
epor t

d ' c t i v i ty

2004

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Triskell

Model Driven Engineering for Component
Based Software

Rennes

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/triskell.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-ren.en.html

Table of contents

1. Team 1
2. Overall Objectives 1

2.1.1. Research fields 1
2.1.2. Project-team Presentation Overview 2

3. Scientific Foundations 2
3.1. Overview 2
3.2. Object Oriented Technologies for Distributed Software Engineering 2

3.2.1. Object-Oriented Software Engineering 2
3.2.2. Design Pattern 3
3.2.3. Framework 3
3.2.4. Component 3
3.2.5. Contracts 4
3.2.6. Modeling with the UML 4
3.2.7. Model Driven Engineering 5

3.3. Mathematical foundations for distributed and reactive software 6
3.3.1. Transition systems 6
3.3.2. Non interleaved models 6

4. Application Domains 7
4.1. Software for Telecommunication and large Distributed Systems 7

5. Software 8
5.1. umlaut ng : Extendible model transformation tool and framework. 8
5.2. Mutator : Mutation testing tool family for OO programs 9
5.3. Requested : a toolbox for requirement simulation and testing 9

6. New Results 10
6.1. Contract-based and Aspect Oriented Design 10

6.1.1. Modelling Quality of Service Aspects: Application to Software Components 10
6.1.2. Extra-functional contract support in components 10
6.1.3. Applying CLP to predict extra-functional properties of component-based models 10

6.2. Model-Based Testing 11
6.2.1. Automatic Test Cases Optimization: a Bacteriologic Algorithm 11
6.2.2. Measuring Design Testability of a UML Class Diagram 11
6.2.3. From Testing to Diagnosis: An Automated Approach 12
6.2.4. System Testing of Product Families: from Requirements to Test Cases 12
6.2.5. Contract-Based Testing: from Objects to Components and from contracts to diagnosis probes

12
6.3. Model-Driven Engineering 13

6.3.1. Meta-Model Independant Model Transformations 13
6.3.2. Statecharts transformation: a bridge to make event-based B more usable 13
6.3.3. Statechart Synthesis with an Algebraic Approach for Product Lines 13
6.3.4. Transformation of behavioral models based on compositions of sequence diagrams14
6.3.5. MDE and Validation: Testing Model Transformations 14

7. Contracts and Grants with Industry 14
7.1. AOSD-Europe (Network of Excellence) 14
7.2. Artist2 (Network of Excellence) 15
7.3. FAMILIES (ITEA Eureka) 15
7.4. MOTOR (carroll) 16
7.5. MUTATION (carroll) 18

2 Activity Report INRIA 2004

7.6. Amadeus 19
7.7. KEREVAL 19

8. Other Grants and Activities 19
8.1. National projects 19

8.1.1. CNRS action on Real Time Components 19
8.1.2. CNRS action on MDA 19
8.1.3. CNRS action on Testability 19

8.2. International working groups 20
8.2.1. Standardization at OMG 20
8.2.2. Collaboration with foreign research groups: 20

9. Dissemination 20
9.1. Scientific community animation 20

9.1.1. IEEE Computer Society 20
9.1.2. Journals 20

9.1.2.1. Jean-Marc Jézéquel 20
9.1.3. Examination Committees 21

9.1.3.1. Jean-Marc Jézéquel 21
9.1.4. Examination Committees 21

9.1.4.1. Yves Le Traon 21
9.1.5. Conferences 21

9.1.5.1. Yves le Traon 21
9.1.5.2. Jean-Marc Jézéquel 21

9.1.6. Workshops 22
9.2. Teaching 22
9.3. Miscellaneous 22

10. Bibliography 22

1. Team
Scientific head

Jean-Marc Jézéquel [professor, Rennes 1 University]

Administrative assistant
Myriam David [TR Inria]

Inria staff
Benoit Baudry [Research scientist Inria]
Didier Vojtisek [Research engineer Inria]

Faculty member Université de Rennes 1
Yves Le Traon [Assistant Professor Université de Rennes 1]
Noël Plouzeau [Assistant Professor Université de Rennes 1]

Visiting scientist
Pierre-Alain Muller [Assistant Professor Université de Mulhouse]

Post-doc
Olivier Defour [from September 1st, 2003 to February 28th, 2005]

Technical staff
Jean-Philippe Thibault [Inria (project RNTL ACCORD) since october 1st 2002 until June 30 2005, (project
FAMILIES) from October 1st 2003 to June 30th, 2005]
Erwan Drezen [Inria (Project Carroll/Motor Carroll/Mutation) from June 2003 to January 2005]

PhD Students
Franck Chauvel [INRIA grant since October 2004]
Franck Fleurey [MENRT grant]
Marouane Himdi [CIFRE grant since March 2004]
Jacques Klein [INRIA grant]
Karine Macédo [INRIA grant until May 2004]
Christophe Métayer [CIFRE grant]
Clémentine Nébut [INRIA-région grant until November 2004]
Damien Pollet [MENRT grant]
Sébastien Saudrais [INRIA grant since October 2004]
Jim Steel [INRIA grant]
Tewfik Ziadi [INRIA grant until December 2004]

2. Overall Objectives
Keywords: Components, MDA, UML, aspects, contracts, design patterns, frameworks, objects, requirements
engineering, scenarios, software product lines, test, validation.

2.1.1. Research fields
In its broad acceptation, Software Engineering consists in proposing practical solutions, founded on

scientific knowledge, in order to produce and maintain software with constraints on costs, quality and
deadlines. In this field, it is admitted that the complexity of a software increases exponentially with its size.
However on the one hand, the size itself of the software is on average multiplied by ten every ten years, and
on the other hand, the economic pressure resulted reducing the durations of development, and in increasing
the rates of modifications made to the software.

To face these problems, today’s mainstream approaches build on the concept of component based software.
The assembly of these components makes it possible to build families of products made of many common
parts, while remaining opened to new evolutions. As component based systems grow more complex and

2 Activity Report INRIA 2004

mission-critical, there is an increased need to be able to represent and reason on such assemblies of com-
ponents. This is usually done by building models representing various aspects of such a product line, such as
for example the functional variations, the structural aspects (object paradigm), of the dynamic aspects (lan-
guages of scenarios), without neglecting of course non-functional aspects like quality of service (performance,
reliability, etc.) described in the form of contracts, or the characteristics of deployment, which become even
dominating in the field of reactive systems, which are often distributed and real-time. Model Driven Engineer-
ing (MDE) is then a sub-domain of software engineering focusing on reinforcing design, validation and test
methodologies based on multi-dimensional models.

2.1.2. Project-team Presentation Overview
The research domain of the Triskell project is the reliable and efficient design of software product lines by

assembling software components described with the UML. Triskell is particularly interested in reactive and
distributed systems with quality of service constraints.

Triskell’s main objective is to develop model-based methods and tools to help the software designer to
obtain a certain degree of confidence in the reliability of component assemblies that may include third-party
components. This involves, in particular, investigating modeling languages allowing specification of both
functional and non-functional aspects and which are to be deployed on distributed systems. It also involves
building a continuum of tools which make use of these specification elements, from off-line verifiers, to test
environments and on-line monitors supervising the behavior of the components in a distributed application.

Another goal of the Triskell project is to explicitly connect research results to industrial problems through
technology transfer actions. This implies, in particular, taking into account the industrial standards of the field,
namelyUML , Corba Component Model (CCM), Com+/.Net and Enterprise JavaBeans.

Triskell is at the frontier of two fields of software: the field of specification and formal proof, and that of
design which, though informal, is organized around best practices (e.g.; design patterns or the use of off-the-
shelf components). We believe that the use of our techniques will make it possible to improve the transition
between these two worlds, and will contribute to the fluidity of the processes of design, implementation and
testing of software.

3. Scientific Foundations
3.1. Overview

The Triskell project studies new techniques for the reliable construction of software product lines, especially
for distributed and reactive software. The key problems are components modeling and the development of
formal manipulation tools to refine the design, code generation and test activities. The validation techniques
used are based on complex simulations of models building on the standards in the considered domain.

3.2. Object Oriented Technologies for Distributed Software Engineering
Keywords: Objects, UML, contracts, design patterns, frameworks, software components.

3.2.1. Object-Oriented Software Engineering
The object-oriented approach is now widespread for the analysis, the design, and the implementation of

software systems. Rooted in the idea of modeling (through its origin in Simula), object-oriented analysis,
design and implementation takes into account the incremental, iterative and evolutive nature of software
development [51][48]: large software system are seldom developed from scratch, and maintenance activities
represent a large share of the overall development effort.

In the object-oriented standard approach, objects are instances of classes. A class encapsulates a single
abstraction in a modular way. A class is bothclosed, in the sense that it can be readily instanciated and used
by clients objects, andopen, that is subject to extensions through inheritance [55].

Project-Team Triskell 3

3.2.2. Design Pattern
Since by definition objects are simple to design and understand, complexity in an object-oriented system is

well known to be in thecollaborationbetween objects, and large systems cannot be understood at the level of
classes and objects. Still these complex collaborations are made of recurring patterns, called design patterns.
The idea of systematically identifying and documenting design patterns as autonomous entities was born in the
late 80’s. It was brought into the mainstream by such people as Beck, Ward, Coplien, Booch, Kerth, Johnson,
etc. (known as the Hillside Group). However the main event in this emerging field was the publication, in
1995, of the bookDesign Patterns: Elements of Reusable Object Oriented Softwareby the so-called Gang
of Four (GoF), that is Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides [50]. Today, design
patterns are widely accepted as useful tools for guiding and documenting the design of object-oriented software
systems. Design patterns play many roles in the development process. They provide a common vocabulary
for design, they reduce system complexity by naming and defining abstractions, they constitute a base of
experience for building reusable software, and they act as building blocks from which more complex designs
can be built. Design patterns can be considered reusable micro-architectures that contribute to an overall
system architecture. Ideally, they capture the intent behind a design by identifying the component objects,
their collaborations, and the distribution of responsibilities. One of the challenges addressed in the Triskell
project is to develop concepts and tools to allow their formal description and their automatic application.

