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2. Overall Objectives
The TROPICS team is at the junction of two research domains:

� AD: On one hand, we study software engineering techniques, to analyze and transform programs
semi-automatically. In the past, we developed semi-automatic parallelization strategies aiming at
SPMD parallelization. Presently, we focus on Automatic Differentiation (AD). AD transforms a
program P that computes a function F , into a program P' that computes some derivatives of F ,
analytically. In particular, the so-called reverse mode of AD yields gradients. However, this reverse
mode remains very delicate to use, and requires time and care.

� CFD application of AD: On the other hand, we study the application of AD, and particularly
of the adjoint method, to Computational Fluid Dynamics. This involves necessary adaptation of
optimization strategies. This work applies to two real-life problems, optimal shape design and mesh
adaption.

The second aspect of our work (optimization in Scientific Computing), is thus at the same time the
motivation and the application domain of the first aspect (program analysis and transformation, and gradients
through AD). Concerning AD, our goal is to automatically produce derivative programs that can compete with
the hand-written sensitivity and adjoint programs which exist in the industry. We implement our ideas and
algorithms into the tool TAPENADE, which is developed and maintained by the project. Apart from being
an AD tool, TAPENADE is also a platform for other analyses and transformations of scientific programs.
TAPENADE is easily available. We provide a web server, and alternatively a version can be downloaded from
our web server. Practical details can be found in section 5.1.

Our present research directions are :

� Modern numerical methods for finite elements or finite differences: multigrid methods, mesh
adaption.
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� Optimal shape design, in the context of fluid dynamics: for example shape optimization of the wings
of a supersonic aircraft, to reduce sonic bang. Also, new optimization tactics combining interior
point, SQP or one-shot algorithms.

� Automatic Differentiation : reduce runtime and memory consumption when computing gradients
(“adjoints”) or Jacobian matrices, differentiate parallel programs, differentiate particular algorithms
in a specially adapted manner, validate the derivatives.

� Common tools for program analysis and transformation: adequate internal representation, Call
Graphs, Flow Graphs, Data-Dependence Graphs.

3. Scientific Foundations

3.1. Automatic Differentiation
Keywords: adjoint models, automatic differentiation, optimization, program transformation, scientific com-

puting, simulation.

Participants: Mauricio Araya-Polo, Benjamin Dauvergne, Laurent Hascoët, Christophe Massol, Valérie
Pascual.

automatic differentiation (AD) Automatic transformation of a program, that returns a new program
that computes some derivatives of the given initial program, i.e. some combination of the partial
derivatives of the program’s outputs with respect to its inputs.

adjoint model Mathematical manipulation of the partial derivative equations that define a problem,
that returns new differential equations that define the gradient of the original problem’s solution.

checkpointing General trade-off technique, used in the reverse mode of AD, that trades duplicate
execution of a part of the program to save some memory space that was used to save intermediate
results. Checkpointing a code fragment amounts to running this fragment without any storage
of intermediate values, thus saving memory space. Later, when such an intermediate value is
required, the fragment is run a second time to obtain the required values.

Automatic or Algorithmic Differentiation (AD) differentiates programs. An AD tool takes as input a
source computer program P that, given a vector argument X 2 IR

n, computes some vector function
Y = F (X) 2 IR

m. The AD tool generates a new source program that, given the argumentX , computes some
derivatives of F . In short, AD first assumes that P represents all its possible run-time sequences of instructions,
and it will in fact differentiate these sequences. Therefore, the control of P is put aside temporarily, and AD
will simply reproduce this control into the differentiated program. In other words, P is differentiated only
piecewise. Experience shows that this is reasonable in most cases, and going further is still an open research
problem. Then, any sequence of instructions is identified with a composition of vector functions. Thus, for a
given control:
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which can be mechanically translated back into a sequence of instructions I 0
k

, and these sequences inserted
back into the control of P , yielding program P

0. This can be generalized to higher level derivatives, Taylor
series, etc.

In practice, the above Jacobian F 0

(X) is often far too expensive to compute and store. Notice for instance
that equation (2) repeatedly multiplies matrices, whose size is of the order ofm�n. Moreover, some problems
are solved using only some projections of F 0

(X). For example, one may need only sensitivities, which are
F

0

(X):

_
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X in the input space. Using equation (2), sensitivity is
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which is easily computed from right to left, interleaved with the original program instructions. This is the
principle of the tangent mode of AD, which is the most straightforward, of course available in TAPENADE.

However in optimization, data assimilation [41], adjoint problems [35], or inverse problems, the appropriate
derivative is the gradient F 0�

(X):Y . Using equation (2), the gradient is
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which is most efficiently computed from right to left, because matrix�vector products are so much cheaper
than matrix�matrix products. This is the principle of the reverse mode of AD.

This turns out to make a very efficient program, at least theoretically [37]. The computation time required
for the gradient is only a small multiple of the run time of P . It is independent from the number of parameters
n. In contrast, notice that computing the same gradient with the tangent mode would require running the
tangent differentiated program n times.

