%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Team ADEPT

Algorithms for Dynamic Dependable
Systems

Rennes

P THEME COM P

dlctivity

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/adept.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-ren.en.html

=

Table of contents

Team

Overall Objectives

2.1. Overall Objectives

Scientific Foundations

3.1. Introduction

3.2. Models for Dynamic, Scalable and Dependable Systems
3.2.1. Automata Models
3.2.2. Geometric Models for Concurrency

3.3. Accidental and Intentional Faults
3.3.1. Accidental Faults Resulting in Transient Failures
3.3.2. Accidental Faults and Reconfiguration Problems

3.3.3. Intentional Faults and Security Aspects: New Attacks
3.3.4. Intentional Faults and Fairness Aspects: Free-Riders

3.4. Availability and Consistency of Data in Dynamic Systems
3.4.1. Replication and Placement Policies
3.4.2. Data Consistency
3.4.3. New Consistency Criteria
3.5. Dissemination of Information
3.5.1. Broadcast Services
3.5.2. Data Aggregation
3.5.3. Tracking Service
Application Domains
4.1. Software for Telecommunication and Space Industries
Software
5.1. Eden: a Group Communication Service
5.2. Paradis: Resource allocation in a Grid
New Results
6.1. Models for Dynamic, Scalable and Dependable Systems
6.2. Accidental and Intentional Faults
6.2.1. Consensus Problem
6.2.2. Atomic Commitment Problem
6.2.3. Group Communication
6.2.4. Free-Riding
6.3. Availability and Consistency of Data in Dynamic Systems
6.3.1. Data Consistency
6.3.2. Mobile Philosophers
6.4. Dissemination of Information
6.4.1. Publish/Subscribe Paradigm
6.4.2. Selfx Query Region Covering in Sensor Networks
6.4.3. Trajectory tracking in sensor networks
Contracts and Grants with Industry
7.1. Speeral Contract (2002-2005)
7.2. Assert Contract (2004-2006)
Other Grants and Activities
8.1. National Project
8.1.1. ACI GénoGRID (2003-2005)
8.1.2. ACI Daddi (2004-2006)

NN ONDNR PR

2 Activity Report INRIA 2005

8.1.3. ACI TAGADA (2004-2006) 26

8.2. International Cooperations 27
8.2.1. Brazil (Federal University of Bahia and Federal University of Campina Grande) 27

8.2.2. USA (University of Nevada) 27

8.2.3. Japan (JAIST) 27

9. Dissemination 27
9.1. Teaching Activities 27
9.2. Presentations of Research Works 28
9.3. Integration within the Scientific Community 28

10. Bibliography 29

1. Team

Head of project-team
Michel Hurfin [CR INRIA]

Administrative assistants
Lydie Mabil [TR INRIA, January-May and October-December 2005]
Florence Santoro [until September 2005]
Céline Ammoniaux [TR @RS, since September 2005]

Staff member Cnrs
Emmanuelle Anceaume [CR]

Staff members University of Rennes |
Maria Gradinariu [Associate Professor, Research Sciemtisial]
Philippe Raipin Parvédy [Lecturer]
Frédéric Tronel [Associate Professor, since February 2005]

Faculty member (ENST Bretagne)
Jean-Pierre Le Narzul [Associate Professor]

Ph.D. students
Florent Claerhout [Fellowship MENRT, since October 2005]
Vincent Gramoli [Fellowship MENRT]
Julien Pley [Fellowship MENRT]
Aina Ravoaja [FellowshipNRIA and Brittany Region]

Postdoctoral fellow (Inria)
Antonino Virgillito [until September 2005]
Visiting scientists
Fabiola Greve [Associate Professor, Federal University of Bahia - Brazil, August 2005]
Livia Sampaio [PhD Student, Federal University of Campina Grande - Brazil, April-September 2005]

2. Overall Objectives
2.1. Overall Objectives

The field of information technologies in general, and distributed computing in particular, is continuously
evolving and maturing at a very high pace. Following the technological innovations, new announcements about
the deployment of better (technically speaking) network technologies or infrastructures are now occurring
monthly. These new environments are characterized by their higher bandwidth, lower latencies and sometimes
wireless nature. All these evolutions in the properties of networks and entities they connect, induce radical
changes in the very nature of applications that can be built upon these systems.

