein : convergence inLp, convergence as empirical processes indexed by
classes of functions, uniform convergence in time (see also [9], [51]), central limit theorem (see also [49]),
propagation of chaos, large deviations principle, moderate deviations principle (see [29]), etc. Beyond the
simplestbootstrapversion of the algorithm, many algorithmic variations have been proposed [31], and are
commonly used in practice :

• in the redistribution step, sampling with replacement could be replaced with other redistribution
schemes so as to reduce the variance (this issue has also been addressed in genetic algorithms),

• to reduce the variance and to save computational effort, it is often a good idea not to redistribute the
particles at each time step, but only when the weights(wi

k , i = 1, · · · , N) are too much uneven.

Most of the results proved in the literature assume that particles are redistributed (i) at each time step, and
(ii) using sampling with replacement. Studying systematically the impact of these algorithmic variations on the
convergence results is still to be done. Even with interacting Monte Carlo methods, it could happen that some
particleξi

k generated in one time step has a negligible weightgk(ξi
k) : if this happens for too many particles

in the sample(ξi
k , i = 1, · · · , N), then computer power has been wasted, and it has been suggested to use

importance sampling again in the mutation step, i.e. to let particles explore the state space under the action of
an alternate wrong mutation kernel, and to weight the particles according to their likelihood for the true model,
so as to compensate for the wrong modeling. More specifically, using an arbitrary importance decomposition

Rk(x, dx′) = Qk(x, dx′) gk(x′) = Wk(x, x′) Pk(x, dx′) ,

results in the following general algorithm, known as thesampling with importance resampling(SIR) algorithm,
in which particles

• are selected according to their respective weights (selection step),

• move according to the importance Markov kernelPk (mutation step),

• are weighted by evaluating the importance weight functionWk on the resulting transition (weighting
step).
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3.5. Statistics of HMM
Keywords: asymptotic statistics, exponential forgetting, exponential stability, hidden Markov model (HMM),
local asymptotic normality (LAN).

Hidden Markov models (HMM) form a special case of partially observed stochastic dynamical systems,
in which the state of a Markov process (in discrete or continuous time, with finite or continuous state
space) should be estimated from noisy observations. The conditional probability distribution of the hidden
state given past observations is a well–known example of a normalized (nonlinear) Feynman–Kac flow,
see3.4. These models are very flexible, because of the introduction of latent variables (non observed) which
allows to model complex time dependent structures, to take constraints into account, etc. In addition, the
underlying Markovian structure makes it possible to use numerical algorithms (particle filtering, Markov
chain Monte Carlo methods (MCMC), etc.) which are computationally intensive but whose complexity is
rather small. Hidden Markov models are widely used in various applied areas, such as speech recognition,
alignment of biological sequences, tracking in complex environment, modeling and control of networks, digital
communications, etc.

Beyond the recursive estimation of an hidden state from noisy observations, the problem arises of statistical
inference of HMM with general state space, including estimation of model parameters, early monitoring and
diagnosis of small changes in model parameters, etc.

Large time asymptoticsA fruitful approach is the asymptotic study, when the observation time increases
to infinity, of an extended Markov chain, whose state includes (i) the hidden state, (ii) the observation, (iii) the
prediction filter (i.e. the conditional probability distribution of the hidden state given observations at all
previous time instants), and possibly (iv) the derivative of the prediction filter with respect to the parameter.
Indeed, it is easy to express the log–likelihood function, the conditional least–squares criterion, and many other
clasical contrast processes, as well as their derivatives with respect to the parameter, as additive functionals of
the extended Markov chain.

The following general approach has been proposed :

• first, prove an exponential stability property (i.e. an exponential forgetting property of the initial
condition) of the prediction filter and its derivative, for a misspecified model,

• from this, deduce a geometric ergodicity property and the existence of a unique invariant probability
distribution for the extended Markov chain, hence a law of large numbers and a central limit theorem
for a large class of contrast processes and their derivatives, and a local asymptotic normality property,

• finally, obtain the consistency (i.e. the convergence to the set of minima of the associated contrast
function), and the asymptotic normality of a large class of minimum contrast estimators.

This programme has been completed in the case of a finite state space [6][7], and has been generalized in
[30] under a uniform minoration assumption for the Markov transition kernel, which typically does only hold
when the state space is compact. Clearly, the whole approach relies on the existence of exponential stability
property of the prediction filter, and the main challenge currently is to get rid of this uniform minoration
assumption for the Markov transition kernel [24], [9], so as to be able to consider more interesting situations,
where the state space is noncompact.

Small noise asymptoticsAnother asymptotic approach can also be used, where it is rather easy to obtain
interesting explicit results, in terms close to the language of nonlinear deterministic control theory [48]. Taking
the simple example where the hidden state is the solution of an ordinary differential equation, or a nonlinear
state model, and where the observations are subject to additive Gaussian white noise, this approach consists
in assuming that covariances matrices of the state noise and of the observation noise go simultaneously to
zero. If it is reasonable in many applications to consider that noise covariances are small, this asymptotic
approach is less natural than the large time asymptotics, where it is enough (provided a suitable ergodicity
assumption holds) to accumulate observations and to see the expected limit laws (law of large numbers, central
limit theorem, etc.). In opposition, the expressions obtained in the limit (Kullback–Leibler divergence, Fisher
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information matrix, asymptotic covariance matrix, etc.) take here much more explicit form than in the large
time asymptotics.

