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2. Overall Objectives
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ization.

Context.

Structural Health Monitoring (SHM) is the whole process of the design, development and implementation
of techniques for the detection, localization and estimation of damages, for monitoring the integrity of
structures and machines within the aerospace, civil and mechanical engineering infrastructures [35][44]. In
addition to these key driving application areas, SHM is now spreading over most transportation infrastructures
and vehicles, within the naval, railway and automobile domains. Examples of structures or machines to be
monitored include aircrafts, spacecrafts, buildings, bridges, dams, ships, offshore platforms, on-shore and off-
shore wind farms (wind energy systems), turbo-alternators and other heavy machinery, ....

The emergence of stronger safety and environmental norms, the need for early decision mechanisms,
together with the widespread diffusion of sensors of all kinds, result in a thorough renewal of sensor
information processing problems. This calls for new research investigations within the sensor data (signal and
image) information processing community. In particular, efficient and robust methods for structural analysis,
non destructive evaluation, integrity monitoring, damage diagnostics and localization, are necessary for fatigue
and aging prevention, and for condition-based maintenance. Moreover, multidisciplinary research, mixing
information science, engineering science and scientific computing, is mandatory. However, most of the SHM
research investigations are conducted within mechanical, civil and aeronautical engineering departments, with
little involvement of advanced data information processing specialists.

Objectives.

In this context, and based on our background and results on model-based statistical identification, change
detection and vibration monitoring, our objectives are :

e Importing knowledge from engineering communities within our model-based information process-
ing methods;

e Mixing statistical inference tools (identification, detection, rejection) with simplified models of
aerodynamical effects, thermodynamical or other environmental effects;



2 Activity Report INRIA 2004

e Involving nonlinearities in the models, algorithms and proofs of performances;

e  Exporting our data processing algorithms within the SHM community, based on specific training
actions, on a dedicated free Scilab toolbox, and an industrial software.

2.1.3. Industrial and academic relations.

e Industrial projects: with EADS Launch Vehicles on modal analysis of a launch vehicle,

e  Multi—partners projects: at European level on exploitation of flight test data under natural excitation
conditions (FIiTE - Euréka), on structural assessment, monitoring and control (SAMCO - FP5
Growth),

e  Academic research: national project on monitoring civil engineering structures (CONSTRUCTIF -
ACI S&I), European network on system identification (FP5 TMR).

3. Scientific Foundations

3.1. Introduction

In this section, the main features for the key monitoring issues, namely identification, detection, and
diagnostics, are provided, and a particular instantiation relevant for vibration monitoring is described.

It should be stressed that the foundations for identification, detection, and diagnostics, are fairly general, if
not generic. Handling high order linear dynamical systems, in connection with finite elements models, which
call for using subspace-based methods, is specific to vibration-based SHM. Actually, one particular feature of
model-based sensor information data processing as exercised in SISTHEM, is the combined use of black-box
or semi-physical models together with physical ones. Black-box and semi-physical models are, for example,
eigenstructure parameterizations of linear MIMO systems, of interest for modal analysis and vibration-based
SHM. Such models are intended to be identifiable. However, due to the large model orders that need to be
considered, the issue of model order selection is really a challenge. Traditional advanced techniques from
statistics such as the various forms of Akaike criteria (AIC, BIC, MDL, ...) do not work at all. This gives raise
to new research activities specific to handling high order models.

Our approach to monitoring assumes that a model of the monitored system is available. This is a reasonable
assumption, especially within the SHM areas. The main feature of our monitoring method is its intrinsic ability
to the early warning of small deviations of a system with respect to a reference (safe) behavior under usual
operating conditions, namely without any artificial excitation or other external action. Such a normal behavior
is summarized in a reference parameter vector 6, for example a collection of modes and mode-shapes.

3.2. Identification

Keywords: adaptive estimation, estimating function, recursive estimation.

See module 6.1.

The behavior of the monitored continuous system is assumed to be described by a parametric model
{Py, 0 € O}, where the distribution of the observations (Zy, ..., Zn) is characterized by the parameter
vector § € ©. An estimating function, for example of the form :

N
Kn(0) = 1N Y K (0, Z)
k=0
is such that E4[K ()] = 0 forall § € ©.In many situations, X is the gradient of a function to be minimized :
squared prediction error, log-likelihood (up to a sign), .... For performing model identification on the basis of
observations (Zy, ..., Zn ), an estimate of the unknown parameter is then [36] :
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On = arg{f € © : Kn(0) =0}

Assuming that 6* is the true parameter value, and that Eg-[Kn(0)] = 0 if and only if § = * with 6* fixed
(identifiability condition), then On converges towards 6*. From the central limit theorem, the vector K (6*) is
asymptotically Gaussian with zero mean, with covariance matrix ¥ which can be either computed or estimated.
If, additionally, the matrix gy = —E=[K'\ (8*)] is invertible, then using a Taylor expansion and the constraint
X N(é ~) = 0, the asymptotic normality of the estimate is obtained :

VN By — 0%) ~ I VN Ky (67)
In many applications, such an approach must be improved in the following directions :

®  Recursive estimation: the ability to compute 6 ~N+1 simply from On:

e Adaptive estimation: the ability to track the true parameter #* when it is time-varying.

3.3. Detection

Keywords: local approach, residual evaluation, residual generation.

See module 6.2.

Our approach to on-board detection is based on the so-called asymptotic statistical local approach, which
we have extended and adapted [4][3][2]. It is worth noticing that these investigations of ours have been initially
motivated by a vibration monitoring application example. It should also be stressed that, as opposite to many
monitoring approaches, our method does not require repeated identification for each newly collected data
sample.

For achieving the early detection of small deviations with respect to the normal behavior, our approach
generates, on the basis of the reference parameter vector §y and a new data record, indicators which
automatically perform :

e The early detection of a slight mismatch between the model and the data;
e A preliminary diagnostics and localization of the deviation(s);

e  The tradeoff between the magnitude of the detected changes and the uncertainty resulting from the
estimation error in the reference model and the measurement noise level.

These indicators are computationally cheap, and thus can be embedded. This is of particular interest in some
applications, such as flutter monitoring, as explained in module 4.4.

As in most fault detection approaches, the key issue is to design a residual, which is ideally close to zero
under normal operation, and has low sensitivity to noises and other nuisance perturbations, but high sensitivity
to small deviations, before they develop into events to be avoided (damages, faults, ...). The originality of our
approach is to :

e Design the residual basically as a parameter estimating function,

e  FEvaluate the residual thanks to a kind of central limit theorem, stating that the residual is asymptot-
ically Gaussian and reflects the presence of a deviation in the parameter vector through a change in
its own mean vector, which switches from zero in the reference situation to a non-zero value.
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This is actually a strong result, which transforms any detection problem concerning a parameterized
stochastic process into the problem of monitoring the mean of a Gaussian vector.

The behavior of the monitored system is again assumed to be described by a parametric model {Py , 6 €
©1}, and the safe behavior of the process is assumed to correspond to the parameter value 6. This parameter
often results from a preliminary identification based on reference data, as in module 3.2.

