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2. Overall Objectives
LEAR’s main focus of research is learning based approaches to visual object recognition and scene

interpretation, particularly for image retrieval and video indexing. Understanding the content of everyday
images and videos is one of the most challenging problems in computer vision. The extent to which we can
do this is currently limited, but we believe that very significant advances will be made over the next few years
by combining emerging statistical learning techniques with state of the art image descriptors. This field is also
close to a major threshold of applicability: even partial solutions are likely to enable many new applications.

LEAR’s main research areas are:
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• Image description. Many efficient lighting and viewpoint invariant image descriptors are now
available, such as for example affine-invariant interest points. Our current research aims to extend
these techniques to describe textures, to define more powerful similarity and saliency measures and
to characterize 2D and 3D shape information.

• Learning. Our research on machine learning and statistical modeling is mainly aimed at improving
their applicability to visual recognition and computer vision. It includes both the selection, evaluation
and adaptation of existing methods, and the development of new ones designed to take vision specific
constraints into account. Particular challenges include: dealing with the huge amounts of data that
image and video collections contain; handling large rich natural class hierarchies rather than just
simple yes/no classifiers; and capturing enough information about the domain to allow generalization
from just a few images, rather than from large carefully marked-up training databases.

• Recognition. Visual object recognition requires the construction of exploitable visual models for
both particular objects and object categories. Achieving good invariance to viewpoint, lighting,
occlusion and background is challenging even for exactly known rigid objects, and these difficulties
are greatly compounded when reliable generalization across object categories is needed. Our
research combines advanced image description techniques with learning for good invariance and
generalization. Currently the selection and coupling of image descriptors and learning techniques
is done by hand, and one significant challenge is the automation of this process, for example using
automatic feature selection and statistically-based validation diagnostics.

3. Scientific Foundations
3.1. Image description

We believe that the extraction of robust image descriptors is a critical component of any visual recognition
system, and even though many efficient descriptors are already available, further research is clearly needed
in this area. One can go a certain distance using simplistic descriptors, but their unreliability and lack
of invariance puts a heavy burden on the learning method and the training data and ultimately limits the
performance that can be achieved. Better descriptors allow simpler learning methods to be used and produce
better separation of classes, potentially allowing generalization from just a few examples instead of requiring
large, carefully engineered training databases.

The kinds of descriptors that we advocate have a certain number of basic properties:

• Locality and redundancy: For resistance to changes of background and occlusions, reduced sen-
sitivity to changes of viewpoint and variable intra-class geometry, and robustness against individual
feature extraction failures, descriptors should have relatively small spatial support, but there should
be many of them in each image. Schemes based on collections of image patches or fragments are
more robust and better adapted to object-level queries than global whole-image descriptors.

• Salience:Fragments are not very useful unless they can be extracted automatically and found again
in other images. Hence, rather than using general fragments, we focus on local descriptors based at
particularly salient points — “keypoints” or “points of interest”. This gives a sparser and hence more
efficient representation, and one that can be constructed automatically in a preprocessing step. To be
useful, such points must be accurately relocalizable in other images, with respect to both position
and scale.

• Photometric and geometric invariance: The interest points and their descriptors should have
an appropriate degree of invariance to changes of illumination and variations of local image
geometry induced by changes of viewpoint, viewing distance, and local intra-class variability. In
practice, geometric invariance is usually approximated by invariance to Euclidean, similarity or
affine transforms of the local image.
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• Informativeness: Notwithstanding all of the above types of invariance, the descriptors should be
informativein the sense that they are rich sources of information about image content that can easily
be exploited in scene characterization and object recognition tasks. Images contain a lot of variety,
so this requires relatively high dimensionality. Just as importantly, the useful information should
be manifest, not hidden in obscure high-order correlations between coefficients. Image formation
is essentially a spatial process, so in practice this favours descriptors that code relative position
information manifestly (e.g. context-style descriptors rather than moments or Fourier descriptors).

Our current research in this area is focused on creating detectors and descriptors that are better adapted to
particular kinds of imagery, incorporating spatial neighborhood and region constraints to improve informa-
tiveness, and extending the scheme to cover different kinds of locality.

3.2. Learning
We are interested in learning and statistics mainly as technologies for attacking difficult vision problems, so

we take an eclectic approach, using a wide variety of techniques ranging from classical statistical generative
and discriminative models to modern kernel, margin and boosting based machines. Parameter-rich models
and limited training data are the norm in vision, so overfitting needs to be controlled by various types of
regularization, model and feature selection, and dimensionality reduction methods, after being measured using
methods such as cross-validation, information criteria and capacity bounds. Visual descriptors tend to be high
dimensional and they typically contain some redundancy, so we often preprocess data using techniques such as
PCA and its nonlinear variants, ICA, and LLE/Isomap, to reduce it to a more manageable dimensionality. To
capture the shapes of complex probability distributions over high dimensional descriptor spaces, we either fit
mixture models and similar structured semi-parametric probability models, or reduce them to histograms using
vector quantization techniques such as K-means. Missing data is common owing to unknown class labels,
feature detection failures, occlusions and intra-class variability, so we often need to use completion techniques
such as Expectation Maximization. On the discriminative side, machine learning techniques such as Support
Vector Machines, Relevance Vector Machines, and Boosting, are used to produce flexible classifiers and
regression methods based on visual descriptors. Visual categories have a rich nested structure, so techniques
that handle large numbers of classes and nested classes are especially interesting to us. Images contain huge
amounts of data, so we need to use algorithms suited to large-scale learning problems, and it is expensive and
tedious to label large numbers of training images, so unsupervised, semi-supervised and transductive learning
methods are of particular interest. Weakly labelled data is also common — for example one may be told that
a training image contains an object of some class, but not where the object is in the image — and variants of
unsupervised, correlational, and co-learning are useful for handling this.

We keep up to date on learning technology by maintaining active links with both the statistics community,
most notably via collaborations with the INRIA projects MISTIS and SELECT (formerly IS2), and the
machine learning one, most notably via the EU project LAVA and the Network of Excellence PASCAL.

3.3. Recognition
The current state of progress in visual recognition shows clearly that combining advanced image descriptors

with modern learning and statistical modelling techniques has the potential to produce very significant
advances. We believe that, taken together and tightly integrated, these techniques have the potential to make
visual recognition a widespread technology.

The kind of process that we advocate makes full use of the unusual robustness and richness of our image
description methods (see §3.1) to provide a vocabulary of base features that already goes a long way towards
characterizing the category being recognized. The final learning based classifier is thus mainly responsible
for extending the model to larger amounts of intra-class variation and gross changes of aspect or viewpoint,
and for capturing the subtler higher-order correlations that are needed to fine tune the base performance.
That said, our approach is not simply feature extractionthenlearning: the integration is actually much tighter
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than this. Nearly every stage of our descriptor chain uses learning and statistical modelling in a fundamental
way, to generate or select robust invariant features, to squeeze out redundancy and bring out informativeness.
Similarly, to maximize their performance, the final learning methods use descriptor comparison metrics
(kernels, reference densities, structural models) that are intimately based on the statistical properties and
invariances (or lack thereof) of the learned descriptors.

4. Application Domains
A solution to the general object recognition problem will enable a wide range of applications including

defense, health care, human-computer interaction, image retrieval and data mining, industrial and personal
robotics, manufacturing, scientific image analysis, space exploration, surveillance and security, and trans-
portation. In fact, with the ever expanding array of image sources, some form of automatic object recognition
technology must eventually be an integral part of every information system. Even partial solutions are likely
to enable many applications.

One of LEAR’s main application domains is image and video indexing. This is an area with huge potential.
For example, it is estimated that 96% of all data currently generated by humanity is personal images and
home videos1. Currently, we are working on developing indexing techniques for camera equipped hand-held
devices such as personal digital assistants, on object-level structuring and indexing of feature film videos, and
on applying our techniques to surveillance in the context of military applications.

Object-level image and video structuringorganize the content of an image or a video in terms of the
objects and actions contained in it, and thus allow the user to browse and access it in terms of high-level,
semantically meaningful units. For example, within the European project VIBES, software was developed that
allows a video database to be searched for a given set of characters, scenes or actions based on user-selected
regions containing examples of these. In the European project AceMedia, we are developing methods that find
humans in still images and categorize their actions.