3.2.3. Framework
Frameworks are also closely related to design patterns. An object-oriented software framework is made

up of a set of related classes which can be specialized or instantiated to implement an application. It is
a reusable software architecture that provides the generic structure and behavior for a family of software
applications, along with a context which specifies their collaboration and use within a given domain [45]. A
framework differs from a complete application in that it lacks the necessary application-specific functionality.
It can be considered as a prefabricated structure, or template, of a working application, where a number of
pieces in specific places, calledplug-pointsor hot spots, are either not implemented or given overridable
implementations. To obtain a complete application from a framework, one has to provide the missing pieces,
usually by implementing a number of call-back functions (that is, functions that are invoked by the framework)
to fill the plug-points. In an object-oriented context, this feature is achieved by the dynamic binding: an
operation can be defined in a library class but implemented in a subclass in the application specific code.
A developer can thus customize the framework to a particular application by subclassing and composing
instances of framework classes [50]. A framework is thus different from a classical class library in that the
flow of control is usually often bi-directional between the application and the framework. The framework is
in charge of managing the bulk of the application, and the application programmer just provides various bits
and pieces. This is similar to programming some event driven applications, when the application programmer
usually has no control over the main control logic of the code.

Design patterns can be used to document the collaborations between classes in a framework. Conversely, a
framework may use several design patterns, some of them general purpose, some of them domain-specific.
Design patterns and frameworks are thus closely related, but they do not operate at the same level of
abstraction: a frameworkis made ofsoftware, whereas design patterns represent knowledge, information and
experienceaboutsoftware. In this respect, frameworks are of a physical nature, while patterns are of a logical
nature: frameworks are the physical realization of one or more software pattern solutions; patterns are the
instructions for how to implement those solutions.

3.2.4. Component
The object concept also provides the bases needed to developsoftware components, for which Szyperski’s

definition [57] is now generally accepted, at least in the industry:
A software component is a unit of composition with contractually specified interfaces and

explicit context dependencies only. A software component can be deployed independently and is
subject to composition by third party.

4 Activity Report INRIA 2004

Component based software relies on assemblies of components. Such assemblies rely in turn on fundamental
mechanisms such as precise definitions of the mutual responsability of partner components, interaction means
between components and their non-component environment and runtime support (e.g. .Net,EJB, Corba
Component Model).

Components help reducing costs by allowing reuse of application frameworks and components instead of
redeveloping applications from scratch (product line approach). But more important, components offer the
possibility to radically change the behaviors and services offered by an application by substitution or addition
of new components, even a long time after deployment. This has a major impact of software lifecycle, which
should now handle activities such as:

• design of component frameworks,

• design of reusable components as deployment units,

• validation of component compositions coming from various origins,

• component life-cycle management.

Empirical methods without real component composition models have appeared during the emergence of
a real component industry (at least in the Windows world). These methods are now clearly the cause of
untractable validation and of integration problems that can not be transposed to more critical systems (see
for example the accidental destruction of Ariane 501 [53]).

Providing solutions for formal component composition models and for verifiable quality (notion oftrusted
components) are especially relevant challenges. Also the methodological impact of component-based devel-
opment (for example within the maturity model defined by theSEI (CMM model)) is also worth attention.

3.2.5. Contracts
Central to this trusted component notion is the idea ofcontract. A software contract captures mutual

requirements and benefits among stake-holder components, for example between the client of a service and its
suppliers (including subcomponents). Contracts strengthen and deepen interface specifications. Along the lines
of abstract data type theory, a common way of specifying software contracts is to use boolean assertions called
pre- and post-conditions for each service offered, as well as class invariants for defining general consistency
properties. Then the contract reads as follows: the client should only ask a supplier for a service in a state
where the class invariant and the precondition of the service are respected. In return, the supplier promises
that the work specified in the postcondition will be done, and the class invariant is still respected. In this
way rights and obligations of both client and supplier are clearly delineated, along with their responsibilities.
This idea was first implemented in the Eiffel language [56] under the nameDesign by Contract, and is now
available with a range of expressive power into several other programming languages (such as Java) and even
in the Unified Modeling Language (UML) with the Object Constraint Language (OCL) [58]. However, the
classical predicate based contracts are not enough to describe the requirements of modern applications. Those
applications are distributed, interactive and they rely on resources with random quality of service. We have
shown that classical contracts can be extended to take care of synchronization and extrafunctional properties
of services (such as throughput, delays, etc) [47].

3.2.6. Modeling with the UML
As in other sciences, we are increasingly resorting to modelling to master the complexity of modern software

development. According to Jeff Rothenberg,
Modeling, in the broadest sense, is the cost-effective use of something in place of something

else for some cognitive purpose. It allows us to use something that is simpler, safer or cheaper
than reality instead of reality for some purpose. A model represents reality for the given purpose;
the model is an abstraction of reality in the sense that it cannot represent all aspects of reality.
This allows us to deal with the world in a simplified manner, avoiding the complexity, danger
and irreversibility of reality.

Project-Team Triskell 5

The massive adoption of Unified Modeling Language (UML) in many industrial domains open new
perspectives to make the underlying ideas on modeling evolve, scale up, and hence become profitable. Unlike
its predecessors, (OMT, Booch, etc.), that only proposed a graphical syntax, UML is partially formalized by a
meta-model (expressed itself as a UML model) and contains a very sophisticated constraint language called
OCL (Object Constraint Language), that can be used indifferently at the model level and at the meta-model
level. All this makes it possible to consider formal manipulations of models that capture many aspects of
software, both from the technical side, (with the four UML main dimensions: data, functional, dynamic, and
deployment) and on the process side, ranging from the expression of requirements and the analysis to design
(framework models and design patterns) and test implementation.

3.2.7. Model Driven Engineering
Usually in science, a model has a different nature that the thing it models ("do not take the map for the

reality" as Sun Tse put it many centuries ago). Only in software and in linguistics a model has the same nature
as the thing it models. In software at least, this opens the possibility to automatically derive software from its
model. This property is well known from any compiler writer (and others), but it was recently be made quite
popular with an OMG initiative called the Model Driven Architecture (MDA).

The OMG has built a meta-data management framework to support the MDA. It is mainly based on a unique
M3 “meta-meta-model” called the Meta-Object Facility (MOF) and a library of M2 meta-models, such as the
UML (or SPEM for software process engineering), in which the user can base his M1 model.

The MDA core idea is that it should be possible to capitalize on platform-independent models (PIM), and
more or less automatically derive platform-specific models (PSM) –and ultimately code– from PIM through
model transformations. But in some business areas involving fault-tolerant, distributed real-time computations,
there is a growing concern that the added value of a company not only lies in its know-how of the business
domain (the PIM) but also in the design know-how needed to make these systems work in the field (the
transformation to go from PIM to PSM). Reasons making it complex to go from a simple and stable business
model to a complex implementation include:

• Various modeling languages used beyond UML,

• As many points of views as stakeholders,

• Deliver software for (many) variants of a platform,

• Heterogeneity is the rule,

• Reuse technical solutions across large product lines (e.g. fault tolerance, security, etc.),

• Customize generic transformations,

• Compose reusable transformations,

• Evolve and maintain transformations for 15+ years.

This wider context is now known as Model Driven Engineering.

6 Activity Report INRIA 2004

3.3. Mathematical foundations for distributed and reactive software
Keywords: Labeled transition systems, event structures, partial orders.

Labeled transitions systems are the mathematical structures that characterize best the foundations of
research on software models [46]. This structure was developed 50 years ago. However, models of real
systems can be very large, and it is not always possible to build the complete model before performing a
formal manipulation. In some cases, it is possible to apply lazy construction methods (also called on the fly).
Concurrency is another fundamental aspect that must be considered by models. This is the central concept
needed for the analysis of distributed systems [52].

3.3.1. Transition systems
A labeled transition system (or LTS) is a directed graph which edges, called transitions, are labeled by

letters from an alphabet ofevents. The vertices of this graph are calledstates. A LTS can be defines as a tuple
M = (QM , A, TM ⊂ QM ×A×QM , qM

init), in whichQM is a set of states,qM
init is an initial state,A is a set

of events,TM is a transition relation.
Note that from this definition, the set of states in a LTS s not necessarily finite. Usually, the termfinite

state automatais used to designate a LTS with a finite set of states and events. In fact, automatas are the
simplest models than can be proposed. They are often used to model reactive (and usually distributed) systems.
Within this framework, events represent the interactions (inputs and outputs) with the environment. The term
input/output LTS (IO-LTS) is often used to designate this kind of automata.

Labeled transition systems are obtained from reactive systems specifications in high-level description
languages such asUML . The construction of a LTS from a specification is done using an operational semantics
for this language, which is usually formalized as a deduction rules system. For simple languages such as
process algebras (like CCS), operational semantics can be defined using less than axioms and inference rules,
while for notations such as UML, semantics would be defined in more than 100 pages.

For performance reasons, these operational semantics rules are never used directly, and are subject to several
transformations. For example, the way states are encoded is an efficiency factor for LTS generation.