The following results have been obtained using this approach :

• the consistency of the maximum likelihood estimator (i.e. the convergence to the setM of global
minima of the Kullback–Leibler divergence), has been obtained using large deviations techniques,
with an analytical approach [45],

• if the abovementioned setM does not reduce to the true parameter value, i.e. if the model is not
identifiable, it is still possible to describe precisely the asymptotic behavior of the estimators [46] :
in the simple case where the state equation is a noise–free ordinary differential equation and using
a Bayesian framework, it has been shown that (i) if the rankr of the Fisher information matrixI is
constant in a neighborhood of the setM , then this set is a differentiable submanifold of codimension
r, (ii) the posterior probability distribution of the parameter converges to a random probability
distribution in the limit, supported by the manifoldM , absolutely continuous w.r.t. the Lebesgue
measure onM , with an explicit expression for the density, and (iii) the posterior probability
distribution of the suitably normalized difference between the parameter and its projection on the
manifoldM , converges to a mixture of Gaussian probability distributions on the normal spaces to
the manifoldM , which generalized the usual asymptotic normality property,

• it has been shown in [52] that (i) the parameter dependent probability distributions of the obser-
vations are locally asymptotically normal (LAN) [50], from which the asymptotic normality of the
maximum likelihood estimator follows, with an explicit expression for the asymptotic covariance
matrix, i.e. for the Fisher information matrixI, in terms of the Kalman filter associated with the lin-
ear tangent linear Gaussian model, and (ii) the score function (i.e. the derivative of the log–likelihood
function w.r.t. the parameter), evaluated at the true value of the parameter and suitably normalized,
converges to a Gaussian r.v. with zero mean and covariance matrixI.

4. Application Domains
4.1. Localisation, navigation and tracking

Keywords: localisation, navigation, tracking.

See5.1.
Among the many application domains of particle methods, or interacting Monte Carlo methods, ASPI has

decided to focus on applications in localisation (or positioning), navigation and tracking [39], which already
covers a very broad spectrum of application domains. The objective here is to estimate position (and also
velocity, attitude, etc.) of a mobile object, from the combination of different sources of information, including

• a prior dynamical model of typical evolutions of the mobile,

• measurements provided by sensors,

• and possibly a digital map providing some useful feature (altitude, gravity, power attenuation, etc.)
at each possible position,
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see5.1. This Bayesian dynamical estimation problem is also called filtering, and its numerical implemen-
tation using particle methods, known as particle filtering, has found applications in target tracking, integrated
navigation, points and / or objects tracking in video sequences, mobile robotics, wireless communications,
ubiquitous computing and ambient intelligence, sensor networks, etc. Particle filtering was definitely invented
by the target tracking community [38][57], which has already contributed to many of the most interesting algo-
rithmic improvements and is still very active. Beyond target tracking, ASPI is willing to consider all possible
applications of particle filtering in positioning, navigation and tracking. To be more specific, the objective of
ASPI is to implement and assess the performance of particle filtering in localisation and tracking of mobile
terminals in a wireless network, using network measurements (received power level and possibly TDOA (time
difference of arrival)) and a database of reference measurements of the power level, available in a few points
or in the form of a digital map (power attenuation map). Generic algorithms will be proposed and specialized
to the indoor context (wireless local area network, e.g. WiFi) and to the outdoor context (cellular network, e.g.
GSM) when necessary. Constraints and obstacles such as building walls in an indoor environment, street, road
or railway networks in an outdoor environment, will be represented in a simplified manner, using a prior model
on a graph, e.g. a Voronoï graph as in similar experiments in mobile robotics [53]. To assess the performance
of the proposed localisation and tracking algorithms, posterior Cramèr–Rao bounds for a Markov process on a
graph will be derived. Another objective, somehow reminiscent of the SLAM (simultaneous localisation and
mapping) problem in mobile robotics, is to update and enrich the initial database of reference measurements,
using network measurements collected on–the–fly.

5. Software
5.1. Demos

Participant: Fabien Campillo [corresponding person].

See4.1.
To illustrate that particle filtering algorithms are efficient, easy to implement, and extremely visual and

intuitive by nature, several demos have been programmed by Fabien Campillo, with the corresponding
MATLAB scripts available on the sitehttp://www.irisa.fr/aspi/campillo/site-pf/. This material has proved very
useful in training sessions and seminars that have been organized in response to demand from industrial
partners (SAGEM, CNES and EDF), and this effort will be continued. At the moment, the following four
demos are available :

• Navigation of an aircraft using altimeter measurements and elevation map of the terrain : a noisy
measurement of the terrain height below the aircraft is obtained as the difference between (i) the
aircraft altitude above the sea level (provided by a pression sensor) and (ii) the aircraft altitude above
the terrain (provided by an altimetric radar), and is compared with the terrain height in any possible
point (read on the elevation map). In this demo, a cloud (swarm) of particles explores multiple
possible trajectories according to some raw model, and are replicated or discarded depending on
whether the terrain height below the particle (i.e. at the same horizontal position) matches or not the
available noisy measurement of the terrain height below the aircraft.