We can observe that the X
k

are required in the inverse of their computation order. If the original program
overwrites a part of X

k

, the differentiated program must restore X
k

before it is used by f 0�
k+1

(X

k

). There are
two strategies for that:

� Recompute All (RA): theX
k

is recomputed when needed, restarting P on inputX
0

until instruction
I

k

. The TAF [33] tool uses this strategy. Brute-force RA strategy has a quadratic time cost with
respect to the total number of run-time instructions p.

� Store All (SA): the X

k

are restored from a stack when needed. This stack is filled during a
preliminary run of P , that additionally stores variables on the stack just before they are overwritten.
The ADIFOR [28] and TAPENADE tools use this strategy. Brute-force SA strategy has a linear memory
cost with respect to p.

Both RA and SA strategies need a special storage/recomputation trade-off in order to be really profitable,
and this makes them become very similar. This trade-off is called checkpointing. Since TAPENADE uses the
SA strategy, let us describe checkpointing in this context. The plain SA strategy applied to instructions I

1

to
I

p

builds the differentiated program sketched on figure 1, where

time
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Figure 1. The “Store-All” tactic

an initial “forward sweep” runs the original program and stores intermediate values (black dots), and is
followed by a “backward sweep” that computes the derivatives in the reverse order, using the stored values
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when necessary (white dots). Checkpointing a fragment C of the program is illustrated on figure 2. During
the forward sweep, no value is stored while in C. Later, when the backward sweep needs values from C, the
fragment is run again, this time with storage. One can see that the maximum storage space is grossly divided by
2. This also requires some extra memorization (a “snapshot”), to restore the initial context of C. This snapshot
is shown on figure 2 by slightly bigger black and white dots.

time

C{
Figure 2. Checkpointing C with the “Store-All” tactic

Checkpoints can be nested. In that case, a clever choice of checkpoints can make both the memory size and
the extra recomputations grow like only the logarithm of the size of the program.

3.2. Static Analyses and Transformation of programs
Keywords: abstract interpretation, abstract syntax tree, compilation, control flow graph, data dependence

graph, data flow analysis, program transformation, static analysis.

Participants: Mauricio Araya-Polo, Benjamin Dauvergne, Laurent Hascoët, Christophe Massol, Valérie
Pascual.

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses, or
separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known
as basic blocks, contain each a list of instructions to be executed in sequence, and whose arcs
represent all possible control jumps that can occur at run time.

abstract interpretation Model that describes program static analyses as a special sort of execution,
in which all branches of control switches are taken simultaneously, and where computed values
are replaced by abstract values from a given semantic domain. Each particular analysis gives
birth to a specific semantic domain.

data flow analysis Program analysis that studies how a given property of variables evolves with
execution of the program. Data Flow analyses are static, therefore studying all possible run-
time behaviors and making conservaive approximations. A typical data-flow analysis is to detect
whether a variable is initialized or not, at any location in the source program.

data dependence analysis Program analysis that studies the itinerary of values during program
execution, from the place where a value is generated to the places where it is used, and finally to
the place where it is overwritten. The collection of all these itineraries is often stored as a data

dependence graph, and data flow analysis most often rely on this graph.

data dependence graph Directed graph that relates accesses to program variables, from the write
access that defines a new value to the read accesses that use this value, and conversely from the
read accesses to the write access that overwrites this value. Dependences express a partial order
between operations, that must be preserved to preserve the program’s result.
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The most obvious example of a program transformation tool is certainly a compiler. Other examples are
program translators, that go from one language or formalism to another, or optimizers, that transform a
program to make it run better. AD is just one such transformation. These tools use sophisticated analyses [26]
to improve the quality of the produced code. These tools share their technological basis. More importantly,
there are common mathematical models to specify and analyze them.

An important principle is abstraction: the core of a compiler should not bother about syntactic details of the
compiled program. In particular, it is desirable that the optimization and code generation phases be independent
from the particular input programming language. This can generally be achieved through separate front-ends,
that produce an internal language-independent representation of the program, generally a abstract syntax tree.
For example, compilers like g

 for C and g77 for FORTRAN77 have separate front-ends but share most of
their back-end.

One can go further. As abstraction goes on, the internal representation becomes more language independent,
and semantic constructs such as declarations, assignments, calls, IO operations, can be unified. Analyses
can then concentrate on the semantics of a small set of constructs. We advocate an internal representation
composed of three levels.

� At the top level is the call graph, whose nodes are the procedures. There is an arrow from node A
to node B iff A possibly calls B. Recursion leads to cycles. The call graph captures the notions of
visibility scope between procedures, that come from modules or classes.

� At the middle level is the control flow graph. There is one flow graph per procedure, i.e. per node in
the call graph. The flow graph captures the control flow between atomic instructions. Flow control
instructions are represented uniformly inside the control flow graph.

� At the lowest level are abstract syntax trees for the individual atomic instructions. Certain semantic
transformations can benefit from the representation of expressions as directed acyclic graphs, sharing
common sub-expressions.

To each basic block is associated a symbol table that gives access to properties of variables, constants,
function names, type names, and so on. Symbol tables must be nested to implement lexical scoping.