Computation of transformations of LTS can be resumed to search and fix-point calculus on graphs. These
calculi can be performed either explicitely or implicitly, without an exhaustive calculus or storage of a LTS.

Classical algorithms in language theory build explicitely finite state automatas, that are usually integrally
stored in memory. However, for most of the problems we are interested in, exhaustive construction or storage
of an LTS is not mandatory. Partial construction of an LTS is enough, and strategies similar to lazy evaluation
in functional programs can be used: the only part of LTS computed is the part needed for the algorithm.

Similarly, one can forget a part of a LTS previously computed, and hence recycle and save memory space.
The combination of these implicit calculus strategies allow the study of real size systems even on reasonably
powerful machines.

3.3.2. Non interleaved models
One of the well known drawbacks of LTSs [49] is that concurrency is represented by means of behaviors

interleaving. This is why LTS, automatas and so on are called “interleaved models”. With interleaved models,
a lot of memory is lost, and models represented can become very complex. Partial order models partially solve
these problems.

A partial order is a tuple(E,≤,Π, ϕ,Σ, I) in which:

• E represents a set of atomic events, that can be observable or not. Each event is the occurrence of
an action or operation. It is usually considered that an event is executed by an unique process in an
system.

• ≤ is a partial order relation that describes a precedence relation between events. This order relation
can be obtained using the hypotheses that:

Project-Team Triskell 7

i. processes are sequential : two events executed by the same process are causally ordered.

ii. communications are asynchronous and point to point: the emission of a message precedes
its reception.

• σ is an alphabet of actions.

• I is a set of process names

• Π : Σ → I is an action placement function.

• ϕ : E → Σ is an event labeling function

A partial order can be used to represent a set of executions of a system in a more “compact” way than
interleaved models. Another advantage of partial order models is to represent explicitely concurrency : two
events that are not causally dependant can be executed concurrently. In a LTS, such a situation would have
been represented by an interleaving.

A linearization of a partial order is a total order that respect the causal order. Any linearization of a partial
order is a potential execution of the system represented. However, even if partial order can represent several
executions, linearizations do not represent a real alternative. This problem is solved by a more complete partial
order model called event structures.

A primeevent structure[59] is a partial order equipped with an additional binary conflict relation. An event
structure is usually defined by a tuple(E,≤,], Π, ϕ,Σ, I) where:

• E,≤,Π, ϕ,Σ, I have the same signification as previously,

•] ⊆ E ×E is a binary and symmetric relation that is inherited through causality (∀e]e′, e ≤ e′′ =⇒
e′′]e′).

The conflict relation of an event structure defines pairs of events that can not appear in the same execution
of the system represented, hence introducing alternative in partial orders. The potential executions of a system
represented by an event structures are linearizations of conflict free orders contained in the structure. The
main advantage of event structures is to represent at the same time concurrency and alternative in a partial
order model. We think that these models are closer to human understanding of distributed systems executions
than interleaved models.

4. Application Domains
4.1. Software for Telecommunication and large Distributed Systems

Keywords: UML, distributed systems, software engineering, telecommunication, test.

In large scaled distributed systems such as developed for telecommunications, building a new application
from scratch is no longer possible. There is a real need for flexible solutions allowing to deal at the same time
with a wide range of needs (product lines modeling and methodologies for managing them), while reducing
the time to market (such as derivation and validation tools).

Triskell has gained experience in model engineering, and finds here a propitious domain. The increasing
software complexity and the reliability and reusability requirements fully justify the methods developed by our
project. The main themes studied are reliable software components composition, UML-based developments
validation, and test generation from UML models.

The research activity in Triskell focuses at the same time on development efficiency and reliability. Our
main applications mainly concern reliable construction of large scale communicating software, and object
oriented systems testing.

Reliability is an essential requirement in a context where a huge number of softwares (and sometimes
several versions of the same program) may coexist in a large system. On one hand, software should be able

8 Activity Report INRIA 2004

to evolve very fast, as new features or services are frequently added to existing ones, but on the other hand,
the occurrence of a fault in a system can be very costly, and time consuming. A lot of attention should then be
paid to interoperability,i.e. the ability for software to work properly with other.We think that formal methods
may help solving this kind of problems. Note that formal methods should be more and more integrated in an
approach allowing system designer to build software globally, in order to take into account constraints and
objectives coming from user requirements.

Software testing is another aspect of reliable development. Testing activities mainly consist in ensuring
that a system implementation conforms to its specifications. Whatever the efforts spent for development, this
phase is of real importance to ensure that a system behaves properly in a complex environment. We also put
a particular emphasis on on-line approaches, in which test and observation are dynamically computed during
execution.

5. Software
5.1. umlaut ng : Extendible model transformation tool and framework.

Keywords: MDA, MOF, UML, component, model transformation, patterns, validation.
Participants: Franck Chauvel, Erwan Drézen, Franck Fleurey, Jean-Marc Jézéquel, Damien Pollet, Jim Steel,
Jean-Philippe Thibault, Didier Vojtisek [correspondant].

MDA is an approach to application modelling and generation that has received a lot of attention in recent
months. This is a logical evolution of theUML (Unified Modelling Language) usage supporting the following
ideas:

• Models expressed in a formally defined notation are a cornerstone to system understanding.
• Building systems can be organized around a set of models by imposing a series of transformations

between models, organized into an architectural framework of layers and transformations.

For example this evolution allows the engineers to formalize and automate the use ofPIM (Platform
Independent Model) and PSM (Platform Specific Model). The resulting design lifecycle creates platform
independent abstract models which are successively refined into more concrete models (more an more platform
dependent). It gives a way to work at the best abstraction level for a given problem.

One of the main point to be addressed is the model transformation part of the problem. Triskell reuses
its expertise acquired with its toolUMLAUT and improved it to deal withMDA specificities. Thus,UMLAUT

evolved intoUMLAUT NG (next generation) in order to use it in a wider range of applications. In addition
to the manipulation ofUML models,UMLAUT NG adds the ability to manipulate any kind of models on any
kind of repositories. A transformation can be run on any repository that has compatible metamodels. The
metamodels are defined using theMOF. UMLAUT NG is now composed of a transformation language compiler
and a framework of transformations written in this language. It allows complex model transformations. A
major idea that droveUMLAUT NG evolution is that a transformation is a kind of program so it must be
possible to apply theMDA approach to itself.

As a central tool in the team,UMLAUT NG helps us investigating various research areas related to model
transformation works. Since 1998, Triskell has mainly used it in theUML context to demonstrate several
concepts. For example, to apply design patterns, to support the design by contract approach, to weave
modelling aspects, to generate code, to simulate functional and extra functional features of a system, or use
validation tools on the model. All these concepts will probably be investigated further.

UMLAUT NG as its predecessor is distributed as an open-source software. Running demonstrations are
available on the following web pages:http://modelware.inria.fr/mtl.

Since UMLAUT NG was integrated into Eclipse environment,UMLAUT NG is now used by a growing
community in the domain of model transformation. Amoung other we have users within: CEA, ENSIETA,
ENST Bretagne, Swiss Federal Institute of Technology (Switzerland), University of Muenster (Germany), etc.

In 2004,UMLAUT NG was used within these projects in collaboration with industry:

http://modelware.inria.fr/mtl

Project-Team Triskell 9

Carroll Motor with Thalès R&D and CEA, development of the new compiler (independent of repositories
and metamodels);

Carroll Mutation with Thalès R&D, Thalès Airborne System and CEA, development of transformations
useful for the test of a military application in aMDA context;

Itea Families with (in France) Softeam, Thalès, about transformation of product lines, as the continuation
of the Itea project CAFE.

5.2. Mutator : Mutation testing tool family for OO programs
Keywords: .Net, Java, Test, test by mutation.

Participants: Yves Le Traon [correspondant], Benoit Baudry, Franck Fleurey.

The level of confidence in a software component is often linked to the quality of its test cases. This quality
can in turn be evaluated with mutation analysis: faulty components (mutants) are systematically generated
to check the proportion of mutants detected ("killed") by the test cases. The software proposes specific OO
mutation operators and the corresponding tools for Java and C# programs since the Mutator line of mutation
tools is available for Java and C# languages. This work has been carried out in collaboration with Daniel
Deveaux from UBS.

5.3. Requested : a toolbox for requirement simulation and testing
Keywords: Test, requirement simulation, requirement testing, textual requirements, use cases.

Participants: Yves Le Traon [correspondant], Clémentine Nébut, Erwan Drézen, Franck Fleurey.

The objective of the Requested toolbox is to offer a MDA transformation from textual requirements to
simulable requirements within the UML (use cases + scenarios). It allows the simulation of requirements and
the automated generation of test objectives. Two tools are under development:

1. The transformation of natural language requirements expressed in the LDE language (Langage de
Description des Exigences) into a use case model, enhanced with contracts. This tool is not stable
yet and thus not available. It is currently used and tested in the mutation project.

2. The UCTS system allows the simulation of the use case model, enhanced with contracts, and the
automated generation of test objective. The first version is available.

More precisely, UCTSystem is a prototype designed to perform automatic test generation from UML
requirements. It uses UML use cases enhenced with contracts (i.e. precondition and postconditions) to build
an execution model allowing all valid sequences of use cases. Using this execution model and several test
criteria, it generates test objectives as sequence of use cases to exerce. It includes both criteria for functional
testing and a criterion for robusness testing. Those test objectives are then mapped into test cases using test
templates.

10 Activity Report INRIA 2004

6. New Results
6.1. Contract-based and Aspect Oriented Design
6.1.1. Modelling Quality of Service Aspects: Application to Software Components

Participants: Karine Macedo de Amorim, Noël Plouzeau, Jean-Marc Jézéquel.