A personal visual assistantis a portable device equipped with a camera that can identify the category or
instance of an object that it sees, and supply the user with associated information. A software prototype is
being developed within the European project LAVA to test and validate our algorithms.

Surveillance requires the detection and recognition of objects. In our case, a military application, the
camera is static and the detection is therefore relatively straightforward. The subsequent recognition should
then differentiate between different types of vehicles.

5. Software
5.1. Software for computing local invariant features

Participants: Cordelia Schmid, Michael Sdika, Gyuri Dorko, Krystian Mikolajczyk [U. Oxford], Andrew
Zisserman [U. Oxford], Tinne Tuytelaars [KU Leuven], Luc Van Gool [KU Leuven], Jiri Matas [U. Prague].

The local feature extraction programs developed during K. Mikolajczyk’s PhD at INRIA and his postdoc at
Oxford [3][4][21] have been improved in speed and accuracy. A well-documented library is available to the
members of the team. A joint evaluation has also been made, to compare the performance of the approach
with affine invariant feature extractors developed at Oxford, Leuven and Prague [30]. The study is based
on a carefully designed test setup with well-defined comparison criteria and a set of images containing
representative scenes viewed under different transformations. The software is available on the internet and
should allow the evaluation of future detectors. The executables of the different detectors included in the
comparison are also available, onhttp://lear.inrialpes.fr/software.

5.2. Object recognition demonstrator
Participants: Cordelia Schmid, Michael Sdika, Bill Triggs, Roger Mohr.

http://lear.inrialpes.fr/software
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Figure 1. Top row: the matched affine-invariant regions and the estimated transformation between the query and
the retrieved image. Note that the regions recover the same photometric information despite large changes of

viewpoint, and hence allow rich viewpoint-invariant descriptors to be calculated. Bottom row: on the left the query
image and the retrieved image. On the right some of the other database images.
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By combining affine invariant feature extraction with a descriptor retrieval mechanism and a verification
step, an image database can be searched for examples of a given specific object or scene. The demonstrator
runs under Linux with a web camera. A retrieval search takes about half a second in a database containing 400
images. Figure1 shows an example of the interface.

5.3. Human detection software
Participants: Navneet Dalal, Bill Triggs, Cordelia Schmid.

Software for detecting humans in static images has been developed as part of the European Union FP6
Integrated Project AceMedia. The current version of the method is restricted to images of fully visible, standing
people. A new database containing more than 1800 annotated human images has also been collected to allow
the method to be tested.

6. New Results
6.1. Image description

Keywords: feature detection, grey-level descriptors, performance evaluation, photometric invariants, shape
features.

Participants: Cordelia Schmid, Frédéric Jurie, Bill Triggs, Michael Sdika, Krystian Mikolajczyk [Oxford],
Andrew Zisserman [Oxford], Salil Jain, Aurélie Bugeau, Tijmen Moerland.

6.1.1. Affine-invariant descriptors
We have developed scale- and affine-invariant salient point detectors [1][4] that give excellent performance

for recognizing both specific objects and scenes, and texture and object classes [6][7].
Scale invariance is obtained by searching for maxima in scale-space. Different functions can be used to

construct the scale-space, for example the Laplacian or the Hessian of the image intensity. A combination of
Harris interest points computed in scale-space with a scale selection based on the Laplacian has shown very
good performance. However, in the presence of significant viewpoint changes, scale invariance alone does not
suffice for reliable recognition, and an extension to affine invariance is necessary. This is obtained by running
an iterative affine warping procedure that reduces the interest point’s second-moment matrix to normal form.
For each point we then obtain an associated affine-invariant region on which a conventional descriptor can
be computed (see figure1 above). A performance evaluation has shown that the points and their regions can
be detected repeatably in the presence of significant scale changes (up to a factor 4) and affine deformations
(viewing angle changes of up to 70 degrees).

Various other approaches for detecting affine-invariant interest points or regions have been developed at
Leuven, Oxford and Prague universities, the Leuven detectors combining points and edges as well as extracting
intensity maxima, the Prague one extracting maximally stable connected components. We have collaborated
with Leuven, Oxford and Prague on a comparison of these approaches. The results [30] show that the different
detectors all perform well in the presence of large viewpoint changes. The detectors are complementary
and ideally several of them should be used in parallel. None of them outperforms all of the others over all
types of scenes and transformations. For example some are more adapted to structured scenes and others to
textures. In most of our experiments, either the Prague MSER regions or our Hessian-Affine points provide
the best repeatability score, followed by the Harris-Affine points. In contrast, the Oxford salient regions give
relatively low repeatability. For the Leuven edge-based region detector, the performance largely depends on
scene content, i.e. whether the image contains stable curves or not. The Leuven intensity extrema based region
detector gives average scores. Another contribution of our study is the carefully designed test setup (c.f. section
5).

1http://www.sims.berkeley.edu/research/projects/how-much-info/summary.html

http://www.sims.berkeley.edu/research/projects/how-much-info/summary.html


Project-Team LEAR 7

6.1.2. Performance evaluation of local descriptors
Given a set of stably detected local image regions, we can calculate local image descriptors based on them

and use these for matching and recognition. The descriptors should be distinctive and at the same time robust,
both to changes in illumination and viewing conditions and to inaccuracies of the region detector. Many
different descriptors have been proposed in the literature, and it was unclear which were the most appropriate
for particular problems and how their performance depended on the detector. To help to clarify this, we have
evaluated the pairing of several different descriptors with several different interest point detectors and have
developed an improved descriptor [3], see also [36] for preliminary results.

Our evaluation was carried out for different types of images and transformations, using recall/precision as
the main quality criterion. By varying the value of the similarity threshold for declaring a match between two
descriptors, we generated the curves of the trade-off between the number of correct matches and the number
of false matches obtained for an image pair.

We compared shape context, steerable filters, PCA-SIFT, differential invariants, spin images, SIFT, complex
filters, moment invariants, and cross-correlation for different types of interest regions. We also proposed an
extension of the SIFT descriptor, and showed that it outperforms the original method. The ranking of the
descriptors is mostly independent of the point detector used, with the SIFT based descriptors performing best.
Their success can be explained by their robustness against localization errors and small geometric distortions.
Moments and steerable filters show the best performance among the low dimensional descriptors.

Figure 2. Descriptor evaluation for a camera viewpoint change of60◦, using affine-invariant Harris regions.HL
sift is the SIFT descriptor computed for scale-invariant Harris regions.

Some typical results for a significant viewpoint change between the query and database image are shown
in figure 2, using the affine-invariant Harris-Laplace detector. The SIFT descriptors are clearly the most
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robust, but note that the differences between descriptors are less significant than the improvement produced by
ensuring affine invariance: SIFT descriptors computed with onlyscale-invariant Harris-Laplace regions (‘HL
SIFT’ in the figure) perform worse than any of the affine descriptors shown here, as the underlying regions are
not invariant enough to be re-detected reliably. Steerable filters come second, but they perform significantly
worse than SIFT descriptors here.

6.1.3. Indexing of visual descriptors
In order to perform image retrieval or visual object recognition based on SIFT and similar high-dimensional

descriptors, it is often necessary to search a large database of previously seen descriptors for ones similar
to those in the target image. This involves a high-dimensional neighbouring point or region search – a
problem that is currently for practical purposes essentially linear in the database size, and hence slow for
large databases. We have developed an approximate method to speed up such searches, based on the fact that
the geometry of high-dimensional spheres allows strict bounding box bounds to be tightened quite a lot while
still keeping most of the volume of the sphere. The method uses ak-D tree and inner and outer search radii,
guaranteeing that all points within the inner radius, and most points within the outer radius, of the given point
are recovered.

6.1.4. Detecting keypoints with stable position, orientation and scale under illumination
changes

(a) translation (b) similarity (c) affine

(d) translation (e) translation + rotation (f) translation + scale (g) similarity

Figure 3. Some examples of keypoints found by our detectors. The detectors have selected points that have maximal
local stability under the indicated transformations. For example, the dots in the background of the top image

provide good stability against translations but poor stability against rotations, so they are selected as keypoints
under the translation group, but not under the group of similarity transformations.
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Local feature approaches to vision geometry and object recognition are based on selecting and matching
sparse sets of visually salient image points (‘keypoints’ or ‘points of interest’). Their performance depends
critically on the reliability with which corresponding keypoints can be found in subsequent images. Among
the many existing keypoint selection criteria, the popular Förstner-Harris approach explicitly targets geometric
stability, defining keypoints to be points that have locally maximal self-matching precision under translational
least squares template matching. However, many applications require stability in orientation and scale as
well as in position. Current approaches detect translational keypoints and try to impose good orientation
and scale behaviour afterwards. This is suboptimal, and can be misleading when different motion variables
interact. We have developed a more principled formulation, based on extending the Förstner-Harris approach
to general motion models [25]. The method also incorporates a simple local appearance model to ensure good
resistance to the most common illumination variations. Some examples of detections with the new approach
under various different motion models are shown in figure3.