Static program analyses can be defined on this internal representation, which is largely language indepen-
dent. The simplest analyses on trees can be specified with inference rules [29][38][27]. But many analyses are
more complex, and are thus better defined on graphs than on trees. This is the case for data-flow analyses, that
look for run-time properties of variables. Since flow graphs are cyclic, these global analyses generally require
an iterative resolution. Data flow equations is a practical formalism to describe data-flow analyses. Another
formalism is described in [30], which is more precise because it can distinguish separate instances of instruc-
tions. However it is still based on trees, and its cost forbids application to large codes. Abstract Interpretation

[31] is a theoretical framework to study complexity and termination of these analyses.
Data flow analyses must be carefully designed to avoid or control combinatorial explosion. The classical

solution is to choose a hierarchical model. In this model, information, or at least a computationally expensive
part of it, is synthesized. Specifically, it is computed bottom up, starting on the lowest (and smallest) levels
of the program representation and then recursively combined at the upper (and larger) levels. Consequently,
this synthesized information must be made independent of the context (i.e., the rest of the program). When
the synthesized information is built, it is used in a final pass, essentially top down and context dependent,
that propagates information from the “extremities” of the program (its beginning or end) to each particular
subroutine, basic block, or instruction.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge
of actual run-time values. Most of them are undecidable; that is, there always exists a particular program
for which the result of the analysis is uncertain. This is a strong, yet very theoretical limitation. More
concretely, there are always cases where one cannot decide statically that, for example, two variables are
equal. This is even more frequent with two pointers or two array accesses. Therefore, in order to obtain
safe results, conservative over-approximations of the computed information are generated. For instance, such
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approximations are made when analyzing the activity or the TBR (“To Be Restored”) status of some individual
element of an array. Static and dynamic array region analyses [45][32] provide very good approximations.
Otherwise, we make a coarse approximation such as considering all array cells equivalent.

When studying program transformations, one often wants to move instructions around without changing
the results of the program. The fundamental tool for this is the data dependence graph. This graph defines an
order between run-time instructions such that if this order is preserved by instructions rescheduling, then the
output of the program is not altered. Data dependence graph is the basis for automatic parallelization. It is also
useful in AD. Data dependence analysis is the static data-flow analysis that builds the data dependence graph.

3.3. Automatic Differentiation and Computational Fluid Dynamics
Keywords: adjoint methods, adjoint state, computational fluid dynamics, gradient, linearization, optimization.

Participants: Tristan Roy, Alain Dervieux, Laurent Hascoët, Bruno Koobus, Mariano Vazquez, Stephen
Wornom.

linearization The mathematical equations of Fluid Dynamics are Partial Derivative Equations, that
are discretized and then solved by a computer program. Linearization of these equations, or
alternatively linearization of the computer program, gives a modelization of the behavior of the
flow when small perturbations are applied. This is useful when the perturbations are effectively
small, like in acoustics, or when one wants the sensitivity of the system with respect to one
parameter, like in optimization.

adjoint state Consider a system of Partial Derivative Equations that define some characteristics of a
system with respect to some input parameters. Consider one particular scalar characteristic. Its
sensitivity, (or gradient) with respect to the input parameters can be defined as the solution of
“adjoint” equations, deduced from the original equations through linearization and transposition.
The solution of the adjoint equations is known as the adjoint state.

Computational Fluid Dynamics is now able to make reliable simulations of very complex systems. For
example it is now possible to simulate completely the 3D air flow around a plane that captures the physical
phenomena of shocks and turbulence. The next step in CFD appears to be optimization. Optimization is one
degree higher in complexity, because it repeatedly simulates, evaluates directions of optimization and applies
optimization steps, until an optimum is reached.

We restrict here to gradient descent methods. One risk is obviously to fall into local minima before reaching
the global minimum. We do not address this question, although we believe that more robust approaches, such
as evolutionary approaches, could benefit from a coupling with gradient descent approaches. Another well-
known risk is the presence of discontinuities in the optimized function. We investigate two kinds of methods
to cope with discontinuities: we can devise AD algorithms that detect the presence of discontinuities, and we
can design optimization algorithms that solve some of these discontinuities.

We investigate several approaches to obtain the gradient. There are actually two extreme approaches:

� One can write an adjoint system, then discretize it and program it by hand. The adjoint system is a
new system, deduced from the original equations, and whose solution, the adjoint state, leads to the
gradient. A hand-written adjoint is very sound mathematically, because the process starts back from
the original equations. This process implies a new separate implementation phase to solve the adjoint
system. During this manual phase, mathematical knowledge of the problem can be translated into
many hand-coded refinements. But this may take an enormous engineering time. Except for special
strategies (see [35]), this approach does not produce an exact gradient of the discrete functional, and
this can be a problem if using optimization methods based on descent directions.
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� A program that computes the gradient can be built by pure Automatic Differentiation in the reverse
mode (cf 3.1). It is in fact the adjoint of the discrete functional computed by the software, which
is piecewise differentiable. It produces exact derivatives almost everywhere. Theoretical results
[34] guarantee convergence of these derivatives when the functional converges. This strategy gives
reliable descent directions to the optimization kernel, although the descent step may be tiny, due to
discontinuities. Most importantly, AD adjoint is generated by a tool. This saves a lot of development
and debug time. But this systematic approach leads to massive use of storage, requiring code
transformation by hand to reduce memory usage. Mohammadi’s work [39] [42] illustrates the
advantages and drawbacks of this approach.

