
epor t

d ' c t i v i t y

2004

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team VASY

Validation of Systems

Rhône-Alpes

Table of contents

1. Team 1

2. Overall Objectives 1

2.1. Introduction 1
2.2. Models and Verification Techniques 2
2.3. Languages and Compilation Techniques 2
2.4. Implementation and Experimentation 3

3. Application Domains 3

4. Software 4

4.1. The CADP Toolbox 4
4.2. The TRAIAN Compiler 6

5. New Results 6

5.1. Models and Verification Techniques 6
5.1.1. The OPEN/CÆSAR Libraries 6
5.1.2. The CÆSAR_SOLVE Library 7
5.1.3. The BISIMULATOR Tool 7
5.1.4. The AAL Tool 8
5.1.5. Compositional Verification Tools 9
5.1.6. Parallel and Distributed Verification Tools 10
5.1.7. Performance Evaluation Tools 12
5.1.8. Other Tool Developments 12

5.2. Languages and Compilation Techniques 13
5.2.1. Compilation of the LOTOS Data Part 13
5.2.2. Compilation of the LOTOS Process Part 13
5.2.3. Compilation of E-LOTOS 14
5.2.4. Source-Level Translations between Process Algebras 15

5.3. Case Studies and Practical Applications 15
6. Contracts and Grants with Industry 18

6.1. The IST ArchWare European Contract 18
6.2. The FormalFame Contract 18

7. Other Grants and Activities 19

7.1. National Collaborations 19
7.2. International Collaborations 20
7.3. Visits and Invitations 21

8. Dissemination 21

8.1. Software Dissemination and Internet Visibility 21
8.2. Program Committees 22
8.3. Lectures and Invited Conferences 22
8.4. Teaching Activities 23

9. Bibliography 24

1. Team
Head of team

Hubert Garavel [DR2 INRIA]

Administrative Assistants

Valérie Gardès [since February 2, 2004]
Catherine Magnin [until January 30, 2004]

Inria Staff

Radu Mateescu [CR1 INRIA]
Frédéric Lang [CR1 INRIA]
Wendelin Serwe [CR2 INRIA, since October 1st, 2004]

Bull Staff

Solofo Ramangalahy [BULL engineer, until May 31, 2004]

Software Engineers

Damien Bergamini
David Champelovier
Nicolas Descoubes [until November 19, 2004]

Post-Doctoral Fellows

Aurore Collomb [until June 30, 2004]
Gwen Salaün [since October 1st, 2004]
Wendelin Serwe [until September 30, 2004]

Ph. D. Student

Christophe Joubert

2. Overall Objectives

2.1. Introduction
Created on January 1st, 2000, the VASY project focuses on formal methods for the design of reliable

systems.
We are interested in any system (hardware, software, telecommunication) that comprises asynchronous

concurrency, i.e., any system whose behavior can be modeled as a set of parallel processes governed by
interleaving semantics.

For the design of reliable systems, we advocate the use of formal description techniques together with
software tools for simulation, rapid prototyping, verification, and test generation.

Among all existing verification approaches, we focus on enumerative verification (also known as explicit

state verification) techniques. Although less general than theorem proving, these techniques enable an
automatic, cost-efficient detection of design errors in complex systems.

Our research combines two main directions in formal methods, the model-based and the language-based

approaches:

� Models provide simple, mathematical representations for parallel programs and related verification
problems. Examples of models are automata, networks of communicating automata, Petri nets,
binary decision diagrams, boolean equation systems, etc. From a theoretical point of view, research
on models seeks for general results, independently from any particular description language.

� In practice, models are often too elementary to describe complex systems directly (this would be
tedious and error-prone). Higher level formalisms are needed for this task, as well as compilers that
translate high level descriptions into models suitable for verification algorithms.

To verify complex systems, we believe that model issues and language issues should be mastered equally.

2 Activity Report INRIA 2004

2.2. Models and Verification Techniques
By verification, we mean comparison — at some abstraction level — of a complex system against a set

of properties characterizing the intended functioning of the system (for instance, deadlock freedom, mutual
exclusion, fairness, etc.).

Most of the verification algorithms we develop are based on the labeled transition systems (or, simply,
automata or graphs) model, which consists of a set of states, an initial state, and a transition relation between
states. This model is often generated automatically from high level descriptions of the system under study,
then compared against the system properties using various decision procedures. Depending on the formalism
used to express the properties, two approaches are possible:

� Behavioral properties express the intended functioning of the system in the form of automata (or
higher level descriptions, which are then translated into automata). In such a case, the natural
approach to verification is equivalence checking, which consists in comparing the system model
and its properties (both represented as automata) modulo some equivalence or preorder relation.
We develop equivalence checking tools that compare and minimize automata modulo various
equivalence and preorder relations; some of these tools also apply to stochastic and probabilistic
models (such as Markov chains).

� Logical properties express the intended functioning of the system in the form of temporal logic
formulas. In such a case, the natural approach to verification is model checking, which consists
in deciding whether the system model satisfies or not the logical properties. We develop model
checking tools for a powerful form of temporal logic, the modal �-calculus, which we extend with
typed variables and expressions so as to express predicates over the data contained in the model.
This extension (the practical usefulness of which was highlighted in many examples) provides for
properties that could not be expressed in the standard �-calculus (for instance, the fact that the value
of a given variable is always increasing along any execution path).

Although these techniques are efficient and automated, their main limitation is the state explosion problem,
which occurs when models are too large to fit in computer memory. We provide software technologies
(see § 4.1) for handling models in two complementary ways:

� Small models can be represented explicitly, by storing in memory all their states and transitions
(exhaustive verification);

� Larger models are represented implicitly, by exploring only the model states and transitions needed
for the verification (on the fly verification).

2.3. Languages and Compilation Techniques
Our research focuses on high level languages with an executable and formal semantics. The former

requirement stems from enumerative verification, which relies on the efficient execution of high level
descriptions. The latter requirement states that languages lacking a formal semantics are not suitable for safety
critical systems (as language ambiguities usually lead to interpretation divergences between designers and
implementors). Moreover, enumerative techniques are not always sufficient to establish the correctness of an
infinite system (they only deal with finite abstractions); one might need theorem proving techniques, which
only apply to languages with a formal semantics.

We are working on several languages with the above properties:

� LOTOS is an international standard for protocol description (ISO/IEC standard 8807:1989), which
combines the concepts of process algebras (in particular CCS and CSP) and algebraic abstract
data types. Thus, LOTOS can describe both asynchronous concurrent processes and complex data
structures.
We use LOTOS for various industrial case studies and we develop LOTOS compilers, which are part
of the CADP toolbox (see § 4.1).

Project-Team VASY 3

� Between 1992 and 2001, we contributed to the revision of LOTOS undertaken within ISO. This
led to the definition of E-LOTOS (Enhanced-LOTOS, ISO/IEC standard 15437:2001), which tries to
provide a greater expressiveness (for instance, by introducing quantitative time to describe systems
with real-time constraints) together with a better user friendliness.
Our contributions to E-LOTOS are available on the WEB (see http://www.inrialpes.fr/vasy/elotos).

� We are also working on an E-LOTOS variant, named LOTOS NT (LOTOS New Technology) [10][1],
in which we can experiment new ideas more freely than in the constrained framework of an
international standard. Like E-LOTOS, LOTOS NT consists of three parts: A data part, which
allows the description of data types and functions, a process part, which extends the LOTOS process
algebra with new constructs such as exceptions and quantitative time, and modules, which provide
for structure and genericity. Both languages differ in that LOTOS NT combines imperative and
functional features, and is also simpler than E-LOTOS in some respects (static typing, operator
overloading, arrays), which should make it easier to implement.
We are developing for LOTOS NT a prototype compiler named TRAIAN (see § 4.2).

2.4. Implementation and Experimentation
As much as possible, we try to validate our results by developing tools that we apply to complex (often

industrial) case studies. Such a systematic confrontation to implementation and experimentation issues is
central to our research.

3. Application Domains
The theoretical framework we use (automata, process algebras, bisimulations, temporal logics, etc.) and the

software tools we develop are general enough to fit the needs of many application domains. They are virtually
applicable to any system or protocol made of distributed agents communicating by asynchronous messages.
The list of recent case studies performed with the CADP toolbox (see in particular § 5.3) illustrates the diversity
of applications:

� Hardware architectures: asynchronous circuits, bus arbitration protocols, cache coherency protocols,
hardware/software codesign;

� Databases: transaction protocols, distributed knowledge bases, stock management;

� Consumer electronics: audiovisual remote control, video on-demand, FIREWIRE bus, home net-
working;

� Security protocols: authentication, electronic transactions, cryptographic key distribution;

� Embedded systems: smart-card applications, air traffic control;

� Distributed systems: virtual shared memory, distributed file systems, election algorithms, dynamic
reconfiguration algorithms, fault tolerance algorithms;

� Telecommunications: high speed networks, network management, mobile telephony, feature interac-
tion detection;

� Human-machine interaction: graphical interfaces, biomedical data visualization, etc.

4 Activity Report INRIA 2004

4. Software

4.1. The CADP Toolbox
Participants: Damien Bergamini, David Champelovier, Nicolas Descoubes, Hubert Garavel [contact person],
Christophe Joubert, Frédéric Lang, Radu Mateescu, Wendelin Serwe.

We maintain and enhance CADP (Construction and Analysis of Distributed Processes – formerly known
as CÆSAR/ALDÉBARAN Development Package), a toolbox for protocols and distributed systems engineering
(see http://www.inrialpes.fr/vasy/cadp). In this toolbox, we develop the following tools:

� CÆSAR.ADT [2] is a compiler that translates LOTOS abstract data types into C types and C functions.
The translation involves pattern-matching compiling techniques and automatic recognition of usual
types (integers, enumerations, tuples, etc.), which are implemented optimally.

� CÆSAR [9] is a compiler that translates LOTOS processes into either C code (for rapid prototyping
and testing purposes) or finite graphs (for verification purpose). The translation is done using several
intermediate steps, among which the construction of a Petri net extended with typed variables, data
handling features, and atomic transitions.

� OPEN/CÆSAR [3] is a generic software environment for developing tools that explore graphs on
the fly (for instance, simulation, verification, and test generation tools). Such tools can be developed
independently from any particular high level language. In this respect, OPEN/CÆSAR plays a central
role in CADP by connecting language-oriented tools with model-oriented tools. OPEN/CÆSAR

provides a set of libraries with their programming interfaces, as well as various tools, such as:

– BISIMULATOR [19], which checks bisimulation equivalences and preorders on the fly,

– DETERMINATOR, which eliminates nondeterminism in normal, probabilistic, or stochastic
systems,

– EVALUATOR [14], which evaluates regular alternation-free �-calculus formulas,

– EXECUTOR, which performs random execution,

– EXHIBITOR, which searches for execution sequences matching a given regular expression,

– GENERATOR and REDUCTOR, which construct the graph of reachable states,

– PROJECTOR, which computes abstractions of communicating systems,

– SIMULATOR, XSIMULATOR, and OCIS, which allow interactive simulation, and

– TERMINATOR, which searches for deadlock states.

� BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using efficient
compression techniques) and a software environment for handling this format. BCG also plays a key
role in CADP as many tools rely on this format for their inputs/outputs. The BCG environment
consists of various libraries with their programming interfaces, and of several tools, such as:

– BCG_DRAW, which builds a two-dimensional view of a graph,

– BCG_EDIT, which allows to modify interactively the graph layout produced by
BCG_DRAW,

– BCG_GRAPH, which generates various forms of practically useful graphs,

– BCG_INFO, which displays various statistical information about a graph,

– BCG_IO, which performs conversions between BCG and many other graph formats,

Project-Team VASY 5

– BCG_LABELS, which hides and/or renames (using regular expressions) the transition
labels of a graph,

– BCG_MIN, which minimizes a graph modulo strong or branching equivalences (and can
also deal with probabilistic and stochastic systems),

– BCG_STEADY, which performs steady-state numerical analysis of (extended) continuous-
time Markov chains,

– BCG_TRANSIENT, which performs transient numerical analysis of (extended) continuous-
time Markov chains, and

– XTL (eXecutable Temporal Language), which is a high level, functional language for
programming exploration algorithms on BCG graphs. XTL provides primitives to handle
states, transitions, labels, successor and predecessor functions, etc. For instance, one can
define recursive functions on sets of states, which allow to specify in XTL evaluation and
diagnostic generation fixed point algorithms for usual temporal logics (such as HML [48],
CTL [42], ACTL [53], etc.).

� The connection between explicit models (such as BCG graphs) and implicit models (explored on the
fly) is ensured by OPEN/CÆSAR-compliant compilers, e.g.:

– CÆSAR.OPEN, for models expressed as LOTOS descriptions,

– BCG_OPEN, for models represented as BCG graphs,

– EXP.OPEN, for models expressed as communicating automata, and

– SEQ.OPEN, for models represented as sets of execution traces.

The CADP toolbox also includes additional tools, such as ALDÉBARAN and TGV (Test Generation based

on Verification) developed by the VERIMAG laboratory (Grenoble) and the VERTECS team of INRIA Rennes.
The CADP tools are well-integrated and can be accessed easily using either the EUCALYPTUS graphical

interface or the SVL [5] scripting language. Both EUCALYPTUS and SVL provide users with an easy, uniform
access to the CADP tools by performing file format conversions automatically whenever needed and by
supplying appropriate command-line options as the tools are invoked.

6 Activity Report INRIA 2004

4.2. The TRAIAN Compiler
Participants: David Champelovier, Hubert Garavel [contact person], Frédéric Lang.

We develop a compiler named TRAIAN for translating descriptions written in the LOTOS NT language (see
§ 2.3) into C programs, which will be used for simulation, rapid prototyping, verification, and testing.

The current version of TRAIAN performs lexical analysis, syntactic analysis, abstract syntax tree construc-
tion, static semantics analysis, and C code generation for LOTOS NT types and functions.

Although this version of TRAIAN is still incomplete (it does not handle LOTOS NT processes), it already
found useful applications in compiler construction [7]. The recent compilers developed by the VASY team
— namely AAL (see § 5.1.4), EVALUATOR 4.0, EXP.OPEN 2.0 (see § 5.1.5), NTIF (see § 5.2.3), and SVL

(see § 5.1.5) — all contain a large amount of LOTOS NT code, which is then translated into C code by
TRAIAN. Our approach consists in using the SYNTAX tool (developed at INRIA Rocquencourt) for lexical and
syntactic analysis together with LOTOS NT for semantical aspects, in particular the definition, construction,
and traversals of abstract trees. Some involved parts of the compiler can also be written directly in C if
necessary. The combined use of SYNTAX, LOTOS NT, and TRAIAN proves to be satisfactory, as regards
both the rapidity of development and the quality of resulting compilers.

The TRAIAN compiler can be freely downloaded from the VASY WEB site (see http://www.inrialpes.fr/vasy/traian).

5. New Results

5.1. Models and Verification Techniques

5.1.1. The OPEN/CÆSAR Libraries

Participants: Nicolas Descoubes, Hubert Garavel, Wendelin Serwe.

The OPEN/CÆSAR libraries [3] are useful modules for on the fly verification, such as state tables, stacks,
bitmap tables, etc. These libraries play a discrete, yet central role in the CADP toolbox.

In 2004, we improved the OPEN/CÆSAR libraries in various ways:

� A new library named CAESAR_AREA was developed (800 lines of C code), which provides
for genericity by allowing different objects (states, labels, character strings, user-defined memory
blocks) to be handled uniformly.

� Another new library named CAESAR_MASK was developed (1; 260 lines of C code), which
exports primitives for applying sequences of hiding and renaming operations (defined using regular
expressions) to memory blocks. In particular, this library allows to hide and/or rename labels on the
fly. The DETERMINATOR, GENERATOR, PROJECTOR, and REDUCTOR tools have been enhanced
with this new functionality, and the code of the BCG_LABELS tool was greatly simplified by using
the new CAESAR_MASK library.

� The existing library CAESAR_TABLE was enhanced by taking advantage of the generic features of
CAESAR_AREA, which resulted in simpler and more expressive programming interfaces. Also, a
delicate problem regarding automatic insertion of padding bytes to satisfy alignment constraints was
solved. In spite of all this changes, binary compatibility was preserved so as not to impact existing
OPEN/CÆSAR tools developed by third-parties.

Project-Team VASY 7

5.1.2. The CÆSAR_SOLVE Library

Participant: Radu Mateescu.

CÆSAR_SOLVE is a generic software library for solving boolean equation systems of alternation depth 1
(i.e., without mutual recursion between minimal and maximal fixed point equations) on the fly. This library is
at the core of several CADP verification tools, namely the equivalence checker BISIMULATOR (see § 5.1.3),
the model checker EVALUATOR 4.0, and the � -confluence reduction tool. The resolution method is based on
boolean graphs, which provide an intuitive representation of dependencies between boolean variables; boolean
graphs are handled implicitly in a way similar to the OPEN/CÆSAR interface.

The CÆSAR_SOLVE library provides four different resolution algorithms: A1 and A2 are general algorithms
based upon depth-first, respectively breadth-first, traversals of boolean graphs; A3 and A4 are optimized for
the case of acyclic, respectively disjunctive/conjunctive, boolean graphs; they are based upon memory-efficient
depth-first traversals of boolean graphs. All these algorithms can generate diagnostics explaining why a result
is true or false (examples and counterexamples).

In 2004, the CÆSAR_SOLVE library (9; 640 lines of C code) was extended and improved as follows:

� The library was enhanced with a primitive that enumerates all the variables of a boolean equation
system that were stabilized (i.e., whose final value was determined) during the resolutions performed
on the system, either since the last call of the primitive, or since the creation of the system (in the
case of the first call of the primitive). This primitive provides useful diagnostic information, e.g., for
vacuity detection in model checking, which consists in determining, for a temporal logic formula,
its subformulas having the same truth value on all states.

� Several primitives of the library were simplified in order to enhance the user-friendliness of the
interface (e.g., the double pointer indirection was eliminated from the arguments of the primitive for
creating a boolean equation system) and to take advantage of the CÆSAR_AREA library newly added
to OPEN/CÆSAR (see § 5.1.1). Also, error management was improved in order to be compatible with
the other libraries of OPEN/CÆSAR.

� The textual format of boolean equation systems was enhanced to allow the specification of all the
parameters necessary to the creation and resolution of a system (e.g., resolution algorithm, single or
multiple resolutions, etc.). Also, the syntax of variable identifiers was simplified, and the size of the
variables of a boolean equation system read from a text file was reduced.

� The CÆSAR_SOLVE library became part of CADP in December 2004. The documentation of the
library interface (23 pages) was updated and extended with examples.

A paper about the CÆSAR_SOLVE library was accepted for publication [17].

5.1.3. The BISIMULATOR Tool

Participants: Damien Bergamini, Nicolas Descoubes, Radu Mateescu.

BISIMULATOR is an equivalence checker, which takes as input two graphs to be compared (one represented
implicitly using the OPEN/CÆSAR environment, the other represented explicitly as a BCG file) and determines
whether they are equivalent (modulo a given equivalence relation) or whether one of them is included in the
other (modulo a given preorder relation).

BISIMULATOR works on the fly, meaning that only those parts of the implicit graph pertinent to verification
are explored. Thanks to the use of OPEN/CÆSAR, BISIMULATOR can be applied directly to descriptions
written in high level languages (for instance, LOTOS). This is a significant improvement compared to
older tools (such as ALDÉBARAN and FC2IMPLICIT) which only accept lower level models (networks of
communicating automata).

BISIMULATOR works by reformulating the graph comparison problem in terms of a boolean equation sys-
tem, which is solved using the CÆSAR_SOLVE library (see § 5.1.2). A useful functionality of BISIMULATOR

is the generation of diagnostics (counterexamples), which explain why two graphs are not equivalent (or not

8 Activity Report INRIA 2004

included one in the other). The counterexamples generated by BISIMULATOR are directed acyclic graphs and
usually much smaller than those generated by other tools (such as ALDÉBARAN) that can only generate coun-
terexamples restricted to sets of traces.

In 2004, we continued the development of the BISIMULATOR tool (11; 700 lines of C code):

� The tool was enhanced with comparisons modulo the branching equivalence relation and its associ-
ated preorder relation. The generation of counterexamples for branching equivalence and its preorder
was also implemented.

� An optimized encoding of the branching and observational equivalence relations in terms of boolean
equation systems was designed, which exploits local absence of � -transitions to simplify the right-
hand sides of boolean equations. This optimization increased the performance of BISIMULATOR

roughly by a factor 2, both in terms of speed and memory consumption. It is worth noticing that
boolean equations can be simplified on the fly: There is no need to check before verification if the
explicit graph (represented in BCG format) does not contain � -transitions.

� The tool was enhanced with two new functionalities, implemented using the primitives newly added
to the CÆSAR_SOLVE library (see § 5.1.2): printing of the boolean equation system corresponding
to the equivalence checking problem in textual form, and printing of statistical information about its
resolution.

� In order to validate BISIMULATOR and compare its performance with other equivalence checking
tools, we continued the extensive experiments on realistic examples obtained from the CADP

distribution and the VLTS benchmark suite. The systematic use of BISIMULATOR allowed to detect
an error in the on the fly algorithm for branching equivalence implemented in the ALDÉBARAN tool.

� The encoding of boolean variables has been adapted in order to connect BISIMULATOR to the new
distributed resolution algorithm for boolean equation systems (see § 5.1.6). The new encoding en-
sures that the contents of the boolean variables, which are sent over the communication network
during the distributed resolution, are machine-independent, such that they can be interpreted unam-
biguously by all the processes involved in the distributed computation.

� The tool was properly documented [33] and integrated in CADP in December 2004.

The BISIMULATOR tool was subject to an accepted publication [19].

5.1.4. The AAL Tool

Participants: Damien Bergamini, David Champelovier, Nicolas Descoubes, Hubert Garavel, Radu Mateescu,
Wendelin Serwe.