• Tracking a dim point target in a sequence of noisy images. In thistrack–before–detectdemo, a
point, which cannot be detected in a single image of the sequence, can be automatically tracked in a
sequence of noisy images.

• Positioning and tracking in the presence of obstacles. In this interactive demo, presented by Simon
Maskell (QinetiQ and CUED, Cambridge University Engineering Department) at a GDR ISIS event
co–organized by François Le Gland and Jean–Pierre Le Cadre in December 2002, several stations
(the number and locations of which are chosen interactively) try to position and track a mobile from
noisy angle measurements, in the presence of obstacles (walls, tunnels, etc., the number, locations

http://www.irisa.fr/aspi/campillo/site-pf/
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and orientations of which are also chosen interactively), which make the mobile temporarily invisible
from one or several stations. This nonlinear filtering problem in a complex environment, with many
constraints, would be practically impossible to implement using Kalman filters.

• Positioning and tracking of a mobile in a urban area. In this interactive demo, power attenuation maps
associated with several base stations (the number and locations of which are chosen interactively)
are combined with power measurements of the signal received from the base stations, and with a
random walk prior model for the motion of the mobile user, in order to position and track a user in a
urban Manhattan–like environment. The user is allowed to enter buildings, where no signal at all is
received, and the particle filter is able in principle to lock quickly to the user position whenever he /
she leaves the building.

6. New Results
6.1. Sequential algorithms that keep the particle system alive

Keywords: extinction, sequential analysis.

Participant: François Le Gland.

This is a collaboration with Nadia Oudjane, from the OSIRIS (Optimisation, simulation, risque et statis-
tiques) department of Électricité de France R&D.

We consider the special case of a Feynman–Kac flow, see3.4, where the selection functions can possibly
take the zero value, which may occur in many important practical situations

• simulation of rare events using animportance splittingapproach, see6.2,

• simulation of a Markov chain conditionned or constrained to visit a given sequence of subspaces of
the state space,

• simulation of a r.v. in the tail of a given probability distribution,

• nonlinear filtering with bounded observation noise,

• implementation of a robustification approach in nonlinear filtering, using a truncation of the likeli-
hood function [8], [56],

• algorithms of approximate nonlinear filtering, where hidden state and observation are simulated
jointly, and where the simulated observation is validated against the actual observation [26][25][58],
e.g. if there is no explicit expression available for the likelihood function, or if there does not even
exist a likelihood function (nonadditive observation noise, noise–free observations, etc.).

If the selection functiongk can possibly take the zero value, and even if〈µk−1 Qk, gk〉 > 0, it can happen
that the evaluation of the functiongk returns the zero value for all the particles generated at the end of the
mutation step, i.e. the particle systems dies out and the algorithm cannot go on. A reinitialization procedure
has been proposed and studied in [26], in which the particle system is generated if necessary from an arbitrary
restarting probability distributionν. Alternatively, one could be interested by the behavior of the algorithm
until the extinction timeτN of the particle system. Under the assumption〈γn, 1〉 > 0, the probability
P[τN ≤ n] that the algorithm can not go on until the time instantn goes to zero with exponential rate
[23]. Using a global approach and a central limit theorem for triangular arrays of martingale increments, the
following central limit theorem has been proved in [23] for the nonsequential particle algorithm with a constant
numberN of particles

√
N [ 1(τN > n) 〈µ

N
n , ϕ〉 − 〈µn, ϕ〉 ] ⇒ N(0, σ2

n(ϕ)) with σ2
n(ϕ) =

n∑
k=0

v2
k:n(ϕ) .
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We have studied [20] a sequential particle algorithm, already proposed in [55] [12], which automatically
keeps the particle system alive, i.e. which ensures its non–extinction. In some sense, the sequential algorithm
is afixed performancepolicy, as opposed to the usual nonsequential algorithm which is afixed effortpolicy.
For any levelH > 0, and for anyk = 0, 1, · · · , n, the random number of particles is defined by

NH
k = inf{N ≥ 1 :

N∑
i=1

gk(ξi
k) ≥ H sup

x∈E
gk(x)} ,

where the r.v.’sξ1
k, · · · , ξi

k, · · · are i.i.d. with common probability distributionη0 (for k = 0), and common
probability distributionµH

k−1 Qk (for k = 1, · · · , n). The particle approximation is now parameterized by the
level H > 0, and under the additional assumption〈µH

k−1 Qk, gk〉 > 0, the random numberNH
k of particles

is a.s. finite. By construction, the particle system never dies out and the algorithm can always go on, and in
addition

NH
k

H
→ ρk =

sup
x∈E

gk(x)

〈µk−1 Qk, gk〉
< ∞ ,

in probability, with rate1/
√

H. For the sequential particle algorithm, with a random number of particles
defined by the levelH > 0, we have obtained the following central limit theorem

√
H [ 〈µH

n , ϕ〉 − 〈µn, ϕ〉 ] ⇒ N(0, s2
n(ϕ)) with s2

n(ϕ) =
n∑

k=0

v2
k:n(ϕ)

1
ρk

.