Software components reuse reduces the global development costs. A software component can be defined
as a composition unit equipped with interfaces and contextual dependencies. Nowadays, the choice of a
peculiar software component depends on the services provided, but also on the quality of its realisation,
which is defined by extrafunctional properties. These properties are also called quality of service (QoS)
properties. As they will guide the choice of developpers, they must be considered from the beginning of the
conception phase. Developers must define a desired quality of service, design quality management policies,
i.e. policies that control the quality effectively provided by a component, and allow contract negociations.
The concept of quality of service contract will be the fundamental concept for the solutions proposed in this
thesis. Contracts specify rights and obligations for a client and a service provider. The notion of contract
will provide feedback to an application hence allowing it to react to its environment through renegociation
mechanisms. In 2003 the Triskell team has worked on QoS contract specification and implementation
within the framework of the european project QCCS (www.qccs.org). The project’s main contribution is
a QoS contracts specification methodology for components, and its integration within a component-based
developement environment relying on aspectoriented conception and realisation. First, the UML notation has
been extended to provide component-based software designers with a conception and specification tool dealing
with quality of services. At creation time of the contractualized components model designers can generate
automatically these components equipped with a monitoring systems that checks if a quality of service is
effectively reached, and with a contract renegociation mechanism. The whole work on this topic in described
in Karine Macedo de Amorim’s PhD thesis [10].

6.1.2. Extra-functional contract support in components
Participants: Olivier Defour, Jean-Marc Jézéquel, Noël Plouzeau.

According to Szyperski, a software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. But it is well known that these contractually specified
interfaces should go well beyond mere syntactic properties: they should also involve functional ones, as
well as synchronization and Quality of Service (QoS) features. In large, mission-critical component based
systems, it is also particularly important to be able to explicitly relate the QoS contracts attached to provided
interfaces with the QoS contracts obtained from required interfaces. In [27] we propose a language called
QoSCL (defined as an add-on to the UML2.0 component model) to let the designer explicitly describe and
manipulate these higher level contracts and their dependencies. We show how the very same QoSCL contracts
can then be exploited for validation of individual components and also validation of a component assembly,
including getting end-to-end QoS information inferred from individual component contracts, by automatic
translation to a constraint logic programming language. We illustrate our approach with the example of a
GPS (Global Positioning System) software component, from its functional and contractual specifications to its
implementation in a .Net framework.

6.1.3. Applying CLP to predict extra-functional properties of component-based models
Participants: Olivier Defour, Jean-Marc Jézéquel, Noël Plouzeau.

A component is the basic re-usable unit of composition to build composite systems by connecting to
others through their provided and required ports. Checking the functional compliance between provided and
required ports is necessary to build functional systems. At the same time, one of the most important issues
today in Component-Based Software Engineering (CBSE) is the prediction of the composite structure Quality
of Service (QoS) at design time, using the extrafunctional properties of its components. The Triskell has
published results in that field in [26]. Our wourk focuses on specific CBSE issues, and the use of Constraint

Project-Team Triskell 11

Logic Programming (CLP) in this context. For each component providing and requiring services, we propose
to specify the QoS properties as required and provided operations, called dimensions, on the component
ports. In this model, a QoS property can depend on other QoS attributes, and be constrained by OCL pre
and post-conditions. From this model, the QoS aspect of a component is translated into a QoS system of
non-linear constraints over the reals: the dimensions and their pre/post-conditions as variables controlled by
non-linear constraints. These constraints are either inequalities that bound the admissible QoS values, or non-
linear functions that bind QoS properties between them. Using the CLP, we are able to determine if a QoS
system can be satisfied, and to predict what quality level is required by the assembly from its environment, as
a set of admissible intervals. The CLP is a general framework that can be implemented with a realistic effort,
to reason about the component-based models QoS properties at design time, that is one of the most important
issues in CBSE.

6.2. Model-Based Testing
6.2.1. Automatic Test Cases Optimization: a Bacteriologic Algorithm

Participants: Benoit Baudry, Yves Le Traon, Jean-Marc Jézéquel.

The level of confidence in a software component is often linked to the quality of its test cases. This quality
can in turn be evaluated with mutation analysis: faults are injected into the software component (making
mutants out of it) to check the proportion of mutants detected by the test cases (in the mutation terminology,
the mutant is said "killed" by the test case). But while the generation of basic test cases set is easy, improving
its quality may require prohibitive effort. This work focuses on the issue of automating the test optimization.
The application of genetic algorithms looks like an interesting way to solve it. The optimization problem is
modeled as follows from an evolutionary point of view: a test case can be considered as a predator while
a mutant program is analogous to a prey. The aim of the selection process is to generate test cases able
to kill as many mutants as possible, starting from an initial set of predators, which is the test cases set
provided by the programmer. To overcome disappointing experimentation results, on .Net components and
Eiffel classes, a slight variation on this idea is studied, no longer at the "animal" level (lions killing zebras)
but at the bacteriological level. The bacteriological level indeed better reflects the test case optimization issue:
it mainly differs from the genetic one by the introduction of a memorization function and the suppression of
the cross over operator. [16] explains how the genetic algorithms have been adapted to fit with the issue of
test optimization. [17] shows the properties of the resulting algorithm which differs so much from genetic
algorithms that it has been given another name: bacteriological algorithm.

6.2.2. Measuring Design Testability of a UML Class Diagram
Participants: Benoit Baudry, Yves Le Traon.

Design-for-testability is a very important issue in software engineering. It becomes crucial in the case of
OO designs where control flows are generally not hierarchical, but are diffuse and distributed over the whole
architecture. We concentrate on detecting, pinpointing and suppressing potential testability weaknesses of a
UML class diagram ([18]). The attribute significant from design testability is called “class interaction” and
is generalized in the notion of testability anti-pattern: it appears when potentially concurrent client/supplier
relationships between classes exist in the system. These interactions point out parts of the design that need to
be improved, driving structural modifications or constraints specifications, to reduce the final testing effort.
The testability measurement we propose counts the number and the complexity of interactions that must be
covered during testing. The approach is illustrated on application examples, taken from varous application
domains (a distributed chat software, a compiler, all the catalogue of design patterns from the GoF).

[24] synthesizes our research efforts in the field of object-oriented design testability measurement, that has
also been done in collaboration with Gerson Sunyé from LINA lab. These efforts have two different goals.
First, we identify recurrent design structures (or testability anti-patterns) that worsen software testability.
Second, we use the UML extension mechanisms to better specify design information that can make imple-
mentation more testable. Although detecting testability anti-patterns during software design is a crucial task,

12 Activity Report INRIA 2004

one cannot expect from a non-specialist to make the right improvements, without guidance or automation. To
overcome this limitation, each definition of an anti-pattern is associated with an alternative design solution.

6.2.3. From Testing to Diagnosis: An Automated Approach
Participants: Franck Fleurey, Benoit Baudry, Yves Le Traon.

The need for testing-for-diagnosis strategies has been identified for a long time, but the explicit link from
testing to diagnosis is rare. Here (see [28]), we start with the study of an algorithm for fault localization
that consists of cross-checking information collected from test cases execution traces. Analyzing the type
of information needed for an efficient localization, we identify the attribute (called Dynamic Basic Block)
that restricts the accuracy of a diagnosis algorithm. Based on this attribute, a test criterion is proposed and
validated through rigorous case studies: it shows that test cases can be completed to reach a high level of
diagnosis accuracy. So, the dilemma between a reduced testing effort (with as few test cases as possible) and
the diagnosis accuracy (that needs as much test cases as possible to get more information) is partly solved by
selecting only test cases relevant for diagnosis.

6.2.4. System Testing of Product Families: from Requirements to Test Cases
Participants: Clémentine Nebut, Erwan Drézen, Yves Le Traon, Jean-Marc Jézéquel.

In large software system, it is mandatory to address the question of continuity in the refinement process
from high level textual requirements to analysis, design and test. We focus on functional requirements,
expressing the expected system services. The main constraint we seek to solve here is to remain both domain-
independent (so portable for other application contexts), and to let the possibility for a company to create its
own requirement assets. In this domain, our contribution is two-fold: a method [35], supported by a tool [21],
to disambiguate incrementally textual requirements and create requirement assets (called “interpretation
patterns”), and a new to use the underlying formal model as a first basis to ensure refinement continuity, by
requirements simulation, and automated derivation of early analysis (use cases) and design models, expressed
within the UML [11]. The approach has been applied on two components of last generation combat aircrafts
developed by THALES Airborne System.

6.2.5. Contract-Based Testing: from Objects to Components and from contracts to diagnosis
probes
Participants: Marouane Himdi, Yves Le Traon, Olivier Defour.

Contracts on classes have been first developed as an OO software design approach. They were also quickly
used for supporting class testing, providing a form of design for testability. We identify the tracks to extend
the contract-based built-in test technique to hierarchical components.

To do that, we build on our previous work onstclass, a framework supporting Design by Contract and built-
in test forJava, and onconfract, a contracting system for thefractal component platform. Tests are embedded
in the components and are generated with respect to a category of contract (library, interface, composition). In
collaboration with D. Deveaux, P. Collet and R. Rousseau [25], we studied how this approach, firstly dedicated
to objects, can be valuable for components testability. As a result of the test process, the embedded contracts are
more robust and offer an original way to improve the observability of the component-based system. Contracts
make it aware of its execution, and thus able to detect erroneous behaviors at runtime.

In addition to detection of errors related to design, coding or deployment of an application, the diagnosis is
a well-known technique for understanding the behaviour of a software system and an absolute requirement for
its improvement. Unfortunately, applications become more difficult to diagnosis as functionalities provided
become complex.