In a recent past, the focus of the research activities conducted in the ADEPT team has been on the study of
dependability (mainly fault-tolerance) and data consistency within small sets of servers called groups. In this
particular context, solutions to agreement problems (such as the consensus problem) have been proposed
and used as basic building blocks for designing solutions to higher level protocols that are in charge of
maintaining global properties at the group level despite the occurrence of crashes within the group. Such
solutions have proved to be particularly suited to the case of small to medium systems. While maintaining
a research activity in this particular field is important since several problems remain open in small groups of
processors, itis obvious that the solutions proposed in the past are not directly applicable to large scale dynamic
systems. Fundamental and applied research on models, algorithms and tools enabling to build distributed
services and applications has now to face a new challenge, namely the high dynamicity that characterizes
many recent distributed systems (in particular world-wide community of processors). In these new settings,

2 Activity Report INRIA 2005

various dynamic changes can affect a distributed computation and therefore need to be addressed at run time.
For example, the load (in terms of messages or in terms of computing activities), the topology, the energetic
resources, the accessibility of stored data, the set of processes involved in the computation or even the behavior
of a participant may change at any time. Assuming that such variations do not occur very often, adaptive
algorithms can be proposed to detect a modification of the whole execution context and react globally to
this modification (reconfiguration, execution of another code, ...). However, when the system has a very high
level of dynamicity, implementing a global observation system that allows to reconfigure the whole system

in a single step is no more realistic. Only local observations and progressive adaptations to changes can be
performed on cohesive subsets of nodes. Such a radical gap on the scale and dynamicity of systems militates in
favor of a paradigm shift for designing solutions to the problems raised by these new systems. The challenge
addressed now by the ADEPT team consists in maintaining global properties (in particular dependability and
data consistency properties) over the set of entities that belong to a dynamic system.

To illustrate the new problems that arise, consider one particular aspect, namely the set of participants to a
computation. For some applications (especially the world-wide applications executed on the Internet), it is not
realistic to assume that the set of processes involved in a given computation is static for the whole computation.
Nodes are continuously joining and leaving the system (for example if we look at P2P systems, more than
100,000 simultaneous nodes may populate the system with an average life-time of the order of minutes).
Failures and recoveries are frequent. When the composition of this set evolves at a slow rate, a classical
approach consists in computing a new global view each time an event that may impact on the membership of
the system is observed (upon receipt of a join request, upon receipt of a leave request or upon detection of a
failure). The aim of a group membership service is to provide all the participants with a unique view of the
current set of participants. However when the stay of a process within the system is very short or when the
number of processes is very large, this strategy can be impossible to manage or at least will create a time-
consuming activity dedicated to the membership computation. No central entity can efficiently manage the
organization and control of the whole system. It is also impossible to consider the existence of a static, or
even semi-static, set of servers that conduct the entire computation for all other nodes, as it is common in the
classical client-server model.

Apprehending dynamic systems goes through an analysis of the principles that govern them. The first
principle concerns the exchange of information or resources with the environment (for example, in grid or
P2P systems, components are possibly capable of infinitely often retrieving new information/resources from
components around them). The second one is the dynamics of these systems (for example, in ad-hoc networks,
components have the ability to move around, to leave or to join these systems freely). Finally, the third
principle is related to the specificity of the components: among all components of the system, some have huge
computation resources, some have large memory space, some are highly dynamic, some have broad centers
of interest. Each node may have its own data and its own strategy when it interacts with others: applications
are context-sensitive and thus the behavior of a node partially depends on its own (complete or partial) view
of the system. Looking at these systems as a mass of components can be a mistake because it abstracts away
the differences that might exist between individual components, differences which make the richness of these
systems.

All these tenets have as common seed the locality principle, that is some range of effect, both in terms of
interaction and knowledge. A node only observes a part of the system called its neighborhood. By definition,
the neighborhood of a nodeis a subset of the nodes of the system from whiatan receive information.

To define this set of nodes, a node takes into account both physical and semantical constraints. For example,
in P2P systems, a nod€ will not be a neighbor of a node if there is no communication path between

them or if they share no common interest. This set evolves dynamically during the computation. Neighbors
are removed, added or replaced. For example, if a newnbdan provide more significant informations than

a neighbom/, a noden will replacen’ by n” in its own set of neighbors. The replacement strategy allows to
avoid an uncontrolled increase of the size of the set of neighbors. Of course the significance of the information
is application dependent. Similarly, in sensor and ad-hoc networks the neighborhood is defined in terms of
communication range. For multiple reasons, the communication range of a node can increase or decrease. In

Team ADEPT 3

that case, the set of neighbors associated to a node has to be changed accordingly. This ability to react to
external changes by adapting locally the set of neighbors is at the core of the self-organization mechanisms
we aim to promote.