Given a new N-size sample of sensors data, the following question is addressed : Does the new sample
still correspond to the nominal model Py, ? One manner to address this generally difficult question is the
following. The asymptotic local approach consists in deciding between the nominal hypothesis and a close
alternative hypothesis, namely :

(Safe) Hp: 6 =10, and (Damaged) H;: 6=160+ n/\/ﬁ (1

where 7 is an unknown but fixed change vector. A residual is generated under the form :

N
(v =1/VN Y K(0o, Zk) = VN Kn(bo) - 2
k=0
If the matrix Jy = — Ey, [K'y (6p)] converges towards a limit J, then the central limit theorem shows [33] that

the residual is asymptotically Gaussian :

N(0,X%) under Py, ,
N
N =00 N(@n,5) under Py v .
where the asymptotic covariance matrix 3 can be estimated, and manifests the deviation in the parameter
vector by a change in its own mean value. Then, deciding between n = 0 and 1 # 0 amounts to compute the
following 2-test, provided that § is full rank and ¥ is invertible :

=CF1lz\. 3)

where C2 9T S 1(yand F 247 x17.

With this approach, it is possible to decide, with a quantifiable error level, if a residual value is significantly
different from zero, for assessing whether a fault/damage has occurred. It should be stressed that the residual
and the sensitivity and covariance matrices J and X can be evaluated (or estimated) for the nominal model.
In particular, it is not necessary to re-identify the model, and the sensitivity and covariance matrices can be
pre-computed off-line.

3.4. Diagnostics
Keywords: diagnostics, isolation.

See modules 6.3 and 6.2.

A further monitoring step, often called fault isolation, consists in determining which (subsets of) compo-
nents of the parameter vector € have been affected by the change. Solutions for that are now described. How
this relates to diagnostics is addressed afterwards.

3.4.1. Isolation.

The question: which (subsets of) components of 8 have changed ?, can be addressed using either nuisance
parameters elimination methods or a multiple hypotheses testing approach [30]. Here we only sketch two
intuitively simple statistical nuisance elimination techniques, which proceed by projection and rejection,
respectively.
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The fault vector 7 is partitioned into an informative part and a nuisance part, and the sensitivity matrix J,
the Fisher information matrix F = J7 ¥~ J and the normalized residual ( = g7 £~! (y are partitioned
accordingly

_ Ta _ _ Faa Fab ;o Za
n_<nb>7 g_(ga Hb); F_<Fba be>7 <_<Eb>

A rather intuitive statistical solution to the isolation problem, which can be called sensitivity approach, consists
in projecting the deviations in 7 onto the subspace generated by the components 7, to be isolated, and deciding
between 1, = 1, = 0 and 1, # 0, 7, = 0. This results in the following test statistics :

ta=C, Fol C, @)

where (,, is the partial residual (score). If ¢, > t;, the component responsible for the fault is considered to be
a rather than b.

Another statistical solution to the problem of isolating 7, consists in viewing parameter 7, as a nuisance,
and using an existing method for inferring part of the parameters while ignoring and being robust to the
complementary part. This method is called min-max approach. It consists in replacing the nuisance parameter
component 1, by its least favorable value, for deciding between 1, = 0 and 7, # 0, with 1, unknown. This
results in the following test statistics :

* =xT o 1 =%
th=Co Fi ', , 5)

where Z: 2 (,—Fu F,;f (, is the effective residual (score) resulting from the regression of the informative
partial score Za over the nuisance partial score Zb, and where the Schur complementF} = F,, —Fg; F,jbl Fy.
is the associated Fisher information matrix. If ¢, > ¢;, the component responsible for the fault is considered
to be a rather than b.

The properties and relationships of these two types of tests are investigated in [27].

3.4.2. Diagnostics.

In most SHM applications, a complex physical system, characterized by a generally non identifiable
parameter vector ® has to be monitored using a simple (black-box) model characterized by an identifiable
parameter vector . A typical example is the vibration monitoring problem in module 4.2, for which complex
finite elements models are often available but not identifiable, whereas the small number of existing sensors
calls for identifying only simplified input-output (black-box) representations. In such a situation, two different
diagnosis problems may arise, namely diagnosis in terms of the black-box parameter # and diagnosis in terms
of the parameter vector ® of the underlying physical model.

The isolation methods sketched above are possible solutions to the former. Our approach to the latter
diagnosis problem is basically a detection approach again, and not a (generally ill-posed) inverse problem
estimation approach [7]. The basic idea is to note that the physical sensitivity matrix writes J o9, where Jaog
is the Jacobian matrix at ® of the application ® — 6(®), and to use the sensitivity test (4) for the components
of the parameter vector ®. Typically this results in the following type of directional test :

e =CT'S 1 9009 (35,07 271 000) 1 95,3781 C 2 N . (©6)

It should be clear that the selection of a particular parameterization ® for the physical model may have a non
negligible influence on such type of tests, according to the numerical conditioning of the Jacobian matrices
day-

As a summary, the machinery in modules 3.2, 3.3 and 3.4 provides us with a generic framework for
designing monitoring algorithms for continuous structures, machines and processes. This approach assumes
that a model of the monitored system is available. This is a reasonable assumption within the field of
applications described in module 4.2, since most mechanical processes rely on physical principles which
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write in terms of equations, providing us with models. These important modeling and parameterization issues
are among the questions we intend to investigate within our research program.

The key issue to be addressed within each parametric model class is the residual generation, or equivalently
the choice of the parameter estimating function.

3.5. Subspace-based identification and detection
Keywords: Hankel matrix factorization, covariance-driven subspace-based algorithms.

See module 6.2.

For reasons closely related to the vibrations monitoring applications described in module 4.2, we have been
investigating subspace-based methods, for both the identification and the monitoring of the eigenstructure
(A, ) of the state transition matrix F' of a linear dynamical state-space system :

Xir1 = F Xp+ Vi 7
Yo = H X ’
namely the (A, ¢, ) defined by :
det (F=X D=0, (F=A 1) =0, &ZH o ®)

The (canonical) parameter vector in that case is :

A A
0= < vecd ) ®)

where A is the vector whose elements are the eigenvalues A, ® is the matrix whose columns are the ¢, ’s, and
vec is the column stacking operator.

Subspace-based methods is the generic name for linear systems identification algorithms based on either
time domain measurements or output covariance matrices, in which different subspaces of Gaussian random
vectors play a key role [43]. A contribution of ours, minor but extremely fruitful, has been to write the output-
only covariance-driven subspace identification method under a form which involves a parameter estimating
function, from which we define a residual adapted to vibration monitoring [1]. This is explained next.

3.5.1. Covariance-driven subspace identification.
Let R, 2E (v YT, and:

Ry R : Ry,

Hpr1g = Rfl R_2 R')‘I 2 Hank (R)) (10)

Ry Bpi Bpig—1

be the output covariance and Hankel matrices, respectively; and: G 2 E (X kYkT) Direct computations of
the R;’s from the equations (7) lead to the well known key factorizations :

R; = HF'G (1)

Hpt1,4 = Op+1(HaF) eq(FaG) (12)

where:
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H
a HF

Ops1(H, F) and C,(F,G)2(G FG --- F'Q@) (13)

HF?

are the observability and controllability matrices, respectively. The observation matrix H is then found in the
first block-row of the observability matrix O. The state-transition matrix F' is obtained from the shift invariance
property of O. The eigenstructure (), ¢y ) then results from (8).

Since the actual model order is generally not known, this procedure is run with increasing model orders.