The proof follows the approach of [49] using an induction argument, and relies on a central limit theorem for
the sum of a random number of random variables [59], which is known in sequential analysis since the 1950’s,
see also [40] or [60]. To get a fair comparison of the nonsequential and sequential particle approximations, we
can use as a normalizing factor the time–average

NH
0:n =

1
n + 1

n∑
k=0

NH
k ,

of the number of particles, which is an indication of how much computing power has been used, and we obtain

√
NH

0:n [ 〈µH
n , ϕ〉 − 〈µn, ϕ〉 ] ⇒ N(0, s2

n(ϕ) ρ0:n) with ρ0:n =
1

n + 1

n∑
k=0

ρk .

6.2. Particle methods for the simulation of rare events
Keywords: RESTART algorithm, importance sampling, importance splitting, rare events.

Participants: Frédéric Cérou, François Le Gland.

This is a collaboration with Pierre Del Moral, from université de Nice–Sophia Antipolis, and with Pascal
Lezaud, from CENA (Centre d’Études de la Navigation Aérienne) in Toulouse.

The numerical evaluation of extremely small probabilities, such as the probability of occurrence of a rare
event — typically the probability that a set is reached by a continuous–time strong Markov process before
a fixed or a random time, is a challenging numerical problem whose applications are numerous : analysis
and performance evaluation of a telecommunication network, evaluation of conflict or collision risk in air
traffic management, see7.1, etc. To deal with this class of problems, there are on one hand probabilistic
methods, which provide asymptotic results and are based on large deviations theory, and on the other hand
simulation methods, the most widely used of which isimportance sampling, where independent trajectories
(i) are generated under a proposal probability distribution for which the considered event is not so rare, and



Team ASPI 11

(ii) are weighted by the Radon–Nikodym derivative of the proposal probability distribution w.r.t. the true
probability distribution.

An alternative method isimportance splitting, in which a sequence of increasingly rare events is defined, and
a selection mechanism is introduced where trajectories for which an intermediate event holds true split / branch
into several offsprings, while trajectories for which none of the intermediate events hold true are terminated
[36][37]. This selection mechanism allows to generate many trajectories for which the rare event holds true,
and to evaluate statistics of such trajectories.

To be more specific, the objective is to compute the probability of the rare (but critical) event, and the
probability distribution of the critical trajectories, i.e.

P[TB ≤ T ] and E[f(Xt , 0 ≤ t ≤ TB) | TB ≤ T ] ,

where

TB = inf{t ≥ 0 : Xt ∈ B} ,

is the first hitting time of somecritical regionB in the state–space andT is some deterministic final time, or
an a.s.–finite stopping time. If the probability is extremely small, say10−9 or even smaller, and if independent
trajectories are simulated, there is a chance that none of these trajectories will manage to reachB, and in
any case there will be too few of such trajectories to get accurate estimates. Introducing a decreasing subsets
sequenceB0 ⊃ B1 ⊃ · · · ⊃ Bn = B and the associated increasing sequence0 ≤ T1 ≤ · · · ≤ Tn = TB of
first hitting times

Tk = inf{t ≥ 0 : Xt ∈ Bk} ,

the problem can be formulated in terms of Feynman–Kac flows, see3.4, as

P[TB ≤ T ] = P[Tn ≤ T ] =
n∏

k=1

P[Tk ≤ T | Tk−1 ≤ T ] = 〈γn, 1〉 ,

and

E[ϕ(XTB
) | TB ≤ T ] = 〈µn, ϕ ◦ π〉 ,

where

〈γn, f〉 = E[f(Xn)
n∏

k=0

gk(Xk)] and 〈µn, f〉 =
〈γn, f〉
〈γn, 1〉

,

for a discrete–time Markov chain

Xk = (Xt , Tk−1 ∧ T ≤ t ≤ Tk ∧ T ) ,

with values in the set of trajectories, and for a selection functiongk with value 1 if the trajectory has managed
to reach the setBk before timeT , i.e. if its terminal value belongs to the setBk, and 0 otherwise. Genealogical
models can also be considered, and allow to address the approximation of the probability distribution of the
critical trajectories.

Within this general framework, it is straightforward to implement interacting Monte Carlo methods.
Specializing the simplebootstrapalgorithm to this context, trajectories of the continuous–time Markov process
are generated independently until either they reach the setBk or the final timeT is reached. LetIN

k denote
the set of successful trajectories : these are allowed to survive at the next generation, where their offsprings
will try to reach the setBk+1, while unsuccessful trajectories are terminated. Under suchfixed effortpolicy,
transition probabilities are estimated as the ratio
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P[Tk ≤ T | Tk−1 ≤ T ] ≈ |IN
k |
N

,

of the number of successful trajectories to the total number of simulated trajectories, and

P[TB ≤ T ] =
n∏

k=1

P[Tk ≤ T | Tk−1 ≤ T ] ≈
n∏

k=1

|IN
k |
N

.