In a very dynamic system, no coordination between the nodes can be implemented to ensure consistency
properties between the neighborhoods of the different nodes. Each node manages the creation and the evolution
of its own neighborhood in an autonomous and independent way. Consequently, a’nzate be in the
neighborhood of a node while n is not in the neighborhood of nodé. Allowing this lack of consistency
reduces the cost of the adaptation to the dynamic changes. When it is possiblehén the level of
dynamicity is rather low) and useful, additional cooperation between nodes can be proposed to ensure stronger
properties (symmetry, transitivity, unique view shared by all the members of a neighborhood, ...). Ideally, these
properties should be as strong as those maintained in classical group (group membership, view synchrony,...).
Unfortunately, when the level of dynamicity is quite high, a trade-off has to be found because such strong
properties cannot be guaranteed. The specification of a self-organization mechanism aims, among others, at
defining the rules that govern the evolution of the neighborhoods.

Applications executed in dynamic systems try their best to ensure global properties. To achieve this goal, a
process may have to interact directly with its neighbors and indirectly with the neighbors of its neighbors (and
so on) in order to gather step by step knowledge about the entire system. The goal of an aggregation mechanism
that will run in parallel with the self-organization mechanism is to define the rules applied to aggregate data.
By aggregating local properties and knowledge, the system should be able to converge toward desirable global
properties. Clearly, the speed of the convergence mainly depends on the quality of the interactions within a
particular neighborhood and between neighborhoods, on the capacity for a node to spontaneously adapt itself
to changes in the environment (self-organization techniques), and on the properties offered by the aggregation
techniques.

The capacity of a system to spontaneously adapt itself to changes does not exist in classical distributed
systems (since any change in these systems has to be seen, acknowledged or validated by all the nodes
of the system). In scalable and dynamic systems this ability guarantees that even in case of unpredictable
multiple changes, data structures used to keep a view of the outside world are updated independently by
each node. Assuming that no new change occurs, the self-organization and aggregation techniques used for
solving a particular application problem have to ensure that the system will stabilize at a particular state such
that each node has captured a consistent global knowledge. Clearly an approach based on self-organization
and aggregation techniques allows each node to compute updated observations of the system without any
risk of deadlocks and without requiring neither an explicit agreement, nor the deployment of a predefined
configuration of the system which reveals to be impossible or at least very costly.

To conclude, the field of practical distributed computing is at an exciting point right now, because of the
current fast pace of technological innovation in the Internet, in the Web, and in mobile computing systems.
The study of models and algorithms that allow to cope with dynamic changes whatever their causes and their
level of dynamicity is fundamental. When a low level of dynamicity is assumed, an observation of the whole
system is still possible and strong properties can be stated to coordinate the local observations done by each
participant. In such a context, designing algorithmic solutions to fundamental problems (related to observation
and synchronization issues) remains an important challenge. In particular, due to the adversity of the system
(asynchrony and failures), efficient solutions are sometime difficult to design. On the contrary, a high level of
dynamicity leads to manage several partial and inconsistent views of the system (each participant may have its
own view). All classical distributed computing problems (for example, dependability issues, communication
problems, resource allocation, and data management) will require new solutions that address theses challenges
in the new settings. More generally, due to high dynamicity, new problems also arise and require the design of
specific algorithms (in particular to cope efficiently with frequent changes of the set of participating processes).
Among all the issues, dependability and consistency issues are of prime importance. As the computer-based
systems are becoming more and more open and complex (number of interacting entities, heterogeneity of
the hardware and software components, mixing of various standards, ...), the main attributes of dependability
(namely reliability, availability, safety, and security) are also more and more difficult to guarantee. After having

4 Activity Report INRIA 2005

been able to master the difficulties raised by small to medium systems we must reveal the challenge of scaling
up our solutions and adapt them to handle dynamicity.

3. Scientific Foundations

3.1. Introduction

Our scientific contributions aim at reaching a deeper understanding of all the fundamental problems that
arise in dynamic distributed systems. During the study of a particular problem, our approach consists in
identifying for a particular execution environment (characterized by a set of assumptions on the computation
model, the failure model, the dynamicity, and scalability, ...), the set of elementary services needed to build
a given application, and for each of them, to exhibit solutions as efficient as possible, optimal if possible,
and generic. If no solution exists, we aim at exhibiting impossibility results. To validate and to promote the
use of these algorithmic solutions, we conduct in parallel experimental evaluations by developing flexible
and adaptive middleware services that integrate our know-how and experience in distributed computing. This
prototyping activity leads us to consider technical and operational problems as well as methodological issues.
The feed-back that we get helps us to define new directions in our research activity.

