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2. Overall Objectives

TANC is located in the Laboratoire d’Informatique de I’Ecole polytechnique (LIX).

The aim of the TANC project is to promote the study, implementation and use of robust and verifyable
asymmetric cryptosystems based on algorithmic number theory.

It is clear from this sentence that we combine high-level mathematics and efficient programming. Our main
area of competence and interest is that of algebraic curves over finite fields, most notably the computational
aspects of these objects, that appear as a substitute of good old fashioned cryptography based on modular
arithmetic. One of the reasons for this change appears to be the key-size that is smaller for an equivalent
security. We participate in the recent bio-diversity mood that tries to find substitutes for RSA, in case some
attack would appear and destroy the products that employ it.

Whenever possible, we produce certificates (proofs) of validity for the objects and systems we build. For
instance, an elliptic curve has many invariants, and their values need to be proved, since they may be difficult
to compute.

Our research area comprises:

e Fundamental algorithmic arithmetic: we are interested in primality proving algorithms based on
elliptic curves (F. Morain being the world leader in this topic), integer factorization, and the
computation of discrete logarithms over finite fields. These problems lie at the heart of the security
of arithmetic based cryptosystems.

e  Complex multiplication: the theory of complex multiplication is a meeting point of algebra, complex
analysis and algebraic geometry. Its applications range from primality proving to the efficient
construction of elliptic cryptosystems.

e  Algebraic curves over finite fields: the algorithmic problems that we tackle deal with the efficient
computation of group laws on Jacobians of curves, evaluation of the cardinality of these objects,
and the study of the security of the discrete logarithm problem in such groups. These topics are the
crucial points to be solved for potential use in real crypto-products.
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3. Scientific Foundations
Keywords: Cryptology, arithmetic.

Once considered as beautiful and useless, arithmetic has proven incredibly efficient when asked to assist
the creation of a new paradigm in cryptography. Old cryptography was mainly concerned with symmetric
techniques: two principals wishing to communicate secretly had to share a common secret beforehand and this
same secret was used both for encrypting the message and for decrypting it. This way of communication was
enough when traffic was low, or when the principals could meet prior to communication.

It is clear that modern networks are too large for this to be efficient any longer. Hence the need for
cryptography without first contact. In theory, this is easy. Find two algorithms £ and D that are reciprocal
(i.e., D(E(m)) = m) and in such a way that the knowledge of E does not help in computing D. Then E
is dubbed a public key available to anyone, and D is the secret key, reserved to a user. When Alice wants to
send an email to Bob, she uses his public key and can send the encrypted message to him, without asking for
this use beforehand. Though simplified and somewhat idealized, this is the heart of asymmetric cryptology.
Apart from confidentiality, modern cryptography gives good solutions to the signature problem, as well as
some solutions for identifying all parties in protocols, thus enabling products to be usable on INTERNET (ssh,
ssl/tls, etc.).

Of course, everything has to be presented in the modern language of complexity theory: computing E and
D must be doable in polynomial time; finding D with E alone must be done only in exponential time (say),
without some secret knowledge.

Now, where do difficult problems come from? Lattice theory is one point, though the resulting cryptosys-
tems turned out to be too weak. Arithmetic is the next available field of problems. There we find the integer
factoring problem, the discrete logarithm problem, etc. All these now form cryptographic primitives that need
to be assembled in protocols, and finally in commercial products.

Our activity is concerned with the beginning of this process: we are interested in difficult problems arising
in computational number theory and the efficient construction of these primitives.

4. Application Domains

Our main field of applications is clearly that of telecommunications. We participate to the protection of
information. We are more on a theoretical level, but also ready to develop applications using modern techniques
and objects used in cryptology, with a main focus on elliptic curve cryptography.

5. Software

F. Morain has been improving his primality proving algorithm called ECPP. Binaries for version 6.4.5 are
available since 2001 on his web page. Proving the primality of a 512 bit number requires less than a second
on a GHz PC. His personal record is about ~ 10, 000 decimal digits, with the fast version he developped last
year.

