
epor t

d ' c t i v i t y

2004

THEME SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team LEMME

Software and mathematics

Sophia Antipolis

Table of contents

1. Team 1

2. Overall Objectives 1

3. Scientific Foundations 2

3.1. Type theory and formalization of mathematics 2
3.2. Verification of scientific algorithms 2
3.3. Programming language semantics 2
3.4. Proof environments 2

4. Application Domains 3

4.1. Certified scientific algorithms 3
4.2. Web, MathML, XML 3

5. Software 3

5.1. PCoq 3
5.2. Aïoli and Figue 3

6. New Results 4

6.1. Tools for proof environments 4
6.1.1. Pcoq 4
6.1.2. Latex to HTML converter 4
6.1.3. Proof explanations: using natural language and graph views 4
6.1.4. Mowgli prototype 4
6.1.5. Using Coq on the web 4
6.1.6. Geoview 5
6.1.7. TeXMacs 5

6.2. Type theory and formalization of mathematics 5
6.2.1. Type theory 5
6.2.2. Toward Geometric Views on the �-Calculus 5
6.2.3. Partial Co-recursion 5
6.2.4. Recursive functions 6
6.2.5. Termination 6
6.2.6. Complexity issues 6
6.2.7. Formalization in Coq of high-school mathematics 6
6.2.8. A sharp efficiency increase for ring equalities 6
6.2.9. Compiled reduction for the calculus of constructions 7
6.2.10. Proving polynomial inequalities with real coefficients in Coq 7

6.3. Programming language semantics 7
6.3.1. A Cminor to RTL translator 7
6.3.2. Optimizations at the RTL-CFG level 7
6.3.3. Parallel Move 8
6.3.4. Linearization 8

7. Contracts and Grants with Industry 8

7.1. Mowgli 8
8. Other Grants and Activities 8

8.1. International collaborations 8
8.2. National initiatives 8
8.3. European initiatives 9

9. Dissemination 9

9.1. Conference and workshop attendance, travel 9
9.2. Leadership within scientific community 9

2 Activity Report INRIA 2004

9.3. Miscellaneous 9
9.4. Supervision of Ph.D. projects 9
9.5. Teaching 10

10. Bibliography 10

1. Team
Head of project-team

Loïc Pottier [Research scientist INRIA]

Vice-head of project team

Yves Bertot [Research scientist INRIA]

Administrative Assistant

Nathalie Bellesso

Staff members INRIA

Janet Bertot [Research engineer INRIA, service DREAM, at 40 %, until May 2003]
Laurence Rideau [Research scientist INRIA]

Civil servant (on partial secondment)

Philippe Audebaud [Lecturer, ENS Lyon]

Civil servant (on secondment)

Frédérique Guilhot [Qualified teacher, académie de Nice]

Post-doctoral fellows

Benjamin Grégoire [Concert]
Hanane Naciri [Mowgli, until September 2004]

Scientific advisors

André Hirschowitz [Professor UNSA, Laboratoire J.A. Dieudonné]
Monica Nesi [Lecturer, University of L’Aquila, Italy]

Ph.D. students

Kuntal Das Barman [Concert, until October 2004]
Assia Mahboubi [Teaching Assistant]

2. Overall Objectives
Formal methods have become increasingly important in software development. The Lemme project aims at

contributing to their use in software construction and scientific computing. In particular, we try to bridge the
gap between solving a mathematical problem on paper and using a computer, as the latter supports and requires
many mechanical computations. Special attention is given to logical consistency and the ease of transfer from
theory to practice.

To reach our goal, we work on the following themes:

1. formalization of mathematical theories describing the basic objects of scientific knowledge;

2. development of tools to facilitate the construction of mathematical proofs and efficient implementa-
tions, derived from the formal description of an algorithm and its correctness proof; and

3. formalization of programming language semantics;

4. development of the user’s working environment in which the certified algorithms and the corre-
sponding proofs are developed. Users can be, for example, researchers, engineers, or students.