The aim of the ADEPT project is first to propose models for dynamic, scalable and dependable systems,
then to identify, specify and design a set of generic elementary services needed to build applications for these
systems. More precisely, our contribution focuses on the following themes:

e Models for dynamic, scalable and dependable system3he new complexities faced by the
research community in distributed computing (i.e. large scale, dynamicity, dependability) need
adequate formal models. These models should include new abstractions for the communication and
frameworks for the system execution.

e Accidental and intentional faults. Economic activities and human lives are now heavily dependent
on distributed systems and applications. When computing resources and stored data can be affected
by the occurrence of failures, dependability becomes a crucial issue. We aim to consider both
accidental and intentional faults and to design algorithms and methods to detect or to mask such
faults which are sometimes transient (another dynamic aspect).

e Data consistencyOne of the challenges is to identify and formally define the consistency criteria
required by different applications executed on top of dynamic scalable systems.

e Dissemination of information. Communicating in dynamic scalable and dependable systems faces
different issues: firstly, large scale requires new communication primitives. One of these primitives,
the semantic-based primitive (e.g., data-based), enables to transmit anonymously information within
the network. That is, the set of recipients is not known in advance by the sender of the information.
Recipients are identified only on semantical bases (the match between their own interest and the
information content in the message). Secondly, dynamicity requires reactive-based communication
primitives. We study these new communication services.

Team ADEPT 5

3.2. Models for Dynamic, Scalable and Dependable Systems

Keywords: ad-hoc networksautomata modekoncurrencydistributed computingformal model geometric
mode] large scale systemsnobility, peer-to-peer systemself-organization self-stabilization sensor net-
works

As stated by Nancy Lynch6[] “Defining formal models for distributed systems has been an integral part
of distributed computing theory from the very beginning. Formal models are more critical for distributed
algorithms than they are for sequential algorithms, because distributed algorithms are generally much harder
to understand since a single piece of distributed code is usually executed concurrently at many system nodes.
Such nondeterminism makes it impossible to understand exactly what a distributed will do when it executes.
Instead, one generally has to settle for understanding properties of execution, for example, invariants or
progress properties. Defining these properties and showing that they hold require formal models*.

Defining models for distributed computing is a matter of compromise. One needs to define properties that are
sufficiently precise to capture the expected behavior of systems under study, while at the same time maintaining
consistency and tractability of the model. There is no point in defining extremely detailed rules if one cannot
manage inherent complexity induced by a too great level of details.

The relatively short history of computer science in general and distributed computing in particular (when
compared to others field of science) has seen the rise of two principles models for studying distributed systems
and proving theorems about them :

e The first one, that one can call the classical one, is an extension of automata for distributed
computing.

e The second one which is more recent, is based on rather involved mathematical developments from
the field of algebraic topology, which can be qualified as “geometrical” model.

In the sequel, we will discuss the respective benefits and costs of both models, and their adequation
to the study of dynamic dependable systems. This adequation could be discussed through a lot of facets
(expressiveness, performance analysis ability, etc). We will restrain us to expressiveness, however.

3.2.1. Automata Models

Since the very first developments of the distributed computing field, at least thirty yea&lgga[to very
recent articles, classical models based on input/output automata, and graph theory have prevailed. This can be
easily explained by the fact that :

e They were natural extensions of well-established models used in sequential computing, making them
appealing and easy to use.

e Their popularity has been naturally reinforced by their successful applications in the proof of a large
number of seminal papers in the fielsl], [43], [42].

A lot of proving techniques have been popularized based on this model like indistinguishableSsthtes [
state valency 42, [43], [42]. All these qualities could have been sufficient for adopting this model in the
distributed computing field. However, by its very nature it seems that this kind of model is not well equipped
to determine the frontier between possible and impossible problems with respect to fault-tolerance, when more
than one process can crash in a system. Although this does not constitute a proof, one can remark that the proof
of impossibility for consensus in the presence of a single failure while being relatively old (1985), has not been
followed by any others also fundamental results afterward. This can be a posteriori analyzed as an evidence
that graph/automatas models are not able to master the complexity of systems where an arbitrary number of
processes may silently fail. (The decade that has followed the FLP result can certainly be considered as the
“consensus” decade for dependable distributed systems.)

In [35], the authors have been able to precisely determine the conditions under which a decision problem
has a solution in a totally asynchronous system where at most one process can fail, but they were not able to

6 Activity Report INRIA 2005

extend this result for a larger number of failures. This remarkable piece of work has given rise to a tremendous
amount of curiosity and effort so as to extend it to a more general framework. This work, although not yet
achieved, has been at least partially attained concurrentlyy[p6]. These results have however required a
paradigm shift which is the object of the following section.

3.2.2. Geometric Models for Concurrency

In [57], the authors have been able to extend the resuBSftp the case where an unbounded number of
processes may fail. They gave a complete characterization of wait-free decisidnrnasiymchronous systems
where processes communicate by the mean of a shared memory. The starting point of all these new results can
certainly be dated by the study bfset agreement bytfl]. This new problem can be seen as an extension of
the classical consensus problem. In the latter one, all correct processes have to reach a common agreement,
while in the former one, up té different values may be decided. In this article Chaudhury conjectures that
k-set agreement cannot be solved in the presengédaifures (when the set of possible initial values is larger
thank). This new definition that covers the one of the classical consersssl] was the missing piece of
the puzzle. Researchers had now a new challenge to reveal that was pointing out in the right direction.

