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1. Team
Head of project-team

Frédéric Bonnans [DR Inria]

administrative assistant

Martine Verneuille [AI Inria]

Staff member

Claudia Sagastizábal [CR, détachée à l’IMPA - Rio de Janeiro]

Research scientist

Mounir Haddou [Maître de conférence, Université d’Orléans]
Sady Maurin [IR CNRS]
Housnaa Zidani [Enseignante chercheur, ENSTA]

Ph. D. student

Sandrine Avril [bourse ONERA]
Julien Laurent-Varin [bourse CNES]
Stefania Maroso [bourse MESR - depuis octobre]
Elisabeth Ottenwaelter [IUT Paris]
Hector Ramirez-Cabrera [Université du Chili]

Visiting scientist

Felipe Alvarez [Université du Chili, 2 semaines]
Radia Bessi-Fourati [ENIT - Tunis, 2 semaines]
Henda El Fekih [ENIT - Tunis, 2 mois]
Mikhail Solodov [IMPA - Rio de Janeiro, 3 semaines]

2. Overall Objectives
To develop new algorithms in deterministic and stochastic optimal control, and deal with associated

applications, especially for aerospace trajectories and management for the power industries (hydroelectric
resources, storage of gas and petroleum).

In the field of deterministic optimal control, our objective is to develop algorithms combining iterative fast
resolution of optimality conditions (of the discretized problem) and refinement of discretization, through the
use of interior point algorithms. At the same time we wish to study multiarcs problems (separations, rendez-
vous, formation flights) which necessitates the use of decomposition ideas.

In the field of stochastic optimal control, our first objective is to develop fast algorithms for problems of
dimension two and three, based on fast computation of consistent approximations as well as splitting methods.
The second objective is to link these methods to the stochastic programming approach, in order to deal with
problems of dimensions greater than three.

3. Scientific Foundations
For deterministic optimal control problems there are basically three approaches. The so-called direct method

consists in an optimization of the trajectory, after having discretized time, by a nonlinear programming solver
that possibly takes into account the dynamic structure; see Betts [25]. The indirect approach eliminates control
variables using Pontryagin’s maximum principle, and solves the resulting two-points boundary value problem
by a multiple shooting method. Finally the dynamic programming approach solves the associated Hamilton-
Jacobi-Bellman (HJB) equation, which is a partial differential equation of dimension equal to the number n of
state variables. This allows to find the global minimum, whereas the two other approaches are local; however,
it suffers from the curse of dimensionality (complexity is exponential with respect to n).
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There are various additional issues: decomposition of large scale problems, simplification of models
(leading to singular perturbation problems), computation of feedback solutions.

For stochastic optimal control problems there are essentially two approaches. The one based on the
(stochastic) HJB equation has the same advantages and disadvantages as its deterministic counterpart. The
stochastic programming approach is based on a finite approximation of uncertain events called a scenario tree
(for problems with no decision this boils down to the Monte Carlo method). Their complexity is polynomial
with respect to the number of state variables but exponential with respect to the number of time steps. In
addition, various heuristics are proposed for dealing with the case (uncovered by the two other approaches)
when both the number of state variables and time steps is large.

4. Application Domains
Aerospace trajectories (rockets, planes), automotive industry (car design), chemical engineering (optimiza-

tion of transient phases, batch processes).
Storage and management, especially of natural and power resources, portfolio optimization.

5. Software
We have presently two research softwares. The first is an implementation of interior point algorithms

for trajectory optimization, and the second is an implementation of fast algorithms for bidimensional HJB
equations of stochastic control.

6. New Results

6.1. Trajectory optimization
Participants: F. Bonnans, M. Haddou, S. Avril, J. Laurent-Varin.

En collaboration with N. Bérend (DPRS, ONERA) and Ch. Talbot (CNES Evry).

6.1.1. Order conditions for Runge-Kutta schemes

Participants: F. Bonnans, J. Laurent-Varin.

