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1. Team
SPACES is a project-team with people working on two sites: at LORIA in Nancy and at LIP6 in Paris. The

Nancy subgroup depends from INRIA Lorraine, the Paris subgroup depends from INRIA Rocquencourt.

Team Leader

Daniel Lazard [professor, University Pierre et Marie Curie (Paris 6, UPMC), seconded to INRIA, until August]

Team Vice-Leader

Paul Zimmermann [research director, INRIA]

Administrative Assistant

David Massot [UPMC, part time]
Hélène Zganic [LORIA, part time, until May 2nd]
Céline Simon [LORIA, part time, from May 3rd to August 6th, and from September 14th]

Staff member (CNRS or INRIA)

Jean-Charles Faugère [research scientist, CNRS]
Guillaume Hanrot [research scientist, INRIA]
Vincent Lefèvre [research scientist, INRIA]
Fabrice Rouillier [research scientist, INRIA]
Emmanuel Thomé [research scientist, INRIA]
Dongming Wang [research scientist, CNRS]

Staff member (University)

Philippe Aubry [assistant professor, UPMC]
Mohab Safey El Din [assistant professor, UPMC]
Philippe Trébuchet [teaching assistant, UPMC]

Technical staff

Patrick Pélissier [junior technical staff, INRIA]

Ph. D. student

Gwenolé Ars [DGA, defense planned in December 2004 or 2005]
Magali Bardet [teaching assistant, defended 2004/12/08]
Jean-Paul Cerri [defense planned in 2005]
Solen Corvez [BDI CNRS, defense planned in 2005]
Laurent Fousse [ENS grant, defense planned in 2006]
Amir Hashemi [Sfere grant, defense planned in 2005]
Sylvain Lacharte [CIFRE grant with Thalès, defense planned in 2006]
Damien Stehlé [ENS grant, defense planned in 2006]

Visiting scientist

Richard Brent [Prof. at Oxford University, during September]

Student intern

Marc Helbling [July-September]
Dahab Hakim [April-September]
Colas Le Guernic [April-September]

2. Overall Objectives
The objectives of the team are well summarized by the development of its acronym: Solving Problems

through Algebraic Computation and Efficient Software.
The main objective is to solve systems of polynomial equations and inequations. We emphasize on algebraic

methods which are more robust and frequently more efficient than purely numerical tools.
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The high complexity of the problems which are studied implies that efficient software may only be obtained
by associating good theoretical algorithms with carefully designed implementations. Especially we need
efficient and well suited arithmetics for integers and rational numbers of arbitrary precision and high precision
floating-point numbers. But we need also more exotic arithmetics, like modular and p-adic ones, or even
infinitesimal numbers.

Polynomial systems have many applications in various scientific — academic as well as industrial —
domains. However much work is yet needed in order to define specifications for the output of the algorithms
which are well adapted to the problems. In addition we have frequently to translate the problems into certain
forms which are well suited for the resolution. Thus solving problem is an essential part of our research and
software development.

The variety of these applications implies that our software needs to be robust. In fact, almost all problems
we are dealing with are highly numerically unstable, and therefore, the correctness of the result needs to be
guaranteed.

3. Scientific Foundations

3.1. Historical Background
Solving polynomial equations and systems is a longstanding fundamental problem. Let us mention as

witness the attempts to solve univariate equations by radicals until Abel and Galois proved (around 1830)
that it is impossible, or the fact that the “fundamental theorem of algebra” deals with polynomial equations.

It is only at the end of the 19th century that the first general algorithms for polynomial systems appeared,
with the works of Bezout, Sylvester, Kronecker, and Macaulay. However the computations were intractable,
due to the complexity of the problem. Therefore the mathematicians gave up this effective approach to put the
emphasis on qualitative theoretical results.

With electronic computers and computer algebra systems, the problem of multivariate systems came back
to the attention of the researchers around 1970, when polynomial gcd and factorization problems got a
satisfactory answer. However, because of the difficulty of the problem, it is only in the second half of the
80’s that computers began to solve problems which are really intractable by hand.

3.2. Zero-Dimensional Polynomial Systems
Strictly speaking, a system of polynomial equations is a formula

P

1

= 0 and P

2

= 0 and ::: and P

k

= 0

where the P
i

are multivariate polynomials with coefficients in a field K. Such a system is usually represented
by the set of polynomials P

i

. Solving it consists in finding the values of the indeterminates which satisfy this
formula. These values are searched in an algebraically closed field containing K or in the field of the reals if
K is a real field1. When K is the finite field with q elements, which is usually the case in cryptology, one may
prescribe that all the solutions are in K by adding the equation xq � x = 0 for each unknown x.

A system is zero-dimensional if the set of the solutions in an algebraically closed field is finite. In this case,
the set of solutions does not depend on the algebraically closed field which is chosen. This case is the only
one which is accessible to numerical solvers, and only when the number of equations equals the number of
unknowns.

Note that a single univariate polynomial is a very special case of zero-dimensional system, which is
especially important because most algorithms express the solutions as functions of the roots of one univariate
equation.

1The problem of finding the integer or the rational solutions is known to be undecidable.
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With the algorithms and software of SPACES, it is now a routine task to solve large zero-dimensional
systems, by computing first a Gröbner basis, then deducing a RUR (Rational Univariate Representation) and
finally getting numerical approximations of the solutions, when needed.

This efficiency allows to use zero-dimensional solving as a sub-task in other algorithms. This has the
consequence that further improvements are yet needed and that complexity issues take a new importance,
especially for applications to cryptology.

3.3. Polynomial Systems of Positive Dimension
When a system is not zero-dimensional, the set of solutions is infinite, and it is no more possible to

enumerate them. Therefore, the solving process reduces to decompose the set of the solutions into subsets
which have a well-defined geometry. One may do such a decomposition from an algebraic point of view or
from a geometrical one, the latter meaning not taking the multiplicities into account. Although there exist
algorithms for both approaches, the algebraic point of view is presently out of the possibilities of practical
computations, and we restrict ourselves to geometrical decompositions.