However to study the inherent combinatorial complexity induced by this new problem, graphs and automata
were not the right tools. Rather than this planar representation of systems, one need objects that span over
higher dimensional spaces. To keep it simple we consider the case of a system composed of only three
processes. In the new geometrical model, a global state of the system is figured by a triangle (3-simplex
in the vocabulary associated with this model) where each vertex represents the local state of a single process.
We consider atomic computing step, where a single process takes a step at a time. Such a computing step can
be figured by two triangles sharing a common face. More precisely, the two vertexes of this common face,
represent the two local states of the two processes that are not involved in the computing step. While the
process that has issued the step, has seen its local state modified and is thus modeled by two different vertexes.

To study the complex geometrical objects induced by this model, mathematical tools originating from of
algebraic topology are commonly used. This field of mathematics offers powerful techniques that are able
to tackle the combinatorial explosion that occurred when using graph theoretical approach. This has been
brilliantly demonstrated by57] who have been able to precisely characterize the set of decision tasks that can
be solved in wait-free systems.

These two last decades of distributed computing show that the path toward fundamental theoretical advances
seems to be highly coupled to :

1. The definition of an emblematic problem that fully captures the inherent complexity of the systems
to be studied.

2. The choice of a pertinent mathematical model for mastering this complexity.
From our point of view, both goals are still widely opened when one considers dependable dynamic

systems. The two traditional models that have been previously illustrated do not seem to completely fulfill
the requirements of dynamicity imposed by the new kind of systems we want to study.

1A wait-free decision task is a decision problem that can be solved despite the failures of an arbitrary number of process (except one
of course). They are characterized by the fact that no synchronization primitive based on the wait for the receipt of a message from any
other processes in the systems, can ever be used. So any implementation for such a problem must be “wait-free”.

Team ADEPT 7

3.3. Accidental and Intentional Faults

Keywords: accidental fault agreement problepravailability, consensus problendependability distributed
computing failure detector failure mode] free rider, group, malicious fault reconfiguration reliability,
security

Economic activities and human lives are now heavily dependent on distributed systems and applications.
When computing resources and stored data can be affected by the occurrence of failures, dependability
becomes a crucial issue. As the computer-based systems are becoming more and more open and complex
(number of interacting entities, heterogeneity of the hardware and software components, mixing of various
standards, ...), the main attributes of dependabit®} [namely reliability, availability, safety, and security)
are also more and more difficult to guarantee.

In such a context, we aim at specifying and designing methods to cope with the different attributes of
dependability when either accidental faults or intentional faults may occur during operation. Design and
implementation faults are out of the scope of our research activities: by assumption, any software is supposed
to be correct with respect to its specification. The major part of our research activity on both accidental and
intentional faults will focus on dependability problems due to arbitrary or malicious behaviors of some nodes.
In what follows, the description of this general activity is subdivided into four sections devoted respectively
to (1) the arbitrary behaviors caused by some transient accidental faults, (2) the reconfiguration of a system
after the occurrence of failures due to accidental faults (3) the malicious behaviors in the presence of external
attackers, and (4) the malicious behaviors in the presence of internal free riders. This last category of malicious
behaviors is more specific to high dynamic systems such as peer-to-peer networks: some users called free-
riders consume network resources without providing their own resources and thus without contributing to
their network.

For all the problems described within this section, our research activities will take advantage of the
complementary knowledge of the team members who have worked in the field of distributed computing on
fault tolerance issues, observation issues, synchronization issues, agreement problems and self-stabilization.