6.1.5. Multiscale model of visual attention

Figure 4. Some examples of salient regions output by our multiscale attention model.

Visual salience — the selection of especially informative or “interesting” image regions as focuses for
further computation — is central to our philosophy of visual recognition. In the past we have mainly used
salience measures based on local feature detectors developed in computer vision. In the work described here,
we take another approach to salience — the human vision motivated models, among which the work by Itti &
Koch is perhaps the best known example — and generalise it to a multiscale model that is potentially suitable
for use in our multiscale object recognition framework. The method is based on calculating image pyramids
encoding local contrast measures for intensity, colour and texture and combining them heuristically into an
overall saliency map. The original approach produced a single saliency image, whereas here we modify the
saliency metric and evaluate it at multiple scales to produce a saliency pyramid that encodes the scale as well as
the position of the most salient image regions. Figure4 shows several examples of the salient regions detected.
The work is reported in the Masters thesis [28].

6.1.6. Shape features
The image features presented in the first two sections are based on grey-level image information. Local

invariant features based on such information have proven to be very successful for matching and recognition
of specific textured objects. Unfortunately, for many objects the only reliable recognition cues are edges or
shape, and texture cannot be used as the primary descriptor. In particular, for category-level recognition, edge
and shape are often the only reliable common features between different instances of the category. To cover
this case, we have recently developed two different types of scale-invariant edge descriptors.

The first, developed in 2003, characterizes the type of edge pixels by the edge information in their
neighbourhoods [37]. Each edge region is an edge pixel around which the distribution of relative positions
and orientations of its surrounding edges are described.
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In contrast, thelocal shape featuresdo not centre the region on an edge pixel, but instead extract features in
regions of influence that capture the local structure (shape) of the surrounding contour image. Our approach
[18] detects local shape convexities by local scale-space maximization of a robust concentricity measure, the
entropy of radial gradient orientations in an annulus whose radius defines the scale. This is robust to clutter
inside the annulus, occlusions, and spurious edge detections. It has been combined with a simple geometric
model and a voting process to allow the detection of objects. Figure5 shows some results for horse recognition
and detection and some quantitative results in terms of precision (the percentage of detections that are correct)
and recall (the percentage of correct images that are retrieved).

% Precision 97.4 93.1 90.2 87.7 77.3 60.5
% Recall 23.2 46.7 63.4 70.4 82.5 96.4

Figure 5. Horse detection results. Top: detections in a few test images. Bottom : precision and recall for several
detection thresholds.

6.1.7. Color description
Color is a useful local image descriptor, but it is sensitive to illumination changes and so cannot be used

without an initial normalisation process (color constancy), which is difficult to provide in the general case
where the lighting is unknown. Our approach is based on two assumption: (a) the scene contains known objects
and (b) the possible illumination changes are learned offline during a preprocessing step. These assumptions
are restrictive, but they allow the influence of illumination changes on objects to be modeled very accurately.

Our approach uses thecolor flow modelto describe lighting changes between images depicting the same
scene. Although the model itself is linear, it is not restricted to linear lighting changes: the basis vectors that
are chosen to describe the joint changes in color space are arbitrary and hence can capture complex nonlinear
changes. This gives a powerful model while still allowing simple parameter estimation. During training we
use aligned images of a static colored scene taken under different illuminations to learn the parameters of the
model. The color flow model is then able to explain joint color changes between pairs of images, see figure6.

We also take images of reference objects under normalized illumination. For these images we detect
keypoints and store local descriptions of them in a database. When the method is used, an on-line normalisation
process extracts keypoints from the image and matches them to the keypoint database using local photometric
signatures, thus allowing the color flow to be estimated robustly, after which all of the remaining image pixels
can be normalized. This point correspondence process extends the original color flow method by relaxing the
requirement for aligned images.

Figure 6. An illustration of the color flow model. Left : the reference color map (Hue / Saturation representation).
Middle : the color map for a new illumination of the scene. Left : the transformation between the two maps (vectors

represent individual color changes).
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6.2. Learning
Keywords: Discriminative-generative learning, Gaussian mixture models, Support Vector Machines, data
reduction, semi-supervised learning.

Participants: Bill Triggs, Cordelia Schmid, Guillaume Bouchard, Charles Bouveyron, Peter Carbonetto,
Juliette Blanchet.

6.2.1. Discriminative versus Generative Learning
In statistics there are two main approaches to classification.Discriminativemethods try to learn a single

model that directly predicts the class label from the observed input data, whereasgenerativeones learn separate
models for each class, then choose the model (class) that best fits the observed data. Generative models are
more general, they extend more naturally to complex problems (missing data, multiple classes...), and they are
often stabler and simpler to learn because the classes do not interact. However discriminative models typically
have better absolute classification performance as they are optimized directly for this, and they can avoid
modelling details that are important for class description but irrelevant for inter-class discrimination.

We have developed a method that captures some of the advantages of each approach by combining them.
Technically, this is done by fitting a discriminative model (i.e. optimizing classification performance over all
classes together) that includes a generative-model-based penalty term to enforce some of the regularization
(but also some of the mismodelling) implicit in the full generative model. The strength of the penalty is set by
cross-validation. The combined model often has higher performance than either of its parents. The work was
published in the IASC International Symposium on Computational Statistics, COMPSTAT 2004 [16].

6.2.2. Dimensionality reduction
Visual features and descriptors are often high dimensional, which leads to overfitting and thus penalizes

classification and recognition accuracy [17]. Global dimensionality reduction is not always useful because
although the descriptors for a given visual class often concentrate on a low dimensional subspace of descriptor
space, the descriptors of different classes belong to quite different subspaces (often with different dimension-
alities). We have introduced a new method, called High Dimensional Discriminant Analysis (HHDA), that
reduces the dimension of each class independently and regularizes the class conditional covariance matrices
in order to adapt the Gaussian framework to high dimensional data. The regularization is achieved by assum-
ing that each class has spherical Gaussian deviations from its eigenspace. It is possible to make additional
assumptions to further reduce the number of parameters that are estimated.

Experimental results comparing our approach to classical dimensionality reduction techniques show that
HDDA performs significantly better. A further comparison with SVM (support vector machine – designed to
handle high dimensions) also demonstrates the performance of HDDA. Figure7 presents an example of part
classification for motorbikes. The results on the left were obtained with HDDA and those on the right with
SVM. On the top row, for the example, HDDA recognizes motorbike parts without any errors while SVM
makes five misclassifications.

6.2.3. Markov random fields for recognizing textures
Our previous work on texture recognition [33] introduced a method that simultaneously performs classifica-

tion and segmentation. A generative model describes the distribution of the affine-invariant descriptors, along
with co-occurrence statistics for nearby patches. At recognition time, initial probabilities computed from the
generative model are refined using a relaxation step that incorporates co-occurrence statistics learned at mod-
eling time.

The co-occurrence statistics do not explicitly model the dependencies between neighboring descriptors –
they assume that they are statistically independent variables. Recognition results can be further improved
by modeling the dependence between descriptors [27]. Here we use a parametric dependency model based
on Markov Random Fields (MRF’s). These models require non trivial parameter estimation: we use recent
methods based on the mean field principle of statistical physics. Using sample images, textures are learned as
MRF’s and a set of estimated parameters is associated with each texture. At recognition time, another MRF
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Figure 7. Recognition of motorbike parts using HDDA (left) and SVM (right). The colors blue, red and green are
respectively associated with the handlebar, wheel and seat features.

T1 (Brick) T2 (Carpet) T3 (Armchair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

Figure 8. Segmentation/classification results for natural texture recognition. Image regions are labeled using
maximum likelihood (top) and mean field (bottom). Adding spatial constraints improves the results.
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is used to compute, for each feature vector, the membership probabilities for the different texture classes.
Preliminary experiments on seven natural texture classes (each with 20 training samples) show promising
results, see figure8. The regions in the different columns correspond to the classification results. Note that
adding spatial constraints reduces the number of misclassified regions.