When one studies the solutions in an algebraically closed field, the decompositions which are useful are the
equi-dimensional decomposition (which consists in considering separately the isolated solutions, the curves,
the surfaces, ...) and the prime decomposition in irreducible components. In practice, the team works on
algorithms for decomposing in regular separable triangular sets, which corresponds to a decomposition in
equi-dimensional but not necessarily irreducible components. These irreducible components may be obtained
at the end by using polynomial factorization.

However, in many situations one is looking only for real solutions satisfying some inequalities2. In this
case, there are various kinds of decompositions besides the above ones: connected components, cellular or
simplicial decompositions, ...

There are general algorithms for such tasks, which rely on Tarski’s quantifier elimination. Unfortunately,
these problems have a very high complexity, usually doubly exponential in the number of variables or the
number of blocks of quantifiers, and these general algorithms are intractable. It follows that the output of a
solver should be restricted to a partial description of the topology or of the geometry of the set of solutions,
and our research consists in looking for more specific problems, which are interesting for the applications, and
which may be solved with a reasonable complexity.

SPACES got results recently or has work in progress about such specific problems, for example: testing
if a semi-algebraic set is empty; counting the number of its connected components or bounding their number
by providing (at least) a point in each component; counting the number of solutions of a system depending
on parameters, as a function of the parameters; globally optimizing an algebraic cost function with algebraic
constraints; solving over-determined zero-dimensional systems involving approximate coefficients coming
from experimental measurements (this may be viewed as an optimization problem); drawing in a robust way
plane curves defined by an implicit equation; proving automatically theorems of elementary geometry.

3.4. Arithmetics
For solving polynomial systems, it is not enough to have algorithms of good arithmetical complexity3, if

the operations on the coefficients are not extremely fast. In fact, we very frequently encounter coefficients
with several thousands of digits. It is therefore of prime necessity to optimize any factor of the real cost of the
algorithms (bit complexity).

There are mainly two kinds of basic algorithms which may have a dramatic effect on the efficiency of
a solver, the arithmetic on the coefficients of the equations to solve and the data management (garbage
collector, protocol for transferring data, ...). Although we obtained in the past some important results on
data management, especially the patented protocol UDX for transferring binary data between processes and

2In the zero-dimensional case, inequations and inequalities are usually taken into account only at the end of the computation, to
eliminate irrelevant solutions.

3The arithmetical complexity is the number of operations on the coefficients.
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computers, we will not give details here on this aspect and we will emphasize on our work on arithmetics. In
fact, while our initial purpose on this subject was mainly the needs of polynomial system solvers, an increasing
part of the team members is working on arithmetics for themselves and not only for the needs of the solvers.
The aspects of arithmetics on which SPACES is working are the following:

Middle product. The team has introduced a new arithmetic operation, the middle product, which consists in
computing only the middle bits of a product. This operation allows to improve the efficiency of the division
and of the square root computations. It has also been used by another team, for improving the efficiency of
polynomial evaluation and interpolation.

Floating-point arithmetic. The team is mainly interested in controlling the rounding errors in floating-point
computations. Inside this subject we are studying the worst cases for arithmetic operations and multi-precision
floating-point arithmetic with correct rounding. The latter is the object of our library MPFR and of its derived
library MPFI for interval computations.

Finite field arithmetic. For cryptographic purposes, we are designing a library for finite field arithmetics
which should work efficiently whatever the size of the field (small, medium or large).

Infinitesimal numbers. The arithmetic of infinitesimal (or non standard) numbers may appear as rather
exotic, but it is needed in real geometry computations, where many algorithms use infinitesimal deformations.

Other arithmetics. The following are the various arithmetics the team is interested in but has not recently
worked on: the arithmetics of polynomials, the arithmetics of algebraic numbers and the hybrid arithmetics
which consist in representing a rational number by a pair of a floating-point number and a modular number.

3.5. Solving Problems — Applications
Applications are fundamental for our research for several reasons.
The first one is that they are the only source of fair tests for the algorithms. In fact, the complexity of the

solving process depends very irregularly on the problem itself. Therefore, random tests do not give a right
idea of the behavior of a program, and the complexity analysis, when possible, does not provide realistic
information.

A second reason is that, as quoted above, we need real world problems to determine which specifications of
algorithms are really useful. Conversely, it is frequently by solving specific problems through ad hoc methods
that we found new algorithms of general impact.

Finally, obtaining successes with problems which are intractable by the other known approaches is the best
proof of the importance of polynomial system solving and of the value of our work.

On the other hand, there is a specific difficulty. The problems which may be solved with our methods may
be formulated in many different ways, and their usual formulation is rarely well suited for polynomial system
solving. Frequently, it is not even clear that the problem is purely algebraic, because researchers and engineers
are used to formulate them in a differential way or to linearize them before asking questions on it. Therefore,
our softwares may not be used as black boxes, and we have to understand the origin of the problem in order to
translate it in a form which is well suited for our solvers.

It follows that many of our papers, published or in preparation, are classified in scientific domains which are
different from ours, like cryptology, error correcting codes, robotics, signal processing, statistics or biophysics.

4. Application Domains

4.1. Introduction
In this section, we describe the application domains in which the team is doing a significant work.
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4.2. Robotics

4.2.1. Parallel Manipulators

The manipulators which we study are general parallel robots: the hexapodes are complex mechanisms made
up of six (often identical) kinematic chains, of a base (fixed rigid body including six joints or articulations)
and of a platform (mobile rigid body containing six other joints).

The design and the study of parallel robots require the setting up and the resolution of direct geometrical
models (calculation of the absolute coordinates of the joints of the platform knowing the position and the
geometry of the base, the geometry of the platform as well as the distances between the joints of the kinematic
chains at the base and the platform) and inverse geometrical models (distances between the joints of the
kinematic chains at the base and the platform knowing the absolute positions of the base and the platform).