In the framework of the ARCHWARE project (see § 6.1), we focus on the analysis of software architectures.
AAL (Architecture Analysis Language) is the language defined by ARCHWARE for expressing properties

of software architectures and architectural styles. AAL contains operators borrowed from first-order logic and
modal �-calculus, extended with predicates specific to architectural descriptions. It allows to specify both
style-related structural properties (e.g., connectivity between components, cardinality, etc.) and architecture-
related behavioral properties (e.g., safety, liveness, fairness).

AAF-MC (Architecture Analysis Formalism for Model Checking) is the fragment of AAL containing
properties to be verified using model checking. A large number of property patterns relevant to software
architectures are available as libraries defined in AAF-MC, and several fragments of AAF-MC, compatible
with usual equivalence relations (e.g., strong, branching, observational, and safety equivalences) are identified.

AAF-MC is equipped with a model checker that translates the temporal formulas expressed in AAF-MC

into boolean equation systems. The analysis methodology adopted by ARCHWARE consists in using the AAF-
MC model checker to verify correctness properties on execution traces generated during the simulation of an
architectural description [20].

In 2004, we continued the development of the AAF-MC model checker (16; 400 lines of code):

Project-Team VASY 9

� The model checker was enhanced with generation of diagnostics (examples and counterexamples)
as prefixes of the execution traces on which AAF-MC formulas are verified. This facilitates the
understanding of AAF-MC formulas and helps the user to debug an architecture.

� A new verification algorithm was added to the model checker, based upon a breadth-first search
resolution strategy of the underlying boolean equation system. Compared to the existing depth-first
search based algorithm, the new algorithm has the advantage of producing diagnostics of shortest
length.

� In collaboration with ARCHWARE partners, the AAF-MC model checker was integrated in the
ARCHWARE environment, which is centered around a virtual machine responsible for executing
architectural descriptions written in the ARCHWARE ADL (Architectural Description Language).
The various ARCHWARE tools (e.g., visual modeler, animator, model checker, etc.) are viewed as
COTS (components off the shelf) communicating with the virtual machine using WEB services. The
AAF-MC model checker was integrated in this environment by developing two software tools:

– a connector (350 lines of ADL code), which executes on the virtual machine and is
responsible for initiating the WEB service connection, launching the model checker on
a (possibly) remote machine, and sending the appropriate arguments (execution traces and
AAF-MC formulas) encoded as text files;

– a wrapper (520 lines of JAVA and UNIX shell code), which executes on the machine hosting
the model checker and is responsible for receiving the execution traces and the AAF-MC

formulas sent by the ADL connector, invoking the AAF-MC model checker, and sending
the results (truth value and diagnostic) back to the connector.

The AAF-MC model checker is described in two ARCHWARE deliverables [27][28]. R. Mateescu gave a
keynote presentation about this model checker at VVEIS’2004 (see § 8.3).

5.1.5. Compositional Verification Tools

Participant: Frédéric Lang.

The CADP toolbox contains various tools dedicated to compositional verification, among which
PROJECTOR 2.0, EXP.OPEN 2.0, and SVL play a central role.

PROJECTOR 2.0 is a tool (totally rewritten in 2002) that implements behaviour abstraction [47][52], by
taking into account interface constraints. In 2004, we improved PROJECTOR 2.0 by adding options to hide and
rename labels on the fly, based on the CÆSAR_MASK library, and we corrected a few bugs. A manual page
was written for PROJECTOR 2.0 [37] and the tool became part of CADP in December 2004.

EXP.OPEN 2.0 is a tool that explores on the fly the graph corresponding to a network of communicating
automata (represented as a set of BCG files). These automata are composed together in parallel using either
algebraic operators (as in CCS, CSP, LOTOS, and �CRL), “graphical” operators (as in E-LOTOS [50] and
LOTOS NT), or synchronization vectors (as in the MEC and FC2 tools). Additional operators are available
to hide and/or rename labels (using regular expressions) and to cut certain transitions. In 2004, we enhanced
EXP.OPEN 2.0 along the following lines:

� We took �CRL syntax conventions into account to extract information (gate, offers) from labels, thus
improving �CRL support.

� Based on feedback received from external users, we added warning messages when some synchro-
nization between automata cannot ever happen because one of the automata does not contain the
appropriate label.

10 Activity Report INRIA 2004

� We implemented a partial order reduction technique for stochastic models (based on observations
made in [49]), which consists in giving priority to invisible transitions over stochastic transitions,
thus expressing that invisible transitions are instantaneous. In collaboration with Holger Hermanns
and Sven Johr (Saarland University), we applied this technique to study a stochastic model of a
distributed mutual exclusion algorithm (see § 5.3). This allowed to divide by up to 5 the number of
states of the generated stochastic models.

� We also implemented a technique that allows to synthesize interface constraints imposed on one
automaton by (a subset of) its neighbour automata in a network of communicating automata. These
interface constraints can be given to the PROJECTOR 2.0 tool so as to generate the behaviour
corresponding to a process. We experimented this technique on two case studies, namely the
HAVI (Home Audio Video) protocol developed by eight consumer electronics companies (Grundig,
Hitachi, Matsushita, Philips, Sharp, Sony, Thomson, and Toshiba) and a cache coherence protocol
(see § 5.3), both modeled in LOTOS. The experiments allowed to reduce the state space of some
processes by one or two orders of magnitude, thus improving over existing techniques.

� A detailed manual page for EXP.OPEN 2.0 was written [36] and the tool became part of CADP in
August 2004. It is used in the framework of the FIACRE national action (see § 7.1) and at Saarland
University, among other places.

In 2004, we enhanced the SVL language and compiler along the following lines:

� SVL now uses the new BISIMULATOR tool (see § 5.1.3) to perform behavioural comparisons;

� SVL now uses PROJECTOR 2.0 to implement its abstraction operator, which allowed to extend this
operator with new functionalities;

� SVL now uses EXP.OPEN 2.0 to compute automata products, which allows to perform general label
hiding and renaming (previously, only a restricted form of label hiding was available).

5.1.6. Parallel and Distributed Verification Tools

Participants: Damien Bergamini, Nicolas Descoubes, Hubert Garavel, Christophe Joubert, Radu Mateescu.

Enumerative verification algorithms need to explore and store very large graphs and, thus, are often limited
by the capabilities of current sequential machines. To push forward the limits, we are studying parallel and
distributed algorithms adapted to the clusters of PCs and networks of workstations available in most research
laboratories.

Our initial efforts focused on parallelizing the graph construction algorithm [8], which is a bottleneck for
verification as it requires a considerable amount of memory to store all reachable states. In this respect, we
developed the following software:

� DISTRIBUTOR splits the construction of a graph over N machines communicating using sockets.
Each machine is required to build a fragment of the graph represented as a BCG file, the states being
distributed between the N machines by means of a statically determined hash function.

� BCG_MERGE merges the N graph fragments constructed by DISTRIBUTOR to obtain — after
renumbering states appropriately — a unique BCG file representing the entire graph.

� CÆSAR_NETWORK is a code library for distributed tools such as DISTRIBUTOR and BCG_MERGE.
It provides basic functionalities including: management of the machine configuration file that
contains the parameters of the distributed computation, process deployment protocol on a set of
remote machines, emission and reception of messages using blocking or non-blocking sockets,
communication buffer management, etc. CÆSAR_NETWORK allows a clear separation between
verification algorithms and communication primitives.

In 2004, we improved the distributed model checking tools as follows:

Project-Team VASY 11

� D. Bergamini fixed a few problems in the CÆSAR_NETWORK library and ported it to the MAC OS X
operating system.

� C. Joubert improved the algorithm used in DISTRIBUTOR 3.0 in order to optimize speed by reducing
busy waits and to solve an issue in termination detection. N. Descoubes adapted the code of
DISTRIBUTOR 3.0 to implement the modified algorithm.

� In the framework of the SENVA collaboration (see § 7.2), Stefan Blom (CWI, Amsterdam),
N. Descoubes, and H. Garavel defined the PBG (Partitioned BCG Graphs) format to represent
the concept of “partitioned labeled transition system” advocated in [8]. Then, N. Descoubes and
D. Bergamini implemented this new format in DISTRIBUTOR and BCG_MERGE, which simplified
the command-line interface of these tools.

� The DISTRIBUTOR and BCG_MERGE tools were ported to the WINDOWS and MAC OS X operating
systems, and the manual page of BCG_MERGE was finalized [30].

� C. Joubert continued the development of a distributed version of the CÆSAR_SOLVE library
(see § 5.1.2), which uses several machines to solve boolean equation systems on the fly. This
distributed version (currently 10; 000 lines of C code) implements a resolution algorithm based on a
breadth-first traversal of the boolean graph.
In 2004, this distributed algorithm was improved in order to produce diagnostics (boolean subgraphs
illustrating the truth value of boolean variables) and various statistical information about the
distributed resolution (e.g., number of variables and dependencies explored, number and size
of messages used for resolution and termination detection, computation and idle times for each
machine, etc.).

� C. Joubert developed a random generator of boolean equation systems in order to test the perfor-
mance of the distributed resolution algorithm. This tool (1; 000 lines of C code) produces boolean
equation systems (represented by the successor function of their corresponding boolean graph) ac-
cording to various parameters which vary randomly in a given domain: number of variables and
operators, number of true and false constants, proportion of disjunctive and conjunctive variables
in the right-hand sides of the equations, etc. An extensive set of distributed resolutions of boolean
equation systems with various forms produced by the random generator was performed on several
clusters of PCs (I-CLUSTER of the APACHE team, IDPOT of the ID-IMAG laboratory, and ION of the
SARDES team). These experiments showed a good behaviour of the distributed resolution algorithm:
quasi-linear speedup compared to the sequential breadth-first search algorithm of CÆSAR_SOLVE,
good scalability with the number of machines, low percentage of termination detection messages,
and low memory overhead. For example, a boolean equation system with 240 millions of variables
and 1 billion operators was solved in 28 minutes on a cluster with 17 machines.

� C. Joubert and R. Mateescu developed a prototype connection of the BISIMULATOR tool (see
§ 5.1.3) to the distributed boolean resolution algorithm in order to obtain distributed on the fly
equivalence checking functionalities. A large number of experiments were performed on the three
clusters of PCs mentioned above, using various graphs obtained from the CADP distribution and
the VLTS benchmark suite. Each experiment consisted in comparing a graph with its minimized
version modulo a given equivalence relation, which is the worst case for on the fly equivalence
checking algorithms, because the two graphs must be explored entirely. For all equivalence relations
implemented by BISIMULATOR, the experiments showed speedups close to linear (compared to the
sequential version of BISIMULATOR used in breadth-first search mode) and a balanced distribution
of work among machines.

Three papers on distributed model checking were either published or accepted for publication [23][24][19].

12 Activity Report INRIA 2004

5.1.7. Performance Evaluation Tools

Participants: Damien Bergamini, David Champelovier, Hubert Garavel, Christophe Joubert, Frédéric Lang,
Radu Mateescu.

In addition to its verification capabilities, the CADP toolbox contains several tools dedicated to performance
evaluation, namely BCG_MIN, BCG_STEADY, BCG_TRANSIENT, and DETERMINATOR. Contrary to most
CADP tools that operate on labeled transition systems, these tools operate on probabilistic/stochastic models
derived from discrete-time and continuous-time Markov chains.