3.3.1. Accidental Faults Resulting in Transient Failures

Accidental faults include among others physical faults that generally result from aging, shocks and physical
phenomena (temperature, hydrometry, radiatiah,that may affect communication hardware, computing
hardware or memory hardware. In the worst case, accidental faults may lead to arbitrary behaviors. For
example, in the particular case of a spacecraft, radiations (such as alpha particles and cosmic rays) may
generate an undesired bit-flip effect that changes the content of a storage element (memory, register or
instruction counter). Consequently, the next executed instruction is not necessarily the right one. In the
particular case of accidental faults, our aim is to build reliable systems from unreliable components. To tolerate
failures (crash or arbitrary behaviors) physical redundancy is mandatory to ensure that faults are masked and
will not perturb the computation. Replication of critical data and functionalities on a group of nodes allows to
increase the overall reliability of the systei/]. To be able to coordinate the activities of the processors, a
significant body of work on replication techniques and agreement problems has been done. Many services that
have to be provided when using the concept of group can be classified as agreement problems (membership,
total order broadcast, consensus, leader election, atomic validation, ...). As these services are used very often,
efficiency is a key issue when designing solutions to such agreement problems. Our first goal is to have an even
better understanding of these problems while considering various levels of adversity (various computational
models ranging from the purely synchronous one to the purely asynchronous one, various failure models, ...).
In particular, the analysis of the amount of time/activity necessary to converge to an agreement may require
to use probabilistic models that will characterize the environment and the arrival law of failures occurrences.
Such an analysis can also be used to define a good trade off between the price to pay (redundancy, additional
activities,...) and the obtained level of dependability (evaluation of the coverage).

Our second goal is to consider that a process has the capability to recover and so should not be excluded or
precluded from participating to the forthcoming computations under the pretext that it has suffered a transient

8 Activity Report INRIA 2005

failure (even in the particular case of transient byzantine failures). Classically, the proposed solutions assume
that all the nodes involved in the computation are classified into two categoriesoftieet nodes and the

faulty ones). This classification into two distinct subsets remains unchanged during all the computation. A
node is correct if it behaves according to its specification until the completion of the computation; otherwise

it is faulty. Within this approach, the design of fault tolerant applications relies on the fact that a correct
node never fails. Consequently, once all the faulty nodes have failed, no new failure can occur. Assuming that
only a subset of the nodes can fail during the whole computation fits the requirements of many common
distributed applications. But when running times of the applications are extremely long, this assumption
becomes unrealistic (for example, in the space domain, the useful orbital life of a satellite is expected to
last several years): any node may fail before the whole computation finishes. Yet as most of the faults are
transient, a node is often able to recover to a consistent state (after having experienced failures). Thus, it is
of interest to consider that any node can alternate correct and faulty periods (no node is correct according to
the previous definition of correct/faulty nodes). Of course, the complexity of this new approach depends on
the type of failures we consider. In the particular case of the crash failure model, the problem is quite simple:
a node is aware that it is currently in the recovery phase. This information can also be known and trusted
by the other nodes. Additionally, in a crash failure model, a running process always behaves according to its
specification. Consequently, any data saved in its permanent storage or logged by another process can be used
to recover to a safe state. Thanks to all these strong properties, it is possible to cope with both permanent and
transient crashe27)].

Unfortunately, all these assumptions are no more true when one considers arbitrary failures. As mentioned
previously, accidental faults may lead to arbitrary failures: in this failure model, a faulty node is not always
aware that its local state has been altered. For some specific fundamental services (for example, clock
synchronization and broadcast primitives), we aim at proposing algorithmic solutions that will address two
different issues. The first one consists in ensuring that a process can converge in a bounded time to a consistent
state each time it succeeds to come back in an operational state after a transient failure. Self-stabilizing
techniques can be used to obtain this convergence. The second issue concerns the service availability. To
ensure this property, constraints have to be put on the number of concurrent failures. Any node can experience
a failure but at a given time, at mostare not in a "correct” period. To cope with arbitrary behaviors, we
assume that > 3t. This kind of study has strong connections with works done on pro-active sec®ifjty [

[40]. We aim to study these relationships. In a pro-active security system, any node can experience arbitrary
failures but during a fixed period of time, no more than t nodes can be faulty. To ensure security requirements,
algorithms perform periodic computations of critical data (like for example secret keys). The type of solutions
we are proposingd0] are based on similar assumptions.

3.3.2. Accidental Faults and Reconfiguration Problems
In many cases, a reconfiguration of the system is necessary to accommodate failures. In dynamic large scale
systems, redundant resources are available and their use can be adapted to cope with failure scenarios in a
completely transparent way. We study these problems in two particular contexts, namely Grid computing and
sensor networks.

e Reconfiguration in Grid Computing
The major aim of a Grid is to federate powerful distributed resources within a single virtual entity
which can be accessed transparently and efficiently by external users. Since a Grid is a distributed
and unreliable system involving heterogeneous resources located in different geographical domains,
fault-tolerant resource allocation services have to be provided. In particular, when crashes occur,
tasks have to be reallocated quickly and automatically in a completely transparent way from the
user’s point of view.
Our goal is not to design a complete range of services for Grid systems. We focus only on two specific
issues: resource allocation and dependability. Moreover we restrict the scope of our research to time-
consuming applications that can be decomposed into a huge number of independent tasks. As all the

Team ADEPT 9

tasks generated during the execution of such an application are independent, they can be allocated
independently on the different resources of a Grid. The above assumptions are not unrealistic: a
grid dedicated to the execution of genomic applications satisfies the above assumptions (See the
description of the ACI GénoGRID in sectidhl.1and the description of the software Paradis in
section5.2).