It is also possible to implement a more general SIR algorithm to this context, which combinesimportance
splitting and importance sampling: trajectories are generated under a proposal probability distribution for
which reaching the setBk is not so rare an event, and successful trajectories are given a number of offsprings
at the next generation related to their weight, i.e. to the Radon–Nikodym derivative of the proposal probability
distribution w.r.t. the true probability distribution. In other words, among all the successful trajectories, those
which are closest to a typical trajectory from the true probability distribution are given more offsprings than
others.

Because the selection functions are indicator functions, special attention should be paid to the problem of
extinction of the particle system, which arises whenIN

k is empty, i.e. when none of the trajectories is able to
reach the setBk, and a possible solution is to implement asequentialversion of the algorithms, see6.1. For
the simplebootstrapalgorithm, given an integerH, trajectories are generated independently untilH exactly
among them reach the setBk, and letNH

k denote the total number of simulated trajectories. Under suchfixed
performancepolicy, transition probabilities are estimated again as the ratio

P[Tk ≤ T | Tk−1 ≤ T ] ≈ H

NH
k

,

of the number of successful trajectories to the total number of simulated trajectories, and

P[TB ≤ T ] =
n∏

k=1

P[Tk ≤ T | Tk−1 ≤ T ] ≈
n∏

k=1

H

NH
k

.

For each of these algorithms, many convergence results have been obtained [18] within the general
framework of Feynman–Kac flows, such as CLT providing expressions for the asymptotic variance of the
approximation error.

On the occasion of the summer project of Nordine El Baraka (EGIM, École Généraliste d’Ingénieurs de
Marseille), under the direction of Frédéric Cérou, we have started to study a variant of the above algorithms,
which is closer to the originalimportance splittingalgorithm. Here, any trajectory which has managed to
reach the setBk before timeT is given a fixed numberRk of offsprings at the next generation, each offspring
receiving the fraction1/Rk of the weight of its ancestor. Other variants where trajectories which go in
the wrong direction for too long are eliminated, such as the RESTART algorithm [61][62], have also been
considered. We have started a general comparison of all these different methods. Empirical preliminary results
suggested that methods which are more elaborate than simpleimportance splittingdo not perform significantly
better. It may also be noted that imposing a finite time horizon changes the behavior of some of the proposed
algorithms, which were initially designed assuming that the final time is some renewal time, associated with
some recurrent event. Another issue is how to choose the intermediate subsetsB0 ⊃ B1 ⊃ ... ⊃ Bn. This
choice is rather critical, and we are working towards a method for building these level sets in an adaptive
manner, at least for one dimensional models.

6.3. Particle approximations of Feynman–Kac flows depending on a parameter
Keywords: Monte Carlo maximum likelihood (MCML), hidden Markov model (HMM).

Participants: Natacha Caylus, Arnaud Guyader, François Le Gland.
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This is a collaboration with Nadia Oudjane, from the OSIRIS (Optimisation, simulation, risque et statis-
tiques) department of Électricité de France R&D, see7.2.

Given nonnegative kernelsRn and a nonnegative measureγ0, we consider the unnormalized (linear)
Feynman–Kac flow

〈γn, f〉 =
∫

En

· · ·
∫

E0

f(xn)
n∏

k=1

Rk(xk−1, dxk) γ0(dx0) .

A well–known example is provided by the unnormalized conditional probability distribution of the hidden state
given past observations, when the hidden state and the observation form jointly a Markov chain : this includes
HMM and switching AR models as special cases, with the decompositionRk(x, dx′) = Qk(x, dx′) gk(x′)
whereQk is the Markov transition kernel and where the selection functiongk is the likelihood function.

If the nonnegative kernels depends smoothly (continuously or differentiably) on a parameter, in such a
way that the Feynman–Kac flow depends smoothly on the parameter, we would like to design a particle
approximation to would depend smoothly on the parameter as well. The need for such a regularity property
arises for instance

• in sensitivity analysis, e.g. in the computation of Greeks, in option pricing,

• in statistics of HMM, see3.5, e.g. in the evaluation of the derivative w.r.t. the parameter of any
contrast function that can be expressed in terms of the conditional probability distribution of the
hidden state given past observations.

Running a particle algorithm for each different value of the parameter would result in using different particle
systems, and it is very unlikely that the approximation will be smooth in any reasonable sense w.r.t. the
parameter.