Although these themes could have a life of their own, they strongly influence each other. The researcher’s
working environment needs efficient and correct proof tools. Developing these tools requires the certified
description of algorithms, which in turn requires formalizing the basic mathematical tools. Once algorithms are
described, it is necessary to implement them in a programming language, whose semantics must be mastered.
To complete the circle, formalizing mathematics or programming language semantics can be done more easily
and efficiently thanks to a practical working environment.

2 Activity Report INRIA 2004

3. Scientific Foundations

3.1. Type theory and formalization of mathematics
Keywords: Coq, formalization, mathematics, type theory.

The calculus of inductive constructions is powerful enough to formalize complex mathematics, based on
algebraic structures together with their dependences and operations (as was also done in the Axiom computer
algebra system). This is especially important as we want to produce proofs of logical properties for these
structures, a goal that is only marginally addressed in most scientific computation systems. The calculus of
inductive constructions also makes it possible to write algorithms as recursive functional programs, based on
rich data structures. A third important characteristic of the calculus of inductive constructions is that it is also
a language for manipulating proofs, thanks to the Curry-Howard isomorphism. All this makes the calculus of
inductive constructions a tool of choice for our investigations. However, this language is difficult to learn, like
an assembly language, although its conciseness and expressive power make it palatable for experts.

The Coq system and the graphical tool PCoq allow to have nicely readable formalizations: record structures,
coercions, PPML pretty-printing, and extensible parsing, for instance, drastically improve readability. But
numerous problems are left unsolved: multiple inheritance is not provided; stacking coercions leads to
complexity problems; dependent types are awkward to use during proof or object constructions; sub-typing or
quotient constructions are lacking.

3.2. Verification of scientific algorithms
Keywords: Coq, algorithms, certification.

To produce certified algorithms, we use the following approach: instead of attempting to prove properties
of an existing program (through a formalization of its semantics), we produce programs whose correctness is
an immediate consequence of their construction. This has several advantages. First, we work at a high level of
abstraction, independently of the target implementation language (but the closer the language to the functional
approach, the more efficient the program). Second, we concentrate on specific characteristics of the algorithm,
and abstract away from the rest (e.g. memory management or data implementation strategies).

However, this approach also presents a few difficulties. For instance, it is still difficult to prove properties of
recursive algorithms where termination is ensured thanks to a well-founded order. It is also difficult to work
in an imperative style or with operations that have side-effects.

3.3. Programming language semantics
Keywords: Coq, programming languages, semantics.

We also investigate the algorithms that occur when implementing programming languages. For these
algorithms, we generally base our work on the semantic description of a language. The properties that we
attempt to prove for an algorithm are, for example, that it preserves the semantics of programs (when the
algorithm is a transformation or optimization algorithm) or that the programs produced are free of some
unwanted behavior (when the algorithm is a compiler or a program verifier). For these algorithms, the
complexity sometimes lies in the size of the language description, and sometimes in the intrinsic complexity
of the algorithm, which may use other algorithms such as graph traversal or unification algorithms. We usually
talk about “proofs in programming language semantics” to refer to this class of algorithms and their correctness
proofs. In addition to its intrinsic interest, this work is also useful for our work on scientific algorithms.
Using the semantics of the programming language used to implement the algorithms, we can guarantee the
correctness and efficiency of these implementations.

3.4. Proof environments
Keywords: Coq, environments, man-machine interface, proofs.

Project-Team LEMME 3

We study how to improve mechanical tools for searching and verifying mathematical proofs used by engi-
neers and mathematicians to develop software and formal mathematical theories. There are two complemen-
tary objectives. The first is to improve the means of interaction between users and computers, so that the tools
become usable by engineers, who have otherwise little interest in proof theory, and by mathematicians, who
have little interest in programming or other kinds of formal constraints. The second objective is to make it eas-
ier to maintain large formal mathematical developments, so they can be re-used in a wide variety of contexts.
Thus, we hope to increase the use of formal methods in software development, both by making it easier for
beginners and by making it more efficient for expert users.