In 2004, these tools have progressed as follows:

� D. Bergamini (with some help from H. Garavel) found a subtle semantic bug in the algorithm used
by BCG_MIN to minimize a probabilistic/stochastic model with respect to stochastic branching
bisimulation.

� D. Champelovier and H. Garavel finalized the BCG_STEADY and BCG_TRANSIENT prototype tools
developed in 2002 by C. Joubert and Holger Hermanns (Saarland University). The source code of
these tools (2; 700 lines of C code) was entirely scrutinized and revised; the command-line interface
was enhanced and the various output formats were improved. The draft manual pages were rewritten
[31][32]. These tools became part of CADP in November 2004.

� F. Lang revised the DETERMINATOR prototype tool developed in 2002 by C. Joubert and Holger
Hermanns (Saarland University). The source code was revised and two bugs were fixed. R. Mateescu
extended DETERMINATOR to eliminate nondeterminism from standard (i.e., non-stochastic) labeled
transition systems. The draft manual page was finalized [35] and DETERMINATOR (1; 650 lines of
C code) became part of CADP in December 2004.

5.1.8. Other Tool Developments

Participants: David Champelovier, Damien Bergamini, Nicolas Descoubes, Hubert Garavel, Frédéric Lang,
Radu Mateescu, Wendelin Serwe.

We also improved the following CADP tools and libraries:

� D. Champelovier, H. Garavel, and R. Mateescu enhanced the formula language of the
EVALUATOR 3.0 model checker by adding concatenation operators for strings and regular ex-
pressions. These operators provide a higher degree of parameterization for macro-definitions, which
allows to simplify the set of �-calculus formulas to be verified by EVALUATOR 3.0. Using these
operators, for instance, the set of formulas characterizing a dynamic reconfiguration protocol [43]
was reduced from 783 to 183 lines.

� W. Serwe reviewed the source code of the TGV tool [51] and fixed a bug occurring on WINDOWS

platforms only; he also ported TGV to the MAC OS X operating system and removed all compile-
time warnings.

� N. Descoubes and H. Garavel solved various issues in the INSTALLATOR tool and enhanced it with
new functionalities such as the support for remote connections based on SSH/SCP or KRSH/KCP,
and the sending of reminder messages to users before license expiration.

We pursued our continous work of adapting CADP to the latest computing platforms:

� We completed the port undertaken in 2003 of the CADP tools to the latest versions of the LINUX

kernel, GNU C library, and GCC 3 compiler.

� With the help of Stefan Blom (CWI, Amsterdam), we ported the CADP tools to AMD’s OPTERON

processors running in 32-bit mode.

Project-Team VASY 13

� We improved the integration of the CADP tools with WINDOWS, especially as regards support for
file names containing spaces and other blank characters.

� We ported all the CADP tools to the MAC OS X operating system.

We enhanced our software engineering environment used to develop and maintain CADP:

� We merged various lists of pending issues into one unique database (bug repository).

� We set up an automated non-regression testing for all the CADP demo examples and all computing
platforms. This revealed a few bugs specific to certain platforms; these bugs, undetected so far, were
fixed.

� Additionally, non-regression test suites dedicated to particular tools (namely, BCG_MIN,
BCG_STEADY, BCG_TRANSIENT, and DETERMINATOR) were developed.

5.2. Languages and Compilation Techniques

5.2.1. Compilation of the LOTOS Data Part

Participants: David Champelovier, Hubert Garavel.

In 2004, we deeply modified the CÆSAR.ADT compiler for the data part of LOTOS so as to implement a
feature requested by many users around the world.

Enumerative verification for specifications that contain typed values may require to enumerate exhaustively
the domains of certain types, i.e., the set of all values of certain types. To do this, CÆSAR.ADT generates
automatically iterators (i.e., fragments of C code) suitable for enumerating LOTOS types, which are basically
data types defined by a set of free constructors. Obviously, this can only be done for types with a finite domain.
CÆSAR.ADT also accepts iterators written by the user manually.

So far, the iterators generated automatically by CÆSAR.ADT were restricted to certain classes of LOTOS

types: (bounded) natural numbers, enumerated types, and tuple types. The changes brought to CÆSAR.ADT

in 2004 allow iterators to be generated for all finite LOTOS types, including the intricate case of union types,
which might be nested at any depth.

This improvement required a deep modification of the concept of iterators and the addition of 1; 000 new
lines of code in CÆSAR.ADT. In the former version of CÆSAR.ADT, an old-style iterator consisted of one
single C macro-definition (similar to a “for”-loop), whereas in the modified versions of CÆSAR.ADT, a new-
style iterator consists of two companion C macro-definitions (based on a “first/next” scheme).

A key issue was to maintain, as much as possible, backward compatibility with former versions of
CÆSAR.ADT, in particular by accepting old-style iterators already written by the users manually. In most
cases, the change is transparent to the end-user; otherwise, error messages are emitted, which will disappear
after minor modifications by the user.

The CÆSAR compiler, the predefined LOTOS data type libraries, and the CADP demo examples have been
updated so as to take advantage of new-style iterators.

5.2.2. Compilation of the LOTOS Process Part

Participants: Damien Bergamini, Hubert Garavel, Wendelin Serwe.

In 2004, we enhanced in several ways the CÆSAR compiler for the process part of LOTOS:

� We enhanced the optimization by which CÆSAR eliminates all “dead” transitions from its internal
network model (i.e., an extended Petri net model generated by CÆSAR from a source LOTOS

description).
Previously, the detection of “dead” transitions was done using an explicit state approach, by
enumerating all reachable markings. However, a benchmark experiment that we conducted in 2003
on a large LOTOS example provided to us by BULL demonstrated that symbolic methods were
superior for that task.

14 Activity Report INRIA 2004

For this reason, D. Bergamini developed in 2004 a new tool named CÆSAR.BDD [33] (900 lines of
C code), which uses symbolic methods (Binary Decision Diagrams) to compute structural properties
of basic Petri nets, including the set of “dead” transitions. The CÆSAR compiler was enhanced
to cooperate with CÆSAR.BDD for the elimination of “dead” transitions. The good performance
provided by the symbolic approach made possible to turn “dead” transitions elimination into a
systematic optimization, whereas it was previously only an optional one.

� We continued the work undertaken in 2003 about techniques for state space reduction, our goal being
to decrease the size of the graphs generated by CÆSAR, still preserving strong bisimulation between
the original and reduced graphs.
Our approach is based on live variable analysis, first proposed by H. Garavel and Juan Galvez [46].
The basic idea is to assign a canonical value to any variable that is no longer used, so as to avoid
distinguishing state vectors that only differ by the values of some variables not used in the future.
This is done by adapting classical data flow analysis to the extended Petri nets generated by CÆSAR

and by resetting to zero each variable as soon as it ceases to be alive.
Our approach is general enough to handle so-called hierarchical units, i.e., the possibility to split
each process into a set of concurrent sub-processes at an arbitrary nesting depth. In this model,
concurrent processes do not share variables; however, the variables of a parent process can be
consulted (but not modified) by its child sub-processes, a situation for which we designed several
heuristics.
In 2004, we identified a difficult problem arising in the particular case of “reset/use” conflicts, and
we refined our approach to handle such conflicts properly. This work led to publications [21][15].
We implemented our ideas in a prototype version of CÆSAR (about 5; 000 lines of additional C code),
which we applied to a benchmark suite of 518 LOTOS specifications, among which 289 appeared to
be relevant for assessing our approach; for the 229 others, the network variables could be eliminated
by optimizations already implemented in CÆSAR, such as constant detection and transformation
into registers (i.e., variables local to a transition). For 131 examples, the size of graphs generated
by CÆSAR was divided by a mean factor of 9 (with a maximum of 400) as regards the number of
states and a mean factor of 13 (with a maximum of 500) as regards the number of transitions. On
three further examples our prototype was capable to generate state space that the standard version
CÆSAR 6.2 could not handle due to lack of memory. For one of these examples, we observed a
reduction factor greater than 10

4.
Additionally, W. Serwe experimented further uses of data-flow analysis so as to reduce memory
requirements for enumerative verification.

5.2.3. Compilation of E-LOTOS

Participants: Aurore Collomb, David Champelovier, Hubert Garavel, Frédéric Lang.

As regards the data part of E-LOTOS, we continued to improve the TRAIAN compiler (see § 4.2), which is
distributed on the Internet (see § 8.1) and used intensively within the VASY team as a development tool for
compiler construction [7].

In 2004, we released a new version 2.4 of TRAIAN, which corrects two bugs of the previous version 2.3
issued in 2003. In addition, we ported the TRAIAN compiler to the MAC OS X and recent LINUX operating
systems.

We also continued to work on the compilation of the process part of E-LOTOS and LOTOS NT, which is
a difficult problem as these languages combine concurrency, quantitative time, and exceptions. To deal with
these problems progressively, we chose to focus first on the sequential processes present in E-LOTOS and
LOTOS NT. In 2002, we designed a formalism named NTIF (New Technology Intermediate Form) to be used
as an intermediate language for compiling and verifying E-LOTOS and LOTOS NT processes.

NTIF allows to specify extended automata parameterized by typed variables. Each transition is labeled
with an action (which allows communication with the environment according to the rendezvous semantics

Project-Team VASY 15

of process algebras) and a sequential code fragment to read and/or write variables. Compared to classical
“condition/action” (or “guarded commands”) automata, NTIF provides high level control structures (state-
ments “case”, “if-then-else”, “while”, etc.); this avoids the introduction of spurious intermediate states and
transitions, as well as the duplication of boolean conditions, an important source of errors [6].

Since 2003, NTIF also features quantitative time concepts, in the form of a “wait” operator that lets a given
amount of time elapse, timing tags on actions to express deadline and urgency, and a construct to capture the
time elapsed between the instant an action is enabled and the instant it actually occurs.

In 2004, we revised and simplified the semantics of timed NTIF automata, by observing that properties
inherent to time (namely time additivity, time determinism, and maximal progress) can be decoupled from
the structural semantics definition. To this aim, we defined a time equivalence relation on Timed Labeled

Transition Systems, the underlying model of NTIF. This lead to structural operational semantics rules that
are lightweight extensions of the untimed rules. Besides NTIF, this approach could be used to simplify the
(generally complex) semantics of many timed process algebras.

5.2.4. Source-Level Translations between Process Algebras

Participants: Hubert Garavel, Frédéric Lang, Gwen Salaün.

Although process algebras are, from a technical point of view, the best formalism to describe concurrent
systems, they are not used as widely as it could be. Besides the steep learning curve of process algebras,
which is traditionally mentioned as the main reason for this situation, it seems also that the process algebra
community scattered its efforts by developing too many languages, similar in concept but incompatible in
practice. Even the advent of two international standards, such as LOTOS (in 1989) and E-LOTOS (in 2001),
did not remedy to this fragmentation.

Because of this, process algebras other than LOTOS do not benefit from the advanced functionalities
provided by the CADP toolbox. In 2004, we started to address this problem by designing source-level
translators from various process algebras into LOTOS.