3.5.2. Model parameter characterization.

Choosing the eigenvectors of matrix F' as a basis for the state space of model (7) yields the following
representation of the observability matrix:

®
®A
Ops1(6) = | . (14)

DAP

where A 2 diag(A), and A and @ are as in (9). Whether a nominal parameter 6 fits a given output covariance
sequence (I?;); is characterized by [1]:
Op+1(6o) and  Hpii,g have the same left kernel space. (15)

This property can be checked as follows. From the nominal 6y, compute O, (o) using (14), and perform
e.g. a singular value decomposition (SVD) of O,1(6p) for extracting a matrix U such that: U1 U =

I and Ul 0,41(60) = 0. Matrix U is not unique (two such matrices relate through a post-
multiplication with an orthonormal matrix), but can be regarded as a function of 8y. Then the characterization
writes:

U(Bo)" Hpr1, =0 (16)

3.5.3. Residual associated with subspace identification.

Assume now that a reference 6y and a new sample Y1, - - - | YN are available. For checking whether the data
agree with 6y, the idea is to compute the empirical Hankel matrix J(p 1 4:

N
. A 5 5 A .
Hpy1,4 = Hank (Ri) , R; =1/(N —) Z Vi Y, a7
k=i+1

and to define the residual vector:

(n(Bo) A VN vee (U(eo)T a%,,%q) (18)

Let 6 be the actual parameter value for the system which generated the new data sample, and Ey be the
expectation when the actual system parameter is 6. From (16), we know that {x (6p) has zero mean when no
change occurs in 6, and nonzero mean if a change occurs. Thus (v (6y) plays the role of a residual.

It is our experience that this residual has highly interesting properties, both for damage detection [1] and
localization [7], and for flutter monitoring [8].
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3.5.4. Other uses of the key factorizations.

Factorization (12) is the key for a characterization of the canonical parameter vector 6 in (9), and for deriving
the residual. Factorization (11) is also the key for :

e  Proving consistency and robustness results [31];

e Designing an extension of covariance-driven subspace identification algorithm adapted to the pres-
ence and fusion of non-simultaneously recorded multiple sensors setups [5];

e  Proving the consistency and robustness of this extension [6];

e Designing various forms of input-output covariance-driven subspace identification algorithms
adapted to the presence of both known inputs and unknown excitations [25].

4. Application Domains

4.1. Introduction

In this section, the problems we are faced with vibration-based monitoring and within our two major
application domains are briefly described.

4.2. Vibrations-based monitoring
Keywords: mechanical structure, modal analysis, subspace—based method, vibrations.

See modules 3.5, 6., 7.1 and 8.1.

Detecting and localizing damages for monitoring the integrity of structural and mechanical systems is a topic
of growing interest, due to the aging of many engineering constructions and machines and to increased safety
norms. Many current approaches still rely on visual inspections or local non destructive evaluations performed
manually. This includes acoustic, ultrasonic, radiographic or eddy-current methods; magnet or thermal field
techniques, .... These experimental approaches assume an a priori knowledge and the accessibility of a
neighborhood of the damage location. Automatic global vibration-based monitoring techniques have been
recognized to be useful alternatives to those local evaluations [35]. However this has led to actual damage
monitoring systems only in the field of rotating machines.

A common feature of the structures to be monitored (e.g. civil engineering structures subject to hurricanes
or earthquakes, but also swell, wind and rain; aircrafts subject to strength and turbulences, ...) is the following.
These systems are subject to both fast and unmeasured variations in their environment and small slow
variations in their vibrating characteristics. The available data (measurements from e.g. strain gauges or
accelerometers) do not separate the effects of the external forces from the effect of the structure. The external
forces vary more rapidly than the structure itself (fortunately !), damages or fatigues on the structure are of
interest, while any change in the excitation is meaningless. Expert systems based on a human-like exploitation
of recorded spectra can hardly work in such a case : the changes of interest (1% in eigenfrequencies) are
visible neither on the signals nor on their spectra. A global health monitoring method must rather rely on a
model which will help in discriminating between the two mixed causes of the changes that are contained in
the measurements.

Classical modal analysis and vibration monitoring methods basically process data registered either on test
beds or under specific excitation or rotation speed conditions. However there is a need for vibration monitoring
algorithms devoted to the processing of data recorded in-operation, namely during the actual functioning of
the considered structure or machine, without artificial excitation, speeding down or stopping.

Health monitoring techniques based on processing vibration measurements basically handle two types of
characteristics: the structural parameters (mass, stiffness, flexibility, damping) and the modal parameters
(modal frequencies, and associated damping values and mode-shapes); see [41] and references therein. A
central question for monitoring is to compute changes in those characteristics and to assess their significance.
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For the frequencies, crucial issues are then: how to compute the changes, to assess that the changes are
significant, to handle correlations among individual changes. A related issue is how to compare the changes
in the frequencies obtained from experimental data with the sensitivity of modal parameters obtained from
an analytical model. Furthermore, it has been widely acknowledged that, whereas changes in frequencies
bear useful information for damage detection, information on changes in (the curvature of) mode-shapes
is mandatory for performing damage localization. Then, similar issues arise for the computation and the
significance of the changes. In particular, assessing the significance of (usually small) changes in the mode-
shapes, and handling the (usually high) correlations among individual mode-shape changes are still considered
as opened questions [41][35].

Controlling the computational complexity of the processing of the collected data is another standard
monitoring requirement, which includes a limited use of an analytical model of the structure. Moreover, the
reduction from the analytical model to the experimental model (truncated modal space) is known to play a key
role in the success of model-based damage detection and localization.

The approach which we have been developing, based on the foundations in modules 3.2-3.5, aims at
addressing all the issues and overcoming the limitations above.

4.3. Civil engineering

See modules 3.5, 6.1, 6.3 and 8.1.

Civil engineering is a currently renewing scientific research area, which can no longer be restricted to
the single mechanical domain, with numerical codes as its central focus. Recent and significant advances
in physics and physical chemistry have improved the understanding of the detailed mechanisms of the
constitution and the behavior of various materials (see e.g. the multi-disciplinary general agreement CNRS-
Lafarge). Moreover, because of major economical and societal issues, such as durability and safety of
infrastructures, buildings and networks, civil engineering is evolving towards a multi-disciplinary field,
involving in particular information sciences and technologies and environmental sciences.

These last ten years, monitoring the integrity of the civil infrastructure has been an active research topic,
including in connected areas such as automatic control, for mastering either the aging of the bridges, as in
America (US, Canada) and Great Britain, or the resistance to seismic events and the protection of the cultural
heritage, as in Italy and Greece. The research effort in France seems to be more recent, maybe because a
tendency of long term design without fatigue oriented inspections, as opposite to less severe design with
planned mid-term inspections. One of the current thematic priorities of the Réseau de Génie Civil et Urbain
(RGCU) is devoted to constructions monitoring and diagnostics. The picture in Asia (Japan, and also China) is
somewhat different, in that the demand for automatic data processing for global SHM systems is much higher,
because recent or currently built bridges are equipped with hundreds if not thousands of sensors, in particular
the Hong Kong-Shenzen Western Corridor and Stonecutter Bridge projects.

Among the challenges for vibration-based bridges health monitoring, two major issues are the different
kinds of (non measured) excitation sources and the environmental effects [42]. Typically the traffic on and
under the bridge, the wind and also the rain, contribute to excite the structure, and influence the measured
dynamics. Moreover, the temperature is also known to affect the eigenfrequencies and mode-shapes, to an
extent which is significant w.r.t. the deviations to be monitored. This is addressed in module 6.3.