In collaboration with the KEREVAL company, we explore the use of dynamic probes (sensors) that will be
injected into running system to collect various information. The innovative part of this approach is the use of
generic probes to develop diagnosis framework [30].

Project-Team Triskell 13

6.3. Model-Driven Engineering
6.3.1. Meta-Model Independant Model Transformations

Participants: Damien Pollet, Jean-Marc Jézéquel, Didier Vojtisek, Pierre-Alain Muller, Jim Steel.

Model engineering attempts to solve how we can evolve complex software systems. Indeed, those systems
must follow the evolution of new requirements and technologies, and this evolution is faster and faster
compared to the business domain evolution. We thus propose to reuse the domain expertise independantly
of any underlying technology, through model transformation techniques [38][37].

The contribution presented in [12] is an architecture for manipulating models which is independant of
any specific metamodel. During development of model transformations, this architecture supports proven
techniques of object-oriented software engineering. A reference implementation in functional programming
specifies the semantics of the interface for accessing models.

Our approach is based on a MOF-level interface (MOF: Meta-Object Facility) for model manipulation. The
associated programming language supports direct manipulation of model elements, because the metamodel
structure dynamically extends the set of types available to the model transformation program. From a
methodological point of view, we show that model transformations capture the implementation expertise for a
business domain to a given technology ; it is therefore useful to model and develop complex transformations
using sound software engineering and model engineering techniques. We illustrate this in practice using
transformations for refactoring UML models (UML: Unified Modeling Language).

6.3.2. Statecharts transformation: a bridge to make event-based B more usable
Participants: Christophe Métayer, Franck Chauvel, Yves Le Traon, Jean-Marc Jézéquel.

Formal method and specially the B method offers advantages over traditional approaches in terms of
maintainability, security and reliability. The main difficulty of formal method is the proof. Using Statecharts
simplify the edition of a model B and allow control for the refinement transformation. We studied how the
transformation from Statecharts into a B model. This transformation is close to classical techniques used in
translation between B language and other languages. These technique was explored especially in the European
project BOM and described in the article [15]. We now intend to empirically evaluate the techniques studied
during the first year.

6.3.3. Statechart Synthesis with an Algebraic Approach for Product Lines
Participants: Tewfik Ziadi, Jean-Marc Jézéquel.

Software Product Line design techniques relying on UML model transformations are becoming mainstream.
Both static and behavioral aspects of the Software Product Line and its derivation into a specific product
are examined in [23][14]. Transformations algorithms are given to support these design techniques, and an
algebraic approach is proposed to capture behavioral requirements specification and their translation into state-
charts diagrams.

The idea of synthesizing statecharts out of a collection of scenarios has received a lot of attention in recent
years. However due to the poor expressive power of first generation scenario languages, including UML1.x
sequence diagrams, the proposed solutions often use ad hoc tricks and suffer from many shortcomings. The
recent adoption in UML2.0 of a richer scenario language, including interesting composition operators, now
makes it possible to revisit the problem of statechart synthesis with a radically new approach. Inspired by the
way UML2.0 sequence diagrams can be algebraically composed, we first defined an algebraic framework for
composing statecharts [42]. Then we showed how to leverage the algebraic structure of UML2.0 sequence
diagrams to get a direct algorithm for synthesizing a composition of statecharts out of them. The synthesized
statecharts exhibit interesting properties that make them particularly useful as a basis for the detailed design
process. Beyond offering a systematic and semantically well founded method, another interest of our approach
lies in its flexibility: the modification or replacement of a given scenario has a limited impact on the synthesis
process, thus fostering a better traceability between the requirements and the detailed design [14].

14 Activity Report INRIA 2004

6.3.4. Transformation of behavioral models based on compositions of sequence diagrams
Participants: Jacques Klein, Noël Plouzeau.

This work focuses on a behavior composition technique, based on sequence diagrams mergings, that allows
a unique result model even in the case of multiple weavings (i.e. weaving more than two fragments) [34]. We
distinguish the composition of models at a low level of abstraction from the composition at a high level of
abstraction. The technique is illustrated by an observer pattern specification. Composing behavioral elements
(which can be seen as aspects) at model level may play an important role within both MDA and aspect based
software processes.

6.3.5. MDE and Validation: Testing Model Transformations
Participants: Franck Fleurey, Jim Steel, Benoit Baudry, Yves Le Traon.

The OMG’s Model-Driven Architecture is quickly attracting attention as a method of constructing systems
that offers advantages over traditional approaches in terms of reliability, consistency, and maintainability.
The key concepts in the MDA are models that are related by model transformations. However, to provide an
adequate alternative to existing approaches, MDA must offer comparable support for software engineering
processes such as requirements analysis, design and testing. We attempt to explore the application of the last
of these processes, testing ([29], to the most novel part of the MDA, that of model transformation. In ([29],
we present a general view of the roles of testing in the different stages of model-driven development, and
a more detailed exploration of approaches to testing model transformations. Based on this, we highlight the
particular issues for the different testing tasks, including adequacy criteria, test oracles and automatic test data
generation. We also propose possible approaches for the testing tasks, and show how existing functional and
structural testing techniques can be adapted for use in this new development context.

7. Contracts and Grants with Industry
7.1. AOSD-Europe (Network of Excellence)

Keywords: Aspect Oriented Design.
Participants: Jean-Marc Jézéquel, Noël Plouzeau, Yves Le Traon, Jacques Klein, Sébastien Saudrais, Didier
Vojtisek.

Aspect-Oriented Software Development (AOSD) supports systematic identification, modularisation, repre-
sentation and composition of crosscutting concerns such as security, mobility, distribution and resource man-
agement. Its potential benefits include improved ability to reason about the problem domain and corresponding
solution; reduction in application code size, development costs and maintenance time; improved code reuse;
architectural and design level reuse by separating non-functional concerns from key business domain logic;
improved ability to engineer product lines; application adaptation in response to context information and bet-
ter modelling methods across the lifecycle. AOSD-Europe will harmonise and integrate the research, training
and dissemination activities of its members in order to address fragmentation of AOSD activities in Europe
and strengthen innovation in areas such as aspect-oriented analysis and design, formal methods, languages,
empirical studies and applications of AOSD techniques in ambient computing. Through this harmonisation,
integration and development of essential competencies, the AOSD-Europe network of excellence aims to es-
tablish a premier virtual European research centre on AOSD. The virtual research centre will synthesise the
collective viewpoints, expertise, research agendas and commercial foci of its member organisations into a
vision and pragmatic realisation of the application of AOSD technologies to improve fundamental quality at-
tributes of software systems, especially those critical to the information society. It will also act as an interface
and a centralised source of information for other national and international research groups, industrial organi-
sations and governmental bodies to access the members’ work and enter collaborative initiatives. The existence
of such a premier research base will strengthen existing European excellence in the area, hence establishing
Europe as a world leader.

Project duration: 2004-2011

Project-Team Triskell 15

Project budget: 9.6 Meuros

Project Coordinator: University of Lancaster

Participants: University of Lancaster, Technical University of Darmstadt, INRIA, VUB, Trinity College
Dublin, University of Malaga, Katholieke Universiteit Leuven, Technion, Siemens, IBM Hursley
Development Laboratory

7.2. Artist2 (Network of Excellence)
Keywords: Real-Time Component Models.

Participants: Jean-Marc Jézéquel, Noël Plouzeau, Benoit Baudry.

The strategic objective of the ARTIST2 Network of Excellence is to strengthen European research in
Embedded Systems Design, and promote the emergence of this new multi-disciplinary area. We gather together
the best European teams from the composing disciplines, and will work to forge a scientific community.
Integration will be achieved around a Joint Programme of Activities, aiming to create critical mass from the
selected European teams.

The ARTIST2 Network of Excellence on Embedded Systems Design will implement an international and
interdisciplinary fusion of effort to create a unique European virtual centre of excellence on Embedded
Systems Design. This interdisciplinary effort in research is mandatory to establish Embedded Systems Design
as a discipline, combining competencies from electrical engineering, computer science, applied mathematics,
and control theory. The ambition is to compete on the same level as equivalent centres in the USA (Berkeley,
Stanford, MIT, Carnegie Mellon), for both the production and transfer of knowledge and competencies, and
for the impact on industrial innovation.

ARTIST2 has a double core, consisting of leading-edge research in embedded systems design issues
(described later in this document) in the Joint Programme of Research Activities (JPRA), and complementary
activities around shared platforms and staff mobility in the Joint Programme of Integration Activities (JPIA).

The JPRA activities are pure research, and the JPIA are complementary efforts for integration. Both work
towards deep integration between the participating research teams.

The JPRA and JPIA are structured into clusters - one for each of the selected topics in embedded systems
design (in red). Teams may be involved in one or several clusters.

Around this double core is the Joint Programme of Activities for Spreading Excellence (JPASE). These
are complementary activiites for disseminating excellence across all available channels, targetting industry,
students, and other European and international research teams.

Building the embedded systems design scientific community is an ambitious programme. To succeed,
ARTIST2 will build on the achievements and experience from the ARTIST1 FP5 Accompanying Measure
(http://www.artist-embedded.org/) on Advanced Real-Time Systems. ARTIST1 provided the opportunity to
test the concept of a two-level integration (within and between clusters) four clusters in ARTIST2 originated
as “actions” in ARTIST1. Building the ARTIST2 consortium and associated structure is the culmination of
discussions and ambitions elaborated within ARTIST1.

ARTIST2 will address the full range of challenges related to Embedded Systems Design, covering all
aspects, ranging from theory through to applications. In this way, ARTIST2 is perfectly in line with the IST
priority on embedded systems, and in particular with the focus area called “system design”.