4. Application Domains

4.1. Certified scientific algorithms
For some applications, it is mandatory to build zero-default software. One way to reach this high level

of reliability is to develop not only the program, but also a formal proof of its correctness. In the Lemme
team, we are interested in certifying algorithms for scientific computing. For this, we propose a methodology
that consists in starting not with the program but with the abstract algorithm. Proving first the algorithm’s
correctness has the main advantage that the proof usually contains all the deep mathematical properties. The
second step that consists in deriving an efficient implementation from an algorithm could then be handled
automatically or semi-automatically. We have already concluded several experiments in the area of computer
arithmetic, polynomial computations, and computational geometry.

4.2. Web, MathML, XML
Our work around XML and MathML, within the context of Figue, has two important goals:

� it should enable us to share proofs (represented as Coq scripts) on the web, by generating XML
+ MathML representations of proofs from our PCoq interface. These XML+MathML proof repre-
sentations can then be displayed (and printed) with “real" mathematical formulae by any navigator
supporting MathML, thus making the proof representation independent of PCoq.

� continuing the work of Loïc Pottier on Wims (WWW Interactive Mathematics Server, developed by
Xiao Gang at the University of Nice), we experiment with building proofs directly on the web, with
10 teachers and 200 students.

In the long run, the shift of attention towards the web should increase the visibility of our work, so that we
can have a larger group of users for our tools. The European contract LTR Mowgli will significantly support
this.

5. Software

5.1. PCoq
Participants: Janet Bertot, Yves Bertot [correspondent], Loïc Pottier, Laurence Rideau.

We distribute the PCoq system, a front-end to the Coq theorem prover, which allows a better handling of
mathematical notations. It has been used outside the team for several large scale proof developments.

5.2. Aïoli and Figue
Participants: Hanane Naciri, Laurence Rideau [correspondent], Laurent Théry.

Aïoli and Figue are base components of PCoq. In PCoq, mathematical formulae are represented as trees.
Aïoli defines the manipulation of these trees, while Figue defines appropriate algorithms for displaying.

4 Activity Report INRIA 2004

Particular attention is given to two-dimensional displaying of matrices, fractions, square roots, etc. For more
information, see http://www-sop.inria.fr/lemme/aioli/doc/aioli.htmland http://www-sop.inria.fr/lemme/figue/.

6. New Results

6.1. Tools for proof environments

6.1.1. Pcoq

Participants: Janet Bertot, Yves Bertot [correspondent], Loïc Pottier, Laurence Rideau.

There were two tasks on Pcoq this year: the first one was to adapt it to the new version of Coq (which
included a drastic change in syntax); the second was to refactor the history management and classify
commands according the kind of effect they produce to make Pcoq more independentant of the undelying
Coq syntax.

6.1.2. Latex to HTML converter

Participants: Hanane Naciri, Loïc Pottier.

We make scientific documents written in Latex accessible on the Web, while handling their structured
objects like formulae. We first convert the Latex to XHTML+MathML, then convert it to HTML+images.
For each formula, our program produces an image with specific sub-areas and associates each area with the
corresponding MathML structure (a sub formula) that can be manipulated. This gives mathematicians a simple
way to obtain an active web version of their Latex documents, even if it is maybe not the most efficient way.

6.1.3. Proof explanations: using natural language and graph views

Participants: Frédérique Guilhot, Hanane Naciri, Loïc Pottier.

The aim of this work is to generate automatically from a Coq proof script (a set of commands given to Coq
to perform the proof) an explanatory text in natural language (in French or in English) and a deduction graph.
Hence formal proofs can be understood by people who are not familiar with proof assistants. To provide these
views, we first translate the proof script into an XML tree. Then we visualize this tree as a structured text of
explanations written using forward style (from assumptions to conclusion). These explanations are presented
in a Web document with appropriate mathematical notations.

The XML tree can also be visualized using a deduction graph, an acyclic oriented graph in which each
reasoning step is represented by a subgraph. In this view, only facts and the links between them are represented.
This is a non linear presentation that gives a global view of the proof.

6.1.4. Mowgli prototype

Participants: Yves Bertot, Hanane Naciri, Laurence Rideau.