Since the inverse geometrical models can be easily solved, we focus on the resolution of the direct
geometrical models.

The study of the direct geometrical model is a recurrent activity for several members of the project. One can
say that the progress carried out in this field illustrates perfectly the evolution of the methods of resolution of
algebraic systems. The interest carried on this subject is old. The first work the members of the project took
part in primarily concerned the study of the number of (complex) solutions of the problem. The results were
often illustrated by calculations of Gröbner bases done with the GB software. The next efforts were related to
the real roots and the effective calculation of the solutions. The studies then continued following the various
algorithmic progresses, until the developed tools made possible to solve non-academic problems. In 1999, the
various efforts were concretized by an industrial contract with the SME CMW (Constructions Mécaniques des

Vosges-Marioni) for making a robot dedicated to machine tools.
New problems have appeared and are related to two of our research directions:

� the calculation in real time of the direct geometrical model. This could be done in particular by
generating numerical calculation programs starting from a sufficiently generic exact calculation
(Gröbner bases).

� the study of systems of positive dimension, for example, in order to be able to process data depending
on time (dimension 1) or to allow to slacken some parameters of the problem for studying them.

4.2.2. Serial Manipulators

Industrial robotic manipulators with 3 degrees of freedom are currently designed with very simple geometric
rules on the designed parameters, the ratios between them are always of the same kind. In order to enlarge the
possibilities of such manipulators, it may be interesting to relax the constraints on the parameters.

However, the diversity of the tasks to be done carries out to the study of other types of robots whose
parameters of design differ from what is usual and which may have new properties, like stability or existence
of new kinds of trajectories.

An important difficulty slows down the industrial use of such new robots. Recent studies ( [58], [60],
[59] and [50]) showed that they may present a behavior which is qualitatively different from that of the
robots currently used in industry and allows new changes of posture. These robots, called cuspidal, cannot
be controlled like the others. The majority of the robots are in fact cuspidal: the industrial robots currently on
the market form a very restricted subclass of all the possible robots.

A systematic characterization of all the cuspidal robots would be of a great interest for the designer and the
user. Such a project forms part of a current tendency in robotics which consists in designing a robot in order
that its performances are optimal for a given application while preserving the possibility of using it for another
task, that is to say to specialize it to the maximum for an application in order to reduce its cost and to increase
its operational safety.

The study of the behavior at a change of posture is identical, from a mathematical point of view, to the study
of the existence of a triple root of some polynomials of degree 4 depending on the parameters.
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4.3. Geometrical Reasoning
Geometric reasoning is an active area of research in which algebraic methods (such as Gröbner bases,

triangular sets, and quantifier elimination) for solving polynomial systems have successful applications.
These applications cross over several important areas of modern engineering geometry such as computer
aided geometric design and modeling (geometric constraint solving, implicitization of rational curves and
surfaces, surface blending and offsetting, etc.), computer vision (adjustment of models, derivation of geometric
properties, etc.), and robotics (see Section 4.2). One fundamental problem of geometric reasoning is to
study and establish relations among geometric objects, for example, to prove known geometric theorems and
to derive unknown geometric relations. This problem can be attacked effectively by translating geometric
relations into algebraic expressions and then using algebraic methods.

In the framework of the SPACES project, we have developed and applied algebraic methods and software
tools to deal with several geometric reasoning problems including proving and discovering theorems in ele-
mentary and differential geometry, solving geometric problems for which real solutions of the corresponding
algebraic systems with parameters need be studied, generating geometric diagrams automatically, implicitizing
rational curves and surfaces, and computing the offsets of algebraic curves and surfaces.

4.4. Cryptology
The idea of using multivariate (quadratic) equations as a basis for building public key cryptosystems

appeared with the Matsumoto-Imai cryptosystem. This system was first broken by Patarin and, shortly after,
Patarin proposed to repair it and thus devised the hidden field equation (HFE) cryptosystem.

The basic idea of HFE is simple: build the secret key as a univariate polynomial S(x) over some (big)
finite field (often GF(2n)). Clearly, such a polynomial can be easily evaluated; moreover, under reasonable
hypotheses, it can also be “inverted” quite efficiently. By inverting, we mean finding any solution to the
equation S(x) = y, when such a solution exists. The secret transformations (decryption and/or signature)
are based on this efficient inversion. Of course, in order to build a cryptosystem, the polynomial S must be
presented as a public transformation which hides the original structure and prevents inversion. This is done by
viewing the finite field GF(2n) as a vector space over GF(2) and by choosing two linear transformations of
this vector space L

1

and L
2

. Then the public transformation is the composition of L
1

, S and L
2

. Moreover,
if all the terms in the polynomial S(x) have Hamming weight 2, then it is obvious that all the (multivariate)
polynomials of the public key are of degree two.

By using fast algorithms for computing Gröbner bases, it was possible to break the first HFE challenge (real
cryptographic size 80 bits and a symbolic prize of 500 US$) in only two days of CPU time. More precisely
we have used the F

5

=2 version of the fast F
5

algorithm for computing Gröbner bases (implemented in C).
The algorithms available up to now (Buchberger) were extremely slow and could not have been used to break
the code (they should have needed at least a few centuries of computation). The new algorithm is thousands
of times faster than previous algorithms. Several matrices have to be reduced (Echelon Form) during the
computation: the biggest one has no less than 1.6 million columns, and requires 8 gigabytes of memory.
Implementing the algorithm thus required significant programming work and especially efficient memory
management.

Since it is easy to transform many cryptographic problems into polynomial equations, SPACES is in a
position to apply this general method to other cryptosystems. Thus we have a new general cryptanalysis
approach, called algebraic cryptanalysis. G. Ars and J.-C. Faugère are currently testing the robustness of
cryptosystems based on filtered LFSRs (Linear Feedback Shift Registers), in collaboration with the CODES
team and the DGA (Celar).