7.3. FAMILIES (ITEA Eureka)
Keywords: COTS, UML, architecture recovery, methods, patterns, products family.

Participants: Jean-Marc Jézéquel, Loïc Hélouët, Yves Le Traon, Jacques Klein, Clémentine Nebut, Jean-
Philippe Thibault, Tewfik Ziadi.

FAMILIES is a next project in a sequence of following projects: ARES and PRAISE, then ESAPS, and
CAFE.

http://www.artist-embedded.org/

16 Activity Report INRIA 2004

ITEA projects ESAPS and CAFÉ have lead to a recognized European community on the subject of System
Family Engineering. The community presently has leadership over its American Counterpart, the SEI Product-
Line Initiative. The FAMILIES project aims at growing the community, consolidating results into fact-based
management for the practices of FAMILIES and its preceding projects, and to explore fields that were not
covered in the previous projects, in order to complete the Framework.

The consolidating work in FAMILIES will lead to:

• A reuse economics framework, to deal with the questions on when, why and how a family approach
has to be introduced. It is accompanied with a decision model, checklists and questionnaires.
Work package 1: Reuse economics, Fact-based business and organisation maturity.

• A family maturity model, which will complement the CMM and CMMI maturity models.
Work package 2: Family maturity, Fact-based process maturity, and consolidated tool requirements.

• Patterns, styles and rules related to satisfaction of business related quality requirements in the family,
accompanied by quality models, supporting processes, check lists, questionnaires and approaches
towards standardization of quality of service requirements.
Work package 3: Family quality, Fact-based architecture maturity.

• A methodology (process, tools, guidelines, and examples) supporting the separation of the domain
aspects, the technical aspects (quality of services) and the technological aspects (platforms) in
consistent models, in the MDA standardization frame.
Work package 4: Model driven family engineering.

• Extending reuse over larger parts of the organization, introducing an integrated approach to combine
existing legacy assets into a family, or even to a system population.
Work package 5: Families integration, Exploring reuse over family boundaries.

The project also has a specific work package, WP6 that takes care of exploitation and dissemination.

7.4. MOTOR (carroll)
Keywords: MDA, OMG, QVT, model transformation.

Participants: Erwan Drézen, Jean-Marc Jézéquel, Damien Pollet, Jean-Philippe Thibault, Didier Vojtisek.

MOTOR (MOdel TransfORmations) project is part of CARROLL action with Thalès. March 2003 - March
2004. It also involves Inria/Atlas and CEA. Model transformation is a key aspect of theMDA (Model driven
Architecture). It allows the automation and/or assistance for model creation from abstract phasis of the
development to code generation. It gives formal, reproducible and conformance aspects in the engineering
process. MOTOR aims to participate to the definition of these techniques in close relation to the RFP QVT
(Query View Transformation) normalisation process at the OMG, to apply it to different problems and
instrument it.

• MOTOR motivation
MDA (Model Driven Architecture) is an important approach to enterprise-scale software development
that is already having significant impact in the software industry. Many organizations are now look-
ing at the ideas of MDA as a way to organize and manage their application solutions. It’s a way
to maximize ROI (Return On Investment) through a full-lifecycle approach to enterprise integra-
tion that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. A important need of this approach is the
availablity of a model transformation structure. This need has been taken into account by the OMG
(Object Management Group) through the standardization of a model transformation language QVT
(Query View Transformation)
This project is a collaboration between Thalès, CEA and the Atlas team.

Project-Team Triskell 17

• MOTOR impacts

– Technical goals are :

* The definition of the architecture needed for model transformation.

* The application of the QVT technology in different areas like : model refinement
or aspect weaving.

* The creation of tools that validate the technical solutions.

– Industrial goals are :

* The automation of model transformation tasks.

* The capitalization of the know-how in model transformation. This means the
creation of reusable transformations using frameworks, libraries, etc.

* The independence from the modelling tools. The end user may need to use his
transformations from different repositories. The architecture must support a way
to reuse these transformations with a minimal adaptation cost.

* The reuse of legacy transformation. It already exists a lot of model transforma-
tions. It is unwise to rewrite them. The architecture must allow the connection
and reuse of them for example as blackbox transformations.

– Standardization
The main work done in this project is closely related to the work currently on-going at
OMG : the QVT RFP (Request For Proposal). This RFP received 8 submissions which
where really different in their approaches as they do not take into account the same
requirements . Then, the process which lead to a consensus is difficult. The risk to obtain
a non satisfactory standard is really high, slowing down the advantages of the MDA
approach.
So, MOTOR also have standardization actions at the OMG in order to assure ourselves
that the normalized language takes into account every needed aspects of the model
transformation.

The work is mainly visible through the evolution of the toolUMLAUT NG and the actions to the OMG.

18 Activity Report INRIA 2004

7.5. MUTATION (carroll)
Keywords: UML, methodology, requirements, test.
Participants: Yves Le Traon, Didier Vojtisek, Erwan Drézen, Frank Fleurey, Clémentine Nebut.

MUTATION ("Modélisation UML pour l’Automatisation de la production des tests" in french) is a project
developed by CEA/LIST (LLSP), THALES Research and Technology, THALES Airborne Systems and
INRIA. This project aims to increase productivity during the testing steps of the development process.

The purpose of MUTATION is to carry out a survey about the possibility to automate testing procedures. It
holds the following parts:

• formalization of system requirements
• providing means to define testing scenarios at different levels of abstraction
• generation of testing cases
• assistance for understanding the generated testing cases through some criterions

MUTATION is a project developed by CEA/LIST (LLSP), THALES Research and Technology, THALES
Airborne Systems and INRIA. This project aims to increase productivity during the testing steps of the
development process.

The purpose of MUTATION is to carry out a survey about the possibility to automate testing procedures;
the underlying idea is to automatically generate tests cases that can be associated to the system requirements.
It holds the following parts:

• formalization of system requirements
• providing means to define testing scenarios at different levels of abstraction,
• generation of testing cases,
• assistance for understanding the generated testing cases through some criterions

The technical issues of MUTATION are:

• defining rules in order to formalize requirements,
• defining rules in order to formalize the detailed software conception,
• automatic tests generation at different levels of abstraction,
• providing a low cost training for an industrial team

The three successive parts of MUTATION are:

• definition of a language dedicated to the writting of requirements and its associated methodology; a
user guide and some examples are also to be written,

• defining a technology about the qualification of cover criterions and UML issues (UML extensions),
• applying the proposed concepts on a real case provided by THALES; it should allow to evaluate the

improvement in term of productivity.

This project has already produced some results such as

• requirements formalization as a model with an associated textual syntax
• detailed conception formalization
• test objectives generation through some criteria
• prototypes that support the underlying technologies
• prototypes pre-evaluation on a real system provided by THALES

This project, continued in a MUTATION 2 project, will allow THALES to evaluate the possibility to
automate the generation of tests scenarios through UML models. At the end of the project, THALES shall
have a methodology and technological items allowing to adapt the process used today within its teams.

Project-Team Triskell 19

7.6. Amadeus
Keywords: MDA, MDE, UML, methodology.
Participants: Jean-Marc Jézéquel, Franck Chauvel, Didier Vojtisek.

Amadeus is a project supported by the PRIR of “Région Bretagne”. It involves ENSTBr, ENSIETA,
Université de Bretagne Sud and Inria/Triskell. This project aims at building links between research teams
in Brittany working on Model Driven Engineering. Its main scientific objectives are:

• Study relationships between the notion of design by contract and model refinements,
• Study formal projections of UML to help model verifications,
• Apply a robust design and validation methodology to the UML

7.7. KEREVAL
Keywords: components, diagnosis, extra functional, probes.
Participants: Marouane Himdi, Yves Le Traon.

Development of Generic Probes for Functional and Extra-Functional Diagnosis
In addition to detection of errors related to design, coding or deployment of an application, the diagnosis is

a well-known technique for understanding the behaviour of a software system and an absolute requirement for
its improvement. Unfortunately, applications become more difficult to diagnosis as functionalities provided
become complex. In collaboration with the KEREVAL company, we explore the use of dynamic probes
(sensors) that will be injected into running system to collect various information. The innovative aspect of
this approach is the use of generic probes to develop diagnosis framework [30].

8. Other Grants and Activities
8.1. National projects
8.1.1. CNRS action on Real Time Components

Participant: Noël Plouzeau.
The Real Time Componentsaction spécifiqueaims at bringing together teams active in the domain of

specification and implementation of software components for real time platforms and applications. The group
has started its work in September, 2003 and will produce its report by the end of 2004. Inria Rennes, Loria,
Ecole des Mines de Nantes, CEA and several other national research teams cooperate in this project, which is
granted by the CNRS/STIC.

8.1.2. CNRS action on MDA
Participants: Jean-Marc Jézéquel, Noël Plouzeau, Benoit Baudry.

Triskell is participating to a prospective action on the subject of Model Driven Architecture. The challenge
is to fill the gap between the various scientific community interested in models, from real-time to databases
through software engineering. The action began in September 2003 and has produced a final report in October
2004 [43]. This project was granted by the CNRS/STIC.

8.1.3. CNRS action on Testability
Participant: Yves Le Traon.

The AS Testability working group involves the ONERA-CERT, the LSR-IMAG and LCIS-INPG laboratory.
The goal is to make the state of the:

• practice from an industrial point of view, through a questionnaire sent to industrial partners;
• art from a scientific point of view, by organizing an international workshop on testability assesment

(IWoTA see www.issre.org), sponsored by the IEEE Computer Society and the IEEE reliability
Society.

