
epor t

d ' c t i v i t y

2004

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Compsys

Compilation and Embedded Computing

Systems

Rhône-Alpes

Table of contents

1. Team 1

2. Overall Objectives 1

3. Scientific Foundations 3

3.1. Introduction 3
3.2. Optimization for Special Purpose Processors 4

3.2.1. Optimization of Assembly-Level Code 4
3.2.2. Scheduling under Resource Constraints 5

3.3. High-Level Code Transformations 5
3.3.1. Theoretical Models 6
3.3.2. Experiments 6

3.4. Compilation of Embedded Parallel Architectures 7
3.4.1. Design of Accelerators for Signal Processing 7
3.4.2. Scheduling Process Networks 7
3.4.3. Modular Parallelization and Interfaces 8
3.4.4. Optimization for Low Power 8

3.5. Federating Polyhedral Tools 9
3.5.1. Developing and Distributing the Polyhedral Tools 9
3.5.2. New Models 10

4. Software 10

4.1. Polylib 10
4.2. Pip 10
4.3. MMAlpha 10
4.4. Syntol 11
4.5. Software developments for FPGA 11
4.6. Clak: Algorithms on Integral Lattices 11
4.7. Register Allocation 11
4.8. CLooG: Loop Generation 11

5. New Results 12

5.1. Variable Coalescing under ssa Form for Assembly Code 12
5.2. Register Allocation and ssa Form Properties 12
5.3. Instruction Cache Optimization 13
5.4. Generating SystemC Simulation Models from High-Level Synthesis Tools 14
5.5. Integration of Z-polyhedra into MMAlpha 14
5.6. On Chip Traffic Analysis 14
5.7. Data-Flow IP Interface Generator 15
5.8. Memory Reuse and Modular Mappings 15
5.9. Optimal Barrier Placement in Nested Loops 16
5.10. Modular Scheduling 16
5.11. Locality Optimization 17

6. Contracts and Grants with Industry 17

6.1. Contracts with stmicroelectronics on Assembly Code Optimizations 17
6.2. Contracts with stmicroelectronics on Special-Purpose Circuit Synthesis 17

7. Other Grants and Activities 17

7.1. European Community 17
7.2. Soclib: « A Modeling & Simulation Platform for Systems on Chip » 18
7.3. CNRS Collaboration with the University of Illinois at Urbana-Champaign (USA) 18
7.4. Procope Convention with Passau University (Germany) 18

2 Activity Report INRIA 2004

7.5. Informal Cooperations 18
8. Dissemination 19

8.1. Conferences and Journals 19
8.2. Post-Graduate Teaching 19
8.3. Other Teaching and Responsibilities 19
8.4. Animation 20
8.5. Defense Committee 20
8.6. Workshops, Seminars, and Invited Talks 20

9. Bibliography 21

1. Team
Compsys exists since January 2002 as part of Laboratoire de l’Informatique du Parallélisme (Lip, UMR

CNRS ENS-Lyon UCB-Lyon Inria 5668), located at ENS-Lyon, and as an Inria pre-project. It is now a full

Inria project since January 2004. The objective of Compsys is to adapt and extend optimization techniques,

primarily designed for high performance computing, to the special case of embedded computing systems.

Team leader

Tanguy Risset [CR Inria]

Administrative Assistant

Isabelle Antunes [T CNRS, part-time (up to november 2004)]
Chiraz Benamor [A CNRS, part-time (from november 2004)]

Research scientist

Alain Darte [CR CNRS]
Paul Feautrier [Pr ENS-Lyon]
Fabrice Rastello [CR Inria]

Research scientist (partners)

Antoine Fraboulet [MC Insa-Lyon]
Anne Mignotte [Pr Insa-Lyon, (up to september 2004)]

Post Doc

Fabrice Baray [Post Doc Inria]

PhD Student

Hadda Cherroun [Algerian Grant, part-time]
Nicolas Fournel [MESR Grant]
Antoine Scherrer [BDI CNRS and STMicroelectronics]
Cédric Bastoul [ATER, Clermont-Ferrand]
Philippe Grosse [Grant CEA-LETI, Grenoble]

2. Overall Objectives
Keywords: automatic generation of vlsi chips, code optimization, compilation, dsp, fpga platforms, linear

programming, memory optimization, parallelism, regular computations, scheduling, tools for polyhedra and

lattices, vliw processors.

An embedded computer is a digital system, part of a larger system (appliances like phones, TV sets, washing
machines, game platforms, or larger systems like radars and sonars), which is not directly accessible to the
user. In particular, this computer is not programmable in the usual way. Its program, if it exists, has been
loaded as part of the manufacturing process, and is seldom (or never) modified.

The objective of Compsys is to adapt and extend optimization techniques, primarily designed for high
performance computing, to the special case of embedded computing systems. Compsys has four research
directions, centered on compilation methods for simple or nested loops. These directions are:

� code optimization for specific processors (mainly DSP and VLIW processors);

� high-level code transformations (including loop transformations for memory optimization);

� silicon compilation (with a link to micro-electronics);

� development of polyhedra manipulation tools.

2 Activity Report INRIA 2004

These researches are supported by a marked investment in polyhedra manipulation tools, with the aim of
constructing operational software tools, not just theoretical results. Hence the fourth research theme is centered
on the development of these tools. We expect that the Compsys experience on key problems in the design of
parallel programs (scheduling, loop transformations) and the support of our respective parent organizations
(Inria, CNRS, Ministry of Education) will allow us to contribute significantly to the European research on
embedded computing systems.

The term embedded system has been used for naming a wide variety of objects. More precisely, there are
two categories of so-called embedded systems: (1) control-oriented and hard real-time embedded systems
(automotive, nuclear plants, airplanes, etc.) and (2) compute-intensive embedded systems (signal processing,
multi-media, stream processing). The Compsys team is primarily concerned with the second type of embedded
systems which is now referred as embedded computing system. Design and compilation methods proposed by
the team will be efficient on compute intensive processing with big sets of data processed in a pipelined way.

Today, the industry sells much more embedded processors than general purpose processors; the field of
embedded systems is one of the few segments of the computer market where the European industry still has a
substantial share, hence the importance of embedded system research in the European research initiatives.

Compsys’ aims are to develop new compilation and optimization techniques for embedded systems. The
field of embedded computing system design is large, and Compsys does not intend to cover it in its entirety. We
are mostly interested in the automatic design of accelerators, for example optimizing a piece of (regular) code
for a DSP or designing a VLSI chip for a digital filter. Compsys’ specificity is the study of code transformations
intended for optimization of features that are specific to embedded systems, like time performances, power
consumption, die size. Our project is related to code optimization (like the Inria project Alchemy), and to
high-level architectural synthesis (like the Inria project R2D2).

Recently a big emphasis has been put on embedded software. This priority is motivated by the following
observations:

� The embedded system market is expanding. Among many factors, one can quote pervasive digital-
ization, low cost products, appliances, etc.

� Software engineering for embedded systems is not well developed in France, especially if one
considers the importance of actors like Alcatel, STMicroelectronics, Matra, Thalès, and others.

� Since embedded systems have an increasing complexity, new problems are emerging: computer
aided design, shorter time-to-market, better reliability, modular design, and component reuse.

Recently, several tools for high-level synthesis have appeared. These tools are mostly based on C or C++
(SystemC 1, VCC, and others). The support for parallelism in these tools is minimal, but academic projects are
more concerned: Flex 2 and Raw 3 at the MIT, Piperench 4 at the Carnegie-Mellon University, PiCo from the
HP-Labs and now at the Synfora 5 start-up, Compaan 6 at the University of Leiden, and others.

The basic problem that these projects have to face is that the definition of performance is more complex
than in classical systems. In fact, the problem is a multi-criteria optimization and one has to take into
account the execution time, the size of the program, the size of the data structures, the power consumption,
the manufacturing cost, etc. The incidence of the compiler on these costs is difficult to assess and control.
Success will be the consequence of a detailed knowledge of all steps of the design process, from a high-level
specification to the chip layout. A strong cooperation between the compilation and chip design communities
is needed.

1http://www.systemc.org/
2http://www.flex-compiler.lcs.mit.edu/
3http://www.cag.lcs.mit.edu/raw/
4http://www.ece.cmu.edu/research/piperench/
5http://www.synfora.com/
6http://embedded.eecs.berkeley.edu/compaan/

Project-Team Compsys 3

Computer aided design of silicon systems is a wide field. The main expertise in Compsys is in the
parallelization and optimization of regular computations. Hence, we will target applications with a large
potential parallelism, but we will attempt to integrate our solutions into the big picture of CAD environments
for embedded systems. This is an essential part of Compsys activities and will be a test of its success.

3. Scientific Foundations

3.1. Introduction
Twenty years ago, the subject of compilation was considered to be mature enough to become an industry,

using tools like Lex and Yacc for syntax analysis, and Graham-Glanville code generator generators. The
subject was reactivated by the emergence of parallel systems and the need for automatic parallelizers. The
hot topic is now the intermediate phase between syntax analysis and code generation, where one can apply
optimizations, particularly those that exploit parallelism, whether in an autonomous way or with the help of
the programmer. In fact, there is parallelism in all types of digital systems, from supercomputers to PCs to
embedded systems.