6.2.4. A constrained learning approach to data association
As part of our collaboration with the University of British Columbia (UBC), P. Carbonetto from N.

de Freitas’ group spent 8 months in LEAR applying UBC’s approach for constrained semi-supervised
learning by data association to the selection of discriminative local features. The setup is the same as
in section6.3.2: images are labeled as positive and negative, but individual descriptors are not labeled
and may belong to the background even in positive images. Descriptors are labeled by constrained data
association, where the constraints are on the number of positive descriptors in the image. The approach is
based on a Bayesian classification model combined with an efficient Markov Chain Monte Carlo (MCMC)
algorithm that simultaneously learns the unobserved labels and selects a sparse object class representation
from the extracted high-dimensional descriptors. A generalised Gibbs sampler explores the space of labels
that satisfy the constraints. Bayesian learning approximates the posterior distribution by integration over
multiple hypotheses, a crucial ingredient for robust performance in noisy environments that also reduces the
sensitivity to initialisation. For practical MCMC exploration of the posterior modes, however, the posterior
must be sufficiently peaked. This suggests the use of a Bayesian kernel model, as classical mixture models
have numbers of modes that grow factorially with the number of components.

The experimental results for classification of test images on the dataset described in section6.3.2are on
average about 2 percent better than the ones obtained there [29]. However learning the full data association is
orders of magnitude more time consuming, and the results are also influenced by the values of the constraints.

6.3. Recognition
Keywords: human detection, object class recognition and detection, visual models.

Participants: Cordelia Schmid, Bill Triggs, Frederic Jurie, Roger Mohr, Ankur Agarwal, Guillaume
Bouchard, Gyuri Dorko, Navneet Dalal, Salil Jain, Jianguo Zhang, Svetlana Lazebnik [UIUC], Fred Roth-
ganger [UIUC], Jean Ponce [UIUC], Krystian Mikolajczyk [Oxford], Andrew Zisserman [Oxford], Cristian
Sminchisescu [Toronto].

6.3.1. Texture recognition
In our past work, we developed a method for weakly supervised learning of visual models that can handle

both complex natural textures — for example “textured” animals such as zebras and leopards — and highly
structured patterns such as parts of a face [8]. The visual model is based on a two-layer image description:
a set of underlying “generic” descriptors, and a learned distribution over neighbourhoods. This description
method is rotationally invariant, robust to model deformations, and it efficiently characterizes “appearance-
based” visual structure. The learning method is based on selecting distinctive clusters in descriptor space
— descriptors common in the positive and rare in the negative examples — and using these as features for
object recognition. Experimental results for “textured” animals and faces show very good performance for
both retrieval and localization.

This representation has now been extended to allow recognition of texture patterns despite appearance
variations due to non-rigid transformations and changes in viewpoint [2], see also [34] for preliminary results.

At the feature extraction stage, a set of affine-invariant local patches is extracted from the image. Affine-
invariant patches provide both a good level of spatial selectivity, and a texture representation that is invariant to
any geometric transformation that can be locally approximated by the affine model. Each patch is characterized
using a gray-level descriptor. In each image, the distribution of descriptors is summarized as a set of weighted
clusters. These signatures are then compared using the Earth Mover’s Distance (EMD), a convenient and
effective dissimilarity measure. For our application, the signature/EMD framework offers several important
advantages. Signatures are more descriptive than histograms with fixed bins and do not require global
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T01 (bark) T02 (bark) T03 (bark) T04 (wood) T05 (wood)

T06 (wood) T07 (water) T08 (granite) T09 (marble) T10 (stone)

T11 (stone) T12 (gravel) T13 (wall) T14 (brick) T15 (brick)

T16 (glass) T17 (glass) T18 (carpet) T19 (carpet) T20 (fabric)

T21 (paper) T22 (fur) T23 (fabric) T24 (fabric) T25 (fabric)

Figure 9. Four samples each of the 25 texture classes used in the experiments.
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clustering of the descriptors from all images. EMD can match signatures of different sizes, and it is not
very sensitive to the number of clusters. This texture representation has been evaluated for retrieval and
classification tasks using a collection of images of textured surfaces taken from different viewpoints. Figure
9 shows four sample images from each texture class. Significant viewpoint and scale changes occur within
each class, and several of the classes include additional sources of variability: inhomogeneities in the texture
patterns, non-rigid transformations, illumination changes, and unmodeled viewpoint-dependent appearance
changes. Retrieval and classification results for these textures are excellent [2].

6.3.2. Recognition of object classes – feature selection
Learning and recognizing object class models from images is one of the most difficult problems in

computer vision. The combination of image description and machine learning/pattern classification techniques
has recently led to significant progress. Several recent approaches to category-level object recognition use
classification techniques to acquire part models from training images, and then train a classifier to recognize
objects. This paradigm has been successfully applied to the recognition of cars, faces and human beings
in complex imagery. However, the image descriptors used in these methods enjoy very limited invariance
properties (mostly translational invariance), which severely limits the range of admissible viewpoints that they
can handle. This can be avoided by using local invariants as image descriptors.

Our approach finds groups (clusters) of similar scale-invariant local features, i.e. local parts, and selects
among these parts the ones which best discriminate between positive and negative images [29], see also
[32] for preliminary results. The experimental results demonstrate the power of using invariant local features
for building discriminative local parts. Figure10 shows two discriminative parts for the categories airplane,
motorbike, wild cat and person.

The approach is weakly supervised, that is the training images are labeled as positive and negative, but the
objects are not labeled in the positive images. The training set is split into a clustering set and a validation
set. Parts are learned based on the clustering set and the significance of each part is then determined with the
validation set.

The first step of our approach is to extract local invariant features. Here we use Harris-Laplace and Harris-
Affine as well as the entropy detector by Kadir and Brady and describe the regions by the SIFT descriptor.
The descriptors from the clustering set are then used to learn the individual parts. We estimate the Gaussian
mixture model of their distribution and each component of the mixture represents a part (cluster). The EM
algorithm is used to estimate the parameters of the mixture model and is initialized with the output of theK-
means algorithm. Descriptors are assigned to the components (parts) with the maximum posteriori probability.
We then select parts with the validation set. Each part is ranked by the likelihood ratio between the descriptors
of the positive images – note that the individual descriptors are unlabeled – and the negative images. Other
criteria can be used, such as mutual information [32]. The final classifier then sets then highest ranked parts
as positive and the others as negative. A descriptor is classified as an object descriptor if it is labeled as
belonging to one of the topn parts (maximum posteriori probability for that class) wheren is a parameter of
our approach.

Our approach is evaluated in two different ways. We first verify that the positive descriptors lie mostly on
the object. Figure11 shows the results for a few test images. Only a few points are incorrectly classified, and
they could easily be eliminated by applying a simple spatial coherence criterion.

We then evaluate the performance by image classification, that is whether or not the image contains
the object. This is a standard criterion that allows comparison with existing methods. We compare image
classification results in table1. The training and test images are the same as in Fergus, Perona & Zisserman
(2003) and Opelt, Fussenegger, Pinz & Auer (2004). We measure performance with the Receiver Operating
Characteristic (ROC) equal error rate,i.e. the point on the ROC curve – obtained by varying the number
of partsn – where the proportion of true positives is equal to the proportion of true negatives. Classification
requires an additional parameter, namely the minimum numberp of positive descriptors in the image for which
the image is classified as positive. This is estimated from the validation set. Table1 shows that our model using
the two scale-invariant detectors Harris-Laplace and the entropy detector outperforms the other methods.
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Airplane

Motorbike

Wild Cat

Person

Figure 10. Examples of discriminative parts (clusters) for the categories airplane, motorbike, wild cat and person.
Parts are chosen from the 10 most discriminative ones. Each cluster is represented by five of its members. The

circles represent the regions extracted by the scale-invariant detector.

Table 1. Image classification performance measured at equal error rates.

Our model Ferguset al Opeltet al

airplanes 0.985 0.902 0.889

faces 0.991 0.964 0.935

motorbikes 0.995 0.925 0.922

wildcats 0.87 0.900 —

bikes 0.88 — 0.865

people 0.88 — 0.808
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n = 10 n = 20 n = 30

Figure 11. Positive detections with increasingn for different categories and detectors. First and second row:
entropy detector. Third row: Harris-Affine detector.
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6.3.3. Recognition of object classes – part based models

Figure 12. Matching faces: an affine-invariant semi-local part.