In the framework of the INRIA/LETI collaboration (see § 7.1), we focused on the process algebra CHP

(Communicating Hardware Processes) for which the TIMA laboratory has developed a circuit synthesis tool
named TAST and which is used by the LETI laboratory to describe complex, asynchronous circuits at a high
abstraction level.

G. Salaün undertook the development of a translator from CHP to LOTOS (currently, 2; 130 lines of SYNTAX

compiler-generator code, 1; 970 lines of LOTOS NT code, and 350 lines of C code). When completed, this
translator should allow CHP designs to be verified using CADP before being turned into asynchronous circuits
using TAST.

Besides the case of CHP, G. Salaün started studying translators for other process algebras, including
CSP/FDR2 and FSP.

5.3. Case Studies and Practical Applications
Participants: Damien Bergamini, David Champelovier, Aurore Collomb, Hubert Garavel, Christophe Joubert,
Frédéric Lang, Radu Mateescu, Gwen Salaün, Wendelin Serwe.

In 2004, the VASY team also worked on the following case studies:

� We collaborated with Gwen Salaün (formerly at University “La Sapienza”, Rome) on the verification
of negotiating WEB services involving clients and providers, who try to agree on some information
(e.g., prices) [55]. In this case study, we used our latest prototype of CÆSAR (see § 5.2.2) to verify
large configurations.

16 Activity Report INRIA 2004

� In the framework of the INRIA/LETI collaboration (see § 7.1), we studied the suitability of LOTOS

and CADP for the verification of asynchronous circuits. We developed a LOTOS specification (about
2; 000 lines of code) for an asynchronous circuit, designed by the LETI and TIMA laboratories,
which implements the DES (Data Encryption Standard) algorithm. We successfully verified several
correctness properties about the control flow of the circuit, such as absence of deadlocks, correct
number of iterations, etc.

� We studied a cache coherence protocol for a multiprocessor architecture specified in LOTOS by
Massimo Zendri (BULL) in 1999. This protocol is based on a remote directory used by concurrent
agents. Using a simple compositional verification approach, we could generate the state space for
5 agents, but failed to handle larger configurations, because the remote directory process became too
large (1 million states, 40 million transitions for 5 agents) to be generated in isolation for more than
5 agents. The automated interface generation feature of EXP.OPEN 2.0 (see § 5.1.5) allowed us to
constrain tightly the remote directory process (which never exceeded 60 states) and to generate the
state space for 7 agents (1 million states and 7 million transitions).

� We collaborated with Holger Hermanns and Sven Johr (Saarland University) to generate a stochas-
tic model of a distributed mutual exclusion algorithm. The model was obtained from the parallel
composition using EXP.OPEN 2.0 of “sequential” stochastic models corresponding to each concur-
rent process. Using the CADP toolbox, all configurations with up to 5 processes could be generated
without problem. For the configuration with 6 processes, we first generated, using DISTRIBUTOR

on a cluster of 8 machines, a PBG model (see § 5.1.6), which was unfortunately too large (224
million states, 1; 300 million transitions, 12 Gbytes) to fit on standard 32-bit file systems; there-
fore, we used the partial order reduction for stochastic systems implemented in EXP.OPEN 2.0 (see
Section 5.1.5) together with DISTRIBUTOR; using a cluster of 11 machines, we managed to generate
a much smaller, yet equivalent, state space (44 million states, 80 million transitions) in less than
7 minutes.

� We continued the work undertaken in collaboration with Grégory Batt and Hidde de Jong (HELIX

team of INRIA Rhône-Alpes) for connecting the GNA (Genetic Network Analyzer) tool developed
by HELIX with CADP in order to verify temporal properties of genetic regulatory networks.
GNA provides a simulator of qualitative models of genetic regulatory networks in the form of
piecewise-linear differential equations. The connection is performed by the GNA2BCG translator
from the graph format produced by GNA to the BCG format. The resulting BCG graph can be
simplified by eliminating instantaneous states using abstraction and reduction modulo branching
equivalence, and inspected visually by using the BCG_EDIT tool of CADP. Then, various temporal
properties concerning the behavior of the regulatory network (evolution of protein concentrations,
reachability of equilibrium states, etc.) can be verified using the EVALUATOR 3.0 model checker.
In 2004, we improved the translation between the graphs produced by GNA and those accepted by
CADP in order to preserve strong equivalence, and we defined the CTL operators, which are useful
for expressing properties of genetic regulatory networks, as a library (50 lines of regular alternation-
free �-calculus) in EVALUATOR 3.0. The joint use of GNA and CADP for model checking genetic
regulatory networks was subject to a publication [18].

� In the framework of the FORMALFAME contract (see § 6.2), we performed a comparative study of
the MUR� [45] and CADP verification tools. For this study, BULL selected as a benchmark a cache
coherence protocol for multiprocessor architectures present in the MUR� distribution (under the
name “CACHE3”).
We translated manually the MUR� code (1; 000 lines) into LOTOS (1; 800 lines of LOTOS). Both
languages do not provide the same level of description: MUR� requires a sequential abstraction in
which the entire protocol is viewed as a single sequential process handling global data, whereas
LOTOS allows a more detailed view, closer to the actual implementation, in which the protocol
consists of several distributed processes having their own local memories.

Project-Team VASY 17

We analysed using CADP several configurations of the protocol with one memory containing up to
2 different data values, one cache line, and up to 3 processors.
For the simplest configuration (one data value and one processor), the corresponding state space
(7; 694 states, 10; 242 transitions) could be generated in a few seconds.
For a more complex configuration (two data values and three processors), the compositional
verification tools of CADP allowed to generate the corresponding state space (about 3 million
states, 18 million transitions) in about 40 minutes on a standard PC. On the same example, MUR�,
when used without its symmetry reduction feature, took 58 minutes to generate a state space of
760; 000 states; enabling symmetry reduction led to a smaller state space (about 16; 000 states) that
could be generated in 3 minutes.
On this example, the state spaces generated using CADP are larger than those of MUR�, which
corresponds to the fact that, using LOTOS, we modeled the cache coherence protocol at a finer
degree of granularity.
On the opposite, the correctness properties that can be verified using MUR� are restricted to mere
state invariants on the variables of the MUR� specification (“white box” approach), whereas CADP

allows sophisticated properties relying the input and output events of the protocol (“black box”
approach); for instance, we specified the user-level view of memory consistency as a �-calculus
formula, which we evaluated using CADP.

� We collaborated with Judi Romijn and Stefan Vorstenbosch (Eindhoven University of Technology)
on the verification of the Net Update Protocol that is part of the IEEE P1394.1 draft standard.
In his Master thesis (May 2004), Stefan Vorstenbosch developed successive LOTOS specifications
for this protocol, which he tried to verify using the CADP toolbox.
We contributed to the specification task by suggesting to model broadcast (i.e., n-to-n communica-
tions) using LOTOS n-ary rendezvous. This allowed a significant reduction in the size of the Petri
nets generated by CÆSAR.
We contributed to the verification task by using our latest prototype of CÆSAR (see § 5.2.2), our
compositional verification tools (see § 5.1.5), and our distributed verification tools (see § 5.1.6) to
study complex configurations of the protocol.
Using CÆSAR directly on a single machine, we managed to generate the state space for one net
update (nearly 21; 000 states and 77; 000 transitions) and two net updates (nearly 2 million states
and 10 million transitions). Using a compositional approach, we managed to generate and minimize
a state space valid for any number of net updates (nearly 5 million states and 61 million transitions).
We discovered the presence of deadlocks in the protocol as soon as more than one net update was
allowed. Based on the counter-example traces reported by us, Stefan Vorstenbosch removed some
(but not all) deadlocks from the specification.
In September 2004, we studied an updated specification provided to us by Judi Romijn. Using
abstractions, compositional, and distributed verification, we generated a tractable state space (nearly
8 million states and 88 million transitions) despite the fact that some intermediate state spaces were
larger (28 million states and 487 million transitions). Unfortunately, this state space still contained
deadlocks, which are under investigation in Eindhoven.

Other teams also used the CADP toolbox for various case studies. To cite only recent work, we can mention:

� the verification of control properties of asynchronous circuits [39],

� the automatic verification of the Root Contention Protocol of the IEEE 1394 “FIREWIRE” bus [44],

� the formal specification and verification of a fair payment protocol [40],

� the formal specification and verification of middleware behavior for the CORBA transaction service
[54], and

� the parameterized specification and verification of the Chilean electronic invoice system [38].

18 Activity Report INRIA 2004

Other research teams took advantage of the software components provided by CADP (e.g., the BCG

and OPEN/CÆSAR environments) to build their own research software. We can mention the following
developments:

� the MCRL.OPEN tool, developed by Jaco van de Pol (CWI, Amsterdam), which compiles descrip-
tions written in the �CRL process algebra into C code that complies with the OPEN/CÆSAR pro-
gramming interface, thus allowing all CADP tools that operate on the fly to be applied to �CRL

descriptions; in the framework of the SENVA collaboration (see § 7.2 below), H. Garavel helped to
improve the memory performance of MCRL.OPEN;

� an abstract interpretation toolkit for �CRL [56], which uses CADP to verify modal labeled transition
systems generated from �CRL descriptions [57].

6. Contracts and Grants with Industry

6.1. The IST ArchWare European Contract
Participants: Damien Bergamini, David Champelovier, Aurore Collomb, Nicolas Descoubes, Hubert Garavel,
Christophe Joubert, Frédéric Lang, Radu Mateescu, Wendelin Serwe.

ARCHWARE (Architecting Evolvable Software) is a project of the European “Information Society Technolo-
gies” program (IST-2001-32360). Started on January 1st, 2002, ARCHWARE gathers the Research Consortium
of Pisa (CPR), The Engineering company (Italy), the University of Savoie (LISTIC laboratory and “Associa-
tion Interaction Université-Economie” — INTERUNEC), the THÉSAME company (France), the Universities of
Manchester and St Andrews (United Kingdom), and the VASY team of INRIA.

The aim of ARCHWARE is to build an integrated environment for architecting evolvable software systems
with functional and performance requirements. Based on a software architecture description language, this
environment will offer functionalities to define architectural styles specific to various activity domains, as well
as engineering tools for analyzing architectural descriptions. The role of VASY in ARCHWARE concerns the
description and verification of functional properties.

In 2004, we continued the development of the model checker for the AAL (Architecture Analysis Language)
fragment dedicated to the description of behavioral properties of software architectures, and we contributed to
the integration of this tool within the ARCHWARE environment (see § 5.1.4).

The description of ARCHWARE and of its current achievements was subject to a publication [26].

6.2. The FormalFame Contract
Participants: Damien Bergamini, Hubert Garavel, Radu Mateescu, Solofo Ramangalahy.

Since 1995, there has been a long-standing collaboration between VASY and BULL, to which the former
PAMPA team of INRIA Rennes participated until December 2000. This collaboration aims at demonstrating
that the formal methods and tools developed at INRIA for validating and testing telecommunication protocols
can also be successfully applied to BULL’s multiprocessor architectures. The long-term objective is to develop
a complete and integrated solution supporting formal specification, simulation, rapid prototyping, verification,
test generation, and test execution.