The drawback of AD is the amount of storage required. If the model is steady, can we use this important
property to reduce this amount of storage needed? Actually this is possible, as shown in [36], where
computation of the adjoint state uses the iterated states in the direct order. Alternatively, most researchers
(see for example [39]) use only the fully converged state to compute the adjoint. This is usually implemented
by a hand modification of the code generated by AD. But this is delicate and error-prone. The TROPICS team
investigate hybrid methods that combine these two extreme approaches.

4. Application Domains

4.1. Panorama
Automatic Differentiation of programs gives sensitivities or gradients, that are useful for many types of

applications:

� optimum shape design under constraints, multidisciplinary optimization, and more generally any
algorithm based on local linearization,

� inverse problems, such as data assimilation or parameter estimation,

� first-order linearization of complex systems, or higher-order simulations, yielding reduced models
for simulation of complex systems around a given state,

� mesh adaption and mesh optimization with gradients or adjoints,

� equation solving with the Newton method,

� sensitivity analysis, propagation of truncation errors.

We will detail some of them in the next sections. These applications require an AD tool that differentiates
programs written in classical imperative languages, FORTRAN77, FORTRAN95, C, or C++. We also consider
our AD tool TAPENADE as a platform to implement other program analyses and transformations. TAPENADE

does the tedious job of building the internal representation of the program, and then provides an API to build
new tools on top of this representation. One application of TAPENADE is therefore to build prototypes of new
program analyses.
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4.2. Multidisciplinary optimization
A CFD program computes the flow around a shape, starting from a number of inputs that define the shape

and other parameters. From this flow, it computes an optimization criterion, such as the lift of an aircraft.
To optimize the criterion by a gradient descent, one needs the gradient of the output criterion with respect
to all the inputs, and possibly additional gradients when there are constraints. The reverse mode of AD is a
promising way to compute these gradients.

4.3. Inverse problems
Inverse problems aim at estimating the value of hidden parameters from other measurable values, that

depend on the hidden parameters through a system of equations. For example, the hidden parameter might
be the shape of the ocean floor, and the measurable values the altitude and speed of the surface. Another
example is data assimilation in weather forecasting. The initial state of the simulation conditions the quality
of the weather prediction. But this initial state is largely unknown. Only some measures at arbitrary places and
times are available. The initial state is found by solving a least squares problem between the measures and a
guessed initial state which itself must verify the equations of meteorology. This rapidly boils down to solving
an adjoint problem, which can be done though AD [44].

4.4. Linearization
To simulate a complex system often requires solving a system of Partial Differential Equations. This is

sometimes too expensive, in particular in the context of real time. When one wants to simulate the reaction
of this complex system to small perturbations around a fixed set of parameters, there is a very efficient
approximate solution: just suppose that the system is linear in a small neighborhood of the current set of
parameter. The reaction of the system is thus approximated by a simple product of the variation of the
parameters with the Jacobian matrix of the system. This Jacobian matrix can be obtained by AD. This is
especially cheap when the Jacobian matrix is sparse. The simulation can be improved further by introducing
higher-order derivatives, such as Taylor expansions, which can also be computed through AD. The result is
often called a reduced model.

4.5. Mesh adaption
It has been noticed that some approximation errors can be expressed by an adjoint state. Mesh adaption can

benefit from this. The classical optimization step can give an optimization direction not only for the control
parameters, but also for the approximation parameters, and in particular the mesh geometry. The ultimate goal
is to obtain optimal control parameters up to a precision prescribed in advance.

5. Software

5.1. Tapenade
Participants: Laurent Hascoët [correspondant], Mauricio Araya-Polo, Benjamin Dauvergne, Christophe
Massol, Valérie Pascual.

TAPENADE is the Automatic Differentiation tool developed by the TROPICS team. TAPENADE progres-
sively implements the results of our research about models and static analyses for AD. From this stand-
point, TAPENADE is a research tool. Our objective is also to promote the use of AD in the scientific com-
putation world, and therefore in the industry. Therefore the team constantly maintains TAPENADE to meet
the demands of our industrial users. TAPENADE can be simply used as a web server, available at the URL
http://tapenade.inria.fr:8080/tapenade/index.jsp It can also be downloaded and installed from our FTP server
ftp://ftp-sop.inria.fr/tropics. A documentation is available on our web page http://www-sop.inria.fr/tropics/
and as an INRIA technical report (RT-0300) http://www.inria.fr/rrrt/rt-0300.html
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TAPENADE differentiates computer programs according to the model described in section 3.1. It supports
three modes of differentiation:

� the tangent mode that computes a directional derivative F 0

(X):

_

X,

� the vector tangent mode that computes F 0

(X):

_

X

n

for many directions X
n

simultaneously, and can
therefore compute Jacobians, and

� the reverse mode that computes the gradient F 0�

(X):Y .