4.4. Aeronautics

See modules 3.5, 6.1, 6.2 and 7.1.

The aging of aerospace structures is a major current concern of civilian and military aircraft operators.
Another key driving factor for SHM is to increase the operation and support efficiency of an air vehicle fleet.
A SHM system is viewed as a component of a global integrated vehicle health management IVHM) system.
An overview of the users needs can be found in [32].

Improved safety and performance and reduced aircraft development and operating costs are other major
concerns. One of the critical design objectives is to clear the aircraft from unstable aero-elastic vibrations
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(flutter) in all flight conditions. This requires a careful exploration of the dynamical behavior of the structure
subject to vibration and aero-servo-elastic forces. This is achieved via a combination of ground vibration tests
and in-flight tests. For both types of tests, various sensors data are recorded, and modal analyses are performed.
Important challenges of the in-flight modal analyses are the limited choices for measured excitation inputs, and
the presence of unmeasured natural excitation input (turbulence). A better exploitation of flight test data can
be achieved by using output-only system identification methods, which exploits data recorded under natural
excitation conditions (e.g., turbulent), without resorting to artificial control surface excitation and other types
of excitation inputs [25].

A crucial issue is to ensure that the newly designed airplane is stable throughout its operating range.
A critical instability phenomenon, known under the name of “aero-elastic flutter, involves the unfavorable
interaction of aerodynamic, elastic, and inertia forces on structures to produce an unstable oscillation that
often results in structural failure” [37]. For preventing from this phenomenon, the airplane is submitted to a
flight flutter testing procedure, with incrementally increasing altitude and airspeed. The problem of predicting
the speed at which flutter can occur is usually addressed with the aid of identification methods achieving
modal analysis from the in-flight data recorded during these tests. The rationale is that the damping coefficient
reflects the rate of increase or decrease in energy in the aero-servo-elastic system, and thus is a relevant
measure of stability. Therefore, while frequencies and mode-shapes are usually the most important parameters
in structural analysis, the most critical ones in flutter analysis are the damping factors, for some critical modes.
The mode-shapes are usually not estimated for flutter testing.

Until the late nineties, most approaches to flutter clearance have led to data-based methods, processing
different types of data. A combined data-based and model-based method has been introduced recently under
the name of flutterometer. Based on an aero-elastic state-space model and on frequency-domain transfer
functions extracted from sensor data under controlled excitation, the flutterometer computes on-line a robust
flutter margin using the p-method for analyzing the worst case effects of model uncertainty. In recent
comparative evaluations using simulated and real data [34][38], several data-based methods are shown to
fail in accurately predicting flutter when using data from low speed tests, whereas the flutterometer turns out
not to converge to the true flutter speed during envelope expansion, due to inherent conservative predictions.

Algorithms achieving the on-line in-flight exploitation of flight test data are expected to allow a more direct
exploration of the flight domain, with improved confidence and reduced costs. Among other challenges, one
important issue to be addressed on-line is the flight flutter monitoring problem, stated as the problem of
monitoring some specific damping coefficients. On the other hand, it is known, e.g. from Cramer-Rao bounds,
that damping factors are difficult to estimate accurately. For improving the estimation of damping factors, and
moreover for achieving this in real-time during flight tests, one possible although unexpected route is to rely
on detection algorithms able to decide whether some damping factor decreases below some critical value or
not. The rationale is that detection algorithms usually have a much shorter response time than identification
algorithms. This is addressed in module 6.2.

5. Software
5.1. COSMAD: Modal analysis and health monitoring Scilab toolbox

Keywords: Scilab, damage detection, damage localisation, identification, input—output identification, modal
diagnosis, optimal sensor positioning, output—only identification, sensor fusion, subspace—based identifica-
tion, vibration monitoring.

Participants: Laurent Mevel [corresponding person], Maurice Goursat, Auguste Sam.

With the help of Yann Veillard and Auguste Sam, engineers, Laurent Mevel and Maurice Goursat have
developed a Scilab toolbox devoted to modal analysis and vibration monitoring of structures or machines
subjected to known or ambient (unknown) excitation [20][18].

This software (COSMAD 3.1.1) has been registered at the APP under the number
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IDDN.FR.001.210011.000.S.A.2003.000.20700
and can be downloaded from http://www.irisa.fr/sisthem/cosmad/. This toolbox performs the following
tasks :

e Qutput-only (O/0) subspace-based identification, working batch-wise, see modules 3.5, 6.1 and 7.1.
The problem is to identify the eigenstructure (eigenvalues and observed components of the associated
eigenvectors) of the state transition matrix of a linear dynamical system, using only the observation
of some measured outputs summarized into a sequence of covariance matrices corresponding to
successive time shifts. An overview of this method can be found in [29].

o  Input-output (1/0O) subspace-based identification, working batch-wise, see modules 3.5, 6.1 and 7.1.
The problem is again to identify the eigenstructure, but now using the observation of some measured
inputs and outputs summarized into a sequence of cross-covariance matrices. This method is
described in [25].

e Automatic subspace-based modal analysis, a pre-tuned version of the O/O and I/O identification
methods above. This is described in [39] [20].

e  Automated on-line identification package, see modules 3.2, 3.5 and 6.1. The main question is to
react to non stationarities and fluctuations in the evolution of the modes, especially the damping. The
developed package allows the extraction of such modes using a graphical interface allowing to follow
the evolution of all frequencies and damping over time and to analyze their stabilization diagram
(from which they were extracted). Automated modal extraction is performed based on the automated
analysis and classification of the stabilization diagram. For this method, see [21][22][15][13].

e Automatic recursive subspace-based modal analysis, a point-wise version of the O/O and I/O
identification algorithms above. For this method, see [12].

o Subspace-based identification through moving sensors data fusion, see modules 3.2 and 3.5. The
problem is to identify the eigenstructure based on a joint processing of signals registered at
different time periods, and under different excitations. The key principles are described in [5] and a
consistency result can be found in [6].

e  Damage detection, working batch-wise, see modules 3.3, 3.5, and 4.2. Based on vibrations measure-
ments processing, the problem is to perform early detection of small deviations of the structure w.r.t.
a reference behavior considered as normal. Such an early detection of small deviations is manda-
tory for fatigue prevention. The algorithm confronts a new data record, summarized by covariance
matrices, to a reference modal signature. The method is described in [1][7].

e  Damage monitoring, a point-wise version of the damage detection algorithm above. This is described
in [40].

e On-line flutter onset detection, see modules 3.3, 3.5, 4.2 and 6.2. This algorithm detects that one
damping coefficient crosses a critical value from above. For this method see [8][16]. An extension
to detect if some subset of the whole modal parameter data vector varies with respect to a threshold
value, applies directly to monitoring the evolution of a set of frequencies or a set of damping with
respect to their reference values [19].

e Modal diagnosis, see modules 3.4, 3.5, and 4.2. This algorithm finds the modes the most affected by
the detected deviation. For this method, see [7].

e Damage localization, see modules 3.4, 3.5 and 4.2. The problem is to find the part of the structure,
and the associated structural parameters (e.g. masses, stiffness coefficients), which have been
affected by the damage. We state and solve this problem as a detection problem, and not an (ill-
posed) inverse estimation problem. This is explained in [7].
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e  Optimal sensor positioning for monitoring, see module 6.4. At the design stage of the monitoring
system, a criterion is computed, which quantifies the relevance of a given sensor number and
positioning for the purpose of structural health monitoring. For this criterion, see the articles [28]
and [10].