Compilation consists in a succession of code transformations. These transformations are applied to an
intermediate representation that may be very similar to the source code (high-level optimization), or very
similar to machine code (assembly code and even Register Transfer Level for circuit specification). Almost
always, the main constraint is that the meaning (or semantics) of the source program must not be altered.
Depending on the context, one may have to express the fact that the degree of parallelism must not exceed
the number of available resources (processors, functional units, registers, memories). Finally, the specification
of the system may enforce other constraints, like latency, bandwidth, and others. In the case of a complex
transformation, one tries to express it as a constrained optimization problem.

For instance, in automatic parallelization, the French community has mainly targeted loop optimization.
If the source program obeys a few regularity constraints, one can obtain linear formulations for many of
the constraints. In this way, the optimization problem is reduced to a linear program to be solved either in
rationals, or, in few cases, in integers. These are well-known techniques, which are based on the theory of
convex polyhedra – hence the name polyhedral model which is often affixed to the method. Based on this
theory, efficient software tools have been implemented. Mono- and multi-dimensional scheduling techniques
[20][19] are an outcome of this research and are ubiquitously used for handling nested loop programs (regular
circuit synthesis, process networks for instance).

Extending these methods to embedded systems is difficult because the objective function is complex to
express. Performance, for instance, is no longer an objective but a constraint, the goal being to minimize the
“cost” of the system, which may be a complex mixture of the design, the manufacturing, and the operation
costs. For instance, minimizing the silicon area improves the yield and hence decreases the manufacturing cost.
Power consumption is an important factor for mobile systems. Computer scientists are used to a paradigm in
which the architecture is fixed and the only free variable is the program. The critical problem is thus to extend
our optimization methods to handle much more free variables, mostly of a discrete nature.

In parallel with compiler research, the circuit design community has developed its own design procedures.
These techniques have as input a structural specification of the target architecture, and use many heavy-
weight tools for synthesis, placement, and routing. These tools mainly use sophisticated techniques for boolean
optimization and do not consider loops. When trying to raise the level of abstraction, circuit designers have
introduced the terms architectural synthesis and behavioral synthesis, but the tools did not follow, due to the
above mentioned problems (increased complexity of the constraints, increasing number of free variables).

Technological advances in digital electronics have motivated the emergence of standards for design
specifications and design methodologies. Languages like VHDL, Verilog, and SystemC have been widely
accepted. The concepts of off-the-shelf components (intellectual property or IP) and of platform-based design
are gaining importance. However, the problem remains the same: how to transform a manual design process
into a compilation process?

4 Activity Report INRIA 2004

The first proposal was to use several tools together. For instance, the hardware-software partitioning
problem is handled by architecture explorations, which rely on rough performance estimates, and the degree of
automation is low. But since the complexity of systems on chip still increases according to Moore’s law, there
is a pressing need to improve the design process, and to target other architectures, like DSP, or reconfigurable
FPGA platforms. The next generation of systems on chip will probably mix all the basic blocks of today
technology (DSP, Asic, FPGA, network and a memory hierarchy with many levels). We intend to participate in
the design and programming of such platforms.

Our vision of the challenges raised by these new possibilities is the following: one needs to understand

the technological constraints and the existing tools in order to propose innovative, efficient, and realistic
compilation techniques for such systems. Our approach consists in modeling the optimization process as
precisely as possible, and then to find powerful techniques towards the optimal solution. Past experience has
shown that taking simultaneously all aspects of a problem into account is near impossible.

Compsys has four research directions, each of which is a strong point in the project. These directions are
clearly not independent. Their interactions are as follows: “High-level Code Transformations” (Section 3.3) is
on top of “Optimization for Special Purpose Processors” (Section 3.2) and “Compilation of Parallel Embedded
Architectures” (Section 3.4), since its aim is to propose architecture-independent transformations. “Federating
Polyhedral Tools” (Section 3.5) is transversal because these tools are useful in all other actions.

3.2. Optimization for Special Purpose Processors
Participants: Alain Darte, Fabrice Rastello, Paul Feautrier.

Applications for embedded computing systems generate complex programs and need more and more
processing power. This evolution is driven, among others, by the increasing impact of digital television,
the first instances of UMTS networks, and the increasing size of digital supports, like recordable DVD.
Furthermore, standards are evolving very rapidly (see for instance the successive versions of MPEG). As a
consequence, the industry has rediscovered the interest of programmable structures, whose flexibility more
than compensates for their larger size and power consumption. The appliance provider has a choice between
hard-wired structures (Asic), special purpose processors (Asip), or quasi-general purpose processors (DSP for
multimedia applications). Our cooperation with STMicroelectronics leads us to investigate the last solution, as
implemented in the ST100 (DSP processor) and the ST200 (VLIW DSP processor).

3.2.1. Optimization of Assembly-Level Code

Embedded applications have special program profiles and dataflows. The power consumption is more than
proportional to the clock frequency. Since the program is loaded in permanent memory (ROM, Flash, etc.),
its compilation time is not significant. In these conditions, it is interesting to use aggressive and costly
compilation techniques, including the use of exact solutions to NP-hard problems. Our aim is thus to find
exact or heuristic solutions to combinatorial problems that arise in compilation for VLIW and DSP processors,
and to integrate these methods into industrial compilers for DSP processors (mainly the ST100 and ST200).
These combinatorial problems arise mainly in the removal of the multiplexor functions (known as ' functions),
which are inserted when converting into SSA form (“Static Single Assignment” [35]), in register allocation,
in opcode selection, and in code placement for optimization of the instruction cache. These optimizations
are mainly done in the last phases of the compiler, using an assembler-level intermediate representation. In
industrial compilers, these optimizations are handled in independent phases using heuristics, in order to limit
the compilation time.

One of the challenging features of today’s processors is predication [26], which interferes with all optimiza-
tion phases, as does the SSA form. Many classical algorithms become inefficient for predicated code. This
is especially surprising, since, besides giving a better tradeoff between the number of conditional branches
and the length of the critical path, converting control dependences into data dependences increases the size
of basic blocks and hence creates new opportunities for local optimization algorithms. One has first to adapt
classical algorithms to predicated code, but also to study the impact of predicated code on the whole compi-
lation process. What is the best time and place to do the if conversion? Which intermediate representation is

Project-Team Compsys 5

the best one? Is there a universal framework for the various styles of predication, as found in VLIW and DSP

processors?
Compilation for embedded processors is difficult because the architecture and operations are specially

tailored to the task at hand, because the amount of resources is strictly limited, and lastly, because one would
like to take the time to implement costly solutions. For instance, predication, the potential for instruction level
parallelism (SIMD, MMX), the limited number of registers and the small size of the memory, the use of direct-
mapped instruction caches, but also the special form of applications [17] generate many open problems. Our
objective is to contribute to the understanding and the solution of these problems, the main tool being the SSA

[36] representation.

3.2.2. Scheduling under Resource Constraints

The degree of parallelism of an application and the degree of parallelism of the target architecture do not
usually coincide. Furthermore, most applications have several levels of parallelism: coarse-grained parallelism
as expressed, for instance, in a process network (see Section 3.4.2), loop-level parallelism, which can be
expressed by vector statements or parallel loops, instruction-level parallelism as in “bundles” for Epic or VLIW

processors. One of the tasks of the compiler is to match the degree of parallelism between the application and
the architecture, in order to get maximum efficiency. This is equivalent to finding a schedule that respects
dependences and meets resource constraints. This problem has several variants, depending on the level of
parallelism and the target architecture.

For instruction-level parallelism, the classical solution, which is found on many industrial compilers, is to do
software pipelining using a technique known as modulo scheduling. This can be applied to the innermost loop
of a nest and, typically, generates code for an Epic, VLIW, or super-scalar processor. The problem of optimal
software pipelining can be exactly formulated as an integer linear program, and recent research has allowed
many constraints to be taken into account, as for instance register constraints. However the codes amenable
to these techniques are not fully general (at most one loop) and the complexity of the algorithm is still quite
high. Several phenomena are still not perfectly taken into account. Some examples are register spilling and
loops with a small number of iterations. One of our aims is to improve these techniques and to adapt them to
the STMicroelectronics processors.

It is not straightforward to extend the software pipelining method to loop nests. However, embedded com-
puting systems, especially those concerned with image processing, are two-dimensional or more. Paralleliza-
tion methods for loop nests are well known, especially in tools for automatic parallelization, but these do
not take resource constraints into account. A possible method consists in finding totally parallel loops, for
which the degree of parallelism is equal to the number of iterations. The iterations of these loops are then
distributed among the available processors, either statically or dynamically. Most of the time, this distribution
is the responsibility of the underlying runtime system (consider for instance the “directives” of the OpenMP
library). This method is efficient only because the processors in a supercomputer are identical. It is difficult
to adapt it to heterogeneous processors executing programs with variable execution time. One of today’s chal-
lenges is to extend and merge these techniques into some kind of multi-dimensional software pipelining or
resource-constrained scheduling. In the Syntol research prototype, we are exploring several heuristics for this
problem. One of them, which has already been used for reducing register pressure in software pipelining, con-
sists in adding virtual dependences to reduce parallelism. Another method consists in exhibiting a large set of
schedules that satisfy the resource constraints, and then selecting in this set those that satisfy the dependence
constraints. Other methods include the use of “linearized” schedules.