A obvious fourth mode could be the vector reverse mode, which is not yet implemented. Many other
modes exist in the other AD tools in the world, that compute for example higher degree derivatives or
Taylor expansions. For the time being, we restrict ourselves to first-order derivatives and we put our efforts
on the reverse mode. But as we said before, we also view TAPENADE as a platform to build new program
transformations, in particular new differentiations. This could be done in cooperation with other teams.

Like any program transformation tool, TAPENADE needs sophisticated static analyses in order to produce an
efficient output. Concerning AD, the following analyses are a must, and TAPENADE now performs them all:

� Activity: The end-user has the opportunity to specify which of the output variables must be differ-
entiated (called the dependent variables), and with respect to which of the input variables (called the
independent variables). Activity analysis propagates the dependent, backward through the program,
to detect all intermediate variables that possibly influence the dependent. Conversely, activity analy-
sis also propagates the independent, forward through the program, to find all intermediate variables
that possibly depend on the independent. Only the intermediate variables that both depend on the
independent and influence the dependent are called active, and will receive an associated derivative
variable. Activity analysis makes the differentiated program smaller and faster.

� Read-Write: Each procedure has a number of arguments, that may be inputs, outputs, or both.
Compilers use this to remove useless arguments. TAPENADE uses Read-Write information more
specifically to detect aliasing, which is very harmful in AD, and to reduce the size of snapshots
needed by checkpointing in the reverse mode. Read-Write analysis makes the differentiated program
safer and less costly in memory space.

� Adjoint Liveness and Read-Write: Programs produced by the reverse mode of AD show a very
particular structure, due to their mechanism to restore intermediate values of the original program in
the reverse order. This has deep consequences on the liveness and Read-Write status of variables, that
we can exploit to take away unnecessary instructions and memory usage from the reverse (adjoint)
program. This makes the adjoint program smaller and faster by factors that can go up to 40%.

� TBR: The reverse mode of AD, with the Store-All strategy, stores all intermediate variables
just before they are overwritten. However this is often unnecessary, because derivatives of some
expressions (e.g. linear expressions) only use the derivatives of their arguments and not the original
arguments themselves. In other words, the local Jacobian matrix of an instruction may not need
all the intermediate variables needed by the original instruction. The To Be Restored (TBR) analysis
finds which intermediate variables need not be stored during the forward sweep, and therefore makes
the differentiated program smaller in memory.

Several other strategies are implemented in TAPENADE to improve the differentiated code. For example,
a data-dependence analysis allows TAPENADE to move instructions around safely, gathering instructions to
reduce cache misses. Also, long expressions are split in a specific way, to minimize duplicate sub-expressions
in the derivative expressions.

The input languages of TAPENADE today are FORTRAN77 and FORTRAN95. Notice however that the
internal representation of programs is language-independent, as shown on figure 4, so that extension to other
languages should be easier. Development of the prototype of a TAPENADE for C started in december.
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There are two user interfaces for TAPENADE. One is a simple command that can be called from a shell or
from a Makefile. The other is interactive, using JAVA SWING components and HTML pages. The interactive
interface displays the differentiated programs, with HTML links that implement source-code correspondence,
as well as correspondence between error messages and locations in the source. This is shown on figure 3.

Figure 3. TAPENADE output interface, with source-code-error correspondence

TAPENADE is now available for LINUX, SUN, or WINDOWS-XP platforms.
Figure 4 shows the architecture of TAPENADE. It is implemented mostly in JAVA, apart from the front-ends

which are separated and can be written in their own languages.
Notice the clear separation between the general-purpose program analyses, based on a general representa-

tion, and the differentiation engine itself. Other tools can be built on top of the Imperative Language Analyzer
platform.
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trees  (IL) trees  (IL)

XXX parser

C parser (C)

Fortran95 parser (C)

Fortran77 parser (C)
Signatures of externals

XXX printer

C printer

Fortran95 printer (Java)

Fortran77 printer (Java)

other tool

Imperative Language Analyzer (Java)

Differentiation Engine (Java)

User Interface (Java / XHTML)

API

Figure 4. Overall Architecture of TAPENADE

The end-user can also specify properties of external or black-box routines. This is essential for real industrial
applications that use many libraries. The source of these libraries is generally hidden. However AD needs some
information about these black-box routines in order to produce efficient code. TAPENADE lets the user specify
this information in a separate signature file.

6. New Results

6.1. Static Analyses for reverse AD
Keywords: checkpointing, dead code, reverse mode of AD, snapshots, static analyses.

Participants: Mauricio Araya-Polo, Benjamin Dauvergne, Laurent Hascoët, Valérie Pascual.

In addition to the activity, and read-write analyses described in section 5.1, we focus on specific analyses
that take advantage of adjoint programs’ special structure summarized for example on figure 2. Our goal
is to improve the speed and memory usage of these adjoint programs. Indeed, classical data-flow analyses
performed by compilers could do the job only partly, because those cannot detect not use the mirror structure
of adjoint programs i.e. a forward sweep followed by a backward sweep, with matching control decisions.
Moreover, specific analyses will run faster because they operate on the original code rather than on the larger
and more complex differentiated code.