To be specific, we consider only the HMM case, and we assume that the Markov transition kernelQk

satisfies

Qk ϕ(x) = E[ϕ(Xk) | Xk−1 = x] = E0[ϕ(Xk) Λk | Xk−1 = x] ,

where it is easy tosimulate jointly the pair (Xk,Λk) given Xk−1 = x under the probability measure
P0 corresponding to a pivot fixed value of the parameter (loosely speaking, the r.v.Λk is related to the
Radon–Nikodym derivative of the probability measureP w.r.t. the pivot probability measureP0). Introducing

qk(x, x′) = E0[Λk | Xk−1 = x, Xk = x′] ,

which may have an explicit expression or not, yields

Qk(x, dx′) = qk(x, x′) Q0
k(x, dx′) ,

which shows that the Markov transition kernelQk is absolutely continuous w.r.t. the pivot Markov transition
kernelQ0

k, and the following importance decomposition holds

Rk(x, dx′) = Qk(x, dx′) gk(x′) = qk(x, x′)
gk(x′)
g0

k(x′)
Q0

k(x, dx′) g0
k(x′) = rk(x, x′) R0

k(x, dx′) .

It is therefore possible to design a particle approximation of the form

µk ≈
N∑

i=1

ui
k w0,i

k δ
ξ0,i
k

with
N∑

i=1

w0,i
k = 1 and

N∑
i=1

ui
k w0,i

k = 1 ,
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The approximation is completely characterized by a single setΣ0
k = (ξ0,i

k , w0,i
k , i = 1, · · · , N) of particle

positions and weights, which depend only on the pivot value of the parameter, and for each different value of
the parameter by a setSk = (ui

k , i = 1, · · · , N) of secondary weights, and the algorithm is completely
described by the mechanism which builds(Σ0

k, Sk) from (Σ0
k−1, Sk−1). Using an arbitrary importance

decomposition

R0
k(x, dx′) = Q0

k(x, dx′) g0
k(x′) = W 0

k (x, x′) P 0
k (x, dx′) ,

results in asmooth(SIR) algorithm, in which particles

• are selected according to their respective primary weights (selection step),

• move according to the importance Markov kernelP 0
k (mutation step),

• are weighted by evaluating the importance weight functionW 0
k on the resulting transitions (weight-

ing step),

and in addition, for each different value of the parameter

• are further weighted by evaluating the importance weight functionrk on the resulting transitions
(secondary weighting step).

In other words, a single particle system is propagated, which depends only on the pivot value of the
parameter, and for each different value of the parameter this single particle system is further weighted with
a different set of secondary weights [15]. Notice that this last step does not bring any additional source
of randomness in the algorithm : if the importance weight functionrk depends smoothly (continuously or
differentiably) on the parameter, then the approximation depends smoothly on the parameter as well. This can
be thought of as an interacting particle implementation of the MCML (Monte Carlo maximum likelihood)
algorithm [33][34].

Alternatively, one could differentiate the Feynman–Kac flow w.r.t. the parameter, so as to obtain a linear
tangent Feynman–Kac flow, and one could design a joint particle approximation for the Feynman–Kac flow
and the linear tangent Feynman–Kac flow, using a single system of particles and signed weights. To be specific,
this would require that the Markov transition kernelQk is differentiable w.r.t. the parameter, and that the linear
tangent kernelQ̇k satisfies

Q̇k ϕ(x) = E[ϕ(Xk) Ξk | Xk−1 = x] ,

where it is easy tosimulate jointlythe pair(Xk,Ξk) givenXk−1 = x under the probability measureP (loosely
speaking, the r.v.Ξk is the logarithmic derivative w.r.t. the parameter of the r.v.Λk considered above). It is
therefore possible to design ajoint particle approximation of the form

µk ≈
N∑

i=1

wi
k δ

ξi
k

with
N∑

i=1

wi
k = 1 ,

and

µ̇k ≈
N∑

i=1

ρi
k wi

k δ
ξi
k

with
N∑

i=1

ρi
k wi

k = 0 .

The approximation is completely characterized by a single setΣk = (ξi
k, wi

k , i = 1, · · · , N) of particle
positions and weights, and by a setS′

k = (ρi
k , i = 1, · · · , N) of signed weights, and the algorithm is

completely described by the mechanism which builds(Σk, S′
k) from (Σk−1, S

′
k−1).

This alternate approach was taken in [41], and it is remarkable that the particle approximation obtained
there for the linear tangent Feynman–Kac flow coincides exactly, for the pivot value of the parameter, with the
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particle approximation that would be obtained if one would differentiate w.r.t. the parameter thesmoothSIR
algorithm described above. This remarkable property provides some solid ground justification for all these
different algorithms [16].

7. Contracts and Grants with Industry
7.1. Conditional Monte Carlo methods for risk assessment — IST project

HYBRIDGE
Participants: Frédéric Cérou, François Le Gland.

See6.2.
Contract INRIA 1 02 C 0037 — January 2002/December 2004
In view of the undergoing evolution in management and control of large complex real–time systems towards

an increasing distribution of sensors, decisions, etc., and an increasing concern for safety criticality, the IST
project HYBRIDGE addresses methodological issues in stochastic analysis and distributed control of hybrid
systems, with conflict management in air trafic as its target application area. It is coordinated by National
Aerospace Laboratory (NLR, Netherlands) and its partners are Cambridge University (United Kingdom),
Universita di Brescia and Universita dell’Aquila (Italy), Twente University (Netherlands), National Technical
University of Athens (NTUA, Greece), Centre d’Études de la Navigation Aérienne (CENA), Eurocontrol
Experimental Center (EEC), AEA Technology and BAe Systems (United Kingdom), and INRIA.