We have improved the Mowgli prototype. This prototype is a web interface giving access to the Mowgli
library (which contains proof data from Coq and scientific papers in Tex source). This prototype gives
proof developers the possibility to contribute to the Mowgli library. Proof developers can store their proofs
in the Mowgli library, and browse through their own or other proofs. The Mowgli prototype gives both
the content view (lambda terms, and proof trees in XML) and the natural language explanation view
of the proof data (presented in HTML or XHTML+MathML). For more information, see http://www-
sop.inria.fr/lemme/Hanane.Naciri/Mowgli/.

6.1.5. Using Coq on the web

Participant: Loïc Pottier.

With 10 teachers in mathematics at Nice and 200 students at the first level of University in mathematics, we
experiment a tool allowing to do proofs interactively, in coq, via a browser and a web serveur. This experience
began in october 2004, and consists in about 3 exercices per week in analysis.

Project-Team LEMME 5

6.1.6. Geoview

Participants: Frédérique Guilhot, Loïc Pottier.

Geoview is a tool that allows to make a drawing from a theorem in planar geometry. It uses a Java applet
(developed by F. Koteki of CNAM) to show the drawing on the screen, and is integrated into the PCoq
interface. This work is described in the article [4] that is now accepted for publication.

6.1.7. TeXMacs

Participants: Philippe Audebaud, Laurence Rideau.

An article describing our work on combining TeXMacs and Coq for the publication of formal proofs has
been published [3].

6.2. Type theory and formalization of mathematics

6.2.1. Type theory

Participants: Yves Bertot, Pierre Castéran [U. Bordeaux/INRIA Futurs].

The book by Yves Bertot and Pierre Castéran on the theoretical and practical aspects of the Coq System is
now published [1].

6.2.2. Toward Geometric Views on the �-Calculus

Participant: Philippe Audebaud.

In this study, our initial language is the pure �-calculus. We take the view that types are properties for terms,
which leads us to types assignment systems (also known as intersection types).

Whichever view of types we have in mind, it is commonly admitted since Tarski and Stone that they should
be interpreted as open sets of some topogical space. However, the property which is required for their various
interpretations (normalisation, realisability, full abstraction) is stability by finite and arbitrary intersections of
subsets, which rather advocate for interpretation as closed sets.

In our interpretation, types are closed sets of �-terms which fulfil some particular property (strong
normalisation, confluence, ...). We are still far from a complete answer because pure �-calculus does not
provide any native operation on terms which allows finite unions of (types as) closed sets to be the collection
of terms which share some property. We show that adding the parallel operator introduced by Boudol is a key
ingredient for building an interpretation of the resulting typed calculus using the closed sets of a particular
class of topologies.

Further analysing the problem, we show that this parallel operator is actually the multiplication for a ring
structure which is adjoined to the initial �-calculus. Our extended calculus, named E is thus the combination
of both a structure of commutative integral ring and �-calculus; it extends pure �-calculus along the same lines
as relative numbersZ extend natural numbers N, the ring operations expressing computation rules on terms.

In this new setting, types are naturally interpreted as closed sets of some Zariski topology on E : zeroes sets
for some notion of polynomial ideals (algebraic sets). Term properties (strong normalisation, confluence, full
abstraction) are investigated along the line of a single generic interpretation.

This first experiment suggests a lot of further developments based on algebraic geometry. For instance,
converging programs appear to be in a hyperplan, which suggests that they are rare.

6.2.3. Partial Co-recursion

Participant: Yves Bertot.

Recursive functions can be designed to produce conceptually infinite data structure and consume these
data-structures on a call-by-need basis. Previous work by T. Coquand, L. Paulson, and E. Gimenez showed
that these functions belonged to a class of recursive functions that is different from the class that is usually
considered in theorem provers. This new class of functions is called the class of co-recursive functions and

6 Activity Report INRIA 2004

the infinite data-structures are known as co-inductive structures. However, none of the previous studies had
considered partial functions.

We have described a solution to consider partial functions, with a special application on filters for infinite
streams. An example was given on Eratosthene’s sieve on infinite streams of numbers for which a complete
formal proof of correctness has been worked out. A paper describing this work is submitted for publication
[8]. For the future, we expect our solution to be implemented in an automatic processor. Applications of this
technique can also be interesting for exact real number computations [7].