Another relevant tool in the study of cryptographic problems is the LLL algorithm which is able to compute
in polynomial time a “good” approximation for the shortest vector problem. Since a Gröbner basis can be
seen as the set of smallest polynomials in an ideal with respect to the divisibility of leading terms, it is natural
to compare both algorithms: an interesting link between LLL (polynomial version) and Gröbner bases was
suggested by a member of SPACES.
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A standard algorithm for implementing the arithmetic of Jacobian groups of curves is LLL. By replacing
LLL by the FGLM algorithm we establish a new structure theorem for Gröbner bases; consequently, on a
generic input we were able to establish explicit and optimized formulas for a basic arithmetic operation in the
Jacobian groups of C

34

curves (in collaboration with the TANC team).

5. Software

5.1. Introduction
An important part of the research done in the SPACES project is published within software. We present

here our software following the same order as in Section 2.: zero-dimensional systems, systems of positive
dimension, arithmetics, solving problems and applications.

5.2. RS/RealSolving
Keywords: real root, univariate polynomial, zero-dimensional system.
Participant: Fabrice Rouillier.

RS is a software dedicated to the study of real zeroes of algebraic systems. It is written in C (100,000 lines
approximately) and is the successor to RealSolving developed at the time of the European projects PoSSo and
FRISCO. RS mainly contains functions for counting and isolating real zeroes of algebraic systems with a finite
number of complex roots. The user interfaces of RS are entirely compatible with those of GB/FGB (ASCII,
MuPAD, Maple). RS has been used in the project and by various teams for several months.

5.3. Gb/FGb
Keywords: Gröbner basis, complex root.
Participant: Jean-Charles Faugère.

GB is a C++ program for efficiently computing Gröbner bases. From a theoretical and practical point of
view GB is now outperformed by the new FGB program.

GB is a stand-alone program but it can be used from general computer algebra systems (for instance Maple).
GB is completely free for academic people and non-commercial use.

5.4. Implicit Curves Drawing
Keywords: drawing, implicit curve.
Participants: Jean-Charles Faugère, Fabrice Rouillier [contact].

As soon as they come from real applications, the polynomials resulting from elimination processes (Gröbner
bases, triangular sets) are very often too large to be studied by general computer algebra systems.

In the case of polynomials in two variables, a certified layout is enough in much cases to solve the studied
problem (it is the case in particular for certain applications in celestial mechanics). This type of layout is now
possible thanks to the various tools developed in the project.

Two components are currently under development: the calculation routine (taking as input the polynomial
function and returning a set of points) is stable (about 2,000 lines in the C language, using the internal libraries
of RS) and can be used as a black box in stand-alone mode or through Maple; the layout routine is under study.

5.5. RAGLib
Keywords: polynomial system, real solution.
Participants: Colas Le Guernic [MMFAI internship], Mohab Safey El Din [contact].

RAGLib (Real Algebraic Geometry Library) is a Maple library of symbolic algorithms devoted to
some problems of effective real algebraic geometry, and more particularly, to the study of real solutions of
polynomial systems of equations and inequalities. It contains algorithms performing:

� the equi-dimensional decomposition of an ideal generated by a polynomial family;
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� the emptiness test of a real algebraic variety defined by a polynomial system of equations;

� the computation of at least one point in each connected component of a real algebraic variety defined
by a polynomial system of equations;

� the emptiness test of a semi-algebraic set defined by a polynomial system of equations and non strict
inequalities;

� the computation of at least one point in each connected component of a semi-algebraic set defined
by a polynomial system of equations and non strict inequalities.

5.6. Triangular Decomposition
Keywords: polynomial gcd, polynomial system, triangular set, unmixed decomposition.

Participant: Philippe Aubry.

Triangular Decomposition is a library devoted to the decomposition of systems of polynomial equations and
inequations and provides some tools for working with triangular sets. It decomposes the radical of the ideal
generated by a family of polynomials into regular triangular sets that represent radical equidimensional ideals.
It also performs the computation of polynomial gcd over an extension field or a product of such fields given
by a triangular set.

A first version of this library was implemented in the Axiom computer algebra system. It is now developed
in Magma.

5.7. MPFR
Keywords: IEEE 754, arbitrary precision, correct rounding, floating-point number.

Participants: Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, Paul Zimmermann
[contact].

MPFR is one of the main software developed by the SPACES team. MPFR is a library for computing with
arbitrary precision floating-point numbers, together with well-defined semantics. In particular, all arithmetic
operations are performed according to a rounding mode provided by the user, and all results are guaranteed
correct to the last bit, according to the given rounding mode.

The main objective of year 2004 was to consolidate the current version of MPFR, and to release a first
version containing the improvements made by P. Pélissier for small precision (see below). As a result, MPFR
2.0.3, was released in February, and MPFR 2.1.0 in November.

In September 2003, P. Pélissier joined the MPFR team, as a Junior technical staff, to help improve the
efficiency of MPFR for small precision (up to 200 bits, in particular in double, double extended and quadruple
precision). P. Pélissier designed a program called MPFR-BENCH to precisely measure the number of cycles
spent by each of the basic MPFR routines. Then he proposed a new architecture to reduce the overhead of
dealing with special values (Not-a-Number, infinities and zeroes). In addition, special-purpose code has been
written in the common case where both the arguments and the destination have the same precision, for addition
and subtraction. These optimizations are included in MPFR 2.1.0, released in November 2004. The following
table compares the number of cycles of the five basic operations between MPFR 2.0.1 and MPFR 2.1.0, on a
Pentium 4 (Northwood model) and an Athlon, for a precision of 53 bits, corresponding to the double precision
from IEEE 754.4

version machine add sub mul div sqrt

2.0.1 Pentium 4 298 398 331 1024 1211

2.1.0 Pentium 4 211 213 268 549 1084

2.0.1 Athlon 222 323 270 886 975

4MPFR was compiled with GMP 4.1.4, with the same compilation flags than those determined by GMP’s configure.
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2.1.0 Athlon 132 151 183 477 919

Following the theoretical results from [10], a new function mpfr_sum was added to MPFR. This function
lets the user compute the sum of an arbitrary number of floating-point numbers with correct rounding, and
is considered especially useful when performing scalar products (a very common usage of floating-point
numbers).