In this section we use characteristic patterns formed from affine-invariant patches linked by semi-local
spatial relations to describe salient object parts [19][20]. Figure12 illustrates this idea with an affine-invariant
semi-local part found between face images using the output of the affine-invariant Laplacian and a variant of
affine alignment. Note that the part is stable despite large viewpoint variations and appearance changes.

Affine-invariant semi-local parts are geometrically stable configurations of multiple affine-invariant regions,
found by the affine Laplace detector. These parts are approximately affinely rigid by construction, i.e.
the mapping between instances of the same part in two images can be well represented by a 2D affine
transformation. Combined with thelocality of the parts, this property makes our method suitable for modeling
a wide range of 3D transformations, including viewpoint changes and non-rigid deformations. Furthermore,
they are more distinctive than the individual features used in the previous section. The mechanism for
learning affine-invariant semi-local parts is based on the idea that direct search for visual correspondence
is the key to successful recognition. Thus, at training time we seek to identify groups of neighboring affine
regions whose appearance and spatial configuration remains stable across multiple instances. To avoid the
prohibitive complexity of establishing simultaneous correspondence across the whole training set, we separate
the problem into two stages: parts are first initialized by matching pairs of images, then matched against a
largervalidation set. Even though finding optimal correspondences between features in two images is still
intractable, effective sub-optimal solutions can be found using non-exhaustive constrained search.

We have conducted experiments for the challenging application of automatic acquisition and recognition
of butterfly models in heavily cluttered natural images. Figure13 shows two samples for the seven classes
in our dataset of 619 butterfly images. No negative images are used. The pictures were collected from the
Internet. They are extremely diverse in terms of size and quality. Motion blur, lack of focus, re-sampling
and compression artifacts are common. The dataset is particularly appropriate for illustrating the descriptive
power of semi-local affine parts, because the geometry of a butterfly is locally planar for each wing, but not
globally planar. In addition, the species identity of a butterfly is determined by a basically stable geometric
wing pattern, though appearance can be significantly affected by variations between individuals, lighting, and
imaging conditions. This problem is beyond the capabilities of many state-of-the-art recognition systems.

The recognition framework is straightforward. Matching and validation are used to identify a fixed-size
collection of parts for representing the classes. Candidate parts are formed by matching between eight
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Admiral Swallowtail Machaon Monarch 1 Monarch 2 Peacock Zebra

Figure 13. The butterfly dataset. Two samples of each class are shown in each column.

- (a) Part w/ highest validation score (b) Detection
examples

Admiral

Part size: 28 18 (0.64)

Machaon

Part size: 20 11 (0.55)

Peacock

Part size: 12 6 (0.50)

Figure 14. Butterfly modeling and detection examples. (a) The part with the highest validation score for a class.
The part size is listed below each modeling pair. (b) Example of detecting the part from (a) in a single test image.
Detected regions are shown in yellow and occluded ones are reprojected from the model in blue. The total number
of detected regions (absolute repeatability) and the corresponding repeatability ratio are shown below each image.
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Class Part size Test images Correct (rate)
Admiral 179 (12/28) 85 74 (0.871)

Swallowtail 252 (18/29) 16 12 (0.750)
Machaon 148 (12/21) 57 55 (0.965)

Monarch 1 289 (14/67) 48 35 (0.729)
Monarch 2 275 (19/36) 58 53 (0.914)
Peacock 102 (8/14) 108 108 (1.000)
Zebra 209 (16/31) 65 58 (0.892)
Total 437 395 (0.904)
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Figure 15. Classification results for the butterflies. (a) The second column shows the size of the model (top 10
parts) for each class (the sum of sizes of individual parts), and the size of the smallest and the largest parts are

listed in parentheses. (b) Classification rate versus number of parts.

randomly chosen pairs of training images. Ten verification images per class are used to rank candidate parts
according to their repeatability score, and the top ten parts per class are retained for recognition. Figure14(a)
shows the part with the highest repeatability for each of the classes. At testing time, the parts for all classes
are detected in each training image. If multiple instances of the same part are found, we retain only the
single instance with highest number of detected regions. Figure14 (b) shows examples of part detections
in individual test images. The score for a class is defined as the cumulativerelative repeatabilityof all its
parts, or the total number of regions detected in all parts of the classes divided by the sum of part sizes. For
multi-class classification, each image is assigned to the class having the maximum score. Figure15(a) shows
classification results obtained using the above approach (the average rate is90.4%), and Figure15(b) shows
how performance is improved by using multiple parts.

6.3.4. Recognition of object classes – hierarchical models
The parts-based models described above are based on combining features in relatively rigid arrangements.

A different class of approaches is “bag of features” methods, which simply select some characteristic classes
of local image features and count how many of them occur in a given image region. Despite their lack of spatial
structure, these approaches prove quite effective for many object categories, especially ones with characteristic
texture and weak spatial structure. We have developed an approach intermediate between the two, which
combines local feature classes with a loose spatial model that is capable of capturing the variations present in
many generic object categories.

The method is based on a generative probabilistic model that codes the geometry and appearance of visual
object categories as a loose hierarchy of parts, with probabilistic spatial relations linking parts to subparts,
soft assignment of subparts to parts, and scale invariant keypoint based local features at the lowest level of
the hierarchy. It efficiently handles models containing hundreds of redundant local feature classes, such as
those returned by current keypoint detectors. The high degree of redundancy allows the method to outperform
constellation style models, despite their stronger spatial models. Models are instantiated by robust bottom-
up voting over a hierarchy of location-scale pyramids (one for each part), and optimized by Expectation-
Maximization. Training is rapid, and there is no need for object positions to be marked in the training images.
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. . .

position/scale displacement

object

parts

local feature classes

image features

nearest neighbour matching

soft parent assignments
position/scale displacement

image

Figure 16. An illustration of the structure of our hierarchical part based model for visual object recognition. The
model is a tree-structured hierarchy of parts and subparts with the complete object at the root and individual
scale-invariant local feature classes at the leaves. A probability distribution over geometric transformations
between each subpart and its parent quantifies the subpart’s relative position and uncertainty. The parent

attributions for each sub-part are also uncertain and are learned during training. During model instantiation, the
leaf parts are coupled to the nearest observed image features in position and appearance, via a robust observation

model that effectively ignores unattributed features.

Experiments on several popular datasets show the method’s ability to capture complex natural object classes.
Figure16 sketches the structure of the model, and figure17 shows examples of how it adapts to changes of
viewpoints and the intra-class variations of a generic visual object class.

6.3.5. Building 3D models from multi-view description
It is well-established that a set of images of a rigid 3D object can be used for object recognition. However,

purely image based representations are not optimal as a great deal of redundant information must be stored
and they do not provide a 3D model that can be used for verification. We build a 3D model from the images
and use it for recognition [5]. We use the affine-invariant patches introduced in section6.1.1to represent local
surface appearance, and select promising matches between pairs of images or an object model and an image.
We then use the geometric multi-view consistency constraints studied in the structure-from-motion literature
to represent the global object structure, retain correct matches, and discard incorrect ones. Our experiments
show that rigid object models can be acquired automatically from a few images (figure18), and then used
effectively for recognition tasks (figure19).

In order to obtain a quantitative comparison of our method with other state-of-the-art object recognition
systems, we have provided our dataset to several other research groups. The algorithms proposed by Ferrari,
Tuytelaars & Van Gool (2004), Lowe (2004), Mahamud & Hebert (2003), and Moreels, Maire & Perona (2004)
have been tested by their authors in this comparative study. As shown by Figure20, all the algorithms perform
well on our data set, achieving recognition rates of 90% and above for false detection rates below 10%. In this
experiment, the color version of our algorithm and Lowe’s program perform best for very low false detection
rates, followed by the black-and-white version of our algorithm. The technique proposed by Ferrari et al.
achieves an extremely high recognition rate at the cost of a somewhat higher false detection rate. Although all
five algorithms use multiple views to form object models, only Lowe’s algorithm and ours actually combine
the information associated with multiple views in the recognition process. Note that Lowe’s algorithm does
not construct an explicit 3D model, but it allows multiple training views sharing common patches to vote for
the same object. The other methods consider all training pictures independently, which essentially reduces
object recognition to image matching. These results provide evidence that combining multiple views improves



22 Activity Report INRIA 2004

Figure 17. Some examples of our hierarchical model for object recognition in action. The first set of images shows
that owing to its loose hierarchical structure, the model has good resistance to viewpoint changes. The second set

shows that it can adapt to class variations, here different types of motorcycle.
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Figure 18. Object gallery: sample input images and renderings of the corresponding models.