6.2.4. Recursive functions

Participant: Yves Bertot.

We have developed a collection of algorithms to compute square, cubic, and nth root of numbers in binary
form. This example can be used as teaching material for the tools we have designed for the definition of
well-founded recursive functions [9]. This work has been submitted for publication and is currently being
revised.

6.2.5. Termination

Participants: Yves Bertot, Bejamin Grégoire, Gilles Barthe [projet Everest], Fernando Patawski [projet
Everest].

Different techniques to ensure the termination of dependently typed functions have been studied in the team
this year.

First a technique relying on staged types, where the types carry information about the respective size of input
and output of functions has been explored and a prototype has been implemented for testing in the framework
of the calculus of inductive constructions. An article on this topic has been submitted for publication.

Second a method that takes advantage of the current capabilities of the guard systems implemented in the
Coq system has been designed. Our experiments show that the implemented guard system is more powerful
than its published versions. We are collaborating with researchers from the LOGICAL team to publish a better
description of the guard system.

6.2.6. Complexity issues

Participant: Yves Bertot.

For the need of theorem proving, pattern-matching constructs are compiled to constructs where the matching
rules are elementary and pairwise exclusive. This expansion gives rise to exponential increases in code size
and the proving tools then face a complexity wall. We have shown that this combinatorial explosion could be
avoided by using a method that keeps the “order” of matching rules and confines the combinatorial explosion
in one single theorem.

6.2.7. Formalization in Coq of high-school mathematics

Participants: Frédérique Guilhot, Loïc Pottier.

Frédérique Guilhot has developed and improved a library dedicated to high-school geometry for Coq. An
article describing this work has been published [6].

A new topic, concerning high-school level probability calculus has been started.

6.2.8. A sharp efficiency increase for ring equalities

Participants: Benjamin Grégoire, Assia Mahboubi, Loïc Pottier.

We have explored a new approach to proving equalities between polynomial expressions in a ring using
reflection. This new approach is based on the Hörner encoding of polynomial expressions. Based on a variety
of test cases, this new approach proves to be much more efficient than the traditional approach based on full
development and ordering of monomials. We plan to perform a formal study of this method’s complexity and
compare it with the traditional approach.

Project-Team LEMME 7

6.2.9. Compiled reduction for the calculus of constructions

Participant: Benjamin Grégoire.

One of the needs of reduction in dependently typed calculi like the calculus of constructions is to perform
comparison of terms during type-checking. This use of reduction can be particularly computation-intensive in
the context of proofs by reflection. An approach to make reduction efficient is to compile terms of the calculus
of construction into a byte code similar to the one used for Ocaml, and to run this compiled program. We
designed a solution along this line during the Doctorate’s work performed in the CRISTAL and LOGICAL
projects. This year, we integrated this approach inside the main development version of the Coq system.

Experimental results fall in three categories:

1. Proofs that rely on reflection benefit from a sharp increase in efficiency,

2. Most of the other proofs have their verification time practically unchanged,

3. A few examples suffer from a drastic deterioration of efficiency. These cases still need to be
investigated.

6.2.10. Proving polynomial inequalities with real coefficients in Coq

Participants: Assia Mahboubi, Loïc Pottier.

Assia Mahboubi began to implement in Coq the cylindric algebraic decomposition of Collins. The next step
wil be to prove this implementation. The goal is to have a tactic solving efficiently polynomial inequalities
with real coefficients in Coq.

6.3. Programming language semantics

6.3.1. A Cminor to RTL translator

Participants: Yves Bertot, Kuntal Das Barman, Xavier Leroy [project-team CRISTAL].

We modeled the translator from Cminor to an intermediate language as a collection of mutually recursive
and side-effect free functions, which respect the definition restriction provided in the theorem prover Coq.
We then addressed the question of proving that this part of the compiler is correct. While working on a first
partial correctness result (the result graph is well-connected: all successors of all nodes are also present in the
graph) we observed that the proof complexity was too large to be handled with usual techniques. The source of
complexity is that the translator performs a few optimisations on the fly, using deep patterns to recognize the
optimization opportunities and these patterns are not handled well by the theorem prover. We devised a proof
method that makes it possible to work around this difficulty and completed the proof for the partial correctness
statement. We expect the new method will also make the complete correctness statement amenable.