3.3. High-Level Code Transformations
Participants: Alain Darte, Paul Feautrier, Antoine Fraboulet, Anne Mignotte, Tanguy Risset.

Embedded systems generate new problems in high-level code optimization, especially in the case of loop
optimization. During the last 20 years, with the advent of parallelism in supercomputers, the bulk of research
in code transformation was mainly concerned with parallelism extraction from loop nests. This resulted

6 Activity Report INRIA 2004

in automatic or semi-automatic parallelization. It was clear to all concerned that there were other factors
governing performance, as for instance the optimization of locality or a better use of registers, but these
factors were considered, wrongly, to be less important than parallelism extraction. Today, we have realized
that performance is a resultant of many factors, and, especially in embedded systems, everything that has to
do with data storage is of prime importance, as it impacts power consumption and chip size.

In this respect, embedded systems have two main characteristics. Firstly, they are mass produced. This
means that the balance between design costs and production costs has shifted, giving more importance to
production costs. For instance, each transformation that reduces the physical size of the chip has the side-effect
of increasing the yield, hence reducing the manufacturing cost. Similarly, if the power consumption is high,
one has to include a fan which is costly, noisy, and unreliable. Another point is that many embedded systems
are powered from batteries with bounded capacity. Architects have proposed purely hardware solutions, in
which unused parts of the circuits are put to sleep, either by gating the clock or by cutting off the power. It
seems that the efficient use of these new features needs help from the compiler. However, power reduction
can be obtained also when compiling, e.g., by making better use of the processors or of the caches. For these
optimizations, loop transformations are the most efficient techniques.

As the size of the needed working memory may change by orders of magnitude, high-level code optimiza-
tion also has much influence on the size of the resulting circuit. If the system includes high performance blocks
like DSPs or Asics, the memory bandwidth must match the requirements of these blocks. The classical solution
is to provide a cache, but this is adverse to the predictability of latencies, and the resulting throughput may
not be sufficient. In that case, one resorts to the use of scratch-pad memories, which are simpler than a cache
but require help from the programmer and/or compiler to work efficiently. The compiler is a natural choice
for this task. One then has to solve a scheduling problem under the constraint that the memory size is severely
limited. Loop transformations reorder the computations, hence change the lifetime of intermediate values, and
have an influence on the size of the scratch-pad memories.

The theory of scheduling is mature for cases where the objective function is or is related to the execution
time. For other, non-local objective functions (i.e., when the cost cannot be directly allocated to a task), there
are still many interesting open problems. This is especially true for memory-linked problems.

3.3.1. Theoretical Models

Many local memory optimization problems have already been solved theoretically. Some examples are loop
fusion and loop alignment for array contraction and for minimizing the length of the reuse vector [22], and
techniques for data allocation in scratch-pad memory. Nevertheless, the problem is still largely open. Some
questions are: how to schedule a loop sequence (or even a process network) for minimal scratch-pad memory
size? How is the problem modified when one introduces unlimited and/or bounded parallelism? How does one
take into account latency or throughput constraints, or bandwidth constraints for input and output channels?

Theoretical studies here search for new scheduling techniques, with objective functions which are no longer
linear. These techniques may be applied to both high-level applications (for source-to-source transformations)
and low-level applications (e.g., in the design of a hardware accelerator). Both cases share the same computa-
tion model, but objective functions may differ in details.

3.3.2. Experiments

One should keep in mind that theory will not be sufficient to solve these problems. Experiments are required
to check the pertinence of the various models (computation model, memory model, power consumption model)
and to select the most important factors according to the architecture. Besides, optimizations do interact: for
instance reducing memory size and increasing parallelism are often antagonistic. Experiments will be needed
to find a global compromise between local optimizations.

In the framework of a cooperation with the company Cadence, Antoine Fraboulet had the opportunity of
evaluating these methods with the help of codesign tools like VCC [21]. Note also that Antoine Fraboulet had
a collaboration with the R2D2 project, on loop compilation as a tool for the design of specialized hardware
coprocessors.

Project-Team Compsys 7

Alain Darte, who was cooperating on a regular basis with the PiCo project at HP-Labs (now in Synfora), has
already proposed some solutions to the memory minimization problem. These ideas may be implemented in
the PiCo compiler in order to find their strengths and weaknesses.

3.4. Compilation of Embedded Parallel Architectures
Participants: Fabrice Baray, Alain Darte, Paul Feautrier, Tanguy Risset.

Embedded systems have a very wide range of power and complexity. A circuit for a game gadget or a pocket
calculator is very simple. On the other hand, a processor for digital TV needs a lot of computing power and
bandwidth. Such performances can only be obtained by aggressive use of parallelism.

The designer of an embedded system must meet two challenges:

� one has to specify the architecture of the system, which should deliver the required performance, but
no more than that;

� when this is done, one has to write the required software.

These two activities are clearly dependent, and the problem is how to handle their interactions.
The members of Compsys have a long experience in compilation for parallel systems, high-performance

computers, and systolic arrays. In the design of embedded computing systems, one has to optimize new
objective functions, but most of the work done in the polyhedral model can be reinvested. Our first aim is
thus to adapt the polyhedral model to embedded computing systems, but this is not a routine effort. As we will
see below, a typical change is to transform an objective function into a constraint or vice-versa. The models of
an embedded accelerator and of a compute-intensive program may be similar, but one may have to use very
different solution methods because the unknowns are no longer the same, and this is the scientific challenges
of the subject.

3.4.1. Design of Accelerators for Signal Processing

The advent of high-level synthesis techniques allows one to create specific design for reconfigurable
architectures, for instance with MMAlpha 7 (for regular architectures) or lower level tools such as HandelC,
SiliconC, and others. Validating MMAlpha as a rapid prototyping tool for systolic arrays on FPGA will allow
designers to use it with a full knowledge of its possibilities. To reach this goal, one has first to firm up the
underlying methodology and then to try to interface it with tools for control-intensive applications.

Towards this goal, the team will uses the know-how that Tanguy Risset has acquired during his participation
in the Cosi Inria project (before 2001) and also the knowledge of some members of the Arénaire Inria project
(Lip). This work is a natural extension of the “high level synthesis” action in the Inria project Cosi. We
want to show that, for some applications, we can propose, in less than 10 minutes, a correct and flexible
design (including the interfaces) from a high-level specification (in C, Matlab, or Alpha). We also hope to
demonstrate an interface between our tool, which is oriented towards regular applications, and synchronous
language compilers (Esterel, Syndex) which are more control oriented.

3.4.2. Scheduling Process Networks

Kahn process networks (KPN) were introduced thirty years ago [27] as a notation for representing parallel
programs. Such a network is built from processes that communicate via perfect FIFO channels. One can
prove that, under very general constraints, the channel histories are deterministic. This property allows one to
define a semantics and to talk meaningfully of the equivalence of two implementations. As a bonus, the circuit
diagrams used by signal processing specialists can be translated on-the-fly into KPNs.

The problem with KPNs is that they rely on an asynchronous execution model, while VLIW processors and
Asic are synchronous or partially synchronous. Thus, there is a need for a tool synchronizing KPNs. This
is best done by computing a schedule that has to satisfy data dependences within each process, a causality
condition for each channel (a message cannot be received before it is sent), and real-time constraints. However,

7http://www.irisa.fr/cosi/ALPHA/

8 Activity Report INRIA 2004

there is a difficulty in writing the channel constraints because one has to count messages in order to establish
the send/receive correspondence, and in multidimensional loop nests, the counting functions may not be affine.

In order to bypass this difficulty, we have defined another model, Communicating Regular Processes or
CRP, in which channels are represented as write-once/read-many arrays. One can then dispense with counting
functions. One can prove that the determinacy property still holds. As an added benefit, a communication
system in which the receive operation is not destructive is nearer to the expectations of system designers.

A prototype of a scheduler for CRP’s, Syntol, is under development. This tool extends the scheduling
techniques we developed for high-performance computers. Handling real-time constraints in this model is
especially easy. For instance, if the constraint is in the form of an upper bound on the latency, one has to write
that all values of the schedule are less than a maximum. This gives constraints similar to data dependence
constraints and can be solved by the same tools. It is even possible to keep the clock period as an unknown, and
to select the maximum value for which the problem is still feasible. Since power consumption is a decreasing
function of the clock period, this is a way of reducing dissipation.

3.4.3. Modular Parallelization and Interfaces

The scheduling techniques of MMAlpha and Syntol are complex and need powerful solvers using methods
from operational research. One may argue that compilation for embedded systems can tolerate much longer
compilation times than ordinary programming, and also that Moore’s law will help in tackling more complex
problems. However, these arguments are invalidated by the empirical fact that the size and complexity of
embedded applications increase at a higher rate than Moore’s law. Hence, an industrial use of our techniques
requires a better scalability, and in particular, techniques for modular scheduling. Some preliminary results
have been obtained at Ecole des Mines de Paris (especially in the framework of inter-procedural analysis), and
in MMAlpha (definition of structured schedules). The use of process networks is another way of tackling the
problem.

This work must be continued; one of the crucial points is the handling of off-the-shelf components (IP) in
the design of embedded systems.