The modules have been tested by different partners, especially the French industrial partners, EADS
and Dassault, within the FIliTE project, see module 7.1, and bilateral contracts. Based on intensive internal
evaluation of the toolbox, EADS and CNES are currently investigating how to use the toolbox for the
exploitation of the next Ariane 5 flight data sets.

This Scilab toolbox will continue to play the role of a programming and development environment for all
our newly designed algorithms. Moreover, offering a maintained Scilab platform turns out to be a crucial factor
in convincing industrial partners to undergo joint investigations with us, or to involve us within parternships
in FP6 integrated projects proposals, see module 7.2.

6. New Results

6.1. Eigenstructure identification

Keywords: automated identification, input-output identification, modal analysis, output-only identification,
subspace—based method.

Participants: Michele Basseville, Albert Benveniste, Maurice Goursat, Laurent Mével.
See modules 3.2, 3.5, 4.2, 7.1.

6.1.1. Input/output versus output-only subspace identification.

Theoretical and experimental investigations have been conducted for both output-only and input/output
covariance subspace methods. On the theoretical side, robustness to nonstationary excitation and convergence
of input/output covariance subspace have been investigated. On the experimental side, different studies have
been conducted to evaluate the merits of input/output and output-only approaches. It has been shown that
output-only approach efficiency do tend to get close to input/output methods when the sample size increases
and/or when the stabilization diagram extraction of modes is performed with care [25][15][13].

6.1.2. Automated modal analysis.

Different case study has been performed to test the capacity and robustness of the online monitoring method
implemented in COSMAD toolbox within the framework of FLite. In particular, a 4 hours long on-line
monitoring of the Bradford Stadium has been conducted [15]. The results of this analysis will be submitted as
a journal paper to be part of a special issue. On the other end, multiple case studies have shown the robustness
of the approach for online monitoring of aircraft in flight situations [21][22][13].

Concurrently to the flutter monitoring approach validation by simulations, automated on-line monitoring
have been performed to validate both the flutter detection technique and one in-house simulator (developed
this year) for vibrational data [17][19].

Extensions and modifications of the automated approach are considered to handle the challenge of Flite2
Eureka project, including fast estimation and fast extraction of modes.

6.1.3. EM-based identification.

A tentative has been done to use likelihood-based EM estimation technique to increase the quality of
subspace algorithms as a post-processing. It means that subspace algorithms were used to initialize the EM
estimate. The algorithm has shown promising qualities, especially in its capacity in handling high order models
on both simulation and real test cases. Nonetheless, it has not shown any valuable quality increase in the final
estimate. Further work will be necessary.
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Tracking via filtering techniques.

Ongoing work is done to enhance last year results on varying parameter tracking using likelihood-based
recursive algorithms [12]. This type of algorithms has been shown to be able to adapt to parameter change on
a sample-wise level. The objective of the current work is to extend previous work on high order models from
realistic civil aeronautic structures. This work is jointly done with Fabien Campillo from ASPI project—team.

Data Simulation.

Work has progressed to obtain a realistic time series data simulator, in order to obtain long time series corre-
sponding to high model order time varying modal structures. Both ODE resolution and discrete linear system
evolution were considered. Application of such a simulator allows us to realistically test our identification and
detection techniques. This work has been possible using an early time series simulator from VUB, Belgium.

6.2. Flutter monitoring and onset detection

Keywords: CUSUM test, acronautical structure, flutter, modal analysis, subspace-based residual.
Participants: Michele Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel.

See modules 3.3, 3.5, 4.4 and 7.1.

We have pursued the investigation of a first solution to the problem of monitoring a damping coefficient,
which results from the flutter monitoring problem, see modules 4.4 and 7.1. The idea is to use the sub-
space—based residual (18), and to design a unilateral test statistics for detecting that a given damping coefficient
crosses a critical value from above (decreases towards zero). Because fast reaction is seeked, the test involves
a sample-wise temporal data-driven computation for the residual. Since the detection problem is no longer a
local hypotheses testing problem, we have used a different asymptotic for the residual (different from the local
approximation in module 3.4), combined with the cumulative sum (CUSUM) test built on the residual. The
CUSUM test is of common use in quality control [3]. This algorithm works on—line [16][8][19].

Whereas in [8][16] the test is experimented on a real dataset, further numerical investigations have
been pursued on simulated data [19]. The flutter online technique has been shown to work for any mode
parameter (frequency or damping). It has also been extended to handle globally multiple modes monitored
simultaneously. This new multi dimensional test is considered to better handle the inter relations between
modes. It has also been shown that modes do tend to influence each others (tests on constant modes do react
whenever close modes change), but it has also been shown that this reaction is less than test reaction on really
changing modes. It has also been shown to be a non factor with respect to the capability of the test on the
parameter of interest to track variations in change. Experimental study on the effect of tuning parameter has
also been done.

6.3. Handling the temperature effect

Keywords: civil engineering structures, modal analysis, temperature effect.
Participants: Laurent Mevel, Houssein Nasser.

See modules 3.4, 3.5, 4.3 and 8.1.

This work is done in cooperation with Dominique Chapelle (MACS project—team, Rocquencourt) within the
framework of the CONSTRUCTIF project, see module 8.1. This year, a simplified temperature model relating
the modal parameter of interest with the ambient temperature has been developed.

Beam theories are frequently used to model civil engineering structures. They are applicable to structures
for which two characteristic dimensions are much smaller than the third (namely, structures thin in two
directions), and they provide solutions which are good approximations of reference solutions obtained with a
3D formulation.

We use here the Timoshenko beam theory which — unlike the Navier-Euler-Bernoulli theory — allows
for shear deformations. We restrict our framework to small (“infinitesimal”) displacements, and we assume
that the beam is straight — positioned along the x-axis — and deforms in the (z,z) plane. The kinematical
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assumption underlying the Timoshenko theory states that a beam section — orthogonal to the z-axis in the
original configuration — undergoes a global translation u along z, and a rotation 3 around the vector —7. We
point out that translations along z can also be modeled, but in practice such translations are much smaller than
transverse displacements, and the corresponding equations decouple from those describing v and 5. When
the structure undergoes a temperature variation AT = (T' — T}), if the boundary conditions are such that the
length variation AL is constrained (typically AL = 0) a pre-stress field arises. The major component of this
pre-stress field is o, which is homogeneous in the beam and given by (for an isotropic material)

L
ore = |2 _ 0BT, with ﬁ:l/ ATde.
L L/

A simple argument similar to linear stability analysis then leads to the following stiffness variation

Ou 0
Ox Oz
a bilinear form which operates on two displacements functions (u,a). Of course, it is straightforward to
compute the corresponding (discrete) matrix form. We see in Eq. (19) how an increase in the temperature can
lead to a decrease in the stiffness (a negative o, gives a negative AK ). We see in Eq. (19) how an increase
in the temperature can lead to a decrease in the stiffness (a negative o, gives a negative AKr).