We have clarified the analysis of discretization errors for an unconstrained optimal control problem with
strongly convex Hamiltonian and smooth data. The discretization procedure of W. Hager [26] is reinterpreted
as a symplectic discretization scheme for the optimality system. In addition we show how to generate short
expressions for the order conditions on the Runge-Kutta coefficients, based on a certain splitting operator for
directed graphs. These conditions are generated up to order 7 and displayed up to order 6. For order up to 4
we recover the results of Hager. These results are published in the INRIA Research Report [20].

We note that there are still many open results in this field, especially in the case of non strongly convex
Hamiltonian (e.g. linearity with respect to the control, singular arcs), locally strongly convex Hamiltonian
with multiple minima, and of course constrained problems.

6.1.2. Error analysis of logarithmic penalty for optimal control problems

Participants: F. Bonnans, J. Laurent-Varin, F. Alvarez [CMM, Universidad de Chile].

Here we try to estimate the difference between a solution of an optimal control problem and the one of the
associated problem with logarithmic penalty of constraints. Our premilinary results deal with the special case
of a linear quadratic convex problem with nonnegativity constraints on the control, and without distributed
cost on the state.

We are able to give an expansion of the optimal triple (state, control and adjoint state), the first term having
coefficient " log ", where " is the penalty parameter. This result will be published in the proceedings of the
Moscow conference in honor of Tihomirov.
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6.1.3. Analysis of multiarc optimization

Participants: F. Bonnans, J. Laurent-Varin, M. Haddou, N. Bérend, C. Talbot.

We have completed a theoretical study of the sparse factorization of the Jacobian occuring when solving an
optimal control problem, with multiple arcs. The basic idea is to eliminate, by successive QR factorizations,
starting from the leaves of the graph representing the connection between arcs. The main result is that the
cost of factorization is proportional to the number of arcs plus nodes. For each arc the cost is proportional
to the number of time steps, multiplied by the square of number of state variables. For each node the cost is
proportional to the cube of the number of variables at this node.

The results will be published in the proceedings of the Internation School of Mathematics "G. Stampacchia"
Workshop on "Large Scale Nonlinear Optimization". June 22th - July 1st, 2004 - Erice - Sicile.

6.1.4. Software enhancements

Participant: J. Laurent-Varin.

A main change in the code was to avoid to compute the discretization estimate inside the Jacobian
factorization. This discretization estimate is now a separate module that can be called for a given time step,
adding more flexibility to the code and allowing a significant decrease on the number of operations (since
the number of internal states is divided by more than two, and the number of operations is roughly speaking
proportional to the square of this number).

The linear algebra kernel has been rewritten in order to allow to take into account a nested structure. This
is used presently for successive elimination of slack variables and distributed in time variables, and will be
applied to the case to multiarc optimization.

We have reorganized the input-output operations, taking advantage of the Scilab software for scientific
computation. A tcl-tk interface based on Scilab allows to modify a number of data, and the graphic part was
improved.

6.1.5. Atmospheric reentry

Participant: J. Laurent-Varin.

Our code now runs for several atmospheric reentry trajectory optimization problems for a space shuttle.
We have used the data of Betts [25] for the shuttle itself and the atmosphere and gravity model, and have
recovered his results (for the maximization of cross range, i.e. of final latitude, with or without a bound on the
instantaneous heating). We have tested also a number of other criteria such as the final longitude, and other
constraints such as a nonpositive path angle. These results will be published in an INRIA report to appear.

6.1.6. Optimal transfer of satellites

Participants: F. Bonnans, S. Avril, N. Bérend [DPRS-ONERA].

An optimization tool based on an indirect shooting method has been encoded in C++. This tool deals with an
tranfer problem with free final time and maximal final mass. The trajectory is decomposed in a fixed number
of balistic and propelled arcs, the switching times being unknown of the problem. The algorithm includes a
Newton step with linesearch, and an initialization procedure based on the resolution of a simplified model. The
sofware has been validated on some simple transfer problems, with final constraints on two orbital parameters.