Off-the-shelf components pose another problem: one has to design interfaces between them and the rest of
the system. This is compounded by the fact that a design may be the result of cooperation between different
tools; one has to design interfaces, this time between elements of different design flows. Part of this work has
been done inside MMAlpha; it takes the form of a generic interface for all linear systolic arrays. Our intention
is to continue in this direction, but also to consider other solutions, like Networks on Chip and standard
wrapping protocols such as VCI from VSIA 8.

3.4.4. Optimization for Low Power

Present-day general-purpose processors need much more power than was usual a few years ago: about 150W
for the latest models, or more than twice the consumption of an ordinary TV set. The next generation will need
still more power, because leakage currents, which are negligible at present, will increase exponentially as the
feature size decreases.

At the other end of the spectrum, for portable appliances, a lower power consumption translates into
extended battery life. But the main tendency is the advent of power scavenging devices, which have no external
power source, and extract power from the outside world, in the form of light, heat, or vibrations. Here the power
budget is more of the order of milliwatts than hundreds of watts.

Hence the present-day insistence on low-power digital design. Low power can be achieved in four ways:

� One can search for low-power technologies and low-power architectures. Reducing the size of the
die, or lowering the clock frequency or source voltage are all techniques that decrease the power
consumption.

8http://www.vsia.org

Project-Team Compsys 9

� One can search for low-power algorithms. Since, for most processors, the energy consumption is
proportional to the number of executed operations, this is most often synonymous to finding low
complexity algorithm.

� One can act at the level of the compiler. The rule here is to classify operations in term of their power
need, and to avoid, as far as possible, those with the highest need. For instance, an external memory
access costs much more than a cache access, hence the need for maximizing the hit ratio of the cache.
The same reasoning applies to registers and cache.

� Lastly, one can combine the hardware and software approaches. The latest generation of processors
and custom devices for embedded systems gives the software some degree of control on power
consumption, either by controlling the clock frequency and source voltage, or by disconnecting
unused blocks. The best would be to let the software or operating system be responsible for these
controls.

The Compsys group has just started to work on this subject, in cooperation with CEA-LETI in Grenoble.
Two PhD students, Nicolas Fournel and Philippe Grosse participate in this effort.

3.5. Federating Polyhedral Tools
Participants: Fabrice Baray, Alain Darte, Antoine Fraboulet, Paul Feautrier, Tanguy Risset.

Present-day tools for embedded system design have trouble handling loops. This is particularly true for logic
synthesis systems, where loops are systematically unrolled (or considered as sequential) before synthesis.
An efficient treatment of loops needs the polyhedral model. This is where past results from the automatic
parallelization community are useful. The French community is leading in this field, mainly as one of the long
term results of the C3 cooperative research program.

The polyhedral model is now widely accepted (Inria projects Cosi and A3, PIPS at Ecole des Mines de
Paris, Suif from Stanford University, Compaan at Berkeley and Leiden, PiCo from the HP-Labs, the DTSE

methodology at Imec, etc.). Most of these are research projects, but the increased involvement of industry
(Hewlett Packard, Philips) is a favorable factor. Polyhedra are also used in test and certification projects
(Verimag, Lande, Vertecs). A very recent development is the interest shown by several compiler groups for
polyhedral methods (the GCC group, Reservoir Labs in the USA).

Two basic tools that have emerged from this period are Pip [18] and the Polylib [37]. They are currently
the only available tools since maintenance has stopped on Omega. Their functionalities are parametric integer
programming and manipulations of unions of polyhedra. Granting that the showroom effect is important for
us (these tools are used in many foreign laboratories), we nevertheless think that maintaining, improving, and
extending these tools is a proper research activity. One of our goals must be the design of new tools for new
scheduling techniques.

In the following, we distinguish the development of existing tools, and the conception and implementation
of new tools. These tasks are nevertheless strongly related. We anticipate that most of the new techniques will
be evolutions of the present day tools rather than revolutionary developments.

3.5.1. Developing and Distributing the Polyhedral Tools

Recently, we have greatly increased the software quality of Pip and the Polylib. Both tools can now use
exact arithmetic. A CVS archive has been created for cooperative development. The availability for one year
of an ODL software engineer has greatly improved the Polylib code. A bridge for combined use of the two
tools has been created by Cédric Bastoul. These tools have been the core of new code generation tools [16]
[33] widely used in prototyping compilers. Paul Feautrier is the main developer of Pip, while Tanguy Risset
has been in charge of coordinating the development of the Polylib for several years. Other participants are in
Irisa (Rennes) and ICPS (Strasbourg), and also in Lyon and Leiden. In the near future, we contemplate the
following actions:

� For Pip, algorithmic techniques for better control of the size of intermediate values; comparison with
commercial tools like Cplex, for the non-parametric component of the tool.

10 Activity Report INRIA 2004

� For the Polylib, a better handling of Z-polyhedra used to target loops with non unit increments.

� For higher-level tools, Cédric Bastoul (a student of Paul Feautrier) has developed CLooG, an
improved loop generation tool along the lines of Fabien Quilleré’s system, which is now available
on the Web and is being incorporated in experimental compilers.

� For all these tools, we want to strengthen the user community by participating in the Polylib forum
and organizing meetings for all interested parties.

3.5.2. New Models

Industry is now conscious of the need for special programming models for embedded systems. Scholars
from the University of Berkeley have proposed new models (process networks, SDL, etc.). This has culminated
in the use of Kahn process networks, for which a complete overhaul of parallelization techniques is necessary
(see Section 3.4.2 above). Optimizations for memory reduction are also very important. We are developing a
tool, based on operations on integral lattices (including Minkowski’s successive minima), named Clak, that
can be used to derive affine mappings with modulos for memory reuse (see more details in Section 4.6).

Besides, our community has focused its attention on linear programming tools. For embedded systems,
the multi-criteria aspect is pervasive, and this might necessitate the use of more sophisticated optimization
techniques (non-linear methods, constraint satisfaction techniques, “pareto-optimal” solutions).

Here again, our contributions in these areas will be facilitated by our leadership in polyhedral tools. We
nevertheless expect that, as in the past, the methods we need have already been invented in other fields
like operational research, combinatorial optimization, or constraint satisfaction programming, and that our
contribution will be in the selection and adaptation (and possibly the implementation) of the relevant tools.

4. Software

4.1. Polylib
Participant: Tanguy Risset.

Polylib (available at http://www.irisa.fr/polylib/) is a C library for polyhedral operations. The library
operates on the objects of linear algebra, like vectors, matrices, convex polyhedra, unions of convex polyhedra,
lattices, Z-polyhedra, and parametric polyhedra. Tanguy Risset has been responsible for the development of
the Polylib for several years. More recently an ODL software engineer has firmed up the basic infrastructure
of the library. The development is now shared between Compsys, the Inria project R2D2 in Rennes, the ICPS

team in Strasbourg, and the University of Leiden. This tool is in use by many groups all over the world.

4.2. Pip
Participant: Paul Feautrier.

Paul Feautrier is the main developer for Pip (Parametric Integer Programming) since its inception in 1988.
Basically, Pip is an “all integer” implementation of the Simplex, augmented for solving integer programming
problems (the Gomory cuts method), which also accepts parameters in the non-homogeneous term. Most of
the recent work on Pip has been devoted to solving integer overflow problems by using better algorithms.
This has culminated in the implementation of an exact arithmetic version over the GMP library. Pip is freely
available under the GPL at the following URL: http://www.prism.uvsq.fr/~cedb/bastools/piplib.html. Pip is
widely used in the automatic parallelization community for testing dependences, scheduling, several kind of
optimizations, code generation, and others.

4.3. MMAlpha
Participant: Tanguy Risset.

Project-Team Compsys 11

Tanguy Risset is the main developer of MMAlpha since 1994 (http://www.irisa.fr/cosi/ALPHA/). The
design and development of this software tool was the heart of several PhD thesis, and MMAlpha is one of
the few available tools for very high-level hardware synthesis (including the design of parallel Asic). This tool
is now in the public domain and has been used in many places (England, Canada, India, USA). Its development
is shared between Compsys in Lyon and R2D2 in Rennes. MMAlpha is being evaluated by STMicroelectronics
and has been a basis for Compsys participation to European and RNTL Calls for Proposals.

4.4. Syntol
Participants: Paul Feautrier, Hadda Cherroun.

Syntol is a process network scheduler. Its development has benefited from the help of François Thomasset
(Inria-Rocquencourt). Hadda Cherroun is responsible for the development of the back-end of the scheduler,
whose aim is to generate a VHDL description, at the RTL level, of a digital circuit implementing the source
algorithm.

This year has seen the change from the Kahn process network model to Communicating Regular Processes,
the implementation of modular and structured scheduling techniques, and the connection to CLooG (see
Section 4.8) for code generation. Syntol is still in development. We expect its front end (scheduling) will
become mature enough for open distribution in 2005.

4.5. Software developments for FPGA
Participants: Tanguy Risset, Antoine Scherrer, Paul Feautrier, Antoine Fraboulet.

Compsys has bought two FPGA boards for rapid prototyping. The boards are WildCard II (from Annapolis
Inc), using the Xilinx XCV3000 FPGA circuit. These cards can be plugged into the PCMCIA slot of any
laptop. We use them as a demonstrator for the design tools from Compsys. We hope they will contribute to the
visibility of the project.