5.8. MPFI
Participants: Nathalie Revol [ARENAIRE project], Fabrice Rouillier [contact].

MPFI is a library for multiprecision interval arithmetic, written in C (approximately 1,000 lines), based on
MPFR. Initially, MPFI was developed for the needs of a new hybrid algorithm for the isolation of real roots of
polynomials with rational coefficients. MPFI contains the same number of operations and functions as MPFR,
the code is available and documented.

5.9. MPAI
Participant: Philippe Trébuchet.

MPAI is a library for computing with algebraic infinitesimals. The infinitesimals are represented as
truncated series. The library provides all the arithmetic functions needed to perform computations with
infinitesimals. The interface is both GMP and RS compliant. It is implemented in the C language and
represents approximatively 1,000 lines of code. The algorithms proposed in MPAI include Karatsuba’s
product and the short product, ...The code is available.

5.10. Exhaustive Tests of the Mathematical Functions
Participant: Vincent Lefèvre.

The tests of the mathematical functions (exp, log, sin, 
os, etc.) have been partially rewritten. In particular,
all the low-level routines were rewritten in ISO C in order to be portable, using the MPN layer of GMP for
speed reasons. The code was also improved from the algorithmic point of view, in particular to reduce the
number of iterations from several thousands to two or three in some intervals; one third of the intervals that
were too long to test previously could now be tested very quickly.

The results are used:

� by us, to detect bugs in MPFR and in the GNU C library (glibc);

� by the ARENAIRE team, for their implementation of the mathematical functions with correct
rounding.

5.11. Approximations of a Function by Polynomials
Participants: Vincent Lefèvre, Marc Helbling.

Marc Helbling worked on the hierarchical approximations of a function (approximated and represented by
a high-degree polynomial) by polynomials of low degrees, as first described in [13]. One of the goals is to
be able to quickly evaluate a function at regularly spaced points; this is needed for the exhaustive tests of the
mathematical functions. Both suggested methods have been studied and implemented using MPFR.

5.12. UDX
Keywords: binary data, protocol.

Participant: Fabrice Rouillier.

XDR eXternal Data Representation
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UDX Universal Data Representation

UDX is a software for binary data exchange. It was initially developed to show the power of a new protocol,
object of a patent by INRIA and UPMC (deposit number 99 08172, 1999). The resulting code, written in
ANSI C (9,500 lines), is very portable and very efficient, even when the patented protocol is not used. UDX
is composed of five independent modules:

� base: optimized system of buffers and synchronization of the input and output channels;

� supports: read/write operations on various supports (sockets, files, shared memory, etc.);

� protocols: various exchange protocols (patented protocol, XDR, etc.);

� exchange of composite types: floating-point numbers (simple and double precision), multiprecision
integers, rational numbers;

� interfaces: user interfaces implementing high level callings to the four other modules.

UDX is used in some interfaces developed in the project (GB, RS, MuPAD) but also in software from other
projects (SYNAPS and ROXANE, in collaboration with the INRIA project GALAAD [48], MuPAD/Scilab
interface distributed with MuPAD 2.5.1).

5.13. Interfaces
Keywords: interfaces.

Participants: Jean-Charles Faugère [contact], Fabrice Rouillier.

In order to ease the use of the various softwares developed in the project, some conventions for the exchange
of ASCII and binary files were developed and allow a flexible use of the servers GB, FGB or RS.

To make transparent the use of our servers from general computer algebra systems such as Maple or
MuPAD, we consolidated and homogenized the prototypes of existing interfaces and we currently propose
a common distribution for GB, FGB and RS including the servers as well as the interfaces for Maple and
MuPAD. The instructions are illustrated by concrete examples and a simple installation process.

5.14. TSPR
Keywords: parallel manipulator, trajectory.

Participant: Fabrice Rouillier [contact].

The purpose of the TSPR project (Trajectory Simulator for Parallel Robots) is to homogenize and export
the tools developed within the framework of our applications in parallel robotics. The software components
of TSPR (about 1500 lines) are primarily written in C following the standards of RS and FGB and algorithms
implemented in Maple using the prototypes of interfaces for FGB and RS. The encapsulation of all these
components in a single distribution is available but not downloadable.

Some prototypes of components for real-time resolution of certain types of systems now use the ALIAS
library developed in the INRIA project COPRIN.

5.15. Function Field Sieve
Keywords: discrete logarithm, finite fields, function field sieve.

Participants: Dahab Hakim, Emmanuel Thomé [contact].

Dahab Hakim (DEA Limoges) studied and implemented the function field sieve algorithm for computing
discrete logarithms in fields of characteristic three. The resulting code is mixed C and Magma.



Project-Team SPACES 11

6. New Results

6.1. Interval Arithmetic
Participants: Nathalie Revol [ARENAIRE project], Fabrice Rouillier [contact].

In [25], we justify why an arbitrary precision interval arithmetic is needed. To provide accurate results,
interval computations require small input intervals; this explains why bisection is so often employed in
interval algorithms. The MPFI library has been built in order to fulfill this need. Indeed, no existing library
met the required specifications. The main features of this library are briefly given and a comparison with a
fixed-precision interval arithmetic, on a specific problem, is presented. It shows that the overhead due to the
multiple precision is completely acceptable. Eventually, some applications based on MPFI are given: robotics,
isolation of polynomial real roots (by an algorithm combining symbolic and numerical computations) and
approximation of real roots with arbitrary accuracy.

6.2. Arithmetic of C
3;4

Curves
Participant: Jean-Charles Faugère.