An alternative workaround to the complexity problem has also been studied. This alternative workaround
is to re-implement the compiler to avoid the deep patterns and prove the optimization patterns separately.
This method has proved efficient and the complete proof could be be performed on a re-designed part of the
compiler.

6.3.2. Optimizations at the RTL-CFG level

Participant: Benjamin Grégoire.

We studied some of the optimizations usually performed at the level of the intermediate language (a
Register-Transfer-Language where the Control Flow Graph appears immediately) in a compiler. We rephrased
these optimisations as instances of a general framework using first an analysis phase and second a transfer
phase. For each optimization, the analysis uses Kildall’s algorithm to find the fixpoint of a monotonic function
in a lattice. An important part of our work was to exhibit the well-founded relations for different lattices, as
required by Kildall’s algorithm. We expect this kind of work to become easier and easier, thanks to better and
better libraries of results on well-foundedness that we develop.

8 Activity Report INRIA 2004

6.3.3. Parallel Move

Participants: Laurence Rideau, Bernard Serpette [project-team OASIS].

We studied a well-known algorithm for the parallel assignment of registers, where the values of the target
registers are taken from a collection of source registers, among which the target registers may also occur. The
difficulty is to find a suitable order so that the value of a source register is not overwritten before it has been
moved to a target register, while using only one extra temporary register. This algorithm has been formally
proved and executable code for integration in the proved compiler has been generated from the proof. An
article describing this work has been submitted for publication.

6.3.4. Linearization

Participants: Benjamin Grégoire, Xavier Leroy [project-team CRISTAL].

We have designed and proved correct an algorithm that maps a graph of RTL instructions to a sequence
of instructions, closer to the usual form of assembly language programs. This is where goto statements are
introduced. Our algorithm takes care of minimizing the number of branches.

7. Contracts and Grants with Industry

7.1. Mowgli
We participate in the European LTR project Mowgli. Other participants are the Universities of Bologna

(Italy), Berlin (Germany), Nijmegen (Netherlands) and Eindhoven (Netherlands), the DFKI (Saarbrücken,
Germany), the Max Planck Institute (Germany), and Trusted Logic. The goal of the project is to build on top
of previous standards for the management and publishing of mathematical documents (MathML, OpenMath,
OMDoc), and to integrate them with different XML technologies (XSLT, RDF, etc.).

8. Other Grants and Activities

8.1. International collaborations

� ORCCA - Ontario Research Center for Computer Algebra, Canada : collaboration around MathML
(bi-directional displaying of mathematical formulae).

� Universities of Bologna (Italy) and Nijmegen (Netherlands), DFKI (Saarbrücken, Germany) and the
Max Planck Institute for Gravitational Physics (Germany): mathematics on the Web.

8.2. National initiatives

� INRIA New Investigation grant (ARC) Concert (Compilateur Certifié, Certified compiler). Other
participants are Cristal (Rocquencourt), Miró (Sophia), Oasis (Sophia), Mimosa (Sophia), and IIE-
CNAM (Evry). Several meetings have been held during the year, and the project shares a CVS
repository and a mailing-list to gather data around the development of a certified compiler for a
subset of C called Cminor. For more information, see http://www-sop.inria.fr/lemme/concert/.

Project-Team LEMME 9

8.3. European initiatives
Lemme participates in the networks Types (type theory).

9. Dissemination

9.1. Conference and workshop attendance, travel

Yves Bertot Yves Bertot attended a workshop in Dagstuhl in September on dependently types program-
ming where he presented his experiment on Eratosthene’s sieve. He was invited to a workshop on
Co-induction in Dresden in September,where he presented the capabilities of co-inductive tools in
the Coq system. He gave talks on partial co-recursive functions at a workshop of the ACI GéoCal in
Marseille in November and at the workshop of the Types european coordination action in Jouy-en-
Josas in December.

Frédérique Guilhot Frédérique Guilhot attended the conference JFLA’04 in January.