4.6. Clak: Algorithms on Integral Lattices
Participants: Fabrice Baray, Alain Darte.

Our recent work on memory optimizations (see Section 5.8) identified new mathematical tools useful for
the automatic derivation of array mappings that enable memory reuse. We developed several algorithms and
heuristics that rely on some mathematical concepts defined for integer lattices such as the notion of admissible
lattice, of critical lattice, the successive minima of Minkowski, lattice basis reduction, and so on. Fabrice
Baray, post-doc Inria, is currently developing a tool, called Clak (for Critical LAttice Kernel), that computes
or approximates the critical lattice for a given 0-symmetric polytope (i.e., a lattice, with minimal determinant,
whose intersection with the polytope is reduced to 0). This tool is a complement to the Polylib suite and we
believe it is going to be used for other not-yet-identified problems, in particular problems for which finding a
form of “bounding box” for a polytope is important.

4.7. Register Allocation
Participants: Alain Darte, Cédric Vincent.

Within the collaboration with the MCDT team at STMicroelectronics (see Section 6.1), Cédric Vin-
cent, advised by Alain Darte, developed a complete register allocator in the assembly-code optimizer of
STMicroelectronics. This work was part of the bachelor degree of Cédric Vincent. This was the first time a
complete implementation was done with success, outside the MCDT team, in their optimizer. See more details
in Section 5.2.

4.8. CLooG: Loop Generation
Participants: Paul Feautrier, Cédric Bastoul.

12 Activity Report INRIA 2004

The aim of CLooG is to generate a system of loops that visit once and only once the integer points in the
union of several Z-polyhedra. The algorithm is an improved version of a previous effort by Fabien Quilleré
(past Inria project Cosi). The code generated by CLooG is compact and quite efficient [1][4]. The availability
of CLooG on the Web as free software has been a triggering factor for a recent increase of interest for the
polytope model. Beside being used in several parallelizing compilers, CLooG has found applications in some
unconnected domains, as for instance in the search for optimal approximations to elementary transcendental
functions.

5. New Results

5.1. Variable Coalescing under ssa Form for Assembly Code
Participant: Fabrice Rastello.

The work presented here is a joint work with François de Ferrière and Christophe Guillon from the MCDT

team at STMicroelectronics.
The SSA form (Static Single Assignment) is an intermediate representation in which multiplexers (called

' functions) are used to merge values at a join point in the control graph. Since the ' functions cannot be
implemented, they must be replaced by register copy instructions when generating actual machine code. If this
is done naively, too many useless copies are generated and a coalescing phase is needed to eliminate them.

Leung and George [29] use a SSA form for programs represented as native machine instructions, including
the use of machine dedicated registers. For this purpose, they handle renaming constraints thanks to a pinning
mechanism. Pinning ' arguments and their corresponding definition to a common resource is also a very
attractive technique for coalescing variables.

Extending this idea, we proposed a method to reduce the '-related copies during the out-of-SSA translation,
thanks to a pinning-based coalescing algorithm that is aware of renaming constraints. The pinning-based
coalescing formulation is not strictly equivalent to the initial problem of variable coalescing, which is still
unsolved. We proved that our formalism is NP-complete, and, as a corollary, that the initial problem is also
NP-complete in the size of the largest ' function. We have implemented our algorithm in the LAO assembly
code optimizer from STMicroelectronics. Comparison with other approaches gives good results, which we
explain by comparing to several hand-coded examples.

All these results have been presented at the international conference IEEE CGO 2004 [8].

5.2. Register Allocation and ssa Form Properties
Participants: Alain Darte, Fabrice Rastello, Cédric Vincent.

The work presented in this paragraph is done in collaboration with members of the MCDT team at
STMicroelectronics. It is the logical extension of the work described in the previous paragraph.

The previously-described work deals with the minimization of the number of copy instructions. Reduction
of copy instructions is performed by the copy propagation, the partial redundancy elimination, and the register
coalescing phases. None of these phases minimizes the number of copy instructions. Actually, we proved
several new NP-complete results related to what we call the “aggressive coalescing” problem. The term
“aggressive” is in opposition to the term “conservative” used for the coalescing performed during the register
allocation phase: the aggressive coalescing tries to reduce the number of copies, with no register constraints,
while the conservative coalescing tries to reduce it without changing the chromatic number of the interference
graph. This other problem is also trivially NP-complete. Unfortunately, the coalescing problem is highly
related to the colorability of the interference graph and the two sub-problems of register allocation and register
coalescing cannot be dissociated.

Hence, our study led us to consider the register allocation problem in details. We are currently exploiting
the properties of the SSA form to improve register allocation, and in particular, how to spill and split variables.
These results are still incomplete: they must be firmed up, and implemented. Nevertheless, we believe that

Project-Team Compsys 13

the new concepts we introduced should allow us to design new heuristics for register allocation with fixed
scheduling, both in the general case and for the ST220 DSP. LAO2, an optimizer for assembly code under
development at STMicroelectronics, is the ideal vehicle for these experiments. So far, we developed a complete
register allocator for LAO2, based on a well-known strategy, the iterated register coalescing of George and
Appel [23]. This first implementation was done by Cédric Vincent, advised by Alain Darte, during his bachelor
degree and part of the funding from our contract with MCDT was used to support him. This exercise was for
us a way to get used to the internal representation of the LAO2 optimizer and, for the MCDT team, this was
the first success of an external implementation in their optimizer. We will use this (not so) elementary register
allocator as a basis for comparison for our future developments.

Among other problems, our current work is the design of a heuristic for the restricted problem of
conservative register coalescing during the translation out of SSA form. This is part of the contract, currently
under negotiation, with the MCDT team at STMicroelectronics.

5.3. Instruction Cache Optimization
Participants: Fabrice Rastello, Éric Thierry [Lip, Trio Project].

Results: The work presented in this paragraph is a joint work with Christophe Guillon and Thierry Bidault
from the MCDT team at STMicroelectronics.

The instruction cache is a small memory with fast access. All binary instructions of a program are executed
from it. In the ST220 processor from STMicroelectronics, the instruction cache is direct mapped: let L be the
size of the cache; the cache line i can hold only instructions whose addresses are equal to i modulo L.

When a program starts executing a block that is not in the cache, one must load it from main memory; this
is called a cache miss. This happens either at the first use of a function (cold miss), or after a conflict (conflict
miss). There is a conflict when two functions share the same cache lines; each of them removes the other from
the cache when their executions are interleaved. The cost of a cache miss is of the order of 150 cycles for the
ST220, hence the interest of minimizing the number of conflicts by avoiding line sharing when two functions
are executed in the same time slot. This problem has in fact two objective functions:

COL Minimizing the number of conflicts for a given execution trace. This is equivalent to the Max-K-Cut

and Ship-Building problems. We have proved that, for n functions, COL is not n1��-approximable.

EXP Minimizing the size of the code. This is equivalent to a traveling salesman problem (building an
Hamiltonian circuit) on a very special graph said Cyclic-Metric. With Florent Bouchez (a third year
student of ENS-Lyon), we have shown that, for a given solution of COL, EXP can be solved optimally
in O(nmin(n;L)).

Classically [24], the problem is solved in two steps: COL then EXP. In the light of our theoretical study, we
have a) taken final program size into consideration during the first phase (COL) of Gloy and Smith algorithm,
b) replaced the second phase (EXP) by our optimal solution. These optimizations have been implemented in
the linker of the ST220 processor. Experiments on several representative benchmark suites show that code
expansion is significantly reduced from 177% for the initial Gloy and Smith algorithm to 8%, while the cache
miss reduction is nearly the same as the Gloy and Smith solution with 35% cache miss reduction. Practical
results have been presented at the international conference IEEE CASES 2004 [7]. Part of the theoretical
results will appear in the Journal of Embedded Computing [3].
Current work: Experiments have shown the importance of a new objective function:

NBH The neighborhood objective function is due to the cache line granularity (larger than the size of
an instruction) and to the presence of a prefetch buffer. Indeed, memory slots just after the end of
a procedure have a high probability to be fetched whenever the end of that procedure has to be
executed (symmetric situation for the beginning of a procedure). The objective of NBH problem
is to put together procedure extremities that have a high affinity in terms of time locality. This is
equivalent to the Traveling Salesman problem.

14 Activity Report INRIA 2004

We have proved NBH to be NP-complete. So far, we have implemented a classical “branch-and-bound”
heuristic in the STMicroelectronics instruction cache optimizer tool which provides improvements compared
to the initial algorithm.
Perspectives: Experiments have also shown that the COL phase still contains many degrees of freedom.
Hence, in practice, it might be possible to optimize together both the NBH and COL objective functions
without producing any code size expansion. Our idea is to first regroup procedures with high neighboring
and conflict affinity within groups that fit in the cache. This is a kind of Min-Cut problem that can be solved
using a randomized algorithm. Then, within each group, we can find several ordering of procedures with good
affinity. We will use for that the previously-used branch-and-bound heuristic. Finally, we will merge all groups
together using a method similar to the Gloy and Smith’s one. This project is part of the contract, currently under
negotiation, with the MCDT team at STMicroelectronics.

5.4. Generating SystemC Simulation Models from High-Level Synthesis Tools
Participants: Antoine Fraboulet, Tanguy Risset.