The mpc library, developed by A. Enge in collaboration with P. Zimmermann, implements the basic
operations on complex numbers in arbitrary precision, which can be tuned to the bit. This library is based
on the multiprecision libraries gmp and mpfr. Each operation has a precise semantics, in such a way that the
results do not depend on the underlying architecture. Several rounding modes are available. This software,
licensed under the GNU Lesser General Public License (LGPL), can be downloaded freely from the URL

http://www.lix.polytechnique.fr/Labo/Andreas.Enge/Software.html This library is used in our team to build
curves with complex multiplication, and is de facto incorporated in the ECPP program.
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6. New Results

6.1. Complex multiplication
6.1.1. Genus 1

Participants: Régis Dupont, Andreas Enge, Francois Morain.

Elliptic curves with complex multiplication (e.g., the curve of equation 4> = 23 +x) are the main component
of the ECPP algorithm developed by F. Morain, whose aim is to give a primality proof for an arbitrary integer.
Though the decision problem ISPRIME? was recently shown to be in P (by the work of Agrawal, Kayal,
Saxena), practical primality proving is done only with ECPP. This work of AKS has motivated the work of
F. Morain on a fast variant of ECPP, called fastECPP, who led him to gain one order of magnitude in the
complexity of the problem. The complexity of this variant is heuristically O((log N)**¢). By comparison, the
best proven version of AKS has complexity O((log N)%*¢) and has not been implemented so far (see [13]).
F. Morain implemented fastECPP and was able to prove the primality of 10,000 decimal digit numbers [35],
as opposed to 5, 000 for the basic (historical) version. Continuously improving this algorithm, this led to new
records in primality proving, some of which obtained with his co-authors J. Franke, T. Kleinjung and T. Wirth
[16] who developed their own programs. The current world record was set to 15071 decimal digits early july
this year, as opposed to 8000 a year ago.

Curves with complex multiplication are very interesting in cryptography, since computing their cardinality
is easy. This is in contrast with random curves, for which this task is still cuambersome. These CM curves
enabled A. Enge, R. Dupont and F. Morain to give an algorithm for building good curves that can be used in
identity based cryptosystems (cf. infra).

CM curves are defined by algebraic integers, whose minimal polynomial has to be computed exactly, its
coefficients being exact integers. The fastest algorithm to perform these computations requires a floating point
evaluation of the roots of the polynomial to a high precision. F. Morain on the one hand and A. Enge (together
with R. Schertz) on the other, have developed the use of new class invariants that characterize the CM curves.
The union of these two families is actually the best that can be done in the field (see [29]). More recently,
F. Morain and A. Enge have designed a fast method for the computation of the roots of this polynomial over
a finite field using Galois theory [30]. These invariants, together with this new algorithm, are incorporated in
the working version of the program ECPP.

A. Enge has been able to analyse precisely the complexity of class polynomial computations via complex
floating point approximations. In fact, this approach has recently been challenged by algorithms using p-
adic liftings, that achieve a running time that is (up to logarithmic factors) linear in the output size. He has
shown that the algorithm using complex numbers, in its currently implemented form, has a slightly worse
asymptotic complexity (polynomial with exponent 1.25). Using techniques from fast symbolic computation,
namely multievaluation of polynomials, he has obtained an asymptotically optimal (up to logarithmic factors)
algorithm with floating point approximations. The implementation has shown, however, that in the currently
practical range, the asymptotically fast algorithm is slower than the previous one. This is due, on the one hand,
to the multitude of algorithmic improvements introduced in [29], on the other hand, to the lack of logarithmic
factors and better constants. A publication is in preparation.

R. Dupont has investigated the complexity of the evaluation of some modular functions and forms (such
as the elliptic modular function j or the Dedekind eta function for example). High precision evaluation of
such functions is at the core of algorithms to compute class polynomials (used in complex multiplication) or
modular polynomials (used in the SEA elliptic curve point counting algorithm).

Exploiting the deep connection between the arithmetic-geometric mean (AGM) and a special kind of
modular forms known as theta constants, he devised an algorithm based on Newton iterations and the AGM
that has quasi-optimal complexity. In order to certify the correctness of the result to a specified precision, a
fine analysis of the algorithm and its complexity was necessary [27].
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Genus 2
Participants: Pierrick Gaudry, Thomas Houtmann, Régis Dupont, Annegret Weng.

The theory of Complex Multiplication also exists for non-elliptic curves, but is more intricate. P. Gaudry,
T. Houtmann, D. Kohel, C. Ritzenthaler and A. Weng [33] have designed a new approach for constructing
class polynomials of genus 2 curves having CM. The main feature of their method is the use of p-adic
numbers instead of complex floating point approximations. Although not always applicable, the corresponding
algorithm is very efficient compared to previous approaches.