This year, we have developed the simplified temperature model. Extensions to anisotherm conditions will
be also investigated. Obtaining the temperature model is only the first step and maybe the easiest one.
Understanding how to link statistical tests and temperature sensitivity is the tricyk part of the study, and
where we will focus the future works. Handling the temperature as a nuisance parameter seems at first an easy
objective considering we have now the sensibilities of the modal parameters with respect to the temperature.
The challenging part comes from the fact that the temperature does not satisfy the local asymptotic approach
(changes in the temperature can be very high), so we can not assume that the necessary jacobian and covariance
matrices have only to be computed on a safe reference structure once, but now at all steps on a "corrected" safe
structure (the correction being made knowing both the reference structure and the variation of temperature).
This implies also to compute reference modes, before testing any possibly damaged time data patch, from the
FE model. All these considerations do imply large modifications in the processing of the test and its structure
as it has been explained previously.

L
AKyp = / Aoys dr, (19)
0

6.4. Optimal sensor positioning
Keywords: Fisher information, observability, scalar functions of matrices, sensor positioning.
Participant: Michele Basseville.

See module 4.2.

Determining the best number and positions of sensors to be used for SHM is of crucial importance for costs
and efficiency reasons. Different types of criteria have been used for quantifying the relevance of the number
and the positions of sensors in a given set, and they have been optimized for selecting the best possible sets.
Various matrix criteria, such as observability and controllability matrices, Fisher information matrix, modal
assurance criterion matrix, are of interest for this purpose. One important issue, then, is to define which scalar
function of the selected matrix should be optimized. Several scalar functions of matrices have been proposed,
such as determinant, trace, extremal eigenvalues, off-diagonal terms, ... Another possibility is to exploit a
Kullback distance between matrices, which gives rise to scalar functions of potential interest, with different
invariance properties [10].

7. Contracts and Grants with Industry
7.1. Euréka project FIiTE

Participants: Michele Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel, Auguste Sam.
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See modules 4.4, 5.1, 6.1 and 6.2.

Contract INRIA 2 02 C 0040 — May 2001/April 2004.

We have been strongly contributing to the establishment and coordination of a major cooperation within the
Euréka framework. The Euréka project FIiTE («Flight Test Easy») is devoted to improving the exploitation of
flight test data, under natural excitation conditions (e.g. turbulence), enabling more direct exploration of the
flight domain, with improved confidence and at reduced cost. It is coordinated by the industrial test laboratory
Sopemea. The partners are Dassault—Aviation and EADS (AeroMatra Airbus) (France), LMS and KU Leuven
(Belgium), Cracow University and the company PZL-Mielic (Poland), and INRIA.

The FIiTE project aims at a better exploitation of flight test data, exploiting data recorded under natural
excitation conditions (e.g., turbulent), without resorting to artificial control surface excitation and other types
of excitation inputs. A second objective of FIiTE is an improvement of the flight test procedures themselves.

Our expertise in output—only system identification methods, for modal analysis of vibrating structures under
ambient and non-stationary excitation, and thus under unknown inputs, is central in the project [29] [5][6].
The involved INRIA project—teams are responsible for the task «development of algorithms and associated
methods», and for the corresponding task reports. Moreover, Albert Benveniste helps Sopemea in the scientific
coordination of the project.

The achievements of this year have been the following.

e  An exhaustive experimental study of damping estimation in the specific case of an in-operation large
aircraft dataset modal analysis. The work has been focused on the evaluation of merits of input/output
versus output-only methods for damping estimations [13].

e We have pursued the investigation of a first solution [16][8] to the problem of monitoring a
damping coefficient, which results from the flutter monitoring problem, see module 6.2. Numerous
experiments have confirmed the relevance of the proposed on-line detection algorithm. A first
attempt at elaborating a multi-dimensional flutter monitoring approach has been made [19], in
preparation of (and in accordance with) FliTE2 objectives.

e An ongoing validation of the on-line identification monitoring approach on different civil structures
[17][13][15].

e  The start of the collaboration with EADS Launch vehicles on the validation of the COSMADToolbox
in industrial environments. Even if this is not strictly related to FIiTE this work has strong
repercussion on SISTHEM objectives for FIiTE2.

Recursive subspace identification and automated modal extraction has been the focus of the visit of Ivan
Goethals (KU Leuven/SISTA) in the framework of FIiTE, see module 9.4. Different clustering techniques,
either heuristic, or statistically based have been tested. Adaptation of the damage detection clustering technique
has been performed to obtain a fast and efficient automated modal extraction procedure.

From an experimental point of view, this project has provided lots of opportunities for testing and improving
our identification and detection techniques, for both controlled/observed and uncontrolled/unobserved input
excitation. On the identification front, large aircraft datasets have been successfully investigated using our
online identification monitoring toolbox, for both full and recursive subspace algorithms [13]. On the detection
side, massive progress have been achieved in flutter monitoring using our new detection scheme [19]. It allows
us to successfully track damping values (the only really fluctuating part of the modes) without re—identifying
the modes. This feature speeds up the process tremendously. Notice that both identification techniques and
detection techniques have been tested on the same datasets (real aircraft in [13] and simulator [19]) and gave
results cross—validating the methods.

In FIiTE, the basis for novel techniques for in-flight test data structural analysis was developed, involving
both controlled and uncontrolled (natural) excitations. Since the results of FIiTE have been positively
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evaluated, the partners have agreed with the national funding agencies to submit a follow-up project, FIiTE2,
which partnership is extended to ONERA/CERT. The main objective of FIiTE2 is the effective transfer of the
results of FIiTE to aircraft manufacturers. This main effort will be combined with the continuation of research
on improving the methods, algorithms, and software, in particular regarding fast detection algorithms for the
flutter monitoring problem. The lengthy process of Eureka submission with DPAC funding is under progress
and should be completed fall 2004.

7.2. FP5 Growth thematic network SAMCO

Participant: Michele Basseville.

See modules 4.2, 4.3 and 5.1. Contract CNRS 500232 — February 2002/September 2005.

The thematic network SAMCO has been launched in October 2001 within the framework of the Growth
program. It aims at becoming a focal point of reference in the field of assessment, monitoring and control of
civil and industrial structures, in particular the transportation infrastructure (bridges, etc.). Several partners of
the network have proposed our participation, and we became a participating member, involved especially in
the thematic group «Monitoring and Assessment». This turns out to be a useful complement to the diffusion
of our knowledge and expertise in vibration monitoring.

Within this framework, we have been involved in several FP6 IP proposals submitted in March 2004 within
the NMP framework, of which unfortunately none have been accepted. We have offered Scilab as an open
platform for the integration of the modules for algorithms and methods covering the objectives of automatic
modal analysis, automatic modal and statistical damage detection methods. We have also offered the Scilab
modal analysis modules, see module 5.1.

8. Other Grants and Activities
8.1. ACI Sécurité & Informatique - Project CONSTRUCTIF

Participants: Michele Basseville, Maurice Goursat, Laurent Mevel, Houssein Nasser.

Contract INRIA 1 03 C 1559 — 16 July 2003/15 July 2006

This project is coordinated by Laurent Mevel. Our partners are MSSMat (Laboratoire de Mécanique des
Sols, Structures et Matériaux, Ecole Centrale de Paris and CNRS), Laboratoire Central des Ponts et Chaussées
(Service Métrologie et Instrumentation), and the INRIA project-team MACS (Rocquencourt).