With respect to these research topics (resource allocation and dependability), our contributions aim
to promote two major complementary ideas. First, we suggest that the architecture of a Grid follows

a hierarchical structure. Second we claim that interactions within the grid can be reduced to either
a classical master-slave scheme or to a sequence of unanimous decisions depending on the level
of the interacting entities within the Grid. This strategy allows us to benefit from the existence

of synchronous networks where upper temporal bounds (on message transfer delays and also on
the time required to execute a computation step) exist and can be known. On the contrary, more
complex agreement protocols are used to share a consistent view of the global state of the Grid
between unreliable entities linked through an asynchronous networks.

We assume that the architecture of a grid is made of several hierarchical levels. All the resources
belonging to a same domain (for example, a research institute) are connected through a local area
network which is synchronous. Ressources are the lowest level in the hierarchy (level 1). Domains
constitute the upper level (level 2). In each domain, at least one node acts as a proxy which is able
to communicate with other proxies located outside the domain. In addition to this communication
function, the proxy acts also as a coordinator within its own domain. More precisely, interactions
between a proxy and its resources are based on the master/slaves schema. Within a domain, tasks
can be allocated to the resources by the proxy which has also to react to the failures of resources.
We consider that resources fail only by crashing. As a domain is assumed to be a synchronous sub-
system, dependability and task allocation issues can be solved assuming that bounds on the time to
execute a computation step and bounds on the time required to transfer a message exist. Depending
on the number of levels in the hierarchy, the whole grid is either a group of domains (three levels) or

a group of groups of domains (four levels) or an even more complex structure. A group of domains

is an asynchronous sub-system. At this level, cooperation algorithms between the proxies have to
be defined to cope with the dynamic evolution of the group. Like the composition of a domain, the
composition of the networks of domains is also dynamic. Through invocations of the join and leave
operations, the administrator of a domain can decide to add or remove his own domain from the
Grid whenever he wants (maintenance and repair, alternating periods of private and public use, ...).
A domain is unavailable if there is no node able to act as a proxy/master or if the domain has been
disconnected from the Grid. A group membership service ensures that all proxies that are currently
members of the group are consistent with the past history of the group, namely the join and leave
operations already executed and the failures suspected to have occurred. When tasks have to be
allocated, proxies (representing the domains) participate to an agreement protocol to determine the
identity of the domain which seems to be the most appropriate to execute the task.

Based on these general ideas, we propose different basic agreement services to solve dependability
and resource allocation issues. Our objective is how to use a similar set of services to cope with
two different sources of non-determinism. First, the duration of a task is not known exactly but just
estimated through previous benchmarks. Second, the resources are not exclusively dedicated to the
Grid’s users. Additional tasks are executed by the resources without being planned by the Grid's
allocation mechanism. To cope with these two types of uncertainty, we propose to use agreement
solutions to undo previous tasks allocation when it is necessary. Reconfiguration will operate either
when a failure occurs or when inefficient decisions have been taken in the past. Our aim is to show
(through analysis and experiments) that the different parameters can be tuned to obtained a realistic
and efficient reallocation strategy.

10 Activity Report INRIA 2005

e Reconfiguration in Sensor Networks
In a wireless sensor network composed of hundreds or even thousands of sensors, accidental
faults can occur with high probability (due to the vast number of components involved and the
relatively poor quality of this cheap hardware). To achieve reliability, each geographical area is
populated with many redundant sensors that are not necessarily activated (in particular to reduce
power consumption). When a sensor crashes (either because of battery depletion or due to any
accidental faults), neighboring sensors can cover, at least partially, its sensing task. To perform this
reconfiguration, information about the available sensors have to be maintained and used to reorganize
dynamically the network in the case of sensors removing (and also sensor addition). We aim to study
this problem in the particular cases of two applications: construction of connected coverings and
design of tracking algorithms. First we aim to have a precise definition of the tracking problem:
a mobile target cross a geographical area covered by sensors that have to cooperate to provide the
position of the target to the interested nodes. Similarities with the publish/subscribe problems have to
be identified: when a sensor detects the target it publishes the position data and interested nodes have
to be notified. Defining the tracking problem as an extension of the publish/subscribe problem will
allow us to propose modular solutions. In particular, the definition of efficient routing strategies able
to resist to the failures of some sensors is a challenge when designing publish/subscribes services. As
the notification order has to be consistent with the trajectory of the targets, interesting issues related
to clock synchronizations and causal dependencies have also to be investigated.