Building upon his work in genus 1, R. Dupont is developping a similar algorithm in genus g = 2, aiming
at computing class polynomials and modular polynomials, using complex floating point evaluations. His
algorithm uses what is known as Borchardt’s mean (it can be seen as a generalization of the AGM). A
byproduct of that work is an algorithm to compute the Riemann matrix of a given genus 2 curve: given the
equation of a such a curve, it computes a lattice L such that the jacobian of the curve is isomorphic to C/ L. The
algorithms obtained both for the computation of Riemann matrices and for the evaluation of genus 2 modular
forms such as the theta constants are quasi-optimal.

6.2. Algebraic curves over finite fields

6.2.1.

6.2.2.

Participants: Andreas Enge, Pierrick Gaudry, Nicolas Giirel.

In order to build a cryptosystem based on an algebraic curve over a finite field, one needs to efficiently
compute the group law (hence have a nice representation of the elements of the Jacobian of the curve). Next,
computing the cardinality of the Jacobian is required, so that we can find generators of the group, or check the
difficulty of the discrete logarithm in the group.

Effective group laws

A curve that interests us is typically defined over a finite field GF(p™) where p is the characteristic of the
field. Part of what follows does not depend on this setting, and can be used as is over the rationals, for instance.

The points of an elliptic curve E (of equation y> = 2® + az + b, say) form an abelian group, that was
thoroughly studied during the preceding millenium. Adding two points is usually done using what is called the
tangent-and-chord formulas. When dealing with a genus g curve (the elliptic case being g = 1), the associated
group is the Jacobian (set of g-tuples of points modulo an equivalence relation), an object of dimension g.
Points are replaced by polynomial ideals. This requires the help of tools from effective commutative algebra,
as Grobner bases or Hermite normal forms.

A. Enge and N. Giirel have been working with J. -C. Faugere and A. Basiri (LIP 6) on the arithmetic of
superelliptic and C, , curves, the next complex class of algebraic curves after the well understood hyperelliptic
ones. They have dramatically improved the existing algorithms and have found new algorithms for superelliptic
cubic curves, that is, curves of the form y®> = f(z) with deg(f) prime to 3 and at least 4[20]. They have
generalised their work, in part based on Grobner basis computations, to Cs 4 curves and have provided explicit
formulae for realising the group law using only operations in the underlying (finite) field [14].

Cardinality

Once the group law is tractable, one has to find means of computing the cardinality of the group, which
is not an easy task in general. Of course, it has to be done as fast as possible, if changing the group very
frequently in applications is imperative.

Two parameters enter the scene: the genus g of the curve, and the characteristic p of the underlying finite
field. When ¢ = 1 and p is large, the only current known algorithm for computing the number of points of
E/GF(p) is that of Schoof-Elkies—Atkin. Thanks to the works of the project (actually, before joining INRIA),
world-widespread implementations are able to build cryptographically strong curves in less than one minute
on a standard PC.

When p is small, with one of the most interesting cases for hardware implementation in smart cards being
p = 2, the best current methods are p-adic methods, following the breakthrough of T. Satoh with a method
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working for p > 5. The first version of this algorithm for p = 2 was proposed independently by M. Fouquet,
P. Gaudry and R. Harley and by B. Skjernaa. J. -F. Mestre has designed the current fastest algorithm using
an AGM approach. Developped by R. Harley and P. Gaudry, it led to new world records. Then, P. Gaudry
combined this method together with other approaches, to make it competitive for cryptographic sizes [32].

When g > 1 and p is large, polynomial time algorithms exist, but their implementation is not an easy task.
P. Gaudry and E. Schost have modified the best existing algorithm so as to make it more efficient. They were
able to build the first random cryptographically strong genus 2 curves, defined over a large prime field [19]. To
get one step further, one needs to use genus 2 analogues of modular equations. After a theoretical study [24],
they are now investigating the practical use of these equations.

When p = 2, p-adic algorithms led to striking new results. First, the AGM approach extends to the case
g = 2 and are competitive in practice (only three times slower than in the case g = 1). In another direction,
Kedlaya has introduced a new approach, based on the Monsky-Washnitzer cohomology. His algorithm works
originally when p > 2. P. Gaudry and N. Giirel implemented this algorithm and extended it to superelliptic
curves, which had the effect of adding these curves to the list of those that can be used in cryptography.