Our contribution to this project concerns the work package on modeling accident risks with hybrid stochastic
systems, and the workpackage on risk decomposition and risk assessment methods, and their implementation
using conditional Monte Carlo methods. This problem has motivated our work on theimportance splitting
approach to the simulation of rare events, see6.2.

7.2. Calibration of models for electricity spot and futures price — contract
with EDF
Participant: François Le Gland.

See3.5and6.3.
Contract INRIA 1 04 C 0862 — October 2004/September 2005
This is a collaboration with Nadia Oudjane, from the OSIRIS (Optimisation, simulation, risque et statis-

tiques) department of Électricité de France R&D.
The objective is to estimate parameters in various multi–factor models for electricity spot price, from the

observation of futures contracts prices that are traded in the market. This problems fits within the general
framework of parameter estimation in hidden Markov models, and we propose to rely on joint particle
approximation schemes for the optimal filter and the linear tangent filter, so as to maximize the likelihood
function, or other suitable contrast functions, w.r.t. the parameters. In the simple case where the futures
contracts are written for electricity delivery over a single period of time, and if multi–factor models are based
on Ornstein–Uhlenbeck processes driven by a Brownian motion, then the problem is linear Gaussian and
explicit expressions provided by the Kalman filter can be used to assess the performance of the proposed
approach. In practice however futures contracts are usually written for electricity delivery over a long period
of time, and realistic multi–factor models should be used, based on Ornstein–Uhlenbeck processes driven by
a Lévy process, which make the problem non–linear with non Gaussian noise structure. The performance of
the proposed approach will be assessed on real data provided by the industrial partner.
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8. Other Grants and Activities
8.1. Statistical methods for dynamical stochastic systems — IHP network

DYNSTOCH
Participants: Fabien Campillo, Natacha Caylus, Frédéric Cérou, Arnaud Guyader, François Le Gland.

Affiliation to the French partner of the network — September 2000/August 2004.
Members of ASPI participate in the european networkDYNSTOCH «Statistical Methods for Dynamical

Stochastic Models», which gathers nine european research groups : Københavns Universitet (coordinator,
Denmark), Universiteit van Amsterdam (Netherlands), Humboldt Universität zu Berlin and Albert Ludwigs
Universität Freiburg (Germany), Universidad Politécnica de Cartagena (Spain), Helsingin Yliopisto (Finland),
University College London (United Kingdom), LADSEB/CNR (Italy), université de Paris 6 (France), within
the IHP program. The annual workshop has been held in Copenhagen in June 2004. Our contribution
within the French team of the network (PMA, laboratoire de Probabilités et Modèles Aléatoires, université
de Paris 6/7), is focused on asymptotic statistics of HMM with finite or continuous state space, and their
particle implementation. The proposal of a follow–up Marie Curie research training network DYNSTOCH,
coordinated by Peter Spreij (UvA, Amsterdam), has been submitted to the November 2003 call of the FP6, with
INRIA Rennes as a research group on its own, and with additional research groups from SZTAKI (Hungary),
Universiteit Gent (Belgium), Ruprecht Karls Universität Heidelberg (Germany), and Linköpings Universitet
(Sweden).

8.2. Particle methods — CNRS DSTIC action spécifique AS 67
Participants: Fabien Campillo, Natacha Caylus, Frédéric Cérou, Arnaud Guyader, François Le Gland.

Since September 2002, F. Le Gland is coordinating with Olivier Cappé (ENST Paris) a project (action
spécifique) «Méthodes particulaires» supported by the STIC department of CNRS, and promoted by the
RTP 24 «Mathématiques de l’Information et des Systèmes». This project follows another project «Chaînes
de Markov cachées et filtrage particulaire», which started in December 2001 within the inter–departmental
CNRS programme Math–STIC, and was coordinated by F. Le Gland and Éric Moulines (ENST Paris). A
two–day workshop on «Particle and Monte Carlo Methods» has been organized in July 2004 with support from
AS 67. The workshop was held in Barcelona, as a satellite event to the 6th world congress of the Bernoulli
Society and to the 67th annual meeting of the Institute of Mathematical Statistics (IMS), and attracted about
50 participants. At the closing meeting of the RTP 24 in November 2004 at ENST Paris, F. Le Gland has given
an overview presentation of the activities and results of AS 67.

9. Dissemination
9.1. Scientific animation

Since September 2002, F. Le Gland is coordinating a project (action spécifique, AS67) «Méthodes par-
ticulaires» supported by the STIC department of CNRS, and promoted by the RTP 24 «Mathématiques de
l’Information et des Systèmes», see8.2. He has coorganized with Pierre Del Moral (LSP Toulouse, now at
université de Nice Sophia Antipolis) and with Éric Moulines (ENST Paris) a two–day workshop in July 2004
on «Particle and Monte Carlo Methods» with support from AS 67 and from the project «Chaînes de Markov
cachées et filtrage particulaire», awarded within the inter–departmental CNRS programme Math–STIC. The
workshop was held in Barcelona, as a satellite event to the 6th world congress of the Bernoulli Society and to
the 67th annual meeting of the Institute of Mathematical Statistics (IMS), and attracted about 50 participants.