This year we formalized the notions of variables that are:

� needed by the differentials of instructions that are upstream in the original program (TBR),

� needed by the adjoint of the instructions that are downstream in the original program (adjoint

liveness)

� needed to re-execute a checkpointed piece of the original program, and to this end the variables that
are overwritten by the adjoint of a piece of the original program (adjoint write analysis),
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and expressed them together in a common formalization. We explicited the data-flow equations that specify
the activity, adjoint liveness, adjoint write and adjoint read analyses, in the form of simple set equations. This
allowed us to study their relationship and find an optimal order which is: study activity first, then study adjoint
liveness, then finally compute the adjoint read, TBR, and adjoint write sets. This is part of the PhD work of
Mauricio Araya-Polo.

During his student internship in spring, Benjamin Dauvergne implemented these analyses into TAPENADE

and experimented on our set of validation applications, exhibiting speedups ranging from 0 to 30%. In the
beginning of his PhD work, Benjamin Dauvergne investigated the application of the adjoint write analysis to
build smaller snapshots for checkpointing.

The data-flow equations that specify the activity, adjoint liveness, adjoint write and adjoint read analyses still
do not take checkpointing fully into account. We are currently developing a new set of data-flow equations, this
time with checkpointing. This way we expect to be able to capture some hand manipulations made by experts
on adjoint codes. For example, expert developers often take advantage of a series of successive checkpoints,
included into a common parent checkpoint level. It is often possible to share some arrays that appear in many
of the snapshots, so as to store them only once. We believe we are able to automate this improvement directly
into an AD tool.

This work was presented in the Eccomas 2004 conference in Jyvaskyla, Finland, and at the AD2004
conference in Chicago, Illinois. It will also be published in the book of selected presentations from this
conference.

6.2. Automatic estimation of the validity domain of derivatives
Keywords: discontinuities, validity of derivatives.

Participants: Mauricio Araya-Polo, Laurent Hascoët.

This is the principal topic of the PhD research of Mauricio Araya-Polo. The program generated by AD
always returns derivatives, even if the mathematical function computed by the program is discontinuous or
non differentiable at the current point. Discontinuities can also be introduced by the translation from the math
equations to the computer program. In fact, most computer programs are only piecewise differentiable. When
the current program execution comes very “close” to a discontinuity, then the derivatives may be invalid.
Following these derivatives, for example in an optimization process, may go across a discontinuity and thus
can actually degrade the solution.

Automatic resolution of this discontinuity problem is probably out of reach. However this problem hampers
the confidence that users can put into AD. We think it is desirable to design differentiation modes which, if
they don’t solve the discontinuity problem, at least can warn the end-user when such a discontinuity is coming
close. Therefore we want to design a differentiation mode which estimates the size of the neighborhood around
the current values, inside which the flow of control doesn’t change.

This year, Mauricio Araya-Polo studied different approaches from the point of view of complexity. It
appears that the most reasonable aproach is a directional estimation, i.e. an estimation of the intersection of
the validity neighborhood along the current direction of tangent differentiation. A more complete estimation
can be achieved by repeating the analysis for each direction in the Cartesian basis of the input space.

We made an experimental implementation of this approach. The resulting code is not significantly more
expensive than the standard tangent mode. On some examples taken from our validation set of applications, it
actually detected discontinuitiesthat are very close to places where our end-users found optimization difficult.
Therefore we feel confident that this analysis can be a valuable help to users.

6.3. The Recompute-or-Store alternative
Keywords: recompute-all, reverse mode of AD, storage-recomputation tradeoff, store-all.

Participants: Laurent Hascoët, Benjamin Dauvergne.
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In the reverse mode of Automatic Differentiation, values must be made available to the computation of
the derivatives in the reverse of their original computation order. This can be achieved either by storing
intermediate values as they are computed, or by recomputing them when needed. This work is an effort to
study the relative merits of these two strategies, known as store-all, implemented in TAPENADE and ADIFOR,
and recompute-all, implemented in TAF. Neither strategy is optimal in terms of execution time and memory
space. The optimal is probably a combination of these two strategies.

This year, we designed a framework which, for each intermediate value, offers the choice between storing
or recomputing. We call it the Recompute-Or-Store Alternative (ROSA). This framework is based on the
data dependence graph of the considered program. We investigated how this framework captures the previous
strategies, and we proposed heuristics to find an efficient combination of recomputing and storing. We study
how the ROSA framework blends with the classical checkpointing strategy which trades execution time for
memory space at a coarser grain level in the program. Experiments are under way in TAPENADE

This ROSA framework was presented at the AD2004 conference.

6.4. Extensions and new functionalities in tapenade
Keywords: aliasing, fortran95, tapenade.
Participants: Valérie Pascual, Benjamin Dauvergne, Laurent Hascoët.

The work on the extension of TAPENADE to FORTRAN95 continued. The number of new constructs
in FORTRAN95 is a constant challenge to find unifying representations of data and control structures of
imperative programs.