Closing the gap between small and large characteristic leads to pushing the p-adic methods as far as possible.
In this spirit, P. Gaudry and N. Giirel have adapted Kedlaya’s algorithm and exhibited a linear complexity in
p, making it possible to reach a characteristic of around 1000 (see [31]). For larger p’s, one can use the
Cartier-Manin operator. Recently, A. Bostan, P. Gaudry and E. Schost have found a much faster algorithm
than currently known [15]. Primes p around 10° are now doable.

6.3. Cryptographic protocols

6.3.1.

6.3.2.

Identity based cryptosystems
Participants: Régis Dupont, Andreas Enge.

Elliptic curves in cryptography have first been used to replace finite fields in protocols whose security relies
on the discrete logarithm problem, essentially keeping the protocols as they are and substituting one algebraic
structure for another. There are, however, new applications of elliptic curves that exploit specific additional
structures that are not found in the finite field setting, for instance the Tate and Weil pairings.

Everybody knows that the most difficult problem in modern cryptography, and more precisely its would-be
widespread use, is the key authentification problem, or more generally that of authenticating principals on an
open network. The “classical” approach to this problem is that of a public key infrastructure (PKI), in which
some centralized or decentralized authority issues certificates for authenticating the different users. Another
approach, less publicized, is that of identity based cryptography (ID), in which the public key of a user can be
built very easily from his email address for instance. The cryptographic burden is then put on the shoulders of
the private key generator (PKG) that must be contacted by the users privately to get his secret key and open
their emails. The ID approach can be substituted to the PKI approach in some cases, where some form of ideal
trustable PKG exists (private networks, etc.).

This ID idea is not new, but no efficient and robust protocol was known prior to the ideas of Boneh et
al. using pairings on elliptic curves. R. Dupont and A. Enge have worked on such an ID-system. They have
defined a notion of security for such a protocol and have given a proof of security of a generalization of a
system of Sakai, Ohgishi and Kasahara’ in this model [28].

CESAM
Participants: Andreas Enge, Pierrick Gaudry.

The CESAM project is a contract of the ACI Sécurité Informatique, involving TANC and the crypto team at
ENS. The goal of this project is to study cryptographic protocols involving elliptic curves, with a view towards
specific environment where the resources (cpu, memory, bandwidth) are limited.

A first result has been obtained in this framework [26]. An authenticated key exchange algorithm is designed
using specific properties of elliptic curves, namely the existence of the quadratic twist that we can associate to
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any elliptic curve. The nice feature of our approach is that it is possible to prove the security of the protocol in
the standard model, and in particular without relying on the controversial Random Oracle Model. Indeed, in
key exchange protocols, the session key is usually obtained via the application of a hash function to a group
element. In our case, this hash function is no longer necessary.

The curves that can be used in this protocol are not the same as the curves that are used in classical protocols,
since the group orders of the curve and of the quadratic twist need both to be prime. A. Enge has made use of
the complex multiplication approach presented above to generate such curves. Finding curves of cryptographic
size (192 bits) is a matter of seconds with his implementation. A note is in preparation.

6.3.3. Security in ad hoc networks
Participant: Francois Morain.

F. Morain and D. Augot (CODES) participate in the ACI SERAC (SEcuRity models and protocols for Ad-
hoC Networks), which started in september 2004. Their interest there is to understand the (new?) cryptographic
needs required and to try to invent new trust models.

It is clear that the arrival of HIPERCOM (also a member of SERAC) at Ecole polytechnique will trigger new
collaborations in that direction too.

6.4. The discrete logarithm in jacobians of curves
Participant: Pierrick Gaudry.

6.4.1. Attacking elliptic curves over small degree extension fields

P. Gaudry [23] has developped an algorithm that can solve the discrete logarithm problem in elliptic curves
defined over a finite field of the form GF'(¢™), when n > 3 is a small integer. His algorithm lies in the family
of the so-called Weil-descent attacks. The main difference with previously known algorithms is that the use
of the theory of function fields is replaced by Grobner basis computations. As a consequence, the range of
application of the algorithm is less restrictive than previously known attacks (that often worked only for small
classes of curves). On the other hand, the dependance in n is so bad that only the case n = 3 and n = 4 are
meaningful in practice.