F. Campillo has organized a special session on «Méthodes particulaires et applications» at the Journées
SMAI / MAS (Modélisation Aléatoire et Statistique), held in September 2004 at IECN (Institut Élie Cartan,
Nancy).

http://www.math.ku.dk/~michael/dynstoch/
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F. Le Gland has reported on the PhD theses of Jean–Jacques Szkolnik (ENSIETA and université de Bretagne
Occidentale, advisor : André Quinquis), Vivien Rossi (ENSAM and université de Montpellier 2, advisor :
Jean–Pierre Vila), and Karim Dahia (ONERA and université Joseph Fourier, advisors : Christian Musso and
Dinh–Tuan Pham).

9.2. Teaching
F. Le Gland gives a course on Kalman filtering, particle filtering and hidden Markov models, within the

Master STI (école doctorale MATISSE, université de Rennes 1).
Within the continuing education programme «École Chercheurs» organized by IRISA on the theme of signal

processing, and held in Cesson Sévigné in October 2004, F. Campillo has given two introductory lectures on
particle filtering and its application to mobile tracking in a cellular network.

9.3. Participation in workshops, seminars, lectures, etc.
In addition to presentations with a publication in the proceedings, and which are listed at the end of the

document, members of ASPI have also given the following presentations.
F. Campillo has been invited at LMA (Laboratoire de Mécanique et d’Acoustique, CNRS), Marseilles in

June 2004 for a week and has given there a seminar on particle filtering.
N. Caylus has given a talk on statistical inference of HMM using Monte Carlo methods with interaction in

the IRMAR seminar «Processus Stochastiques et Statistiques», Rennes in June 2004.
A. Guyader has given a talk on thek–nearest neighbours algorithm at the «Journées Données Fonction-

nelles» held in September 2004 at UHB (université de Haute–Bretagne, Rennes).
F. Le Gland has given a talk on statistical inference of HMM using Monte Carlo methods with interaction in

the joint université de Montpellier 2 / ENSAM / INRA seminar «Probabilités et Statistiques» in February 2004,
and in the seminar «Méthodes Particulaires pour l’Estimation et la Commande Optimale Stochastique»
organized by Nadia Oudjane at EDF, Clamart in March 2004. He has also given a talk on tracking mobiles
using Monte Carlo methods with interaction, at a seminar on stochastic approaches held at LORIA, Nancy
in April 2004, within the regional project (Plan Etat Région Lorraine) TOAI «Télé–Opération et Assistants
Intelligents».

At the joint 6th world congress of the Bernoulli Society and 67th annual meeting of the Institute of
Mathematical Statistics (IMS), held in Barcelona in July 2004, F. Campillo has given a talk on local asymptotic
normality for partially observed small noise diffusions, and F. Le Gland has given a talk on smooth interacting
particle approximation of Feynman–Kac flows depending on a parameter, in the invited session organized by
Arnaud Doucet on «Applications of Particle Methods in Statistics». At the satellite workshop on «Particle and
Monte Carlo Methods», F. Le Gland has given a talk on the simulation of rare events using particle methods.

At the «Journées SMAI / MAS» (Modélisation Aléatoire et Statistique), held in September 2004 at IECN
(Institut Élie Cartan, Nancy), F. Le Gland has given a talk on the simulation of rare events using particle
methods, in the special session «Méthodes particulaires et applications» organized by F. Campillo.

9.4. Visits and invitations
Diego Salmeron Martinez, a PhD student of Mathieu Kessler at Universidad de Murcia, has visited us during

one month from mid–June to mid–July 2004, in the framework and with the support of the DYNSTOCH
european research network, see8.1.

Stéphane Sénécal, post–doc at the Institute of Statistical Mathematics in Tokyo, has visited us for one week
in May 2004, and has given a talk on his joint work with Arnaud Doucet on sampling strategies for sequential
Monte Carlo methods.

Alexander Yu. Veretennikov, professor at the University of Leeds, has visited us for two days in
December 2004, and has given a talk on the invariant probability distribution of an ergodic diffusion process,
and its regularity w.r.t. some parameter.
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Rivo Rakotozafy, assistant professor at the University of Fianaranstoa, has been awarded by the French
embassy in Antananarivo, Madagascar a grant to support three visits (one per year, each stay of three months
duration) to prepare a Madagascar habilitation thesis (HDR) under the supervision of Fabien Campillo.
A related objective is to set up a collaboration between the university of Fianaranstoa and INRIA. This
collaboration is mainly focused on Bayesian inference applied to engineering for renewable resources, see
the 2003 activity report of the former SIGMA2 project. These results were presented at the 36èmes «Journées
de Statistique» (SFdS’04), held in May 2004 in Montpellier, and at the 7ème CARI (Colloque Africain sur
la Recherche en Informatique), held in November 2004 in Hammamet. Rivo Rakotozafy was also involved in
the topic of mobile tracking in an urban cellular network.
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