The objectives of the project are, on the one hand, the intrinsic coupling of statistical models of sensor data
with fine models of the physical phenomenA governing the instrumented structures, and, on the other hand,
the mixing of statistical inference, data assimilation, finite element model updating and optimization methods
for structural dynamics. The investigation of potential mutual benefits of criteria used for different purposes
by various methods designed in different scientific communities, is the central axis of the project. The main
object of the study is the intrinsic involvement of the temperature effect, which is a generic issue for vibration
monitoring of civil engineering structures.

The achievements of this year have been focused on the beginning of the PhD Thesis of Houssein Nasser. In
collaboration with Dominique Chapelle (MACS), a simplified temperature model relating the modal parameter
of interest with the ambient temperature has been developed, see module 6.1. We have shown that the stiffness
matrix varies under temperature change and thus an analytical form can be derived to obtain the variation in
stiffness for a specified temperature change. Its integration within the general framework of damage detection
described in module 3.5 has been described [23]. In that damage detection method, we have proposed to reject
the temperature as a nuisance parameter. Experimental validation has yet to come thanks to the experimental
setup of LCPC/SMI within the context of this ACI project.
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9. Dissemination

9.1. Scientific animation

M. Basseville is member of the steering committee of the GDR ISIS (Information, Signal, Images), member
of the steering committee of the RTP24 «Mathématiques de 1’information, des signaux et des systemes». She
is member of (the board of) the scientific committee of the Computer Security program launched by the French
Ministry of Research (ACI «Sécurité & Informatique»).

She is co—chair of the IFAC technical committee 6.4 «Fault Detection, Supervision and Safety of Technical
Processes», within the coordinating committee 6 «Industrial Applications», and member of the technical
committees 1.1 «Modeling, Identification and Signal Processing» and 1.4 «Stochastic Systems», within the
coordinating committee 1 «Systems and Signals». She is also member of the MFPT (Machinery Failure
Prevention Technology) Society technical committee on Structural Health Management.

She is associate editor for the IFAC journal «Automatica», for the journal «Mechanical Systems and Signal
Processing», and within the IEEE Control Systems Society Conference Editorial Board, where she has been
in charge of the evaluation of papers submitted to ACC’04, CDC’04 and ACC’05. She has been member of
the international program committee of CIFA’04.

A. Benveniste is member of the editorial board of the journals «European Journal of Control», «Discrete
Event Dynamic Systems» and «Proceedings of the IEEE».

9.2. Teaching

M. Basseville teaches «Statistical methods for in—situ monitoring» within the module «Tools for diagnos-
tics», of the «Automatic Control and Industrial Computing» option, at Ecole des Mines de Nantes.

9.3. Participation in workshops, seminars, lectures, etc.

In addition to presentations with a publication in the proceedings, and which are listed at the end of the
document, members of the SISTHEM project—-team have also given the following presentations.

During the Journées de la STAtistique Rennaise, Michele Basseville has presented [26] the statistical
foundations of the team activities, with an emphasis on the subspace-based estimating function (2) and the
exploitation, for processing non-stationary data sets, of the factorization property (11).

9.4. Visits and invitations

Ivan Goethals, a PhD student of Bart De Moor at KU Leuven/SISTA has visited us during two weeks in
August 2004, in the framework and with the support of the FIliTE project, see module 7.1.

Recursive subspace identification and automated modal extraction has been the focus of this visit. Different
clustering techniques, either heuristic, or statistically based have been tested. Adaptation of the damage
detection clustering technique has been performed to obtain a fast and efficient automated modal extraction
procedure.

10. Bibliography
Major publications by the team in recent years

[1] M. BASSEVILLE, M. ABDELGHANI, A. BENVENISTE. Subspace-based fault detection algorithms for vibra-
tion monitoring, in "Automatica", vol. 36, n° 1, January 2000, p. 101-109.

[2] M. BASSEVILLE. On—board component fault detection and isolation using the statistical local approach, in
"Automatica", vol. 34, n° 11, November 1998, p. 1391-1416.



18 Activity Report INRIA 2004

[3] M. BASSEVILLE, I. V. NIKIFOROV. Detection of Abrupt Changes — Theory and Applications, Information and
System Sciences Series, Prentice Hall, Englewood Cliffs, 1993, http://www.irisa.fr/sisthem/kniga/.

[4] A. BENVENISTE, M. METIVIER, P. PRIOURET. Adaptive Algorithms and Stochastic Approximations, Appli-
cations of Mathematics, vol. 22, Springer Verlag, New York, 1990.

[5] L. MEVEL, M. BASSEVILLE, A. BENVENISTE, M. GOURSAT. Merging sensor data from multiple measure-

ment setups for nonstationary subspace—based modal analysis, in "Journal of Sound and Vibration", vol. 249,
n° 4, January 2002, p. 719-741.

[6] L. MEVEL, A. BENVENISTE, M. BASSEVILLE, M. GOURSAT. Blind subspace—based eigenstructure identi-

fication under nonstationary excitation using moving sensors, in "IEEE Transactions on Signal Processing",
vol. SP-50, n® 1, January 2002, p. 41-48.

Articles in referred journals and book chapters

[7] M. BASSEVILLE, L. MEVEL, M. GOURSAT. Statistical model-based damage detection and localization :

subspace—based residuals and damage—to—noise sensitivity ratios, in "Journal of Sound and Vibration", vol.
275, n° 3-5, August 2004, p. 769-794.

[8] L. MEVEL, M. BASSEVILLE, A. BENVENISTE. Fast in-flight detection of flutter onset: a statistical approach,
in "ATAA Journal of Guidance, Control, and Dynamics", to appear, vol. 28, 2005.

[9] L. MEVEL, L. FINESSO. Asymptotical statistics of misspecified hidden Markov models, in "IEEE Transactions
on Automatic Control", vol. 49, n® 7, July 2004, p. 1123-1132.

Publications in Conferences and Workshops

[10] M. BASSEVILLE. On sensor positioning for structural health monitoring, in "Proceedings of the 2nd European
Workshop on Structural Health Monitoring, Munich, FRG", July 2004.

[11] M. BASSEVILLE, L. MEVEL, A. VECCHIO, B. PEETERS, H. VAN DER AUWERAER. In-operation structural
health monitoring: a statistical approach, in "Proceedings of the 58th Society for Machine Failure Prevention
Technology Meeting, Virginia Beach, VA", MFPT, April 2004.

[12] I. GOETHALS, L. MEVEL, A. BENVENISTE, B. DE MOOR. Recursive output—only subspace identification
for in—flight flutter monitoring, in "22nd International Modal Analysis Conference IMAC-XXII), Dearborn",
SEM, Inc., January 2004.

[13] M. GOURSAT, L. MEVEL, A. BENVENISTE. Using subspace on a large aircraft dataset, a case study, in
"23rd International Modal Analysis Conference (IMAC-XXIII), Orlando", SEM, Inc., January 2005.

[14] M. GOURSAT, L. MEVEL. COSMAD : A Scilab Toolbox for Output-Only Modal Analysis and Diagnosis
of Vibrating Structures, in "Proceedings of the IEEE Conference on Control Applications / International
Symposium on Intelligent Control / International Symposium on Computer Aided Control Systems Design,
Taipeh, Taiwan", IEEE-CACSD, September 2004.



Team sisthem 19

[15] M. GOURSAT, L. MEVEL. On-line monitoring of Bradford stadium, in "23rd International Modal Analysis
Conference (IMAC-XXIII), Orlando", SEM, Inc., January 2005.