It is important to stress that the two cases widely used in practice, which are GF(p) and GF(2") with
a prime n, are not vulnerable to this approach. Gaudry’s result can be viewed as a confirmation about “bad
feelings” that most researcher had about the security of curves over small degree extension fields.

6.4.2. Attacking low genus hyperelliptic curves

P. Gaudry, E. Thomé and N. Thériault [34] have improved index calculus algorithms for computing discrete
logarithms in jacobians of hyperelliptic curves of low genus at least 3. Their attack is based on the addition
of a double large prime variation to a previously known algorithm. The surprise is that in the case of discrete
logarithm of curves, the complexity is improved, whereas in all other application ranges of double large prime
variations, the gain is only by a constant factor. Hence, the main difficulty for this work was to provide a
complexity analysis that was also validated by numerous computer experiments.

As a consequence, curves of genus 3 and larger than 3 should be used with extreme care when deployed in
a cryptosystem. At the very least, a cryptosystem based on a genus 3 curves must have a key-size about 12%
larger than an elliptic cryptosystem to offer the same level of security.

7. Contracts and Grants with Industry

e ACI CRYPTO p-ADIQUE: use p-adic numbers un cryptology, especially for computing the cardi-
nality of algebraic curves over finite fields.

e Gemplus : thesis of E. Brier on the use of hyperelliptic curves in cryptology.
e ACISECURITE CESAM : elliptic curves for the security of mobile networks.
e ACI SECURITE SERAC: SEcuRity models and protocols for Ad-hoC Networks.
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8. Other Grants and Activities

Together with the CODES project at INRIA Rocquencourt, the project TANC participates in ECRYPT, a
NoE in the Information Society Technologies theme of the 6th European Framework Programme (FP6).

9. Dissemination

9.1. Program committees

A. Enge has been a member of the programme committee of Indocrypt 2004, held in Chennai, India.

9.2. Teaching

Frangois Morain is the head of the 1st year course “Introduction a I’informatique et a la programmation” at
Ecole polytechnique, and gives a cryptology course in Majeure 2. He represents Ecole polytechnique in the
Commission des Etudes of the Master MPRI.

A. Enge has been responsible for an introductory course on cryptology for PhD students at the University
Bordeaux I. During the summer, he has conceived and realised a multimedia lecture on selected cryptologic
topics proposed to students of Ecole polytechnique in the framework of the European project Convergence.
Furthermore, he has given lectures on the hyperelliptic discrete logarithm problem during the summer school
on elliptic curve cryptography at Bochum.

A. Enge and P. Gaudry give lectures in the MPRI Master. R. Dupont, A .Enge, P. Gaudry, F. Morain,
A. Weng have given lectures during the special semester on explicit methods in number theory at Institut
Henry Poincaré, Paris (RD on his work, AE/AW/FM on complex multiplication, PG on point counting over
finite fields).

P. Gaudry is also active at Ecole polytechnique (Majeure 2, etc.).

F. Morain participated for the second time in the ACM International Programming Contest (SWERC04) in
november 2004, as one of the problem authors. This contest was held at Ecole polytechnique.

9.3. Seminars and talks

A. Enge has given a survey on elliptic curve cryptography and recent progress in the field during the
“Journée Sécurité de I’Information et Cryptographie” in Limoges in november. He has presented his work
on the complexity of class polynomial computation at the workshop “Algorithms and Number Theory” at
Dagstuhl in may.

P. Gaudry was a invited speaker for the ECC-2004 conference in Bochum (Germany), 20-22/09/04. He gave
a talk during the Journées ACI Sécurité Informatique a Toulouse (16/11/04).

F. Morain has given talks on fastECPP in Amiens, Paris 6, Ensta. He presented [16] in Burlington.

N. Giirel has given talks in Caen; ENSTA; Sydney (Univ. Sydney, Univ. Macquarie) during his postdoctoral
stay. R. Dupont has presented his work in Caen (march 2004). T. Houtmann attended Eurocrypt '04 in
Interlaken.

AE, RD, NG, FM all attended ANTS-VI in Burlington.

9.4. Vulgarisation

A. Enge has taken part in the INRIA booth during the “Salon des jeux et de la culture mathématiques” in
Paris with a presentation of public key cryptography aimed at a general public. He was an active participant in
the “Féte de la Science” at the Ferme du Moulon, proposing activities on secret writing and cryptanalysis to
students of age 12 to 14.
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