A first phase of this collaboration took place from 1995 to 1998 in the framework of the DYADE joint venture
between BULL and INRIA. Two case studies were successfully tackled: the POWERSCALE bus arbitration
protocol [41] and the POLYKID multiprocessor architecture [12]. The feasibility of the proposed approach
was established and BULL expressed its interest in pursuing the collaboration for its new architectures.

Since October 1998, we have been working on FAME, the CC-NUMA multiprocessor architecture developed
by BULL for its NOVASCALE series of high-performance servers based on INTEL ITANIUM 64 bits processors.
Initially informal, this collaboration was officialized in 1999 as a DYADE action named FORMALFAME,

Project-Team VASY 19

which lasted until the end of DYADE in March 2001. The collaboration went on under the form of a BULL-
INRIA contract, for which we kept the name FORMALFAME. In 2004, the collaboration was extended until
March 2005 by a followup contract named FORMALFAME PLUS.

FORMALFAME successively focused on several critical components of the FAME architecture: the CCS

circuit that manages communications for a group of four processors and the NCS circuit that manages network
communications (from October 1998 to November 1999), the B-SPS circuit – also referred to as FSS (Fame

Scalability Switch) – that implements the cache coherency protocol (from December 1999 to March 2002),
and, since then, the PRR block and the ILU unit, which are two sub-components of the B-SPS circuit to which a
particular attention is drawn. For each of these components, LOTOS descriptions were written, which provided
a formal basis for testing and verification.

Compared to the previous years, the nature of the BULL/INRIA collaboration evolved, for at least two
reasons: first, the NOVASCALE servers went to market successfully, meaning that the development of the
cache coherence protocol is over; second, BULL has acquired a sufficient autonomy in formal methods to
maintain by itself the LOTOS specifications developed for ILU and PRR. In this context, the contributions of
INRIA in 2004 were the following:

� expertise regarding some involved aspects of LOTOS and CADP,

� support for migration to the latest versions of CADP,

� compatibility patches allowing CADP to run on the old version of LINUX (REDHAT 7.3) for which
CADENCE’s tools are available,

� enhancements of CADP tools to address issues detected in previous years, and

� two case-studies on the formal verification of cache coherency protocols (see § 5.3).

7. Other Grants and Activities

7.1. National Collaborations
In 2004, our preliminary collaboration with the LETI laboratory of CEA-Grenoble was formalized in

the framework of the INRIA/LETI co-operation agreement. VASY is involved in a research action about
asynchronous circuits, GALS (Globally Asynchronous Locally Synchronous) architectures, NOC (Network on

Chip), and SOC (System on Chip), together with LETI scientists (Edith Beigné, François Bertrand, and Pascal
Vivet). The TIMA laboratory (Dominique Borrione, Menouer Boubekeur, and Marc Renaudin) also contributes
to this research action. The goal is to build software tools for the design of asynchronous circuits; such circuits
are very promising in terms of high-performance, low-power, low-emission, and modularity; however, their
design is difficult due to the complexity inherent to asynchronous concurrency. In 2004, our work focused
on the verification of an asynchronous circuit implementing the DES encryption standard (see § 5.3) and on
the development of a translator to interconnect the verification tools developed by VASY and the hardware
synthesis tools developed at TIMA (see § 5.2.4).

Together with the project-team OASIS of INRIA Sophia-Antipolis (Isabelle Attali, Tomas Barros, Rabea
Boulifa, Eric Madelaine, and Bernard Serpette), the LTCI team of ENST-Paris (Elie Najm and Sylvie
Vignes), and the SVF team of the FERIA-LAAS laboratory (Bernard Berthomieu and François Vernadat),
VASY is part of the national action FIACRE – ACI Sécurité Informatique started in 2004 (see http://www-
sop.inria.fr/oasis/fiacre). F. Lang played a major role in launching the FIACRE action.

In 2004, we collaborated with several INRIA teams:

� APACHE and SARDES (Rhône-Alpes): use of the I-CLUSTER, IDPOT, and ION clusters to experi-
ment parallel and distributed verification algorithms (see § 5.1.6);

� HELIX (Rhône-Alpes): applications of model checking to biological systems (Grégory Batt and
Hidde de Jong);

20 Activity Report INRIA 2004

� OASIS (Sophia-Antipolis): collaboration in the framework of the FIACRE action;

� VERTECS (Rennes): enhancements to the TGV tool (Thierry Jéron).

Beyond INRIA, we had scientific relations with the following team:

� LAMI laboratory (Evry): coordination of distributed processes with behavioral interfaces (Pascal
Poizat).

Finally, H. Garavel is an INRIA representative at CNRT-AE (Centre National de Recherche Technologique

– Aéronautique et Espace) and at the national project NUM@TEC AUTOMOTIVE.

7.2. International Collaborations
In 2004, the VASY team of INRIA and the SEN2 team of CWI launched a joint research team on safety-

critical systems (see http://www.inrialpes.fr/vasy/senva). This initiative is supported by INRIA’s European and
International Affairs Department.

The VASY team is member of the FMICS (Formal Methods for Industrial Critical Systems) working group
of ERCIM (see http://www.inrialpes.fr/vasy/fmics). From July 1999 to July 2001, H. Garavel chaired this
working group. Since July 2002, he is member of the FMICS Board, in charge of dissemination actions. On
April 20–22, 2004, R. Mateescu organized in Aix-les-Bains an FMICS seminar devoted to the preparation of a
“Formal Methods Handbook”.

H. Garavel is a member of the technical committee (ETItorial Board) of the ETI (Electronic Tool Integra-

tion) software development platform.
We maintain scientific relations with several international universities and research centers. In addition to

our partners in aforementioned contractual collaborations, we had scientific exchanges in 2004 with:

� Eindhoven University of Technology (Judi Romijn and Stefan Vorstenboch),

� University of Kent at Canterbury (Clara Benac Earle),

� University of Rome “La Sapienza” (Gwen Salaün),

� Radboud University Nijmegen (Tim Willemse),

� Saarland University (Holger Hermanns and Sven Johr),

� University of Twente (Axel Belinfante).

Project-Team VASY 21

7.3. Visits and Invitations
In the framework of the ARCHWARE project (see § 6.1) and the SENVA collaboration (see § 7.2), we invited

the following visitors:

� Jaco van de Pol (CWI, Amsterdam), visited us on May 3–4, 2004. He gave a demonstration of the
�CRL toolset.

� Stefan Blom, Wan Fokkink, Bert Lisser, and Jaco van de Pol (CWI, Amsterdam), Judi Romijn
(University of Eindhoven), Holger Hermanns and Sven Johr (Saarland University) attended the
SENVA 2004 workshop, held in Allevard-Les-Bains on June 21–24, 2004:

– Stefan Blom gave a talk entitled “Bisimulation Reduction Using Signature Based Partition

Refinement”.
– Wan Fokkink gave a talk entitled “Verification of a Sliding Window Protocol in �CRL”.
– Holger Hermanns gave three talks entitled “Stochastic Modelling and Analysis”, “Model

Checking Markov Chains and Decision Processes”, and “MODEST: A Model Description

Language for Stochastic Timed Systems”.
– Sven Johr gave a talk entitled “Turning Interactive Markov Chains to Continuous-Time

Markov Decision Processes”.
– Bert Lisser gave a talk entitled “Reducing state spaces by transforming linear process

equations” and gave a demonstration of the JSIM-BFS simulator.
– Jaco van de Pol gave a talk entitled “Abstract Model Checking for Process Algebra”.
– Judi Romijn gave two talks entitled “Guiding Spin Simulation” and “Correcting IEEE

1394.1 FireWire Net Update”.

� Nando Gallo (CPR, Pisa), Brian Warboys (University of Manchester), Flavio Oquendo (Université de
Savoie), and Regis Dindeleux (THESAME) visited us on September 14–16, 2004 for an ARCHWARE

project meeting that we organized.
� Stefan Blom visited us on September 21–25, 2004. He gave a talk entitled “Model Checking Archive:

A File Format for Distributed State Space Generation Using a Central Storage Location”.

8. Dissemination
8.1. Software Dissemination and Internet Visibility

The VASY team distributes two main software tools: the CADP toolbox (see § 4.1) and the TRAIAN compiler
(see § 4.2). In 2004, the main facts are the following:

� We prepared and distributed 21 successive beta-versions (2002-x, ..., 2002-z, 2003-a, ..., 2003-r) of
CADP.

� The number of license contracts signed for CADP increased from 307 to 330.
� We were requested to grant CADP licenses for 679 different computers in the world.
� The distribution of the TRAIAN compiler continued and a new version 2.4 of TRAIAN (see § 5.2.3)

was released on June 8, 2004.
� The TRAIAN compiler was downloaded by 76 different sites.

The VASY WEB site was regularly updated with scientific contents, announcements, publications, etc. Most
notably, the following contents were produced in 2004:

� The CADP WEB site was entirely redesigned. More readable and better structured, the new WEB

site also features CADP latest news and enhancements (see http://www.inrialpes.fr/vasy/cadp).
� The CADP Frequently Asked Questions page was enriched with 18 new entries (see

http://www.inrialpes.fr/vasy/cadp/faq.html).

22 Activity Report INRIA 2004

8.2. Program Committees
In 2004, the members of VASY assumed the following responsibilities:

� H. Garavel was, together with John Hatcliff (Kansas State University), responsible for a special issue
of the TCS (Theoretical Computer Science) journal, to appear, which gathers the best theory-oriented
papers of TACAS’2003.

� H. Garavel was, together with John Hatcliff (Kansas State University), responsible for a special
issue of the STTT (Software Tools for Technology Transfer) journal, to appear, which gathers the
best software-oriented papers of TACAS’2003.

� R. Mateescu was a program committee member of VVEIS’2004 (2nd International Workshop on

Verification and Validation of Enterprise Information Systems, Porto, Portugal, April 13, 2004).

� R. Mateescu was a program committee member of EWSA’2004 (1st European Workshop on Software

Architectures, St Andrews, Scotland, May 21–22, 2004).

� H. Garavel was a program committee member of PDMC’2004 (3rd International Workshop on

Parallel and Distributed Methods in Verification, London, England, August 31–September 3, 2004)
and contributed to paper selection for a related special issue of the FMSD (Formal Methods in System

Design) journal.

� R. Mateescu was a program committee member of FMICS’2004 (9th International Workshop on

Formal Methods for Industrial Critical Systems, Linz, Austria, September 20–21, 2004).

8.3. Lectures and Invited Conferences
In 2004, we gave talks in several international conferences and workshops (see bibliography below).

Additionally:

� H. Garavel participated to the scientific committee of the 11th INRIA-Industry meeting on software
engineering (INRIA Rocquencourt) on January 27, 2004. At this meeting, he also gave a talk entitled
“Analyse et vérification automatique de systèmes asynchrones”, and F. Lang and R. Mateescu
demonstrated the CADP toolbox.

� A. Collomb gave a talk entitled “Vers des systèmes asynchrones sûrs” at the LISTIC laboratory
(Annecy) on March 18, 2004.

� H. Garavel gave an invited talk entitled “Almost Ten Years of Process Algebras and Model Checking

for Multiprocessor Architectures” at X-TACAS, the 10th Anniversary of TACAS (Barcelona, Spain)
on March 27–28, 2004.