Figure 19. Results of a recognition experiment. Left: A test image. Right: Instances of five models (a teddy bear, a
doll stand, a salt can, a toy truck and a vase) have been recognized, and the models are rendered in the poses

estimated by our program. Bounding boxes for the reprojections are shown as black rectangles.
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recognition performance, as does the inclusion of geometric constraints in the matching process. Of course,
there is a price to pay for the integration of multiple images into a single model. First, it makes modeling more
costly and complicated. Second, it requires the use of training views with sufficient overlap.
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Figure 20. True positive rate plotted against number of false positives for several different recognition methods, see
text for details.

The 3D object models can also be extracted from video sequences [24], i.e. for dynamic scenes composed of
multiple independently moving rigid objects. Multi-view constraints associated with groups of affine-covariant
scene patches, together with a normalized description of their appearance, are used to segment a scene into its
rigid parts, construct three-dimensional models of these parts, and match instances of models recovered from
different image sequences. This allows moving objects to be detected and recognized in video sequences. This
has been applied to the task ofshot matching, i.e., the identification of shots that depict the same scene in a
video clip.

6.3.6. Human detection – image descriptors
As part of our ongoing work on human detection, we have made a detailed comparative study of different

image descriptors for this problem. “Pedestrian detection” (the detection of fully visible standing or walking
people) was selected as the standard test problem, and a monolithic (non-parts-based) linear Support Vector
Machine run in a moving rectangular image window was used as standardized detection framework giving
rapid detection and good baseline performance. The families of image descriptors tested included Haar and
Harr-like Gaussian wavelets, shape contexts, and various Histogram of Oriented image Gradient (HOG)
based descriptors, inspired by the success of SIFT descriptors [35] but here used in a dense uniform grid
instead of being sampled only sparsely at salient local feature points. The HOG based feature sets proved
to be best, giving false positive rates around two orders of magnitude lower than the best existing wavelet
based detectors. Optimization over the various descriptor parameters showed that small derivative scale, fine
orientation sampling, moderately coarse spatial sampling, good local normalization and significant overlap
between descriptor windows all significantly improve the performance of the system. As part of this work,
we also developed a new test database containing more than 1800 annotated positive images – see figure21.
Figure22summarizes the performance of the different descriptors, and figure23shows which features within
the detector window are most important for the detection process.



Project-Team LEAR 25

Figure 21. Some sample images from our new human detection database.
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Figure 22. A summary of the performance of different types of descriptor sets on our new test database. Histogram
of Oriented Gradient (HOG) features have false positive rates around two orders of magnitude lower than the best

wavelet features. Using a Gaussian kernel SVM in place of a linear SVM further increases the descriptor
performance (by about 3% at10−4 false positives per window tested), but at the cost of much higher running time.
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Figure 23. An illustration of the image information encoded by the HOG based detectors. In each triplet, we
display from left to right: (1) the input image; (2) the corresponding HOG feature vector (only the dominant

orientation of each cell is shown); (3) the orientations that dominate the descriptor output (obtained by multiplying
the feature vector with the weights learned for the linear SVM). Inspection shows that for an appropriate choice of
descriptor parameters, the SVM is able to map positive example images to a set of canonical edges corresponding

to human contours.
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6.3.7. Human detection – combination of classifiers
Our previous work on human detection [38] was based on detecting individual body parts and assembling

them using dynamic programming. It showed good results in simple conditions, but lacked robustness in
general settings. Our new approach [22] models not individual body members, but rather larger regions that
include some local context. This increases distinctiveness, while still remaining local enough to allow for
occlusion and the detection of close-up views. This is not the case for state-of-art pedestrian detectors based
on global information. We also use robust part detectors based on gradient and Laplacian local features that
efficiently capture the shape information. Using the probabilistic co-occurrence of these features increases
their distinctiveness without reducing robustness. Learning with AdaBoost combines features with the highest
co-occurrence probabilities. The detection results are further improved by computing a probabilistic score
that takes the relative positions of the parts in the assembly into account. The approach is also very efficient
as (i) all part detectors use the same initial features, (ii) a coarse-to-fine cascade approach is used for part
detection, (iii) an assembly strategy reduces the number of spurious detections and the search space. The
results (see figure24) are very promising and outperform existing human detectors. Furthermore, the face
detection results for frontal and profile views, obtained as one part of the human detector, are comparable with
state-of-art detectors.

Figure 24. Results for human detection. Top row: body part detection. Bottom row: detection with the joint
likelihood model. Note that the joint likelihood model significantly improves the detection results.

6.3.8. Human Tracking and Action Recognition
Over the past few years we investigated several approaches to the problem of human motion capture (the

estimation of articulated human pose and movement) from monocular images and image sequences. This year
we have published motion capture work based on: explicit 3-D body models and generative image modelling
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[9][10]; dynamical modelling for 2-D image based body tracking [14]; and learning based 3-D motion capture
from image silhouettes, without explicit body modelling [11][13][26].

Figure 25. Some examples of ‘reflective’ local minima induced by the kinematic structure of the problem of motion
capture from monocular images. The minima were found by eigenvector tracking, one of our Newton based search
methods for nearby local minimum. The images show the human model from the original camera viewpoint and

from a synthetic overhead viewpoint. Note the pronounced forwards-backwards character of these reflective
minima, and the fact that in each case the model fits the original image well.

Model based 3-D motion capture:First consider approaches based on explicit 3-D body models and
generative image modelling. Our previous work in this area established the fact that local minima of the
parameter-space likelihood induced by the kinematic structure of the problem are a major barrier to reliable
tracking, and we have developed several non-convex optimization techniques designed to counter this problem.
This year we have continued this work with journal versions of two approaches that find nearby minima in
the cost (likelihood) function by first finding the “mountain passes” (codimension one saddle points) that lead
to them. The first uses techniques based on modified forms of local Newton minimization to find the saddle
points [10], the second,hyperdynamic sampling, uses a modified Markov Chain Monte Carlo sampler that
focuses samples near saddles [9]. Figure25 illustrates the results of a search for local minima produced by
one of our Newton based techniques.

Learning dynamical models for 2D articulated human body tracking: Another strategy is to avoid 3D
ambiguities by tracking only2D articulated image motion in the first instance. However a 2D formulation can
not express 3D rigidity and viewpoint invariance constraints, and this leads to its own set of ambiguities. To
strengthen the model enough to permit reliable tracking, it is useful to include priors characterizing “typical”
2D human pose and dynamics. In practice these have quite complex forms so they must be learned from
training images. We have continued our previous year’s work on this subject with a paper [14] focused on
dynamical modelling. The method learns a piecewise linear autoregressive model by self-consistent clustering
of a set of marked-up training sequences. Body parameters (34D vectors of 2D joint angles and body lengths)
are taken from the training data, reduced to 5–8 dimensions by linear PCA to stabilize later estimation steps,
and partitioned using K-means. A linear autoregressive dynamical model is learned for each cluster and lifted
to give 34-D predictions. Then the data is reclustered according to regularized model prediction accuracy,
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Figure 26. Some examples of 2D human tracking with our learned dynamical model. First row: In preparation for
learning, the configuration of the model is marked by hand in each training image. Here we show three images with

their corresponding configurations and visibility maps. Rows 2–3: Tracking a running athlete. The model was
learned on another athlete but follows this one well except that the left arm was not correctly initialized because it
was invisible in the initial image. Last 2 rows: Tracking a turning movement through changes of model aspect from

face to side view.
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the models are re-learned, and the whole process is repeated to convergence in an EM-like loop. The result
is a flexible piecewise model that is capable of capturing the details of human dynamics, even for relatively
complex motions such as turns. Figure26 shows two examples. We are also investigating the use of these
kinds of models for classifying different categories of human behaviour.

(a) silhouette
extraction

(b) sample points
around the silhouette

(c) evaluate their
shape contexts

(d) distribution of
responses in shape

context space

(e) vector quantize to
get the descriptor

Figure 27. The extraction process for our robust descriptors of silhouette geometry. “Shape context” descriptors
are evaluated at regular points around the silhouette, and the distribution of responses in shape context space is

vector quantized into 100 bins to produce the final descriptor.