In [30], we provide explicit formulas for realising the group law in Jacobians of superelliptic curves of genus
3 and C

3;4

curves. It is shown that two distinct elements in the Jacobian of a C
3;4

curve can be added with 150
multiplications and 2 inversions in the field of definition of the curve, while an element can be doubled with
174 multiplications and 2 inversions. In superelliptic curves, 10 multiplications are saved.

6.3. Univariate Polynomials
Participant: Fabrice Rouillier.

In [43] and [24], we explain how Bernstein’s basis, widely used in Computer Aided Geometric Design,
provides an efficient method for real root isolation, using De Casteljau’s algorithm. We explain also the link
between this approach and more classical methods for real root isolation [56]. Most of the content of the paper
can be found in [49][45]. However, we present a new improved method for isolating real roots in Bernstein’s
basis inspired by [52].

6.4. Generalized Normal Forms
Participant: Philippe Trébuchet.

Let K[x

1

; :::; x

n

℄ be the ring of n-variate polynomials over the field K, and I an ideal of K[x

1

; :::; x

n

℄.
Finding an effective representation of the quotient algebra K[x

1

; :::; x

n

℄=I is a key point for studying the
variety defined by I . Efficient ways to reach this goal exist, and the most used is to first compute a Gröbner
basis, and next to derive an exact parameterization of the solution set. Though the work of Faugère made the
Gröbner step rather efficient, the computation of Gröbner bases still suffers from very unstable behavior: the
time and space needed for computing a Gröbner basis can vary greatly from a system to one another. Such
changes obviously must appear when the structure of the variety defined by the system changes. However
the behavior of the computation of Gröbner bases changes in a way uncorrelated to geometric changes of the
variety. This is rather problematic as it implies that the actual cost of the solving process of a given system via
Gröbner bases may be dramatically greater than what ought to be paid.

Our common work with Mourrain showed that in fact the methods of Macaulay and Buchberger share the
same directing idea. Remark that Macaulay’s method is known for its good stability properties, hence the
idea to mix Macaulay’s and Buchberger’s approaches seems natural. The algorithm we provided so far was
only shown to work for zero dimensional ideals. In the article [40] we provide a stopping criterion for this
algorithm when the input system is positive dimensional. First we show that detecting that the ideal generated
by the homogeneous parts of maximal degree of the polynomial sets constructed by the algorithm is k-regular
(i.e. the Castelnuovo-Mumford regularity of this ideal is less than k) is enough to ensure that these sets allow
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to solve the ideal membership problem. Next, we show that detecting that this ideal is k-regular is simple using
Quillen’s theorem.

6.5. Complexity of Gröbner Bases
Participants: Magali Bardet, Jean-Charles Faugère.

In [29], we extend the notion of regular sequence (Macaulay) to overdetermined systems of algebraic
equations. We study generic properties of Gröbner bases and analyze precisely the behavior of the F

5

algorithm. We extend the previous known results by defining the semi regular sequences and the degree
of regularity for which we give a precise asymptotic analysis. For example, as soon as the number m of
polynomials is strictly greater than the number n of variables, we gain a factor of 2 on the Macaulay bound
and a factor 11:65 when m = 2n.

6.6. Gröbner Bases over Finite Fields
Participants: Gwenolé Ars, Jean-Charles Faugère.

In [28], we compare the XL algorithm with the Gröbner basis algorithm. We explain the link between the
XL result and the Gröbner basis result with the well-known notion of D-Gröbner basis. Then we compare
these algorithms in two cases: in the fields F

2

and F

q

with q < n. For the field F

2

, we have proved that if
XL needs to compute polynomials with degree D to terminate, the whole Gröbner basis is computed without
exceeding that degree.

We have studied the XL algorithm and the F
5

algorithm on semi-regular sequences. We show that the size
of matrices constructed by XL is huge compared to the ones of F

5

.
So the complexity of XL is worse than that of the F

5

algorithm on these systems. For the field F

q

,
we introduce an emulated algorithm using Gröbner basis computation to have a comparison between XL
and Gröbner basis. We have proved that this algorithm will always reach a lower degree for intermediate
polynomials than the XL algorithm. A study on semi-regular sequences shows that F

5

always has a better
behavior than the XL algorithm especially when m is near n.

6.7. Zero-Dimensional Systems
Participant: Fabrice Rouillier.

In [37], we propose some new results about the computation and use of the Rational Univariate Repre-
sentation. The first result is an algorithm that computes a RUR-candidate (no guarantee for the choice of a
separating element), performing O(℄TD

3=2

+ nD

2

) operations in Q, taking as input T, a multiplication table
of Q[X

1

; :::; X

n

℄=I which is slightly better than [46]. The proposed algorithm is mainly the same as in [46]
(based on the baby-step/giant-step algorithm [55]) but computes differently the so called “transposed product”
(main operation). In addition, the output preserves the multiplicities. Basically, [46] generalizes the formulas
from [51]: the coefficients of the RUR-candidate can directly be expressed with respect to l(X

j

t

i

) where l is a
“sufficiently generic” linear form. Taking for l the trace map (trace of the multiplication in Q[X

1

; :::; X

n

℄=I),
one recovers the formulas from [51]. The second result shows that one can check that the obtained RUR-
candidate is a RUR performing O(n℄TD

3=2

) arithmetic operations, so that it produces the same output as
[51] with the same computing time as the probabilistic computation of the RUR-candidate from [46]. We also
propose an algorithm that computes all the sign conditions realized by a set of polynomials at the zeroes of
a zero-dimensional system. Its computing time complexity is D times less than the one of Algorithm 11.18
p. 375 in [45] for the same input (T). Given any polynomial f , the formulas from [51] or [46] can be used
to compute a rational function g

t;f

=g

t

which takes the same values as f at the zeroes of I . According to the
results above, given a set of polynomials F = ff

1

; :::; f

s

g, one can compute a RUR and the rational functions
g

t;f

i

in O(t

1

+ sD

2

) if t
1

is the computing time of the RUR. Thus, computing the sign conditions realized by
the f

i

leads to computing the sign conditions realized by the g
t;f

i

at the roots of f
t

. We can then substitute
the “Sturm query” algorithm based on Hermite’s quadratic form in [45] (computing time in O(D

3

) by its
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equivalent for univariate polynomials (see also for example [45]) - computing time in O(D

2

) for the naive
version).