[16] L. MEVEL, A. BENVENISTE, M. BASSEVILLE. Quick detection of flutter onset, a statistical approach, in
"22nd International Modal Analysis Conference (IMAC-XXII), Dearborn", SEM, Inc., January 2004.

[17] L. MEVEL, M. GOURSAT, M. BASSEVILLE, A. BENVENISTE. On-line monitoring of slow to fast evolving
aeronautic structures, in "Proceedings of ISMA2004 - Noise and Vibration Engineering Conference, Leuven,
B.", September 2004.

[18] L. MEVEL, M. GOURSAT, M. BASSEVILLE. Deftection for in—operation structures : a Scilab toolbox use of
the GUI for the localization, in "22nd International Modal Analysis Conference (IMAC-XXII), Dearborn",
SEM, Inc., January 2004.

[19] L. MEVEL, M. GOURSAT, A. BENVENISTE, M. BASSEVILLE. Using simulations to validate a flutter testing
method, in "23rd International Modal Analysis Conference (IMAC-XXIII), Orlando", SEM, Inc., January
2005.

[20] L. MEVEL, M. GOURSAT. A complete Scilab toolbox for output—only identification, in "22nd International
Modal Analysis Conference (IMAC-XXII), Dearborn", SEM, Inc., January 2004.

[21] L. MEVEL, M. GOURSAT, A. SAM. Automated on—line monitoring during a flight, in "22nd International
Modal Analysis Conference (IMAC-XXII), Dearborn", SEM, Inc., January 2004.

[22] L. MEVEL, A. SAM, M. GOURSAT. Blind modal identification for large aircrafts — The case of a high
number of close poles, in "22nd International Modal Analysis Conference (IMAC—XXII), Dearborn", SEM,
Inc., January 2004.

[23] H. NASSER, L. MEVEL, D. CHAPELLE. Damage detection under the environmental constraints, in "23rd
International Modal Analysis Conference (IMAC—XXIII), Orlando", SEM, Inc., January 2005.

Internal Reports

[24] J. FicHOU, F. LE GLAND, L. MEVEL. Particle-based methods for parameter estimation and tracking: Nu-
merical experiments, Research Report, n° 1604, IRISA, February 2004, ftp:/ftp.irisa.fr/techreports/2004/PI-
1604.ps.gz.

[25] L. MEVEL, A. BENVENISTE, M. BASSEVILLE, M. GOURSAT, B. PEETERS, H. VAN DER AUWERAER,
A. VECCHIO. In-flight structural identification: input/output versus output-only data processing, Research
Report, n® 1603, IRISA, February 2004, ftp://ftp.irisa.fr/techreports/2004/PI-1603.ps.gz.

Miscellaneous

[26] M. BASSEVILLE, L. MEVEL, A. BENVENISTE. Inférence statistique pour la surveillance d’intégrité de
structures, October 2004, http://www.ensai.com/star/index.htm, Journées de la STAtistique Rennaise.



20 Activity Report INRIA 2004

Bibliography in notes

[27]1 M. BASSEVILLE. Information criteria for residual generation and fault detection and isolation, in "Automat-
ica", vol. 33, n° 5, May 1997, p. 783-803.

[28] M. BASSEVILLE, A. BENVENISTE, B. GACH-DEVAUCHELLE, M. GOURSAT, D. BONNECASE, P. DOREY,
M. PREVOSTO, M. OLAGNON. Damage monitoring in vibration mechanics : issues in diagnostics and
predictive maintenance, in "Mechanical Systems and Signal Processing", vol. 7, n° 5, 1993, p. 401-423.

[29] M. BASSEVILLE, A. BENVENISTE, M. GOURSAT, L. HERMANS, L. MEVEL, H. VAN DER AUWERAER.
Output—only subspace—based structural identification : from theory to industrial testing practice, in "ASME
Journal of Dynamic Systems, Measurement, and Control", vol. 123, n® 4, December 2001, p. 668-676.

[30] M. BASSEVILLE, I. V. NIKIFOROV. Fault isolation for diagnosis : nuisance rejection and multiple hypotheses
testing, in "Annual Reviews in Control", vol. 26, n® 2, December 2002, p. 189-202.

[31] A. BENVENISTE, M. BASSEVILLE, L. MEVEL. Convergence rates for eigenstructure identification using
subspace methods, in "Proceedings of the 39th Conference on Decision and Control (CDC), Sydney, Aus.",
IEEE-CSS, December 2000, p. 1550-1554.

[32] C. BOLLER. Ways and options for aircraft structural health management, in "Proceedings of the European
COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain", June 2000,
p. 71-82.

[33] B. DELYON, A. JUDITSKY, A. BENVENISTE. On the relationship between identification and local tests,
Publication Interne, n® 1104, IRISA, May 1997, ftp:/ftp.irisa.fr/techreports/1997/PI-1104.ps.gz.

[34] G. DIMITRIADIS, J. E. COOPER. Flutter prediction from flight flutter test data, in "Journal of Aircraft", vol.
38, n° 2, 2001, p. 355-367.

[35] C. R. FARRAR, S. W. DOEBLING, D. N1X. Vibration-based structural damage identification, in "The Royal
Society, Philosophical Transactions: Mathematical, Physical and Engineering Sciences", vol. 359, n® 1778,
2001, p. 323-345.

[36] C. C. HEYDE. Quasi—Likelihood and its Applications, Springer Series in Statistics, Springer—Verlag, Berlin,
1997.

[37]1 M. KEHOE. A historical overview of flight flutter testing, Technical Memorandum, n® NASA TM-4720, NASA
Dryden, October 1995.

[38] R. LIND. Flight test evaluation of flutter prediction methods, in "Journal of Aircraft", vol. 40, n® 5, 2003, p.
964-970.

[39] L. MEVEL, M. GOURSAT, M. BASSEVILLE, A. BENVENISTE. Subspace—based modal identification and
monitoring of large structures, a Scilab toolbox, in "Proceedings of the 13th Symposium on System Identifi-
cation (SYSID), Rotterdam, NL", IFAC / IFORS, August 2003, p. 1405-1410.



Team sisthem 21

[40] L. MEVEL, M. GOURSAT, M. BASSEVILLE. Stochastic subspace—based structural identification and damage
detection and localization — Application to the Z24 bridge benchmark, in "Mechanical Systems and Signal
Processing”, vol. 17, n° 1 (Special issue on COST F3 Benchmarks), January 2003, p. 143-151.

[41] H. G. NATKE, C. CEMPEL. Model-Aided Diagnosis of Mechanical Systems: Fundamentals, Detection,
Localization, Assessment, Springer—Verlag, Berlin, 1997.

[42] B. PEETERS, J. MAECK, G. DE ROECK. Vibration-based damage detection in civil engineering: excitation
sources and temperature effects, in "Smart Materials and Structures", vol. 10, n°® 3, 2001, p. 518-527.

[43] P. VAN OVERSCHEE, B. DE MOOR. Subspace Identification for Linear Systems, Kluwer Academic Publish-
ers, Boston, 1996.

[44] H. VAN DER AUWERAER, B. PEETERS. International research projects on structural health monitoring : an
overview, in "Structural Health Monitoring", vol. 2, n® 4, December 2003, p. 341-358.