6.2. Numerical methods for HJB equation
Participants: F. Bonnans, H. Zidani, S. Maroso, E. Ottenwaelter.

This section presents our research for the numerical approximation of the HJB (Hamilton-Jacobi-Bellman)
equation of stochastic control. The latter is of the following type

(HJB)

�v

t

(t; x) = inf

u2U

f`(t; x; u) + f(t; x; u) � v

x

(t; x) + a(t; x; u) Æ v

xx

(t; x)g ;

for all t; x 2 [0; T ℄� R

n

:

v(T; x) = `

F

(x); for all x 2 R

n

:
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Figure 3. This figure displays the instantaneous heating flux with respect to time, for the problem of reentry of an

American space shuttle, maximizing the final latitude. The gray plot shows, as expected, oscillations due to several

rebounds. The blue plot takes into account an additional constraint on the maximum instantaneous heating flux

(rebounds are essentially eliminated). The results are in accordance with those of the literature [25].



6 Activity Report INRIA 2004

Its solution is the value function of the following problem

(P

�;x

)

Min E

Z

T

�

`(t; y(t); u(t)) d t+ `

F

(y(T ));

�

d y(t) = f(t; y(t); u(t)) d t+ �(t; y(t); u(t)) d w(t);

y(�) = x; u(t) 2 U; t 2 [�; T ℄; � 2 [0; T ℄:

We had previously introduced the generalized finite differences approximation scheme [4] and obtained a fast
implementation of this algorithm when the state space dimension n is two, in [7].

6.2.1. Antidiffusive schemes for first order HJB equations

Participants: N. Megdiche, H. Zidani.

The first order HJB equations allow to compute the value function of a deterministic optimal control
problem. Our interest comes from with control problems with state constraints (Rendez-vous problem, target
problem, minimal time). When some strong controlability assumptions are not satisfied, the solution of the
HJB equation is discontinuous and the classical discretization schemes (such as finite differences or semi-
lagrangian) provide poor quality approximation because of numerical diffusion.

In collaboration with O. Bokanowski (Univ. Paris 7), we have proposed in [17] two new anti-diffusive
schemes for advection (or linear transport),and have shown how to apply these schemes to the resolution of
the time-dependant first order HJB equations with discontinuous initial data, possibly infinitely-valued.

The numerical experiments tested on several benchmark problems and compared to other algorithms are
very encouraging, in term of the approximation error.

In [16], we have investigated the use of an antidiffusive scheme to treat some viability problems. Numerical
experiments, compared with the viability algoritm [27], show the relevance of our scheme for computing
viability kernels.

Within the framework of the thesis of N. Megdiche, we have studied the implementation of an antidiffusive
scheme on an adaptive grid. The use of the adaptive grid enables us to have a better approximation precision,
in particular around the discontinuities, while optimizing the number of meshs in the grid of calculation. A
corresponding preprint is in preparation.

6.2.2. Splitting decomposition for generalized finite differences

Participants: F. Bonnans, E. Ottenwaelter, H. Zidani.

This study exploits the expression of the generalized finite difference approximation scheme, as a sum of
finite differences operators, in order to derive a splitting decomposition algorithm. At each inner step of the
splitting scheme, one has to solve several one dimensional diffusions along parallel directions. Each time step
needs as many inner steps as elements of the stencil. We had shown previously that in general, the computation
of an accurate approximation necessitates a large stencil; however, in many cases a small stencil will be
enough. We show that splitting combined with implicit time discretization allows large time steps (of order of
space step rather than the square of it).

6.2.3. Error analysis for HJB equations

Participants: F. Bonnans, S. Maroso, H. Zidani.

This work deals with a zero-sum game problem where the first player minimizes the expectation of an
integral cost, whereas the second player takes the decision to stop the game. We extend to this situation some
techniques of Krylov and Barles and Jakobsen. These references obtain error estimates for a stochastic optimal
control problem, by combining a certain regularization procedure due to Krylov with the idea of penalizing
changes of the control. We show that a certain adaptation of these techniques allows to obtain similar error
estimates. This study is published in an INRIA report [18].
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6.3. Nonlinear optimization

6.3.1. Positive semidefinite optimization

Participants: F. Bonnans, H. Ramirez-Cabrera.