� R. Mateescu gave a keynote presentation entitled “A Generic Framework for Model Checking Soft-

ware Architectures” at the 2nd International Workshop on Verification and Validation of Enterprise
Information Systems VVEIS’2004 (Porto, Portugal) on April 13–14, 2004.

� H. Garavel gave a talk entitled “Almost Ten Years of Process Algebras and Model Checking for

Multiprocessor Architectures” at the PAM (Process Algebra Meeting) held at CWI (Amsterdam, The
Netherlands) on May 12, 2004.

� The annual SENVA seminar was held in Allevard-Les-Bains on June 21–24, 2004. The list of talks
is available from http://www.inrialpes.fr/vasy/senva/workshop2004.

� F. Lang gave two talks entitled “Compositional Verification Using CADP of the SCALAGENT

Deployment Protocol for Software Components” and “Activités de recherche du projet VASY” at
the kick-off meeting of the FIACRE national action (INRIA Sophia-Antipolis) on November 22–23,
2004.

Project-Team VASY 23

� C. Joubert gave a talk entitled “Analyse d’espaces d’états par résolution distribuée de systèmes

d’équations booléennes” at the “Journée des doctorants de l’Ecole Doctorale Mathématiques,

Informatique, Sciences et Technologies de l’Information” MSTII’2004 (Grenoble) on December 2,
2004.

� G. Salaün gave an invited talk entitled “Specification and Verification of Asynchronous Systems” at
the Indo-French Seminar on Information Technology organized by IFCPAR, the Indo-French Centre
for the Promotion of Advanced Research (Pune, India) on December 10, 2004.

8.4. Teaching Activities
The VASY team is a host team for:

� The computer science master entitled “Informatique : Systèmes et Logiciels”, common to Institut
National Polytechnique de Grenoble and Université Joseph Fourier,

� The computer science master entitled “Informatique : communication et coopération dans les

systèmes à agents” of Université de Savoie.

In 2004:

� C. Joubert gave the course on “Algorithmique et programmation impérative” to computer science
students at Université Joseph Fourier, Grenoble (license 2nd year, 37.5 hours).

� C. Joubert gave the course on “Architecture Logicielle et Matérielle” to the 2nd year students of IUP

MIAGE at Université Joseph Fourier, Grenoble (18 hours).

� C. Joubert gave the course on “Géométrie euclidienne, analyse approfondie et introduction à

l’algébre linéaire” to computer science students at Université Joseph Fourier, Grenoble (license 1st
year, 20 hours).

� R. Mateescu and W. Serwe gave the course on “Temps Réel” to the 3rd year students of ENSIMAG

(21 hours).

� H. Garavel was a jury member of Jun Pang’s PhD thesis entitled “Formal Verification of Distributed

Systems”, defended at the Free University of Amsterdam (The Netherlands) on October 26, 2004.

� H. Garavel was a jury member of Nestor Cataño Collado’s PhD thesis entitled “Méthodes formelles

pour la vérification des programmes Java”, defended at Université Paris 7 on November 4, 2004.

� R. Mateescu was a jury member of Rabea Boulifa’s PhD thesis entitled “Génération de modèles

comportementaux des applications réparties”, defended in Sophia-Antipolis on December 15, 2004.

� R. Mateescu was a member of the “commission de spécialistes” at Université de Savoie (section 27).

24 Activity Report INRIA 2004

9. Bibliography

Major publications by the team in recent years

[1] H. GARAVEL. Défense et illustration des algèbres de processus, in "Actes de l’Ecole d’été Temps Réel
ETR 2003 (Toulouse, France)", Z. MAMMERI (editor)., Institut de Recherche en Informatique de Toulouse,
September 2003.

[2] H. GARAVEL. Compilation of LOTOS Abstract Data Types, in "Proceedings of the 2nd International Conference
on Formal Description Techniques FORTE’89 (Vancouver B.C., Canada)", S. T. VUONG (editor)., North-
Holland, December 1989, p. 147–162.

[3] H. GARAVEL. OPEN/CÆSAR: An Open Software Architecture for Verification, Simulation, and Testing, in
"Proceedings of the First International Conference on Tools and Algorithms for the Construction and Analysis
of Systems TACAS’98 (Lisbon, Portugal), Berlin", B. STEFFEN (editor)., Lecture Notes in Computer Science,
Full version available as Inria Research Report RR-3352, vol. 1384, Springer Verlag, March 1998, p. 68–84,
http://www.inria.fr/rrrt/rr-3352.html.

[4] H. GARAVEL, H. HERMANNS. On Combining Functional Verification and Performance Evaluation us-

ing CADP, in "Proceedings of the 11th International Symposium of Formal Methods Europe FME’2002
(Copenhagen, Denmark)", L.-H. ERIKSSON, P. A. LINDSAY (editors)., Lecture Notes in Computer Science,
Full version available as Inria Research Report 4492, vol. 2391, Springer Verlag, July 2002, p. 410–429,
http://www.inria.fr/rrrt/rr-4492.html.

[5] H. GARAVEL, F. LANG. SVL: a Scripting Language for Compositional Verification, in "Proceedings of
the 21st IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed
Systems FORTE’2001 (Cheju Island, Korea)", M. KIM, B. CHIN, S. KANG, D. LEE (editors)., Full version
available as Inria Research Report RR-4223, Kluwer Academic Publishers, IFIP, August 2001, p. 377–392,
http://www.inria.fr/rrrt/rr-4223.html.

[6] H. GARAVEL, F. LANG. NTIF: A General Symbolic Model for Communicating Sequential Processes with Data,
in "Proceedings of the 22nd IFIP WG 6.1 International Conference on Formal Techniques for Networked and
Distributed Systems FORTE’2002 (Houston, Texas, USA)", D. PELED, M. VARDI (editors)., Lecture Notes
in Computer Science, Full version available as Inria Research Report RR-4666, vol. 2529, Springer Verlag,
November 2002, p. 276–291, http://www.inria.fr/rrrt/rr-4666.html.

[7] H. GARAVEL, F. LANG, R. MATEESCU. Compiler Construction using LOTOS NT, in "Proceedings of the 11th
International Conference on Compiler Construction CC 2002 (Grenoble, France)", N. HORSPOOL (editor).,
Lecture Notes in Computer Science, vol. 2304, Springer Verlag, April 2002, p. 9–13.

[8] H. GARAVEL, R. MATEESCU, I. SMARANDACHE. Parallel State Space Construction for Model-Checking, in
"Proceedings of the 8th International SPIN Workshop on Model Checking of Software SPIN’2001 (Toronto,
Canada), Berlin", M. B. DWYER (editor)., Lecture Notes in Computer Science, Full version available as
Inria Research Report RR-4341, vol. 2057, Springer Verlag, May 2001, p. 217–234, http://www.inria.fr/rrrt/rr-
4341.html.

[9] H. GARAVEL, J. SIFAKIS. Compilation and Verification of LOTOS Specifications, in "Proceedings of the

Project-Team VASY 25

10th International Symposium on Protocol Specification, Testing and Verification (Ottawa, Canada)", L.
LOGRIPPO, R. L. PROBERT, H. URAL (editors)., North-Holland, IFIP, June 1990, p. 379–394.

[10] H. GARAVEL, M. SIGHIREANU. Towards a Second Generation of Formal Description Techniques – Rationale

for the Design of E-LOTOS, in "Proceedings of the 3rd International Workshop on Formal Methods for
Industrial Critical Systems FMICS’98 (Amsterdam, The Netherlands), Amsterdam", J.-F. GROOTE, B.
LUTTIK, JOS VAN. WAMEL (editors)., Invited talk, CWI, May 1998, p. 187–230.

[11] H. GARAVEL, M. SIGHIREANU. A Graphical Parallel Composition Operator for Process Algebras, in "Pro-
ceedings of the Joint International Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification, Testing, and Verification FORTE/PSTV’99 (Beijing,
China)", J. WU, Q. GAO, S. T. CHANSON (editors)., Kluwer Academic Publishers, IFIP, October 1999, p.
185–202.

[12] H. GARAVEL, C. VIHO, M. ZENDRI. System Design of a CC-NUMA Multiprocessor Architecture using

Formal Specification, Model-Checking, Co-Simulation, and Test Generation, in "Springer International Journal
on Software Tools for Technology Transfer (STTT)", Full version available as Inria Research Report RR-4041,
vol. 3, no 3, July 2001, p. 314–331, http://www.inria.fr/rrrt/rr-4041.html.

[13] R. MATEESCU. A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems, in "Proceedings
of the 9th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
TACAS’2003 (Warsaw, Poland)", H. GARAVEL, J. HATCLIFF (editors)., Lecture Notes in Computer Science,
Full version available as Inria Research Report RR-4711, vol. 2619, Springer Verlag, April 2003, p. 81–96,
http://www.inria.fr/rrrt/rr-4711.html.

[14] R. MATEESCU, M. SIGHIREANU. Efficient On-the-Fly Model-Checking for Regular Alternation-Free Mu-

Calculus, in "Science of Computer Programming", vol. 46, no 3, March 2003, p. 255–281.

Articles in referred journals and book chapters

[15] H. GARAVEL, W. SERWE. State Space Reduction for Process Algebra Specifications, in "Theoretical
Computer Science", to appear, 2005.

[16] F. LANG. Explaining the Lazy Krivine Machine Using Explicit Substitution and Addresses, in "Journal of
Higher-Order and Symbolic Computation, special issue on Krivine’s machine", to appear, 2005.

[17] R. MATEESCU. CAESAR_SOLVE: A Generic Library for On-the-Fly Resolution of Alternation-Free Boolean

Equation Systems, in "Springer International Journal on Software Tools for Technology Transfer (STTT)", to
appear, 2005.

Publications in Conferences and Workshops

[18] G. BATT, D. BERGAMINI, H. DE JONG, H. GARAVEL, R. MATEESCU. Model Checking Genetic Regulatory

Networks using GNA and CADP, in "Proceedings of the 11th International SPIN Workshop on Model
Checking of Software SPIN’2004 (Barcelona, Spain)", S. GRAF, L. MOUNIER (editors)., Lecture Notes in
Computer Science, vol. 2989, Springer Verlag, April 2004, p. 156–161.

26 Activity Report INRIA 2004

[19] D. BERGAMINI, N. DESCOUBES, C. JOUBERT, R. MATEESCU. BISIMULATOR: A Modular Tool for On-

the-Fly Equivalence Checking, in "Proceedings of the 11th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems TACAS’2005 (Edinburgh, Scotland, UK)", N. HALBWACHS,
L. ZUCK (editors)., Lecture Notes in Computer Science, to appear, Springer Verlag, April 2005.

[20] H. GARAVEL, R. MATEESCU. SEQ.OPEN: A Tool for Efficient Trace-Based Verification, in "Proceedings of
the 11th International SPIN Workshop on Model Checking of Software SPIN’2004 (Barcelona, Spain)", S.
GRAF, L. MOUNIER (editors)., Lecture Notes in Computer Science, vol. 2989, Springer Verlag, April 2004,
p. 150–155.