As part of the participation of Compsys in the SocLib project (http://soclib.lip6.fr), the implementation of
a SystemC generator for MMAlpha has been provided. This has raised the problem of generating efficient
simulation models from high level design tools of digital circuits. The classical decomposition of hardware
into three automata (Moore, Mealy, and Transition automata) proposed by the SocLib group has a major
drawback: it duplicates code making it slower and more difficult to debug.

We have proposed a method to solve this problem by changing slightly the way the different automata are
built. We have explained precisely how to build the new automata from a register transfer level representation
of the circuit in linear time. We have experienced a 40% simulation time improvement on a simple example.
This work has been published at the Samos Workshop [9].

Simulation models are now a critical issue in SoC design. The integration of several simulation model
generators in any high-level synthesis tool is now mandatory to integrate the generated circuits in a SoC
simulation environment. We believe that our approach provides very efficient cycle-accurate simulation
models.

5.5. Integration of Z-polyhedra into MMAlpha
Participants: Antoine Fraboulet, Tanguy Risset.

Z-polyhedra computations have been available in the Polylib for a few years [30]. The extension of the
Alpha language to handle union of Z-polyhedra as domains (instead of simply unions of polyhedra) has also
been studied [34], however it was impossible to implement this extension in the MMAlpha software because
of a technical problem: the library linking C and Mathematica were not compatible in the Windows operating
system. We solved this problem this year and were able to finally extend many of the transformations of
the MMAlpha tools to handle Z-polyhedra. These are: analysis of the program correctness, change of basis
(used to reflect the space-time transformations), normalization (used to have a readable program after many
transformations), and all basic operations on polyhedra, Z-polyhedra, and matrices. Not all transformations
have been extended however; in particular, the scheduler and the code generators (C, SystemC, or VHDL code)
have not been extended to handle Z-polyhedra yet.

Some manual attempts have been made to use this new tool to express partitioning. However, further
experiments are needed, as it is not clear whether the best way of expressing partitioning and resource
constraints is to use Z-polyhedra or to keep polyhedra with additional dimensions (the translation to Z-
polyhedra being performed at the very last time, during code generation).

5.6. On Chip Traffic Analysis
Participants: Antoine Fraboulet, Tanguy Risset, Antoine Scherrer.

This work is being done in a PhD co-funded by the CNRS and STMicroelectronics.

Project-Team Compsys 15

Recent progress of the CMOS technology allows the integration of a complete parallel machine on a single
chip. Connecting the various components of this machine is a challenge, and the most probable solution is the
use of an on-chip network instead of the classical on-chip bus. In order to set the parameters of this on-chip
network as soon as possible, fast simulation of the interconnection network is needed early in the design flow.
To achieve this, we propose to replace some components by stochastic traffic generators. The design of the
traffic generators has to be as fast as possible, in order to prototype rapidly different parameters of the network
on chip.

Our approach is to (semi-)automatically generate a traffic generator from an execution trace of the
component we want to replace. We work on this topic in close relation with STMicroelectronics. We are
also working in collaboration with Patrice Abry, physicist at the Physics laboratory of ENS-Lyon. Patrice Abry
(http://perso.ens-lyon.fr/patrice.abry/) is a worldwide expert in traffic modeling with self-similar processes. We
are currently investigating the use of these advanced probabilistic models to model non-stationary behaviors
of the communications such as burst transactions (uninterrupted communication of a block of data between
two IPs).

Prior to this work, we provided a hardware wrappers classification, which was presented at the SCS
conference [10], proposing different levels of complexity depending on the wrappers needed by the appli-
cation. We are now working on the set-up of the flow for generating traffic generators, and the first results
should be submitted in early 2005. A publication of the theoretical part of this work is also scheduled for early
2005.

5.7. Data-Flow IP Interface Generator
Participants: Antoine Fraboulet, Tanguy Risset, Antoine Scherrer.

As IP models generated by MMAlpha use a systolic-like computational model, we have designed and
developed a hardware interface generator that can bridge the communication gap between bus or network
on chip interconnection mechanisms and our generated IP. This interface allows us to efficiently map burst-
mode communications generated by the processor to data-flow architectures. This interface has been presented
at the SocLib university booth during the DATE’04 conference [13]. We have started a collaboration with the
Lester laboratory (http://web.univ-ubs.fr/lester/) to add support for architectures generated by their tool Gaut.
Aside from the interface, we have developed a generic DMA engine used to generate burst transactions and a
terminal type that can process input and output events within the SocLib simulation environment. The interface
generator and its associated communication mechanism and performance using CPU or DMA driven transfers
have been presented at the ASAP’04 conference [6].

5.8. Memory Reuse and Modular Mappings
Participants: Alain Darte, Rob Schreiber [HP-Labs], Gilles Villard [Lip, Arénaire Project].

When designing hardware accelerators, one has to solve both scheduling problems (when is a computation
done?) and memory allocation problems (where is the result stored?). This is especially important because
most of these designs use pipelines between functional units (this appear in the code as successive loop nests),
or between external memory and the hardware accelerator. To decrease the amount of memory, the compiler
must be able to reuse it. An example is image processing, for which we might want to store only a few lines
and not the entire frame. A possibility to reduce the memory size is to reuse the memory locations assigned to
array elements, following, among others, the work of Francky Catthoor’s team [25], of Lefebvre and Feautrier
[28], and of Quilleré and Rajopadhye [32].

In our previous work (published at CASES’03), we introduced a new mathematical formalism for array
reuse, using the concept of critical lattice, so as to understand and analyze previous work. We found that they
are all particular cases of more general heuristics for finding a critical lattice. We also proved that, in practice,
we can build approximations that do not differ from the optimum more than by a multiplicative constant,
which depends only on the dimension of the problem.

16 Activity Report INRIA 2004

In 2004, we continued our study, analyzing in more details the strengths and weaknesses of previous
approaches for array reuse, revealing similarities and differences with early 70’s and 80’s work on data layouts
allowing parallel accesses – results that were forgotten in the meantime –, exploring more deeply the properties
of linear mappings with, in particular, a new result concerning the minimal dimensions of these mappings, etc.
This work has been submitted to IEEE Transactions on Computers, for a special issue on Embedded Systems,
Microarchitecture, and Compilation Techniques in memory of Bob Rau, leader of the PiCo project at HP-Labs,
in which our work grew. All details are available in the research report [12].

In practice, heuristics for the memory reuse problem are already in use in tools like PiCo. We hope these
researches will give a new interest to a possible cooperation with Synfora. We are also currently developing
the algorithms on lattices, successive minima, and critical lattices, needed to implement our memory reuse
strategies (see Section 4.6). This tool should have an impact both for the practical problem of designing
hardware accelerators and for the mathematical problem of finding the critical lattice of an object. This is a
fundamental algorithmic problem, which has not attracted much attention from mathematicians. Clak, built
on top of our present tools Pip and Polylib, is a perfect extension for our tool suite on polyhedral/lattice
manipulations.

5.9. Optimal Barrier Placement in Nested Loops
Participants: Alain Darte, Rob Schreiber [HP-Labs].

The results presented in this section are, a priori, a bit out of the mainstream of Compsys research. Rob
Schreiber, who has pursued a long collaboration since the mid 90’s with Alain Darte, came in May 2004, as
an invited professor at ENS-Lyon in the Compsys team. Rob Schreiber has been working on the high-level
synthesis of hardware accelerators in the past (PiCo project) but is now moving back to high performance
computing, which explains the topic of this joint work. Nevertheless, as embedded systems are incorporating
more and more features from high-performance computing, this research may find its applications in the future
development of languages for high-performance embedded systems.

Rob Schreiber’s team is currently working on recent parallel languages for high-performance computing,
such as Co-Array Fortran, Titanium, OpenMP, UPC, etc. In these languages, of SPMD type (Single-Program
Multiple-Data programs), one of the issues to ease the programming while ensuring performance is to let
the compiler optimize the necessary synchronizations. We started to study the literature on how to place
synchronization barriers in SPMD codes and we realized that, although well studied in the past and apparently
simple, this problem was actually not solved! The best contribution for barrier placement in nested loops was
by O’Boyle and Stöhr [31], who proposed an optimal (and complex) algorithm but only for some restricted
cases of loops (loops containing at most one other loop) and a heuristic in the general case. We developed an
algorithm, which is optimal for any form of nested loops for SPMD codes with reasonable assumptions on
synchronizations (same as for the Titanium language). The simplest (to understand) version of our algorithm
is of quadratic complexity (already better than O’Boyle and Stöhr’s algorithm) and we even proposed a linear-
time algorithm. All details of this work are available in the research report [11], a shorter version has been
submitted to PPoPP’05.

Several open questions remain, for example how to reorganize the code for minimizing synchronization
barrier requirements, in a simplified BSP (Bulk Synchronous Parallel) processing model (where the number
of barriers is the objective function) or how to place barriers in a finer BSP processing model, where threads
may have unbalanced workload (in which case adding barriers may actually reduce the execution time). This
research, if continued, would be part of a contract, currently under negotiation, with HP-Labs.

5.10. Modular Scheduling
Participant: Paul Feautrier.

Scheduling of ordinary programs is a highly non scalable process. We estimate that the scheduling time
grows as the sixth power of the program size. We have designed a new scheduling method, which uses
projections instead of linear programming, and which is both scalable and structured.