In collaboration with Rafael Correa (CMM, Universidad de Chile)
A general problem in sensitivity theory for optimization problems is to characterize "strong regularity" in

the sense of Robinson. One looks for a characterization in terms of first and second order derivatives of data
at the current point, that one can check easily. Such characterizations are known presently in a limited number
of situations, see chapter 5 of [3].

In our work we have analysed first and second order optimality conditions for nonlinear second-order cone
programming problems, and their relation with semidefinite programming problems. For doing this we extend
in an abstract setting the notion of optimal partition. Then we state a characterization of strong regularity in
terms of second order optimality conditions. The results are published in the INRIA Research Report [21].

6.3.2. VU -algorithms and theory

Participant: C. Sagastizábal.

Joint work with Robert Mifflin (Washington State University - EUA).
In [23] we introduce an algorithm for convex minimization based on VU -space decomposition, see Report

2003. The method uses a bundle subroutine to generate a sequence of approximate proximal points. When a
primal-dual track leading to a solution and zero subgradient pair exists these points approximate the primal
track points and give the algorithm’s V or corrector steps. The subroutine also approximates dual track points
that are U-gradients needed for the method’s U-Newton predictor steps. With the inclusion of a simple line
search the resulting algorithm is proved to be globally convergent. The convergence is superlinear if the primal-
dual track points and the objective’s U-Hessian are approximated well enough.

This work is a follow-up of our more theoretical research on nonsmooth functions with pdg structure. In [9]
we show that when strong transversality is satisfied, there exists a C2 trajectory leading to x and an associated
subdifferential that is C1. As a result, there exists a space decomposition mapping that is C1 and a second
order expansion of f on the trajectory. For x a minimizer, we give conditions on f to ensure that for any
point near x its corresponding proximal point is on the trajectory. This purely theoretical result is fundamental
for minimization algorithms and their implementations, since it is known that, at least in the convex case, a
sequence of null steps from a bundle mechanism can approximate proximal points with any desired accuracy.

Suppose the function is not pdg structured, but has additional properties of prox-regularity and prox-
boundedness. In [10] we make use of VU -space decomposition theory to connect three minimization-oriented
objects. These objects are U-Lagrangians obtained from minimizing a function over V-space, proximal points
depending on minimization over Rn = U�V, and epi-derivatives determined by lower limits associated with
epigraphs. We relate second-order epi-derivatives of a function to the Hessian of its associated U-Lagrangian.
We also show that the function’s proximal points are on a trajectory determined by certainV-space minimizers.

6.3.3. Bundle methods for constrained optimization problems

Participant: C. Sagastizábal.

Global convergence in constrained optimization algorithms has traditionally been enforced by the use of
parametrized penalty functions. Recently, the filter strategy has been introduced as an alternative. At least part
of the motivation for filter methods consists in avoiding the need for estimating a suitable penalty parameter,
which is often a delicate task. In [11] we demonstrate that the use of a parametrized penalty function in
nonsmooth convex optimization can be avoided without using the relatively complex filter methods. We
propose an approach which appears to be more direct and easier to implement, in the sense that it is closer
in spirit and structure to the well-developed unconstrained bundle methods. Preliminary computational results
are also reported.

Joint work with M. Solodov (IMPA).
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For comparison purposes, we are currently working on a filter-based variant [22], which combines the ideas
of the proximal bundle methods with the filter strategy for evaluating candidate points. The resulting algorithm
inherits some attractive features from both approaches. On the one hand, it allows an effective control of the
size of quadratic programming subproblems via the compression and aggregation techniques of the proximal
bundle methods. On the other hand, the filter criterion for accepting a candidate point as the new iterate is
expected to be easier to satisfy than the usual descent (serious step) condition in bundle methods.

Joint work with E. Karas, A. Ribeiro (UFPR), and M. Solodov (IMPA).

6.4. Industrial applications
Participant: C. Sagastizàbal.

In [8], [12], [14] we consider the inclusion of hydro-thermal unit-commitment in the optimal management
of the Brazilian power system, as well as a long term generation and interconnection expansion planning
problem.

In [6] we consider the problem of optimal design of hybrid car engines which combine thermic and electric
power.