Learning to reconstruct 3D human motion from silhouettes: The above approaches to human motion
capture involve fitting fairly complicated articulated models that can be difficult to initialize and ambiguous to
track. The main source of ambiguity is perhaps the fact that they attempt to model allpossiblehuman poses.
They do not incorporate much prior knowledge that would allow attention to be focused principally on the
smaller set oftypical poses. For this reason they waste a considerable amount of effort searching over poses
that are simply (to humans) implausible, and they often mistrack by following such a hypothesis too far. An
alternative strategy, which sidesteps both the initialization and the implausibility problems, is to discard the
explicit manually-constructed articulated body model, and instead to directlylearn to estimate pose from a
suitable set of low-level descriptors extracted from the image.

We have developed several approaches of this type, that directly regress full 3-D body pose (encoded by
joint angle variables) against robust image descriptors that characterize the geometry of the human’s image
silhouette. The descriptors used — vector quantized versions of the distribution of shape-context responses at
boundary points of the silhouette — give good locality (and hence some occlusion resistance) and robustness
to the segmentation errors that are so common with real image silhouettes obtained by background subtraction.
Figure27 illustrates the process. Various different regressors have been tested. Linear regression (on our very
nonlinear descriptors) already works well, but the best results are with a sparse Bayesian kernel based method,
Relevance Vector Regression.

The methods have been tested on both synthetic images of unseen sequences (to allow ground-truthing) and
real images. The training data is real human motion capture data for a variety of human motions, together with
the corresponding image silhouettes. The use of real motions ensures that the poses that appear are typical for
humans.

Our initial method, begun at the end of last year, is based on separate reconstruction in each image [11]. It
achieves average 3D joint angle estimation errors of around 6–7◦ — significantly better than existing learning-
based approaches, but not yet satisfying from an applications point of view, especially these estimates include
frequent (15%) gross misestimations owing to ambiguities intrinsic to the silhouette based representation. To
rectify this, we have developed two additional methods this year. The first incoporates the initial method in a
dynamical tracking based framework, giving smooth reconstructions and reasonably satisfying reanimations
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Figure 28. Top: 3D poses reconstructed from a test video sequence obtained from http://mocap.cs.cmu.edu. In this
sequence, the subject walks towards the camera causing a scale change by a factor of two. (The images and

silhouettes have been normalized for display). Our representation allows the algorithm to process a silhouette
independent of its size or location in the image without disturbing the 3D pose recovery. Bottom: Multiple possible
3D pose estimates obtained from individual silhouettes using a mixture of regressors. The two most likely modes of

the distribution are shown in each case, and generally capture the two most evident reconstruction possibilities,
illustrating cases of forward-backward ambiguity (a,b), kinematic flipping of the legs (c) and interchanging labels
between the two legs (d,e). (f) shows an example where the first solution is a misestimate but feasible solutions are

obtained in the other modes.
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[13]. Figure28(top) shows some results on a real test sequence. The second approach keeps the original static
image based framework, but uses multi-valued regression to generate several possible solutions from each
silhouette, together with posterior probabilities for them to be the correct reconstruction [26]. The solution is
often essentially unique, and even when there is ambiguity it is rare to find more than 2–3 solutions. Figure28
(bottom) shows some sample reconstructions.

7. Contracts and Grants with Industry
7.1. Pandora Studio

Participants: Bill Triggs, Marius Malciu [Pandora Studio].

Our collaboration, begun in June 2003, with the French audiovisual and animation consultancy Pandora
Studio based in Paris and Toulouse, continued until June 2004. The object was to develop software for semi-
automatic 3D human motion capture from single image streams, for production studio applications (film, TV,
games).

7.2. Bertin Technologies
Participants: Frederic Jurie, Cordelia Schmid, Roger Mohr, Eric Nowak.

The aim of the collaboration with Bertin Technologies is to develop algorithms for detecting and recognizing
objects in the context of an unmanned infra-red information systems. The challenges are the poor resolution
of images, the changeable appearances of objects due to temperature changes (global and local), and the high
number of nested object categories. Applications are typically outdoors defense applications in which hidden
cameras have been left to detect the presence of military vehicles. Our collaboration is funded by a PhD thesis
(CIFRE funds) that started in March 2004. Bertin Technologies is also one of our partners in the Techno-
Vision project, see paragraph8.1.2We plan to extend our collaboration with Bertin Technologies. We have,
for example, answered a call for SCOOP project together, for which we are currently shortlisted. SCOOP is a
national project aiming to provide tools for image retrieval and image databases.

7.3. MBDA
Participants: Frederic Jurie, Cordelia Schmid.

We have been collaborating with the Aerospatiale section of MBDA over the past few years. This year we
produced a state of the art on object recognition as a part of this. In 2005, we plan to extend the collaboration
by starting a PhD thesis or post-doc funded by the company. MBDA is also one of our partners in the Techno-
Vision project.

7.4. THALES Optronics
Participants: Frederic Jurie, Diane Larlus.

In 2004, we began a collaboration with THALES Optronics. The aim is to develop algorithms for the
detection of objects in aerial images. In particular, it concentrates on the selection of reliable parts based on
the clustering of a large set of features. In 2005, they will finance the DEA of D. Larlus on this subject and
they are planing to co-finance a PhD thesis.

8. Other Grants and Activities
8.1. National grants
8.1.1. Ministry grant MoViStaR

Participants: Cordelia Schmid, Juliette Blanchet, Charles Bouveyron, Jianguo Zhang, Bill Triggs.
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MoViStaR is a joint national project (“action concertée incitative”) under the program “Masses de Données”
(Large Quantites of Data). The partners are the INRIA/Gravir project LEAR (C. Schmid, B. Triggs), the INRIA
team MISTIS (F. Forbes), the SMS team of the LMC laboratory (S. Girard) and the Heudiasyc laboratory
(C. Ambroise). MoViStaR started in September 2003 for three years. It aims at developing techniques for
mining visual information from large image collections, to achieve reliable recognition of object categories. In
particular, it concentrates on applying and adapting statistical data reduction techniques and on the integration
of spatial information.

8.1.2. Techno-Vision
Participants: Frederic Jurie, Roger Mohr, Cordelia Schmid.

In 2004, we have been chosen to lead the national project Techno-Vision ROBIN, which aims at producing
datasets, ground truth, competitions and metrics for the evaluation of object recognition algorithms. ROBIN is
a two year project funded partly by the French Ministry of Defense, the French Ministry of Research (Techno-
Vision funds) and by several companies and research centers (Bertin Technologies, Cybernetix, DGA, EADS,
INRIA, ONERA, MBDA, SAGEM, THALES and 35 public laboratories). It will cover multi-class object
detection, generic object detection, generic object recognition, and image categorisation.

The project datasets and metadata will be produced during the first year (2005/2006), and the second year
will be devoted to the organisation of the competition (selection of the test images and of the benchmarking
procedure).

8.2. European Projects
8.2.1. VIBES

Participants: Cordelia Schmid, Bill Triggs, Ankur Agarwal, Salil Jain, Michael Sdika, Krystian Mikolajczyk
[Oxford], Andrew Zisserman [Oxford].

VIBES (Video Browsing, Exploration and Structuring) was a 5th framework FET-Open project. It started
in November 2000 and ran for 3 years and 5 months, ending in April 2004. Its main goal was the automatic
extraction of object-level representations from video streams. The partners were KTH Stockholm, Sweden
(coordinator), LEAR (France), Oxford University (UK), the Katholieke Universiteit Leuven (Belgium), the
Ecole Polytechnique Fédérale de Lausanne (Switzerland), and the Weizmann Institute of Science (Israel).
VIBES represented an effort of 32 person-years with a total budget of 2.3 MEu, of which 1.7 MEu was funded
by the European community. LEAR worked on the video indexing, and human tracking and reconstruction
themes of VIBES.

8.2.2. LAVA
Participants: Cordelia Schmid, Bill Triggs, Roger Mohr, Guillaume Bouchard, Gyuri Dorko, Peter Car-
bonetto, Michael Sdika, Ankur Agarwal, Aurélie Bugeau.