Project-Team Compsys 17

It is scalable because the scheduling proceeds by successive elimination of statements from the relevant
subset of the dependence graph. Hence, it is almost linear in the program size. It is still exponential in the loop
nest depths, but these factors are very small integers. It is structured because the application can be split in a
hierarchical process network, and because each process can be scheduled independently of the others.

All in all, the method improves the scheduler performance, facilitates modular scheduling, and promotes
reuse. The subject has already been presented to the Samos workshop [5]. An extended version is in
preparation. The method is implemented in the prototype scheduler Syntol, and is the basis for further work
on high-level synthesis of digital systems.

5.11. Locality Optimization
Participants: Paul Feautrier, Cédric Bastoul [ATER, Clermont-Ferrand].

Both general-purpose processors and embedded systems use a memory hierarchy, because DRAM memo-
ries are much slower than processors. While for general-purpose processors this hierarchy takes the form of a
succession of caches (whose management is entirely under control of the hardware), the tendency in embedded
systems is to use scratch-pad or local memory, which are managed by software. The reason is that for local
memories, one can still hope to provide real-time guarantees, which is impossible for caches.

We have started, four years ago, the design of a method for the automatic management of a local memory,
called chunking. The method has been emulated for a classical cache, with very good results. CLooG has been
developed as part of this effort. This has resulted in the PhD thesis of Cédric Bastoul (defended December 7,
2004) and in several papers, including one of the distinguished papers at Europar 2004.

6. Contracts and Grants with Industry
6.1. Contracts with stmicroelectronics on Assembly Code Optimizations

Participants: Alain Darte, Fabrice Rastello, Cédric Vincent.
The ProCD (Programmable Consumer Devices) contract was funded by STSI (i.e., contract between

STMicroelectronics and the Ministry of Industry). Its objective was the design of programs for multimedia
signal processing on a VLIW (Very Long Instruction Word) architecture. Compsys contribution was to work
on combinatorial optimization problems that arise when compiling programs for VLIW processors and,
in particular SSA removal (see Section 5.1), register allocation (see Section 5.2), and code placement for
instruction cache optimization (see Section 5.3).

Some of the funds from this contract were used as a support for Cédric Vincent who developed, as part of
his bachelor degree, a full iterated register allocator in LAO2, the code optimizer of the MCDT team.

6.2. Contracts with stmicroelectronics on Special-Purpose Circuit Synthesis
Participant: Tanguy Risset.

There is another STSI contract between Compsys and STMicroelectronics (Crolles plant) on experimentation
with MMAlpha for synthesis of STMicroelectronics special purpose circuits. Due to administrative problems,
the funding is not yet available, but the work has nevertheless begun (overhauling the Alpha-VHDL translator).
The contract is expected to be executed next year.

7. Other Grants and Activities
7.1. European Community

Participants: Alain Darte, Paul Feautrier, Tanguy Risset.

� Network of excellence Compsys is involved in the network of excellence HIPEAC (High-
Performance Embedded Architecture and Compilation), which has been granted by the European
community.

� ITEA project Compsys is involved in the Martes (model driven approach to real-time embedded
systems development) ITEA project proposal which has now the official ITEA label.

18 Activity Report INRIA 2004

7.2. Soclib: « A Modeling & Simulation Platform for Systems on Chip »
Participants: Antoine Fraboulet, Tanguy Risset.

Tanguy Risset and Antoine Fraboulet are members of the SocLib project (http://soclib.lip6.fr). Its aim is to
develop a library of simulation models for virtual components (IP cores) for Systems on Chip.

7.3. CNRS Collaboration with the University of Illinois at Urbana-Champaign

(USA)
Participants: Paul Feautrier, Alain Darte.

A convention between UIUC and CNRS supports visits and cooperation between David Padua’s team and
Compsys.

7.4. Procope Convention with Passau University (Germany)
Participant: Paul Feautrier.

Paul Feautrier cooperation with the University of Passau is supported by a Procope convention which has
been recently renewed.

7.5. Informal Cooperations

� Tanguy Risset is in regular contact with the University of Québec at Trois-Rivières (Canada), where
MMAlpha is in use.

� Compsys is in regular contact with Sanjay Rajopadhye’s team at Colorado State University (USA).

� Compsys is in regular contact with Francky Catthoor’s team in Leuwen (Belgium) and with Ed
Depreterre’s team at Leiden University (the Netherlands).

� Alain Darte has fruitful relations with the HP-Labs and Rob Schreiber’s group – with several joint
patents [15][14] and publications – and the past members of the PiCo team (Vinod Kathail at Synfora,
Scott Mahlke at the University of Michigan).

� Paul Feautrier has regular contact with Zaher Mahjoub’s team in the Faculté des Sciences de Tunis,
notably as the co-advisor of a PhD student.

� Compsys is in regular contact with Christine Eisenbeis’s team (Inria project Alchemy), with François
Charot and Patrice Quinton (Inria project R2D2), and with Alain Greiner and Fréderic Pétrot (Asim,
LIP6).

� Compsys participates in the EmSoc project with LETI (CEA Grenoble) on software techniques for
power minimization.

Project-Team Compsys 19

8. Dissemination

8.1. Conferences and Journals

� Alain Darte was one of the 3 program chairs of the IEEE 14th International Conference on
Application-specific Systems, Architectures and Processors (ASAP 2003) and he was (and will be)
member of the program committees of ASAP 2003, ASAP 2004, and ASAP 2005. He was member
of the program committees of CASES 2003 and CASES 2004 (ACM International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems) and he was publicity chair for
CASES 2004. He was one of the 6 members (3 Americans, 3 Europeans) of the technical program
committee for the new topic S2 (Compilers, architectures, and software synthesis for embedded
systems) of the conference DATE 2005 (Design, Automation and Test in Europe). He is member
of the steering committee of the workshop series CPC (Compilers for Parallel Computing). He
is member of the editorial board of the international journal ACM Transactions on Embedded
Computing Systems (ACM TECS).

� Paul Feautrier is associate editor of Parallel Computing and the International Journal of Parallel
Computing. He was the general chair of the ACM International Conference on Supercomputing
(Saint-Malo, June 26–July 1, 2004), and a member of the program committee of the conference
Compiler Construction 2004.

� Tanguy Risset is a member of the editorial board of Integration: the VLSI Journal. He will be a
member of the program committee of the SAMOS conference in 2005.

8.2. Post-Graduate Teaching

� In 2004-2005, Alain Darte and Paul Feautrier are sharing a master-degree course on advanced
compilation and program transformations.

� Paul Feautrier is thesis advisor for Cédric Bastoul (now ATER, Clermont-Ferrand), Christophe
Alias (UVSQ, co-advisor Denis Barthou), Yosr Slama (Faculté des Sciences de Tunis, co-advisor
Mohamed Jemni), Nicolas Fournel (co-advisor Antoine Fraboulet) and Philippe Grosse (co-advisor
Yves Durand, CEA-LETI). Hadda Cherroun has received a French-Algerian grant for an internship
of 18 months with Compsys, in preparation for an Algerian PhD.

� In 2004-2005, Tanguy Risset and Antoine Fraboulet started a new Master 2 course untitled “Design
of embedded computing systems” at Insa-Lyon.

8.3. Other Teaching and Responsibilities

� Alain Darte is in charge of the “Computer Science” division of the admission exam to ENS-Lyon.

� Paul Feautrier teaches the following subjects for first and second year students:

– A guided tour of Unix (L3IF).

– Operational Research (M1).

– Compilation project (M1).

� Paul Feautrier is the coordinator of the “Architecture and Compiler” track of the new Master of
ENS-Lyon.

� In 2004-2005, Tanguy Risset and Fabrice Rastello are in charge of the Compilation course to Master
1 students at ENS-Lyon.

20 Activity Report INRIA 2004

8.4. Animation

� Paul Feautrier is a member of the governing board and the PhD committee of ENS-Lyon, and of the
hiring committees of ENS-Lyon and Université Joseph Fourier. He is a member of the expert group
in charge of “Prime d’encadrement Doctoral et de Recherche”.

� Tanguy Risset is in charge of the Polylib mailing-list. This list includes most of the actors on the
polyhedral models.

� Alain Darte is member of the evaluation commission (CE) of INRIA.

8.5. Defense Committee

� Tanguy Risset was a member of the defense committee for François Donnet (January 20, 2004, LIP6,
Paris).

� Paul Feautrier is reviewer for the HDR (Professorial Thesis) of Olivier Beaumont (Bordeaux I), and
for the PhD thesis of Benoît Meister (ULP), and a member of the defense committee for the HDRs of
Mohammed Jemni (Tunis), J.-L. Lamotte (UPMC), and for the PhDs of Pierre Amiranoff (CNAM)
and Cédric Bastoul (UPMC).

8.6. Workshops, Seminars, and Invited Talks
(For conferences with published proceedings, see the bibliography.)

� Tanguy Risset gave a talk at the SAMOS 2004 workshop. He was invited to give a talk
to the Flemish network PA3CT untitled “Some trends in High Level Synthesis Tools”
(http://www.elis.rug.ac.be/wog/).