Loïc Pottier Loïc Pottier presented a paper on a new tactic proving equalities with Groebner bases in Coq
at JFLA 2004 in january. He presented his work on interactive proofs to some mathematicians in
Marseille in June, and was invited to gave a talk on this subject at a “Small Types Workshop” in
Nijmegen in october. He attended the “Assises nationale de la recherche” in Grenoble in october, as
a delegate (?) of the organisation comitee of Nice.

Laurence Rideau Laurence Rideau attended the conference JFLA’04 in January.

9.2. Leadership within scientific community

� Yves Bertot was a member of the program committee for TPHOLS’04.

� Loïc Pottier is a member of the program committee for JFLA 2005.

� Project members reviewed papers for among others TSI, RNC6, ENTCS, RTA.

9.3. Miscellaneous

� Yves Bertot is a member of the jury for the SPECIF thesis award.

� Yves Bertot is a member of the Conseil National des Universités (National University Council), 27th
section. This position brings more than a month of work in reviewing applicant profiles for university
professor positions.

9.4. Supervision of Ph.D. projects

� Yves Bertot supervises the Ph.D. projects of Kuntal Das Barman (completed October 2003).

� Loïc Pottier supervises the Ph.D. projects of Assia Mahboubi and Frédérique Guilhot.

10 Activity Report INRIA 2004

9.5. Teaching

Philippe Audebaud Compilation, analyse syntaxique 26 heures Licence, Compilation, code generation,
Maitrise 26 heures Sémantique des langages de programmation, Maitrise, 18 heures, Algorithmique

théorique Deug2, 48h, plus divers TD d’algorithmique et de langages (Scheme), pour un total de
200 heures.

Yves Bertot Sémantique des langages de programmation I (Programming language semantics I), Maîtrise
Informatique (4th year, 14 hours), University of Nice.
Programmation fonctionnelle et preuves (Proofs and Functional Programming), Maîtrise, (4th year,
32 hours), ENS Lyon, Sémantique des langages de programmation II (Programming language
semantics II), 2nd year Master (5th year, 24 hours), University of Nice, Proof mecanisation, 2nd
year Master (5th year, 6 hours).

Loïc Pottier Preuves formelles: théorie et applications (Formal Proofs: theory and applications), DEA
mathematics, University of Nice.
Logique et informatique (Logic and Computer Science), Maîtrise MIM, University of Nice.

10. Bibliography

Books and Monographs

[1] Y. BERTOT, P. CASTÉRAN. Interactive Theorem Proving and Program development, Springer, 2004.

Doctoral dissertations and Habilitation theses

[2] K. D. BARMAN. Type theoretic semantics for programming languages, Ph. D. Thesis, Université de Nice-
Sophia-Antipolis, September 2004.

Articles in referred journals and book chapters

[3] P. AUDEBAUD, L. RIDEAU. TeX as Authoring Tool for Formal Developments, in "Electronic Notes in
Theoretical Computer Science", vol. 103, 2004.

[4] Y. BERTOT, F. GUILHOT, L. POTTIER. Visualizing Geometrical Statements with GeoView, in "Electronic Notes
in Theoretical Computer Science", vol. 103, 2004.

Publications in Conferences and Workshops

[5] J. CRECI, L. POTTIER. La tactique GB, in "JFLA 2004", 2004.

[6] F. GUILHOT. Formalisation en Coq d’un cours de géométrie pour le lycée, in "JFLA 2004", 2004.

[7] M. NIQUI, Y. BERTOT. Qarith: Coq Formalisation of Lazy Rational Arithmetic, Lecture Notes in Computer
Science, vol. 3085, Springer-Verlag, 2004, p. 309–323.

Internal Reports

[8] Y. BERTOT. Filters on Co-Inductive streams: an application to Eratosthene’s sieve, Technical report, no RR-
5343, INRIA, 2004, http://www.inria.fr/rrrt/rr-5343.html.

Project-Team LEMME 11

[9] Y. BERTOT. Vérification formelle d’extractions de racines, En Français, Technical report, no RR-5344, INRIA,
2004, http://www.inria.fr/rrrt/rr-5344.html.