6.8. Parametric Polynomial Systems
Participants: Daniel Lazard, Fabrice Rouillier.

In [41] and [34], we present a new algorithm for solving basic parametric constructible or semi-algebraic
systems like C = fx 2 C

n

; p

1

(x) = 0; :::; p

s

(x) = 0; f

1

(x) 6= 0; :::; f

l

(x) 6= 0g or S = fx 2 C

n

; p

1

(x) =

0; :::; p

s

(x) = 0; f

1

(x) > 0; :::; f

l

(x) > 0g, where p
i

; f

i

2 Q[U;X ℄, U = [U

1

; :::; U

d

℄ is the set of parameters
and X = [X

d+1

; :::; X

n

℄ the set of unknowns.
If �

U

denotes the canonical projection on the parameter’s space, solving C leads to compute sub-manifolds
U � �

U

(C) such that (��1
U

(U)\C;�

U

) is an analytic covering of U (we say that U has the (�
U

;C)-covering

property). This guarantees that the cardinal of ��1
U

(U) \ C is locally constant on U and that ��1
U

(U) \ C is a
finite collection of sheets which are all locally homeomorphic to U. In the case where �

U

(C) is dense in C d ,
known algorithms for solving C or S ( [47], [54], [57]) compute implicitly or explicitly a Zariski closed subset
W such that any sub-manifold of �

U

(C)rW has the (�
U

;C)-covering property.
We introduce the discriminant varieties of C with respect to �

U

which are algebraic sets with the above
property. We then show that the set of points of �

U

(C) which do not have any neighborhood with the (�
U

;C)-
covering property is a Zariski closed set and thus defines the minimal discriminant variety of C with respect

to �

U

, and we propose an algorithm to compute it efficiently. Thus, solving C (resp. S) remains to describing
�

U

(C)rW

D

(resp. (�
U

(C)rW

D

) \ R

d ) which can be done using critical point methods such as in [45] or
partial CAD based strategies [47].

6.9. Parametric Varieties and Rational Maps
Participant: Daniel Lazard.

Our work on parametric varieties and rational maps began with an application of our methods to statistics
which leads us to a complete study of the topology of the image of a rational mapping [23]. This application
became our first significative example of a parametric polynomial system with a non dense projection on
the space of the parameters, and was therefore a fundamental tool for extending correctly our theory of
discriminant varieties to this case.

Rational maps appear in many application domains, whenever some measurable quantities are rational
functions of some hidden state variables. They appear also in the definition of the parametric varieties, which
are widely used in geometrical design. On the other hand, their linearity with respect to their image leads to
shortcuts in many computations, especially the one of the discriminant variety.

Therefore their study deserves a special effort which started with [23], has been continued with [33],[41]
and will be submitted to the book following the AGGM conference.

6.10. Positive Dimensional Systems of Equations
Participant: Mohab Safey el Din.

The results of [26] have been published. In this article, we provide an algorithm computing at least one
point in each connected component of a real algebraic set defined by a polynomial system of equations. The
used strategy is based on the compution of critical loci of some projections and their respective sets of non-
properness. The paper ends with intensive experimental results. These results have been improved in [53].

In [27], we have provided some sharp bounds on the number of critical points of a polynomial mapping
restricted to a smooth algebraic variety. These bounds have been obtained by exploiting the bi-homogeneous
structure of the Lagrange system and proving a Bezout bound to such systems on the sum of the degree of
the isolated primary components of the ideal generated by the studied polynomial system. Then, we have
used these results to improve the Thom-Milnor bound which majorates the maximal number of connected
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components of a real algebraic set. This is done by generalizing the algorithm of [53] to non equidimensional
situations for which some optimal bounds on the degree of the output and the number of arithmetic operations.
These results have been submitted to Journal of Complexity.

6.11. Generalized Critical Values and Semi-Algebraic Systems
Participants: Mohab Safey el Din [contact], Fabrice Rouillier.

In [35], we provide an algorithm computing at least one point in each connected component of a semi-
algebraic set defined by a system of equations and non-strict inequalities. We prove improved complexity
bounds to tackle this problem, provide an implementation, and study an application to pattern-matching
problems.

In [38], we focus on the case of semi-algebraic sets defined by a single polynomial inequality or a single
polynomial inequation. In this case, a classical strategy consists in introducing an infinitesimal and performing
computations on a Puiseux series field. We substitute this strategy by finding an a priori good specialization
value for this infinitesimal. This is done by computing the set of generalized critical values of a polynomial
mapping. The complexity of the obtained algorithm is better than the previous ones and an implementation
is provided. The extended abstract presenting these results has been accepted for an oral communication at
ICPSS’04 (International Conference on Polynomial System Solving) which has been held at Pierre et Marie
Curie University, Paris. The full paper is in preparation and will be submitted to the Special Issue of Journal
of Symbolic Computation in honour of Daniel Lazard.

6.12. Integer and Polynomial Arithmetic
Participants: Richard Brent, Guillaume Hanrot, Paul Zimmermann.

Several articles describing fundamental work done in the last years finally appeared in 2004. The article
describing the “middle product” appeared in AAECC [21]. The article describing the optimal strategy for
Mulders’ short product when used with Karatsuba multiplication appeared in the Journal of Symbolic

Computation [22]. The 2-adic gcd algorithm was presented at the ANTS-VI conference [39]. The article
describing the search for primitive trinomials of degree 6972593 over GF(2) appeared in Mathematics of

Computation [18].

6.13. Floating-Point Arithmetic
Participants: Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Damien Stehlé, Paul Zimmermann.