The AS testability results were finalized by december 2004.

20 Activity Report INRIA 2004

8.2. International working groups
8.2.1. Standardization at OMG

Triskell project participates to normalization action atOMG (http://www.omg.org/):

• Triskell project participates to the RFP MOF2.0 QVT Query/view/Transformation. This RFP stan-
dardizes a model transformation language which is a key point in efficiently applying MDA.

• Triskell project is also involved in other OMG groups which are related to the team interests. For
example, it participates to the ORMSC group which formalizes the MDA approach, to the MDA
user SIG which represents the end user point of view for MDA. It is also invloved in the more
general Analysis and Design group which promotes standard modelling techniques including UML
and MOF.

• Triskell initiated a wiki dedicated to share information about theOMG within the INRIA
(http://omg.wiki.irisa.fr/).

8.2.2. Collaboration with foreign research groups:

• Centre for Distributed Systems and Software Engineering, Monash University, Melbourne, Aus-
tralia. Collaboration on Trusted Components and Contracts. Professor Heinz Schimdt has been in-
vited in the Triskell team during 3 months in 2002. Christine Mingins has co-authored a book with
J.-M. Jézéquel [54].

• Software engineering group (Pr. Keller’s group), University of Montréal, Canada, on meta-modeling
(H. Sahraoui).

• Carleton University, Ottawa, Canada: Triskell has developed a collaboration on test and objects with
Lionel Briand’s team at Carleton University.

• Technical University of Munich, Germany on meta-modeling and agile methodologies. B. Rumpe,
Editor in Chief of the SoSyM journal, was an invited professor with Triskell for 3 months in 2003,
and visited us again in november 2004.

• ETH Zurich (Pr. Meyer’s team), Switzerland on Trusted Components. B. Meyer came to Rennes
several times in the past few years.

9. Dissemination
9.1. Scientific community animation
9.1.1. IEEE Computer Society

Through the involvement of Jean-Marc Jézéquel in the IEEE TSE board and Yves Le Traon in the
organization of the IEEE ISSRE, the Triskell project bears 66% of the total involvement of INRIA in the
IEEE Computer Society (source: IEEE Computer Society 2004 Directory).

9.1.2. Journals
9.1.2.1. Jean-Marc Jézéquel

is an Associate Editor of the following journals:

• IEEE Transactions on Software Engineering

• Journal on Software and System Modeling: SoSyM

• Journal of Object Technology: JOT

• L’Objet

http://www.omg.org/
http://omg.wiki.irisa.fr/

Project-Team Triskell 21

9.1.3. Examination Committees
9.1.3.1. Jean-Marc Jézéquel

was in the examination committee of the following PhD thesis and “Habilitation à Diriger les Recherches”:

• Karine Macedo, May 2004, université de Rennes (adviser);

• Torben Weis, May 2004, Technical University Berlin (referee);

• Yves Le Traon (HDR), July 2004, université de Rennes (referee);

• Clémentine Nebut, November 2004, université de Rennes (adviser);

• Mikal Ziane (HDR), December 2004, université de Paris 6 (president);

• Michel Hurfin (HDR), November 2004, université de Rennes (referee);

• Nicolas Belloir, December 2004, université de Pau (referee) ;

• Tewfik Ziadi, December 2004, université de Rennes (adviser) ;

9.1.4. Examination Committees
9.1.4.1. Yves Le Traon

was in the examination committee of the following PhD thesis ”:

• Clémentine Nebut, November 2004, université de Rennes (adviser);

9.1.5. Conferences
9.1.5.1. Yves le Traon

was General Chair of the following conference:

• ISSRE2004 (Software Reliability Engineering), St Malo, November 2004.

9.1.5.2. Jean-Marc Jézéquel
has been a member of the programme committee of the following conferences:

• ICSE’2004 : (International Conference on Software Engineering), Edinburgh, May 23-28, 2004.

• AFADL 2004 (Approches Formelles dans l’Assistance au Développement de Logiciels), LIFC,
Besançon, June 16-18, 2004.

• MDAFA 2004 Workshop on Model Driven Architecture: Foundations and Applications, June 21-
22, 2004, Linköping, Sweden.

• ASE 2004, (Automated Software Engineering), Linz, Austria, September 20-25, 2004

22 Activity Report INRIA 2004

9.1.6. Workshops
J.-M. Jézéquel gave tutorials on “Model-Driven Engineering with Contracts, Patterns, and Aspects” at the

“Ecole jeunes chercheurs en programmation” of the CNRS, as well as at the summer school on “MDE for
Embedded System Development”, Brest September 2004. He also gave an invited talk at the 11th Rencontre
INRIA-Industrie - "L’ingénierie du logiciel", INRIA - Rocquencourt, France, January 2004 [44]. He was also
responsible of setting up and moderating a panel on “MDA in practice” at ICSE 2004.

J.-M. Jézéquel participated to two Dagsthul seminars in 2004:

• Dagstuhl Seminar 04101 on Language Engineering for Model-Driven Software Development, March
2004, Dagstuhl, Germany.

• Dagstuhl Seminar 04511 on Architecting Systems with Trustworthy Components, December 2004,
Dagstuhl, Germany.

P.-A. Muller presented an invited conference onThe TopModL Initiativeat the Fujaba days 2004, Darmstadt,
16 septembre 2004. P.-A. Muller presented an invited conference onMoving from general-purpose to domain-
specific modelling languages, FDL’04, Lille, 15 septembre 2004.

9.2. Teaching
Jean-Marc Jézéquel teaches OO Analysis and Design with UML (Iup3 and Diic2) at Ifsic, as well as at

Supélec (Rennes) andENSTB (Rennes). He also gives an advanced course on model driven engineering for
Diic3 and MasterPro students.
Noël Plouzeau teaches OO Analysis and Design toDESSIsa (Ifsic).
The Triskell team receives several DEA and summer trainees every year.

9.3. Miscellaneous

• J.-M. Jézéquel is Chair of the Steering Committee of the UML Conferences series. He is appointed
to the board of the Committee of Projects of INRIA Rennes. He is Chair of the “Club Objet de
l’Ouest”, member of the Trusted Component Initiative steering committee, and member of the OFTA
working group on Model Engineering [20].

10. Bibliography
Major publications by the team in recent years

[1] A. B EUGNARD, J.-M. JÉZÉQUEL, N. PLOUZEAU, D. WATKINS . Making Components Contract Aware, in
"IEEE Computer", vol. 13, no 7, July 1999.

[2] C. JARD, J.-M. JÉZÉQUEL, A. L. GUENNEC, B. CAILLAUD . Protocol Engineering using UML, in "Annales
des Telecoms", vol. 54, no 11–12, November 1999, p. 526–538.

[3] J.-M. JÉZÉQUEL, D. DEVEAUX , Y. LETRAON. Reliable Objects: a Lightweight Approach Applied to Java, in
"IEEE Software", vol. 18, no 4, July/August 2001, p. 76–83.

[4] J.-M. JÉZÉQUEL. Object Oriented Software Engineering with Eiffel, ISBN 1-201-63381-7, Addison-Wesley,
March 1996.

Project-Team Triskell 23

[5] J.-M. JÉZÉQUEL. Reifying Variants in Configuration Management, in "ACM Transaction on Software Engi-
neering and Methodology", vol. 8, no 3, July 1999, p. 284–295.

[6] J.-M. JÉZÉQUEL, J.-L. PACHERIE. Object-Oriented Application Frameworks, chap. EPEE: A Framework for
Supercomputing, John Wiley & Sons, New York, 1999.

[7] J.-M. JÉZÉQUEL, M. TRAIN , C. MINGINS. Design Patterns and Contracts, ISBN 1-201-30959-9, Addison-
Wesley, October 1999.

[8] G. SUNYÉ, A. LEGUENNEC, J.-M. JÉZÉQUEL. Using UML Action Semantics for Model Execution and
Transformation, in "Information Systems, Elsevier", vol. 27, no 6, July 2002, p. 445–457.

[9] Y. L. T RAON, T. JÉRON, J.-M. JÉZÉQUEL, P. MOREL. Efficient OO Integration and Regression Testing, in
"IEEE Trans. on Reliability", vol. 49, no 1, March 2000, p. 12–25.

Doctoral dissertations and Habilitation theses

[10] K. M ACEDO. Modélisation d’aspects qualité de service en UML : application aux composants logiciels, Ph.
D. Thesis, Université de Rennes 1, May 2004.

[11] C. NEBUT. Génération automatique de tests à partir des exigences et application aux lignes de produits
logicielles, Ph. D. Thesis, Université de Rennes 1, 2004.

[12] D. POLLET. Architecture pour le restructuration de modèles, Ph. D. Thesis, Université de Rennes 1, 2004.

[13] Y. L. TRAON. Contribution au test de logiciels orientés-objet, Ph. D. Thesis, Habilitation à diriger les
recherches de l’université de Rennes I, July 2004.

[14] T. ZIADI . Manipulation de lignes de produits en UML, Ph. D. Thesis, Université de Rennes 1, 2004.

Articles in referred journals and book chapters

[15] F. BADEAU , D. BERT, S. BOULMÉ, C. MÉTAYER, M.-L. POTET, N. STOULS, L. VOISIN. Traduction de B
vers des langages de programmation, in "TSI", 2004.

[16] B. BAUDRY, F. FLEUREY, J.-M. JÉZÉQUEL, Y. LETRAON. Automatic Test Cases Optimization: a Bacterio-
logic Algorithm, in "IEEE Software", 2004.