This year, we extended the internal data flow analyses of TAPENADE to finely take into account records
(“derived types”). Since different components of a data structure often have different behaviors, a variable of
a structured type must be considered as a set of individual variables, on which the analyses may find different
results. For example “activity” analysis can find out that only some components are active and thus need a
derivative. Thus the derivative structured type can hold fewer components.

Benjamin Dauvergne studied in detail the common behavior of TAPENADE’s data flow analyses. The
common part of these analyses’ strategy was embodied in a new class “DataFlowAnalyzer”, from which
every particular analysis is derived. The general strategy for analyses consists of iterative sweeps on the Call
Graph, because of recursivity, and at the procedure level it also consists of iterative sweeps on the Flow Graph,
because of control loops. An improved implementation of these sweeps was made, in which cycles in the
graphs are detected and treated in a specific manner to avoid redundant analyses. As a result, the time spent
on analyses during differentiation has decreased by a factor 10 on large applications.

The above improvements, plus many bug corrections, are available in the latest version 2.1 of TAPENADE.

6.5. Optimal control
Keywords: adjoint model, gradient, optimal control, optimum design.
Participants: Francois Courty, Bruno Koobus, Alain Dervieux, Laurent Hascoët, Mariano Vázquez, Bijan
Mohammadi.

Now that simulation is well mastered by research groups in industry, optimization is naturally the next
frontier. Optimization problems in aerodynamics are still very difficult, because they require a enormous
computing power. To meet these needs, our investigations in AD are focused on the reverse mode, which
is an elegant way to obtain the adjoints that optimization uses.

The reverse mode, and the subsequent adjoint state, are the best way to get the gradients when the number
of parameters is large. This corresponds to what happens in industry. For example, optimizing only a dozen
shape parameters will not produce an optimal shape for an aircraft, because an accurate description of a shape
requires hundreds of parameters. Some shape parameters can be functions defined on a surface or a volume.
Therefore the number of scalar parameters depends on the discretization chosen, and is a priori large.

Therefore, practical application of AD to control problems requires that we consider the following issues:

� efficient computation of a large scale adjoint system
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� efficient optimization algorithms for large scale systems

� efficient preconditioners for this optimization.

This year is a reflexion and redaction year for this subject, see [11] [19] [24] [16].
New application on ship sail optimization have been also completed, published [14] and was the theme of a

PhD thesis (Marco Michieli de Vitturi) in the partner laboratory in Pisa.

6.6. SQP-One-Shot optimization
Keywords: One-shot, Sequential Quadratic Programming, optimization.

Participants: Francois Courty, Alain Dervieux.

The class of methods that applies best to optimal control with a state equation is the Sequential Quadratic
Programming. We refer for example to the monography of Nocedal and Wright [43].

SQP methods are sophisticated methods combining a lot of useful heuristics. They enjoy robustness
properties due for example to Trust Region heuristics relying on powerful theory (Wolfe criteria for gradient
convergence), and due to quasi Newton formulas such as BFGS. However, they are not well adapted to large
scale systems such as those handled in Optimal Control loops with adjoints. Indeed, the standard SQP methods
involve at each main iteration to solve several linearized state systems. This difficult point has been identified
by many researchers in optimal shape design and the result is that SQP methods have been not always applied,
but instead, either less modern but less complex algorithms like gradient algorithm were applied [40], or
algorithms for the simultaneous solution of the KKT optimality equations were proposed [46]. The latter class
of algorithm is in fact an important key for large scale optimization. However, existing one-shot algorithm are
deprived of the many robustness heuristics that are involved in SQP modern algorithms. We have derived a
family of one-shot-SQP algorithm devoted to the robust application of the one-shot principle:

� they solve progressively the three equations of optimality, yielding a good complexity for obtaining
the final result,

� they involve some important features of SQP allowing for a quasi-black box resolution of a new
problem.

Results have been described and published in [18] [19] [24].

6.7. Multilevel optimization and reduced models
Keywords: gradient, multilevel, optimization, reduced models.

Participants: Francois Courty, Alain Dervieux, Bruno Koobus, Mariano Vázquez.

As stated in 6.5, the very large numebr of parameters of interest for optimal control problems using the
adjoint approach comes from the discretization of a functional parametrization. Not only do we have to
take into account the number of parameters, but we should take some benefit from the information we can
get about the functional parametrization. This can help designing an efficient functional preconditioner. In
contrast to algebraic ones, “functional preconditioners” are not derived from the operator to precondition by
some algebraic transformation. They are derived from an analysis of the functional context at the origin of
the discrete problem. The functional preconditioner we have built for shape design application is an additive
multilevel preconditioner. The multilevel basis was also applied in cooperation with project-team Smash to
the derivation of reduced models that can be introduced in sophisticated optimizers. [16][19] [24].

6.8. Multidisciplinary optimization
Keywords: fluid, gradient, optimization, structure.
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Participants: Alain Dervieux, Bruno Koobus, Mariano Vázquez, Bijan Mohammadi, Charbel Farhat [Uni-
versity of Colorado, Boulder], Francois Beux [Scuola Normale Superiore di Pisa], Marco Michieli de Vitturi
[Scuola Normale Superiore di Pisa].