Following the effort towards a standardization of mathematical functions in the IEEE 754 standard [19],
we propose an extension of Gal’s “accurate table” method [44]. This paper contains two main ideas. For one
function, we use “worst-case” inputs as distinguished points, which provide the arguably best set of values for
Gal’s method. For two functions, for example sin and 
os, we present a new algorithm, using a variant of that
from [17], which finds all simultaneous n-bit worst cases in O(2

n=2

), instead of O(2

n

) for the naive method.
Laurent Fousse and Susanne Schmitt (MPI für Informatik, Saarbrücken) analyzed two polynomial evalua-

tion schemes, providing proven error bounds on the result of the evaluation together with fast implementation
of the algorithms [32]. This work confirms the common knowledge that Horner’s scheme is considered nu-
merically more stable but gives a rigourous error analysis and benchmarks. The idea to truncate partial results
was used to speed up the computation where possible; this might give an improvement in the calculation of
elementary series.

The generic multiple-precision floating-point addition of two positive floating-point numbers in base 2 with
correct rounding, as specified in MPFR, is studied and a bit-based version of the algorithm is described in [36].
This study shows that the MPFR implementation is asymptotically optimal. Moreover a future mechanically-
checked proof could be based on this work.

Vincent Lefèvre started a work on the integration of numerical computations into the OMSCS framework,
in Jacques Calmet’s team at Karlsruhe University, Germany [31]. This work aims at showing what problems
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can occur when dealing with numerical computations (with a floating-point or any other arithmetic) and what
can be done to solve them or at least to provide a clear meaning of a numerical result; it has been partially
supported by the Calculemus Research Training Network HPRN_CT-2000-00102.

6.14. Cryptology
Participant: Emmanuel Thomé.

Emmanuel Thomé and Pierrick Gaudry (LIX, École polytechnique) designed and analyzed a new algorithm
suited for computing discrete logarithms in hyperelliptic curves in genus 3. This algorithm improves on

the previously best known algorithms, since the complexity drops from O(q

2�

2

g+1=2

) to O(q

2�

2

g

), for
computing discrete logarithms in hyperelliptic curves of genus 3 defined over GF(q). The algorithm has
been implemented, and we have been able to compute discrete logarithms in a group of cardinality � 2

81

(genus 3 over GF(2

27

)). The main originality of this work lies in the analysis of the algorithm. Indeed,
the technique used is known as the double large prime variation, and has been commonplace for a long
time in neighboring contexts (integer factorization, index calculus algorithms in general...). Only heuristic
or experimental arguments have been raised so far to justify the use of the double large prime variation, but
our work gives a proof, in our particular contexts, that an improvement in complexity is obtained. This work
has been published as a preprint on the IACR web server, and an extended version written in collaboration
with Nicolas Thériault (University of Waterloo, Canada) will be submitted by the end of 2004.

7. Contracts and Grants with Industry

7.1. MuPAD-Scilab Interface
Participants: Fabrice Rouillier, Paul Zimmermann.

In November 2001, a cooperation agreement around the UDXF program for binary data exchange was
signed between the SciFace company (which distributes the computer algebra system MuPAD) and INRIA
Lorraine (representing the University Pierre and Marie Curie). UDXF takes as parameter a communication
protocol, for example that of patent UDX, but it can also be another protocol. Within the framework of this
agreement, SciFace has the right to use UDXF for the MuPAD-Scilab interface. In exchange, SciFace takes
part in the development and the improvement of UDX. Version 2.5.x of MuPAD, distributed since September
2002, integrates this interface.

8. Other Grants and Activities

8.1. National Initiatives

8.1.1. Ministry Grant (ACI) “Cryptologie”

Participants: Guillaume Hanrot [contact], Jean-Charles Faugère, Magali Bardet, Gwenolé Ars, Bill Al-
lombert, Renaud Lifchitz.

This project started in 2002 and ended in 2004. The main goal of this project is to study the interactions
between cryptology and computer algebra and more specifically the impact of fast polynomial system
algorithms on public key cryptosystems based on multivariate (quadratic) equations (such as HFE). For
instance a member of this project was able to “break” the first HFE challenge by computing a huge Gröbner
basis.

8.2. European Initiatives

8.2.1. Real Algebraic and Analytic Geometry Network

Participants: Fabrice Rouillier [contact], Mohab Safey El Din.
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The SPACES project takes part in the European project RAAG (Real Algebraic and Analytic Geometry),
F. Rouillier being the deputy chief for the applications and connection with industry item.

RAAG is a Research Training Network of the “Human Potential” program of the European Commission,
sponsored for 48 months starting from March 2002. The network is managed by the University of Passau
(Germany), the coordination of the French side being ensured by the team of real geometry and computer
algebra of the University of Rennes I.

The main goal of this project is to increase the links between the various fields of research listed in the topics
of the project (real algebraic geometry, analytical geometry, complexity, formal calculation, applications,
etc.) by means of conferences, schools and exchanges of young researchers. It brings together a great number
of European teams and in particular the majority of the French teams working in the scientific fields falling
under the topics of the project.

9. Dissemination

9.1. Scientific Animation

9.1.1. ICPSS Conference

The members of the project organized jointly with the CALFOR team the first International Conference on
Polynomial System Solving. This first edition was in honor of Daniel Lazard. About 100 participants from
various countries were present and prestigious researchers gave invited lectures (B. Buchberger, J. Calmet,
J. Davenport, H. Hong and M.-F. Roy). A special issue of Journal of Symbolic Computation is planned for
2005.

9.2. Leadership within Scientific Community
P. Zimmermann is member of the program committee of the Arith’17 conference (June 2005, Cape Cod,

USA), and was member of the editorial board of a special issue of the Journal of Logic and Algebraic

Programming, on the practical development of exact real number computation (http://www.informatik.uni-
trier.de/~mueller/JLAP/).

9.3. Teaching
G. Hanrot and P. Zimmermann gave lectures (20 hours) about links between arithmetics and cryptology at

the DEA Informatique of University Nancy 1.
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