7. Contracts and Grants with Industry

7.1. Trajectory optimization
We have agreements of cooperation with Onera and CNRS concerning the studies on transfer or orbits for

low-thrust satellites, and optimal trajectories for future launchers.

8. Other Grants and Activities

8.1. International collaborations

� With Felipe Alvarez, from CMM and Universidad de Chile, Santiago de Chile, F. Bonnans and J.
Laurent-Varin have worked on the analysis of logarithmic penalty for optimal control problems.

� With Rafael Correa from CMM and Universidad de Chile, Santiago de Chile : codirection of the
thesis of H. Ramirez. F. Bonnans and H. Ramirez have published the INRIA Research report 5293.

� With Claudia Sagastizábal, IMPA, Rio de Janeiro : we are currently analysing some approaches for
stochasting programming, with application to the production of electricity.
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8.2. Scientific responsabilities outside Inria
F. Bonnans was untill june 2004, Vice President for Publications of SMAI, the French Applied Mathematics

Society. This means supervising three scientific journals, one proceedings series, and a series of books. The
main event this year was the editorial responsability of SMAI, jointly with ROADEF, of the journal RAIRO-
RO.

8.3. Visiting Scientists
C. Sagastizábal and Mikhail Solodov (IMPA - Brazil), F. Alvarez and Hector Ramirez-Cabrera (DIM -

Chile), R. Bessi Fourati (ENIT - Tunisie).

9. Dissemination

9.1. Teaching
F. Bonnans- Professeur chargé de cours, Ecole polytechnique and Course on Continuous Optimization, Mas-

tere de Math. et Applications, Filière "OJME" Optimisation, Jeux et Modélisation en Economie, Université
Paris VI.

9.2. Conference and workshop committees, invited conferences

� CIMPA School on Control, Optimization and Variational Problems, Lima (Pérou). C. Sagastizábal.
Minicourse on Algorithms for nonsmooth optimization. Application to energy problems, [24],
February 2004.

� V Brazilian Workshop on Continuous Optimization, Florianópolis (Brésil), March 2004. C. Sagas-
tizábal.

� 5th Working Group Meeting "APOMAT". May 13-14 - Angers - France. Expert : F. Bonnans.

� 16ème IFAC SYMPOSIUM "Automatic Control in Aerospace". June 14-18 - St. Petersburg - Russia.
Talk : J. Laurent-Varin.

� International School of Mathematics "G. Stampacchia". Workshop on "Large Scale Nonlinear
Optimization". June 22 - July 1 - Erice - Sicile. Invited talk : F. Bonnans

� Premier Congrès Canada-France des Sciences Mathématiques. July 12-15 - Toulouse - France.
Invited talk : F. Bonnans.

� Journées MAS. September 6-8 - Nancy - France. Invited talk : F. Bonnans.

� EDF’s meeting on Energy Optimization, Clamart (France), September 2004. C. Sagastizábal.

� XII French German Spanish Conference on Optimization, Avignon (France), September 2004.
Member of program commitee : F. Bonnans. Talk : J. Laurent-Varin.

� Workshop Matematicas en Accín - Optimización en la Industria, University of Cantabria, Santander
(Spain), September 2004. C. Sagastizábal.

� Numerical Methods for Viscosity Solutions and Applications. September 6-8 - Rome - Italie. Invited
talk : H. Zidani. Talks : S. Maroso, E. Ottenwaelter.

� FGS2004. September 20-24 - Avignon - France. Member of program commitee : F. Bonnans. Talks
: J. Laurent-Varin, H. Ramirez-Cabrera.

� Atelier CNES "Commande Optimale et boucle fermée". October 4-5 - Toulouse - France. Invited
talk : F. Bonnans.

� Workshop on Mathematical Methods in Energy Problems, Curitiba (Brésil), November 2004. C.
Sagastizábal.
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9.3. Conferences, meetings and tutorial organization

� Ecole CIMPA-UNESCO-PAYS ANDINS "Analyse, Optimisation, Commande Optimale". February
9-27 - IMCA - Lima - Pérou. Lecture by F. Bonnans.

� Journées MODE 2004. February 25-27 - Le Havre - France. Talk by J. Laurent-Varin
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