[17] B. BAUDRY, F. FLEUREY, J.-M. JÉZÉQUEL, Y. L. TRAON. From Genetic to Bacteriological Algorithms for
Mutation-Based Testing, in "Software, Testing, Verification & Reliability journal (STVR)", 2004.

[18] B. BAUDRY, Y. L. TRAON. Measuring Design Testability of a UML Class Diagram, in "Information &
Software Technology (IST)", December 2004.

[19] F. CHAUVEL , J.-M. JÉZÉQUEL, D. VOJTISEK. Validation dynamique de modèles UML avec points de
variation sémantique, in "Génie Logiciel", no 69, June 2004, p. 24–30.

24 Activity Report INRIA 2004

[20] J.-M. JÉZÉQUEL, M. BELAUNDE, J. BÉZIVIN , S. GÉRARD, P.-A. MULLER. L’ingéniérie piloté par les
modèles, collection Arrago, chap. Les concepts de l’ingéniérie des modèles, no 30, OFTA, Paris, May 2004.

[21] C. NEBUT, Y. LETRAON, J.-M. JÉZÉQUEL. System Testing of Product Families: from Requirements to Test
Cases, SPRINGERVERLAG (editor)., chap. WP4, Families Research Book, LNCS, 2004.

[22] D. VOJTISEK, J.-M. JÉZÉQUEL. MTL and Umlaut NG - Engine and Framework for Model Transformation,
in "ERCIM News 58", vol. 58, July 2004.

[23] T. ZIADI , J.-M. JÉZÉQUEL. Product Line Engineering with the UML: Products Derivation, SPRINGERVER-
LAG (editor)., chap. WP4, Families Research Book, LNCS, 2004.

Publications in Conferences and Workshops

[24] B. BAUDRY, Y. L. TRAON, G. SUNYE. Improving the Testability of UML Diagram, in "Proc. of the 1st IEEE
Int. Workshop on Testability Assesment (IWoTA 2004)", 2004.

[25] P. COLLET, D. DEVEAUX , R. ROUSSEAU, Y. L. TRAON. Contract-Based Testing: from Objects to Compo-
nents, in "Proc. of the 1st IEEE Int. Workshop on Testability Assesment (IWoTA 2004)", 2004.

[26] O. DEFOUR, J.-M. JÉZÉQUEL, N. PLOUZEAU. Applying CLP to Predict Extra-Functional Properties of
Component-Based Models, in "Proceedings of Logic Programming: 20th International Conference, ICLP
2004", J. S.DE BOER (editor)., LNCS, no 3132, Springer Heidelberg, September 2004.

[27] O. DEFOUR, J.-M. JÉZÉQUEL, N. PLOUZEAU. Extra-functional contract support in components, in "Proc.
of International Symposium on Component-based Software Engineering (CBSE7)", May 2004.

[28] F. FLEUREY, B. BAUDRY, Y. L. TRAON. From testing to diagnosis: An automated approach, in "Proc. 19th
IEEE International Conference on Automated Software Engineering (ASE’04)", 2004.

[29] F. FLEUREY, J. STEEL, B. BAUDRY. MDE and Validation: Testing Model Transformation, in "Proc. of the
SIVOES-Modeva workshop, SIVOES (Specification Implementation and Validation Of Embedded Systems)-
MoDeVa (Model Design and Validation)", 2004.

[30] M. H IMDI . Development of Generic Probes for Functional and Extra-Functional Diagnosis, in "Supple-
mentary proc. of the 15th IEEE International Symposium on Software Reliability Engineering (ISSRE 2004
Student Paper)", 2004.

[31] J.-M. JÉZÉQUEL, O. DEFOUR, N. PLOUZEAU. An MDA Approach to Tame Component Based Software
Development, in "Post Proceedings of Formal Methods for Components and Objects (FMCO’03)", J. S.DE

BOER (editor)., LNCS, no 3188, Springer Heidelberg, 2004.

[32] J.-M. JÉZÉQUEL, W. EMMERICH. Panel MDA in Practice, in "26th International Conference on Software
Engineering (ICSE 04), Edinburgh, UK", ACM, no to be published, 2004.

Project-Team Triskell 25

[33] J. KLEIN , B. CAILLAUD , L. HÉLOUËT. Merging scenarios, in "9th International Workshop on Formal
Methods for Industrial Critical Systems (FMICS), Linz, Austria", sep 2004, p. 209–226.

[34] J. KLEIN , N. PLOUZEAU. Transformation of behavioral models based on compositions of sequence diagrams,
in "Proceedings of Model-Driven Architecture: Foundations and Applications 2004 (MDAFA), Linkoping,
Sweden", jun 2004, 255.

[35] D. LUGATO, F. MARAUX , Y. LE TRAON, C. N. V. NORMAND, H. DUBOIS, J.-Y. PIERRON, J.-P. GALLOIS .
Automated functional test case synthesis from thalès industrial requirements, in "Proc. of the 10th IEEE Real-
Time and embedded technology and Applications Symposium", 2004.

[36] P.-A. MULLER, D. BRESCH, P. STUDER. Model-Driven Architecture for Automatic-Control, in "Proc. of
UML 2004", 2004.

[37] P.-A. MULLER, C. DUMOULIN , F. FONDEMENT, M. HASSENFORDER. The TopModL Initiative, in "3rd
Workshop in Software Model Engineering (WiSME 2004) at UML2004", 2004.

[38] P.-A. MULLER, P. STUDER, J.-M. JÉZÉQUEL. Model-driven generative approach for concrete syntax
composition, in "Proc. of OOPSLA Workshop on Best Practices for Model-Driven Development", 2004.

[39] S. PICKIN , J.-M. JÉZÉQUEL. Using UML Sequence Diagrams as Basis for a Formal Test Description
Language, in "Proc. of Fourth International Conference on Integrated Formal Methods IFM2004, Canterbury,
Kent, England", LNCS, no to be published, Springer, April 2004, –.

[40] J. STEEL, M. LAWLEY. An MDA Approach to Testing the Tarzan Model Transformation Engine, in "Proceed-
ings of ISSRE04 (International Conference on Software Reliability Engineering), St Malo, France", To appear,
November 2004.

[41] Y. L. TRAON, B. BAUDRY. Optimal Allocation of Testing Resources, in "Proc. of the SIVOES-Modeva
workshop, SIVOES (Specification Implementation and Validation Of Embedded Systems)-MoDeVa (Model
Design and Validation)", 2004.

[42] T. ZIADI , L. HÉLOUËT, J.-M. JÉZÉQUEL. Revisiting Statechart Synthesis with an Algebraic Approach, in
"26th International Conference on Software Engineering (ICSE 04), Edinburgh, UK", ACM, May 2004.

Miscellaneous

[43] J. BÉZIVIN , M. BLAY, M. BOUZHEGOUB, J. ESTUBLIER, J.-M. FAVRE, S. GÉRARD, J.-M. JÉZÉQUEL.
Rapport de Synthèse de l’AS CNRS sur le MDA, November 2004, CNRS.

[44] J.-M. JÉZÉQUEL. Perspectives on Model Driven Engineering, January 2004, Invited presentation to the 11e
Rencontre INRIA-Industrie - "L’ingénierie du logiciel", INRIA - Rocquencourt, France.

Bibliography in notes

[45] B. APPLETON. Patterns and Software: Essential Concepts and Terminology, in "Object Magazine Online",
May 1997.

26 Activity Report INRIA 2004

[46] A. A RNOLD. Systèmes de transitions finis et sémantiques de processus communicants, 196 p., Masson, 1992.

[47] A. BEUGNARD, J.-M. JÉZÉQUEL, N. PLOUZEAU, D. WATKINS . Making Components Contract Aware, in
"IEEE Computer", vol. 13, no 7, July 1999.

[48] G. BOOCH. Object-Oriented Analysis and Design with Applications, 2nd, Benjamin Cummings, 1994.

[49] L. CASTELLANO, G. DE M ICHELIS, POMELLO,L.. Concurrency versus Interleaving: An Instructive Exam-
ple, in "BEATCS: Bulletin of the European Association for Theoretical Computer Science", vol. 31, 1987.

[50] E. GAMMA , R. HELM , R. JOHNSON, J. VLISSIDES. Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1995.

[51] M. JACKSON. System Development, Prentice-Hall International, Series in Computer Science, 1985.

[52] C. JARD. Vérification dynamique des protocoles, Habilitation à diriger les recherches de l’université de
Rennes 1, décembre 1994.

[53] J.-M. JÉZÉQUEL, B. MEYER. Design by Contract: The Lessons of Ariane, in "Computer", vol. 30, no 1,
January 1997, p. 129–130.

[54] J.-M. JÉZÉQUEL, M. TRAIN , C. MINGINS. Design Patterns and Contracts, ISBN 1-201-30959-9, Addison-
Wesley, October 1999.

[55] B. MEYER. Reusability: The Case for Object-Oriented Design, in "IEEE SOFTWARE", no 3, March 1987, p.
50–64.

[56] B. MEYER. Applying "Design by Contract", in "IEEE Computer (Special Issue on Inheritance & Classifica-
tion)", vol. 25, no 10, October 1992, p. 40–52.

[57] C. SZYPERSKI. Component Software: Beyond Object-Oriented Programming, ACM Press and Addison-
Wesley, New York, N.Y., 1998.

[58] J. WARMER, A. KLEPPE. The Object Constraint Language, Addison-Wesley, 1998.

[59] G. WINSKEL. Event Structures, in "Petri Nets: Applications and Relationships to Other Models of Concur-
rency, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef", G. R. W.
BRAUER (editor)., vol. 255, Springer-Verlag, september 1986, p. 325-392.