[21] H. GARAVEL, W. SERWE. State Space Reduction for Process Algebra Specifications, in "Proceedings of the
10th International Conference on Algebraic Methodology and Software Technology AMAST’2004 (Stirling,
Scotland, UK)", C. RATTRAY, S. MAHARAJ, C. SHANKLAND (editors)., Lecture Notes in Computer Science,
vol. 3116, Springer Verlag, July 2004, p. 164–180.

[22] B. JEANNET, W. SERWE. Abstracting Call-Stacks for Interprocedural Verification of Imperative Programs,
in "Proceedings of the 10th International Conference on Algebraic Methodology and Software Technology
AMAST’2004 (Stirling, Scotland, UK)", C. RATTRAY, S. MAHARAJ, C. SHANKLAND (editors)., Lecture
Notes in Computer Science, vol. 3116, Springer Verlag, July 2004, p. 258–273.

[23] C. JOUBERT, R. MATEESCU. Distributed On-the-Fly Equivalence Checking, in "Proceedings of the 3rd
International Workshop on Parallel and Distributed Methods in Verification PDMC’2004 (London, UK)", L.
BRIM, M. LEUCKER (editors)., Electronic Notes in Theoretical Computer Science, Elsevier, 2004.

[24] C. JOUBERT, R. MATEESCU. Distributed Local Resolution of Boolean Equation Systems, in "Proceedings of
the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing PDP’2005 (Lugano,
Switzerland)", F. TIRADO, M. PRIETO (editors)., to appear, IEEE Computer Society, February 2005.

[25] R. MATEESCU. Model Checking for Software Architectures, in "Proceedings of the 1st European Workshop
on Software Architecture EWSA’2004 (St Andrews, Scotland, UK)", F. OQUENDO, B. WARBOYS, R.
MORRISON (editors)., Lecture Notes in Computer Science, vol. 3047, Springer Verlag, May 2004, p. 219–224.

[26] F. OQUENDO, B. WARBOYS, R. MORRISON, R. DINDELEUX, F. GALLO, H. GARAVEL, C. OCCHIPINTI.
ArchWare: Architecting Evolvable Software, in "Proceedings of the 1st European Workshop on Software
Architecture EWSA’2004 (St Andrews, Scotland, UK)", F. OQUENDO, B. WARBOYS, R. MORRISON

(editors)., Lecture Notes in Computer Science, Invited paper, vol. 3047, Springer Verlag, May 2004, p. 257-
271.

Internal Reports

[27] D. BERGAMINI, D. CHAMPELOVIER, N. DESCOUBES, H. GARAVEL, R. MATEESCU, W. SERWE. ArchWare

Architecture Analysis Tool by Model-Checking, Project Deliverable, no D3.6b, IST Project 2001-32360
“ArchWare”, June 2004.

[28] D. BERGAMINI, D. CHAMPELOVIER, N. DESCOUBES, H. GARAVEL, R. MATEESCU, W. SERWE. Final

ArchWare Architecture Analysis Tool by Model-Checking, Project Deliverable, no D3.6c, IST Project 2001-
32360 “ArchWare”, December 2004.

Project-Team VASY 27

Miscellaneous

[29] W. FOKKINK, H. GARAVEL, J. VAN DE POL. CWI and INRIA join Forces on Safety Critical Systems, Ercim
News 58, July 2004.

[30] VASY. Bcg_Merge Manual Page, December 2004, http://www.inrialpes.fr/vasy/cadp/man/bcg_merge.html.

[31] VASY. Bcg_Steady Manual Page, December 2004, http://www.inrialpes.fr/vasy/cadp/man/bcg_steady.html.

[32] VASY. Bcg_Transient Manual Page, December 2004, http://www.inrialpes.fr/vasy/cadp/man/bcg_transient.html.

[33] VASY. Bisimulator Manual Page, December 2004, http://www.inrialpes.fr/vasy/cadp/man/bisimulator.html.

[34] VASY. Caesar.Bdd Manual Page, July 2004, http://www.inrialpes.fr/vasy/cadp/man/caesar.bdd.html.

[35] VASY. Determinator Manual Page, December 2004, http://www.inrialpes.fr/vasy/cadp/man/determinator.html.

[36] VASY. Exp.Open Version 2 Manual Page, August 2004, http://www.inrialpes.fr/vasy/cadp/man/exp.open.html.

[37] VASY. Projector Version 2 Manual Page, December 2004, http://www.inrialpes.fr/vasy/cadp/man/projector.html.

Bibliography in notes

[38] I. ATTALI, T. BARROS, E. MADELAINE. Parameterized Specification and Verification of the Chilean

Electronic Invoices System, in "Proceedings of the XXIV International Conference of the Chilean Computer
Science Society SCCC’04 (Arica, Chili)", IEEE, Society for Computer Simulation International, November
2004, p. 14–25.

[39] D. BORRIONE, M. BOUBEKEUR, L. MOUNIER, M. RENAUDIN, A. SIRIANNI. Validation of Asynchronous

Circuit Specifications using IF/CADP, in "Proceedings of the International Conference on Very Large Scale
Integration of System-on-Chip VLSI-SoC 2003 (Darmstadt, Germany), Darmstadt", M. GLESNER, R. A. DA

LUZ REIS, H. EVEKING, V. J. MOONEY, L. S. INDRUSIAK, P. ZIPF (editors)., December 2003, p. 86–91.

[40] J. G. CEDERQUIST, M. T. DASHTI. Formal Analysis of a Fair Payment Protocol, Technical Report, no SEN-
R0410, CWI, Amsterdam, The Netherlands, July 2004.

[41] G. CHEHAIBAR, H. GARAVEL, L. MOUNIER, N. TAWBI, F. ZULIAN. Specification and Verification of the

PowerScale Bus Arbitration Protocol: An Industrial Experiment with LOTOS, in "Proceedings of the Joint
International Conference on Formal Description Techniques for Distributed Systems and Communication
Protocols, and Protocol Specification, Testing, and Verification FORTE/PSTV’96 (Kaiserslautern, Germany)",
R. GOTZHEIN, J. BREDEREKE (editors)., Full version available as Inria Research Report RR-2958, Chapman
& Hall, IFIP, October 1996, p. 435–450, http://www.inria.fr/rrrt/rr-2958.html.

[42] E. M. CLARKE, E. A. EMERSON, A. P. SISTLA. Automatic Verification of Finite-State Concurrent Systems

using Temporal Logic Specifications, in "ACM Transactions on Programming Languages and Systems", vol.
8, no 2, April 1986, p. 244–263.

28 Activity Report INRIA 2004

[43] M. A. CORNEJO, H. GARAVEL, R. MATEESCU, N. DE PALMA. Specification and Verification of a

Dynamic Reconfiguration Protocol for Agent-Based Applications, in "Proceedings of the 3rd IFIP WG
6.1 International Working Conference on Distributed Applications and Interoperable Systems DAIS’2001
(Krakow, Poland)", A. LAURENTOWSKI, J. KOSINSKI, Z. MOSSURSKA, R. RUCHALA (editors)., Full
version available as INRIA Research Report RR-4222, Kluwer Academic Publishers, IFIP, September 2001,
p. 229–242, http://www.inria.fr/rrrt/rr-4222.html.

[44] C. DAWS, M. Z. KWIATKOWSKA, G. NORMAN. Automatic Verification of the IEEE 1394 Root Contention

Protocol with KRONOS and PRISM, in "International Journal on Software Tools for Technology Transfer
(STTT)", vol. 5, no 2–3, 2003, p. 109–137.

[45] D. DILL. The Mur� Verification System, in "Proceedings of the 8th International Conference on Computer-Aid
ed Verification CAV’96", R. ALUR, T. HENZINGER (editors)., Lecture Notes in Computer Science, vol. 1102,
Springer Verlag, July 1996, p. 390–393.

[46] J. GALVEZ LONDONO. Analyse du flux des données dans un système parallèle, Masters (DEA) dissertation,
Institut National Polytechnique de Grenoble, June 1993.

[47] S. GRAF, B. STEFFEN, G. LÜTTGEN. Compositional Minimization of Finite State Systems using Interface

Specifications, in "Formal Aspects of Computation", vol. 8, no 5, September 1996, p. 607–616.

[48] M. HENNESSY, R. MILNER. Algebraic Laws for Nondeterminism and Concurrency, in "Journal of the ACM",
vol. 32, 1985, p. 137–161.

[49] H. HERMANNS. Interactive Markov Chains and the Quest for Quantified Quality, LNCS, vol. 2428, Springer
Verlag, 2002.

[50] ISO/IEC. Enhancements to LOTOS (E-LOTOS), International Standard, no 15437:2001, International
Organization for Standardization — Information Technology, Genève, September 2001.

[51] T. JÉRON, P. MOREL. Test generation derived from model-checking, in "Proceedings of the Conference on
Computer-Aided Verification CAV’99 (Trento, Italy)", N. HALBWACHS, D. PELED (editors)., Lecture Notes
in Computer Science, vol. 1633, Springer Verlag, July 1999, p. 108–122.

[52] J.-P. KRIMM, L. MOUNIER. Compositional State Space Generation from LOTOS Programs, in "Proceedings
of TACAS’97 Tools and Algorithms for the Construction and Analysis of Systems (University of Twente,
Enschede, The Netherlands), Berlin", E. BRINKSMA (editor)., Lecture Notes in Computer Science, Extended
version with proofs available as Research Report VERIMAG RR97-01, vol. 1217, Springer Verlag, April
1997.

[53] R. D. NICOLA, F. W. VAANDRAGER. Action versus State Based Logics for Transition Systems, Lecture Notes
in Computer Science, vol. 469, Springer Verlag, 1990, p. 407–419.

[54] N. S. ROSA, P. R. F. CUNHA. A Software Architecture-Based Approach for Formalising Middleware

Behaviour, J. K. FILIPE (editor)., Electronic Notes in Theoretical Computer Science, vol. 108, December
2004, p. 39-51.

Project-Team VASY 29

[55] G. SALAÜN, A. FERRARA, A. CHIRICHIELLO. Negotiation among Web Services using LOTOS/CADP, in
"Proceedings of the European Conference on Web Services ECOWS’04 (Erfurt, Germany)", L.-J. ZHANG

(editor)., Lecture Notes in Computer Science, Extended version available as Technical Report 13-04 of
Università di Roma “La Sapienza” (DIS department), vol. 3250, Springer Verlag, September 2004, p. 198–212.

[56] J. VAN DE POL, M. V. ESPADA. An Abstract Interpretation Toolkit for �CRL, in "Proceedings of the 9th
International Workshop on Formal Methods for Industrial Critical Systems FMICS’04 (Linz, Austria)", J.
BICARREGUI, A. BUTTERFIELD (editors)., Electronic Notes in Theoretical Computer Science, September
2004.

[57] J. VAN DE POL, M. V. ESPADA. Modal Abstractions in �CRL, in "Proceedings of the 10th International
Conference on Algebraic Methodology and Software Technology AMAST’2004 (Stirling, Scotland, UK)", C.
RATTRAY, S. MAHARAJ, C. SHANKLAND (editors)., Lecture Notes in Computer Science, Also available as
CWI Technical Report SEN-R0401, vol. 3116, Springer Verlag, July 2004, p. 409–425.