� Tanguy Risset and Antoine Fraboulet presented a demonstration at the university booth of DATE’04
untitled “HW/SW Fast and Accurate Prototyping” (demo available at http://soclib.lip6.fr/)

� Alain Darte gave a talk at the 11th Workshop on Compilers for Parallel Computing (CPC 2004), in
Seeon (Germany). He attended CASES 2004 as a member of the organization.

� Paul Feautrier gave one of the invited lectures at FORMATS+FTRTFT’04, September 22–24, 2004,
in Grenoble, and gave a talk at the SAMOS 2004 workshop.

� Antoine Fraboulet, Antoine Scherrer, and Tanguy Risset attended the annual RTP SoC workshop
(May 16–19, 2004) and participated to the presentation of the SocLib project.

� Antoine Scherrer made a presentation at the PhD student meeting organized by the Architecture,
Network, and Parallelism CNRS research group (GDR ARP), September 29, 2004 in Antibes.

� Antoine Scherrer attended the Summer School WAMA: Wavelet And Multifractal Analysis 2004,
Corsica, France, July 19–31, 2004 - http://wama2004.org/

Project-Team Compsys 21

9. Bibliography

Articles in referred journals and book chapters

[1] C. BASTOUL, P. FEAUTRIER. Adjusting a Transformation for Legality, in "Parallel Processing Letters", to
appear.

[2] A. DARTE, G. HUARD. New Complexity Results on Array Contraction and Related Problems, in "Journal of
VLSI Signal Processing", to appear, vol. 40, no 1, May .

[3] C. GUILLON, F. RASTELLO, T. BIDAULT, F. BOUCHEZ. Procedure Placement using Temporal-Ordering

Information: Dealing with Code Size Expansion, in "Journal of Embedded Computing", to appear, 2004.

Publications in Conferences and Workshops

[4] C. BASTOUL, P. FEAUTRIER. More Legal Transformations for Locality, in "Euro-Par’04", Distinguished Paper
Award, vol. LNCS 3149, Springer Verlag, 2004, p. 272–283.

[5] P. FEAUTRIER. Scalable and Modular Scheduling, in "Computer Systems: Architectures, Modeling and
Simulation (SAMOS 2004)", A. D. PIMENTEL, S. VASSILIADIS (editors)., vol. LNCS 3133, Springer Verlag,
July 2004, p. 433–442.

[6] A. FRABOULET, T. RISSET. Efficient On-Chip Communications for Data-Flow IPs, in "Application Specific
Array Processors (ASAP’04)", IEEE Computer Society Press, 2004, p. 293-303.

[7] C. GUILLON, F. RASTELLO, T. BIDAULT, F. BOUCHEZ. Procedure Placement using Temporal-Ordering

Information: Dealing with Code Size Expansion, in "International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES’04)", ACM Press, 2004, p. 268–279.

[8] F. RASTELLO, F. DE FERRIÈRE, C. GUILLON. Optimizing Translation Out of SSA using Renaming Con-

straints, in "International Symposium on Code Generation and Optimization (CGO’04)", IEEE Computer
Society Press, March 2004, p. 265-278.

[9] A. SCHERRER, A. FRABOULET, T. RISSET. Hardware-Software Fast and Accurate Prototyping with Soclib

& MMAlpha, in "Computer Systems: Architecture, Modeling, and Simulation (SAMOS 2004)", A. D.
PIMENTEL, S. VASSILIADIS (editors)., LNCS, vol. 3133, Springer Verlag, July 2004, p. 453–462.

[10] A. SCHERRER, T. RISSET, A. FRABOULET. Hardware Wrapper Classification and Requirements for On-Chip

Interconnects, in "Signaux, Circuits et Systèmes 2004, Monastir, Tunisie", March 2004, p. 31-34.

Internal Reports

[11] A. DARTE, R. SCHREIBER. Nested Circular Arc Families: A Model for Barrier Placement in Single-Program,

Multiple-Data Codes with Nested Loops, Technical report, no RR2004-57, LIP, ENS-Lyon, December 2004.

[12] A. DARTE, R. SCHREIBER, G. VILLARD. Lattice-Based Memory Allocation, Technical report, no RR2004-
23, LIP, ENS-Lyon, April 2004.

22 Activity Report INRIA 2004

Miscellaneous

[13] A. SCHERRER, A. FRABOULET, T. RISSET. Hardware-Software Fast and Accurate Prototyping with Soclib

& MMAlpha, February 2004, Design, Automation and Test in Europe (DATE’04), University Booth Demon-
stration.

Bibliography in notes

[14] A. DARTE, B. R. RAU, R. SCHEIBER. Programmatic Iteration Scheduling for Parallel Processors, August
2002, US patent number 6438747.

[15] A. DARTE, R. SCHREIBER. Programmatic Method For Reducing Cost Of Control In Parallel Processes, April
2002, US patent number 6374403.

[16] E. F. DEPRETTERE, E. RIJPKEMA, P. LIEVERSE, B. KIENHUIS. Compaan: Deriving Process Networks from

Matlab for Embedded Signal Processing Architectures, in "8th International Workshop on Hardware/Software
Codesign (CODES’2000), San Diego, CA", May 2000.

[17] BENOÎT. DUPONT DE DINECHIN, C. MONAT, F. RASTELLO. Parallel Execution of the Saturated Reductions,
in "Workshop on Signal Processing Systems (SIPS 2001)", IEEE Computer Society Press, 2001, p. 373-384.

[18] P. FEAUTRIER. Parametric Integer Programming, in "RAIRO Recherche Opérationnelle", vol. 22, September
1988, p. 243–268.

[19] P. FEAUTRIER. Some Efficient Solutions to the Affine Scheduling Problem, Part II, Multidimensional Time, in
"International Journal of Parallel Programming", vol. 21, no 6, December 1992.

[20] P. FEAUTRIER. Some Efficient Solutions to the Affine Scheduling Problem, Part I, One Dimensional Time, in
"International Journal of Parallel Programming", vol. 21, no 5, October 1992, p. 313-348.

[21] A. FRABOULET. Optimisation de la mémoire et de la consommation des systèmes multimédia embarqués, Ph.
D. Thesis, INSA de Lyon, November 2001.

[22] A. FRABOULET, K. GODARY, A. MIGNOTTE. Loop Fusion for Memory Space Optimization, in "IEEE
International Symposium on System Synthesis, Montréal, Canada", IEEE Press, October 2001, p. 95–100.

[23] L. GEORGE, A. W. APPEL. Iterated Register Coalescing, in "23rd ACM Symposium on Principles of
Programming Languages, St. Petersburg Beach, FL, USA", January 1996, p. 208-218.

[24] N. GLOY, M. D. SMITH. Procedure Placement Using Temporal-Ordering Information, in "ACM Transactions
on Programming Languages and Systems (TOPLAS)", vol. 21, no 5, 1999, p. 977-1027.

[25] E. D. GREEF, F. CATTHOOR, H. D. MAN. Memory Size Reduction Through Storage Order Optimization for

Embedded Parallel Multimedia Applications, in "Parallel Computing", vol. 23, 1997, p. 1811-1837.

Project-Team Compsys 23

[26] R. JOHNSON, M. SCHLANSKER. Analysis of Predicated Code, in "Micro-29, International Workshop on
Microprogramming and Microarchitecture", 1996.

[27] G. KAHN. The Semantics of a Simple Language for Parallel Programming, in "IFIP’74", N. HOLLAND

(editor)., 1974, p. 471-475.

[28] V. LEFEBVRE, P. FEAUTRIER. Automatic Storage Management for Parallel Programs, in "Parallel Comput-
ing", vol. 24, 1998, p. 649-671.

[29] A. L. LEUNG, L. GEORGE. Static Single Assignment Form for Machine Code, in "ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI)", 1999, p. 204–214.

[30] S. P. K. NOOKALA, T. RISSET. A Library for Z-polyhedral Operations, Technical report, no 1330, Irisa,
Rennes, 2000.

[31] M. O’BOYLE, E. STÖHR. Compile Time Barrier Synchronization Minimization, in "IEEE Transactions on
Parallel and Distributed Systems", vol. 13, no 6, 2002, p. 529–543.

[32] F. QUILLERÉ, S. RAJOPADHYE. Optimizing Memory Usage in the Polyhedral Model, in "ACM Transactions
on Programming Languages and Systems", vol. 22, no 5, 2000, p. 773-815.

[33] F. QUILLERÉ, S. RAJOPADHYE, D. WILDE. Generation of Efficient Nested Loops from Polyhedra, in
"International Journal of Parallel Programming", vol. 28, no 5, 2000, p. 469–498.

[34] P. QUINTON, S. V. RAJOPADHYE, T. RISSET. Extension of the Alpha language to recurrences on sparse

periodic domains, in "Int. Conf. on Application Specific Array Processors", 1996.

[35] V. SREEDHAR, R. JU, D. GILLIES, V. SANTHANAM. Translating Out of Static Single Assignment Form, in
"Static Analysis Symposium, Italy", 1999, p. 194 – 204.

[36] A. STOUTCHININ, F. DE FERRIÈRE. Efficient Static Single Assignment Form for Predication, in "International
Symposium on Microarchitecture", ACM SIGMICRO and IEEE Computer Society TC-MICRO, 2001.

[37] D. WILDE. A library for doing polyhedral operations, Technical report, no 785, Irisa, Rennes, France, 1993.