The optimization of a complex product as an airplane needs to be done by taking in account simultaneously
as much as different physical effects as possible. It is useless to determine the optimal aerodynamic shape of
an aircraft if the fact the the airflow will act on the structure and deform this shape is not anticipated. Many
of the physics to take into account are described by complex and computer intensive models. The team have
proposed a new coupling algorithm for the aerodynamic shape optimization of an aircraft geometry deformed
by the wind, [19] [24].

6.9. Mesh adaptation
Keywords: adjoint, mesh adaptation, optimization.

Participants: Alain Dervieux, Francois Courty, Tristan Roy.

The team continued his reflexion on the use of smart mesh adaptation to increase the convergence order of
a series of adapted computation [15]. The innovative derivation of the adjoint and the resolution of the related
optimum problem can be used in a slightly different context than shape design namely, mesh adaptation. This
will be possible if we can map the mesh adaptation problem into a differentiable optimal control problem. To
this end, we have introduced a new methodology that consists in setting the mesh adaptation problem under the
form of a purely functional one: the mesh is reduced to a continuous property of the computational domain, the
continuous metric, and we minimize a continuous model of the error resulting from that continuous property.
Then the problem of searching an adapted mesh is transformed in the research of an optimal metric.

In the case of mesh interpolation minimization, the optimum is given by a close formula and gives access
to a rather complete theory demonstrating that second order accuracy can be obtained on discontinuous field
approximation [12].

In the case of adaptation for Partial Differential Equations, an Optimal Control is obtained. It involves a state
equation and the optimality is expressed in terms of an adjoint state that can be derived by AD. In our first
prototypes, the one-shot-SQP algorithm has been applied successfully, [18][19] [24]. This will be the focus of
a cooperation with project-team GAMMA at INRIA-Rocquencourt (Paul-Louis George, Frédéric Alauzet) for
the INRIA contribution to the HISAC IP European project in assocoation with 30 other partners in aeronautics.
A thesis will start next year in cooperation with the SMASH project-team on 3D anisotropic mesh adaption.

7. Dissemination

7.1. Links with Industry, Contracts
Again this year, the number of connections to the TAPENADE web server has increased to more than one

hundred. The most regular users of TAPENADE have subscribed to our “tapenade-users” mailing list, now
registering 29 users.

Our collaboration with Mike Giles (Oxford University) and Rolls-Royce continues, with a regular use of
TAPENADE by Mike Giles’ team of researchers on the Rolls-Royce HYDRA code.

INRIA supports the industrial development of TAPENADE by funding our engineer Christophe Massol. His
main task is to develop an efficient pointer analysis and differentiation of programs with pointers and dynamic
memory allocation. In addition, his first work was to port TAPENADE to WINDOWS-XP platforms.

TROPICS is leader of a project “Optimisation de forme et adaptation de maillage pour le bang superson-
ique” supported by the Comité d’Orientation Supersonique of the French ministry of Research. Our partners
are the university of Montpellier and the Gamma project in Rocquencourt.

TROPICS contributed to the european project HISAC, as the main contributor for one package. The HISAC
project was accepted in october.
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We established links with EDF, former users of the previous AD tool ODYSSEE. We presented the new
developments in TAPENADE during a meeting in november, showing that the important limitations of ODYSSEE

have been lifted and now make it possible to differentiate very large industrial code in a reasonable time.
We shall give a course on Automatic Differentiation during the EDF-CEA-EADS-INRIA “école d’été” on
uncertainties in the summer of 2005.

7.2. Conferences and workshops

� Alain Dervieux gave a lecture in june at the PROMUVAL’04 short course in Barcelona, Spain.

� The team presented three papers in july, at the AD2004 conference on Automatic Differentiation
in Chicago Illinois. Laurent Hascoët presented the work with Mauricio Araya-Polo on “The adjoint
Data-Flow analyses: formalization, properties, and applications”, and his work on “The Recompute-
Or-Store Alternative in reverse Automatic Differentiation”. Valérie Pascual presented her work on
“Extension of Tapenade towards Fortran9x”.

� Laurent Hascoët presented the team’s results in july, at the ECCOMAS’04 conference in Jyvaskyla,
Finland. One presentation was on the “Data Flow Algorithms in the Tapenade tool for Automatic
Differentiation”, and another presentation focused more on TAPENADE, entitled: “Tapenade: a tool
for Automatic Differentiation of programs”.

� Laurent Hascoët was on the PhD jury of Vincent Fischer, of ENSIEG Grenoble, France, who used
Automatic Differentiation for optimization applications in electrical engineering.

� Alain Dervieux made a presentation in november at the PROMUVAL’04 conference in Athens,
Greece.

� Laurent Hascoët attended the november AD workshop in Hatfield UK, and was an organizer of the
special session on FORTRAN95.

� Laurent Hascoët gave an afternoon lecture and demonstration on Automatic Differentiation, during
the CARI’04 African conference on computer science in Hammamet, Tunisia, in november.
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