3.3.3. Intentional Faults and Security Aspects: New Attacks

Intentional faults are produced by malicious attackers who try to take advantage of residual vulnerabilities
that always exist in a complex system. When considering intentional faults, our aim is not to propose preventive
measures (access controls, encryption, firewalls,...). Assuming that an intrusion can succeed, we want to be
able to detect it, to confine damage and to clean and recover corrupted entities from errors. To achieve this
goal, the concept of design diversity can be used. In the particular context of the ACI Security called "Daddi",
we aim to secure a web access to a set of data. These data are replicated and accessible through different
systems that may have residual vulnerabilities (but hopefully not necessarily the same ones). A new attack
will take advantage of a particular vulnerability of a particular system. Consequently, the attack can succeed
on a particular copy but not on all the copies. By checking the values returned by the different copies to the
malicious attacker we can identify differences and detect anomalies. Of course, the difficult part is to provide
replication and detection mechanisms that are safe and will not become an even more simple target for the
attacker. Our aim is to study how group services can be reemployed and adapted to achieve this objective.

3.3.4. Intentional Faults and Fairness Aspects: Free-Riders

Among the important issues raised by the emerging Peer-to-peer systems, is the one introduced by non-
cooperative nodes. Indeed, it is more or less straightforward that rationality exists in P2P systems. By looking
at traces showing nodes behaviors, it is clear that many nodes act in a way that is not desirable. The reason is
that nodes have a priori no motivation for cooperation. This a priori non-cooperation between nodes inevitably
leads to poor system performance. Different approaches may be adopted to face rationality in P2P systems.
Among them are) to ignore rationality and to expect that the system will do its best despite self-interested
nodes,ii) to limit the effect that a rational node can have on the system by using trusted mechanisms, or
iii) to adopt the fault tolerance techniques. However, none of these approaches benefit from resources that
may be potentially offered by these self-interested nodes. We claim that the system must provide incentives
to nodes to participate to the given protocols. Solutions may come from economics and more precisely from
the mechanism design theory. The scope of this theory is to provide tools and methods to design protocols
for self-interested parties. In other words, this theory deals with designing the rules of the game so that a
good system-wide outcome will be achieved despite the fact that parties can act on self-interest. Yet, the
mechanism design theory advocates the existence of one central mechanism that is used for the whole system
and relies on the capability of all the parties to agree on a set of intentions, which contradicts the large scale

Team ADEPT 11

and the nature of open systems we consider. So, we want to relax the goals of the mechanism design theory
to consider more realistic mechanisms exhibiting a limited scope to keep the computational and informational
aspects reasonable, and to reflect the limited range of influence each party can have. We formalize this locality
aspect by relying on the self-organization model. However despite rational behavior, experiences shows that
some nodes are altruists. For example, in Gnutella, 10% of the nodes are found to serve about 90% of the
total download requests. We intend to exploit these nodes to heal the network from selfish nodes and thus to
improve the overall behavior of the system.

3.4. Availability and Consistency of Data in Dynamic Systems

Keywords: availability, caching consistencydistributed computingdynamic systemookup placement
replication, shared data

Some interactions in distributed applications can be modeled by the modifications of shared data (concurrent
objects shared by several processes). The availability of data is generally ensured via replication. One of the
main issues in replicated systems is to keep the various copies consistent. A consistency criteria basically
defines what guarantees are provided by the system, more precisely the values which have to be returned when
an operation which spans one or more shared objects is invoked by a process.

The literature offers a large class of consistency criteria which could be classified into "strong" and
"weak" categories depending on the values retrieved by the invoked read operations. The definitions of
different consistency criteriaP] do not depend on the system characteristics. Moreover, for some consistency
conditions once the condition is preserved independently by each replicated component implementation, it is
preserved by the system as a whole without any other coordination. This highly desired property of consistency
conditions, is called locality and was analyzed Ti®][The authors study the locality of the most common
consistency criteria and specify new ways of constructing local consistency criteria.

Despite the huge work in the area of replication and consistency criteria, managing shared data in large scale
dynamic systems still raises specific difficulties like ensuring the coherent data persistency, defining efficient
placement policies, or specifying consistency criteria for new emergent applications. Our main challenge is
to design a persistent storage service for dynamic systems able to provide efficient solutions to the above
mentioned problems. The final goal of our work is to combine a persistent storage service with incentive
mechanisms to cope with non-cooperative nodes in order to design a general solution for a "highly available
distributed data service for dynamic systems". In the following we detail the main problems and challenges in
implementing this service.

3.4.1. Replication and Placement Policies

The main challenge here is to specify and implement efficient policies for data replication in large scale
dynamic systems. The two main issues in any replicated system are placement and lookup. The former deals
with deciding which nodes should act as replicas and the lat