Learning for Adaptable Visual Assistants (LAVA) is a 5th framework RTD project started in May 2002 for
3 years. It aims at developing advanced machine learning based computer vision techniques for understanding
everyday scenes, in particular for applications suited for embedding in camera-equipped electronic devices
such as personal assistants and portable telephones. LAVA is an interdisciplinary project, involving teams
working on machine learning, computer vision, and cognitive modeling and data fusion. The coordinator
is Xerox Research Centre Europe (XRCE, Grenoble, France), and the other partners are: LEAR; V ISTA

(IRISA-INRIA, Rennes, France); Royal Holloway College and the University of Southampton (Egham and
Southampton, U.K.); Lund University (Lund, Sweden); Graz Technical University and the University of
Leoben (Graz and Leoben, Austria); the Institut Dalle Molle d’Intelligence Artificielle Perceptive (IDIAP,
Martigny, Switzerland); and the Australian National University (ANU, Canberra, Australia). In total LAVA
will involve 51 person-years of research effort, for a total budget of 4.3 MEu, including 2.4 MEu of European
Union support. LEAR is working mainly on the development of image descriptors for individual images, the
interface between vision and learning, and semi-supervised learning.
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8.2.3. PASCAL
Participants: Bill Triggs, Cordelia Schmid, Ankur Agarwal, Charles Bouveyron, Guillaume Bouchard, Gyuri
Dorko.

PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning) is a Network of Excellence
that started in December 2003 for four years, funded by the Multimodal Interfaces theme of the EU 6th
framework. The focus is on applying advanced machine learning and statistical pattern recognition techniques
to the analysis of various types of sensed data. It unites around 120 European researchers and 100 doctoral
students in machine learning, pattern recognition, and application domains including computer vision, natural
language processing including speech, text and web analysis, information extraction, haptics and brain
computer interfaces. The coordinator is Prof. John Shawe-Taylor of Southampton University. Bill Triggs of
LEAR is coordinating the computer vision aspects, the Multimodal Interfaces Thematic Program and various
management activities including the overall thematic balance of the network (Balance & Integration Program
and Funding Review Program). LEAR and Xerox Research Europe (XRCE) together form one of PASCAL’s
14 key sites, focusing on computer vision and natural language processing.

8.2.4. AceMedia
Participants: Cordelia Schmid, Bill Triggs, Navneet Dalal, Michael Sdika.

AceMedia is a 6th framework Integrated Project that will run for 4 years starting from January 2004.
Its goal is to integrate knowledge, semantics and content for user-centred intelligent media services. The
partners are: Motorola Ltd UK (coordinator); Philips Electronics Netherlands; Thomson France; Queen Mary
College, University of London; Fraunhofer FIT; Universidad Autonóma de Madrid; Fratelli Alinari; Telefónica
Investigación y Desarrollo; the Informatics and Telematics Institute, Dublin City University; INRIA (including
the TexMex team at IRISA in Rennes, Imedia at Rocquencourt in Paris, and LEAR in Grenoble); France
Télécom; Belgavox; the University of Karlsruhe; Motorola SAS France. LEAR is working mainly on human
detection and action recognition in static images and in videos.

8.3. Bilateral relationship
8.3.1. University of Oxford, UK

Participants: Cordelia Schmid, Bill Triggs, Krystian Mikolajczyk [Oxford], Andrew Zisserman [Oxford].

In 2004, the collaboration with the research group of A. Zisserman in the University of Oxford was partially
funded by the European project VIBES. The collaboration focuses on invariant local feature detectors and
human detection. In 2004, K. Mikolajczyk visited Grenoble for one month and B. Triggs spent three days in
Oxford.

8.3.2. University of Illinois at Urbana-Champaign, USA
Participants: Cordelia Schmid, Gyuri Dorko, Svetlana Lazebnik [UIUC], Jean Ponce [UIUC], Fred Roth-
ganger [UIUC].

The research project on 3D object recognition between the research group of J. Ponce and LEAR is funded
by a CNRS/UIUC collaboration agreement. In 2004, C. Schmid visited the partner institution for one week.
She also participated in Fred Rothganger’s PhD committee.

8.3.3. Australian National University and National ICT Australia
Participants: Bill Triggs, Richard Hartley [ANU], Alex Smola [ANU].

This collaboration currently centres around the Australian-funded section of the EU project LAVA, whose
focuses are visual methods for recognizing particular locations and kernel based methods for visual recog-
nition. Bill Triggs visited ANU and NICTA (National ICT Australia) in Canberra, Australia for 2 weeks in
March 2004 to work on local feature methods for location recognition.
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9. Dissemination
9.1. Leadership within scientific community

• Organization of conference and workshops:

– Program chair for IEEE Conference on Computer Vision 2005 (C. Schmid)

– Co-Organizer and program chair of the International Workshop on “Designing Tomorrow’s
Category-Level 3D Object Recognition Systems”, Taomina, Sicily, Italy, September 2004
(C. Schmid, B. Triggs)

– Chair of PASCAL workshop on Pattern Recognition and Machine Learning in Computer
Vision, Grenoble, May 2004 (B. Triggs)

– Workshops chair of the 10th IEEE International Conference on Computer Vision 2005
(B. Triggs)

• Editorial board:

– International Journal of Computer Vision (C. Schmid)

– IEEE Transactions on Pattern Analysis and Machine Intelligence (C. Schmid)

– Machine Vision and Applications (R. Mohr)

– Techniques et Sciences Informatiques (F. Jurie)

• Area chair :

– CVPR’04 (C. Schmid)

– ECCV’04 (C. Schmid)

– RFIA’04 (C. Schmid)

– ICCV’05 (C. Schmid, B. Triggs)

• Program committee :

– RFIA’04 (F. Jurie)

– ECCV’04 (F. Jurie, B. Triggs)

– CVPR’04 (F. Jurie, B. Triggs)

– ICML’04 (B. Triggs)

– NIPS’04 (C. Schmid, B. Triggs)

– CVPR’05 (F. Jurie, B. Triggs)

• Other

– C. Schmid is a member of the “INRIA commission d’évaluation” and of the “INRIA RA
comité des emplois scientifiques”

– F. Jurie is vice-head of AFRIF (French section of IAPR)

– B. Triggs manages the overall Balance & Integration of the EU Network of Excellence
PASCAL.
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– B. Triggs served as an expert at the EU consultation meeting on MultiModal Interfaces,
Luxembourg, May 2004.

• Prizes :

– Guillaume Bouchard of LEAR and SELECT received the prize for the best student paper
at the 14th Congrès de la Maîtrise des Risques et de la Sûreté de Fonctionnement (French
national Conference on Risk Management and Reliability) for his paperRéactualisation
bayésienne d’un modèle de dégradation en fonction du retour d’expérience(Bayesian
Updating of a Failure Model based on Experimental Data) [15].

9.2. Teaching

• Matching and Recognition, DEA IVR, INPG, 12 h (C. Schmid, F. Jurie)

• Multi-media database, 3rd year ENSIMAG, INPG, 11 h (F. Jurie)

9.3. Invited presentations

• C. Schmid.Building Local Part Models for Category-Level Recognition. Cognitive Computer Vision
Colloquium, Prague, January 2004.

• B. Triggs.Learning to Recover 3D Human Pose from Silhouettes.Australian National University,
Canberra, Australia, March 2004.

• B. Triggs.Learning to Recover 3D Human Pose from Silhouettes.Learning Workshop, Snowbird,
Utah, April 2004.

• C. Schmid.Building Local Part Models for Category Recognition. Vision Seminar at Berkeley
University, April 2004.

• C. Schmid.Affine-Invariant Local Features and Applications to Recognition. PASCAL Workshop
on Pattern Recognition and Machine Learning, Grenoble, May 2004.

• R. Mohr. Image plus Data Base differs from Image Data Base. Sigmod Workshop on Computer
Vision meets Data Base, Paris, June 2004.

• C. Schmid.Comparison of Affine Covariant Detectors and Descriptors. International Workshop on
Object Recognition, Taomina, Sicily, Italy, October 2004.

• B. Triggs.A Hierarchical Part-Based Model for Visual Object Categorization. International Work-
shop on Object Recognition, Taomina, Sicily, Italy, October 2004.

• B. Triggs.Learning Based Methods for Human Motion Capture.University of Oxford, November
2004.

• C. Schmid.Building Local Part Models for Category-Level Recognition. Seminar at Max Planck
Institut Tübingen, December 2004.
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