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2. Overall Objectives
The Apics Team is a Project Team since January 2005.
The Team develops constructive methods for modeling, identification and control of dynamical systems.
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2.1.1. Research Themes

• Meromorphic approximation in the complex domain, with application to frequency identification
and design of transfer functions, as well as singularity detection for the 2-D Laplace operator.
Development of software for filter identification and the synthesis of microwave devices.

• Inverse potential problems in 3-D and analysis of harmonic fields with applications to source
detection and electro-encephalography.

• Control and structure analysis of non-linear systems: continuous stabilization, linearization, and near
optimal control with applications to orbit transfer of satellites.

2.1.2. International and industrial partners

• Industrial collaborations with Alcatel-Alenia-Space (centre de Toulouse), Temex (Sophia-Antipolis),
CNES, IRCOM.

• Exchanges with UST (Villeneuve d’Asq), CMI-Université de Provence (Marseille), CWI (the
Netherlands), CNR (Italy), SISSA (Italy), the Universities of Illinois (Urbana-Champaign), of
California at San Diego and Santa Barbara (USA), of Minnesota at Minneapolis (USA), Vanderbilt
University (USA), of Padova (Italy), of Beer Sheva (Israel), of Leeds (GB), of Maastricht and
Amsterdam (The Netherlands), TU-Wien (Austria), TFH-Berlin (Germany), of Kingston (Canada),
of Szegëd (Hungary), CINVESTAV (Mexico), ENIT (Tunis), VUB (Belgium).

• The project is involved in a NATO Collaborative Linkage Grant (with Vanderbilt University and
ENIT-LAMSIN), in a EMS21-RTG NSF program (with Vanderbilt University), in the ACI “Obs-
Cerv” (with the Teams Caiman and Odyssée from Inria-Sophia Antipolis, among others), in a STIC
Convention between INRIA and Tunisian Universities, in an EPSRC Grant with Leeds University
(UK), in the ERCIM “Working Group Control and Systems Theory”, in the ERNSI and TMR-NCN
European research networks, and in a Marie-Curie EIF European program.

3. Scientific Foundations
3.1. Identification and deconvolution

Let us first introduce the subject of Identification in some generality.
Modelingis the process of abstracting the behaviour of a phenomenon in terms of mathematical equations.

It typically serves two purposes: the first one is to describe the phenomenon with minimal complexity for some
specific purpose, the second one is topredict its outcome. It is used in most applied sciences, be it for design,
control or prediction. However, it is seldom considered as an issueper seand today it is usually embedded in
some global optimization loop.

As a general rule, the user devises the model to fit a parameterized form that reflects his own prejudice,
knowledge of the underlying physical system, and the algorithmic effort to be consented. Looking for such
a trade-off usually raises the question of approximating the experimental data by the prediction of the model
when the latter is subject to external excitations assumed to be the cause of the phenomenon under study. The
ability to solve this approximation problem, which is often non-trivial and ill-posed, conditions the practical
usefulness of a given method.

It is when assessing the predictive power of a model that one is led topostulatethe existence of a
true functional correspondence between data and observations, thereby entering the field ofidentification
proper. The predictive power of a model can be expressed in various manners all of which attempt at
measuring the difference between the true model and the observations. The necessity of taking into account
the difference between the observed behavior and the computed behavior naturally induces the notion ofnoise
as a corrupting factor of the identification process. This noise incorporates into the model, and can be handled
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in a deterministic mode, where the quality of an identification algorithm is its robustness to small errors.
This notion is that of well-posedness in numerical analysis or stability of motion in mechanics. The noise
however is often considered to be random, and then the true model is estimated by averaging the data. This
notion allows one for approximate but otherwise reasonably simple descriptions of complex systems whose
mechanisms are not well known but plausibly antagonistic. Note that, in any case, someassumptionson the
noise are required in order to justify the approach (it has to be small in the deterministic case, and must satisfy
some independence and ergodicity properties in the stochastic case). These assumptions can hardly be checked
in practice, so that the satisfaction of the end-user is the final criterion.

Hypothesizing an exact model also results in the possibility of choosing the data in a manner suited for
identifying a specific phenomenon. This often interacts in a complex manner with thelocal character of the
model with respect to the data (for instance a linear model is only valid in a neighborhood of a point).

Let us turn to the activity of the team proper to identification. Although the subject, on the academic
level, has been the realm of the stochastic paradigm for more than twenty-five years, it is in a deterministic
approach to identification of linear dynamical systems (i.e. 1-D convolution processes) based on approximation
in the complex domain, that the Team made perhaps its most original contributions. Naturally, the deep
links stressed by the spectral theorem between time and frequency domains induce well-known parallels
between function theory and probability, and the work of the Apics Team1 can be partly recast from the
stochastic viewpoint. However, the issue was rather tackled by translating the problem of identification into
an inverse problem, namely the reconstruction, from boundary data, of an analytic function in a domain of
the plane. For convolution equations in dimension one—that is, ordinary differential equations possibly in
infinite dimensional spaces—such translation is provided by the Fourier transform. For certain elliptic partial
differential equations in dimension two, identification is also connected to analytic continuation, but this time
it is the form of the fundamental solution that introduces holomorphy, especially in the case of the Laplacian
whose solutions are logarithmic potentials.

The data are considered without postulating an exact model, but we simply look for a convenient approx-
imation to the data in a range of frequency representing the working conditions of the underlying system. A
prototypical example that illustrates our approach is the harmonic identification of dynamical systems which is
widely used in the engineering practice, where the data are the responses of the system to periodic excitations
in its band-width. We look for a stable linear model that describes correctly the behavior in this band-width,
although the model can be inaccurate at high frequencies (which can seldom be measured). In most cases,
we also want this model to be rational of suitable degree, either because this is imposed by the physical sig-
nificance of the parameters or because complexity must remain reasonably low to allow the efficient use of
the model for control, estimation or simulation. Other structural constraints, arising from the physics of the
phenomenon to be modeled, often superimpose on the model. Note that, in this approach, no statistics are
used for the errors, which can originate from corrupted measurements or from the limited validity of the linear
hypothesis.

We distinguish between an identification step (called non-parametric in a certain terminology) associated
with an infinite dimensional model, and an approximation step in which the order is reduced under specific
constraints on the considered system. The first step typically consists, mathematically speaking, in reconstruct-
ing a function, analytic in the right half-plane, knowing its pointwise values on a portion of the imaginary axis.
In other terms, the problem is to make the principle of analytic continuation effective on the boundary of the
analyticity domain. This is a classical ill-posed issue (the inverse Cauchy problem for the Laplace equation)
that we embed into a family of well-posed extremal problems, that may be viewed as a Tikhonov-like reg-
ularization scheme related to the spectral theory of analytic operators. This first step could in fact be made
in higher dimensions, with analytic functions being replaced by harmonic fields. The second step is typically
a rational or meromorphic approximation procedure (although other approximating families may be consid-
ered as well) in some class of analytic functions in a simply connected domain, say the right half-plane in
the case of harmonic identification. To make the best possible use of the allowable number of parameters, or

1and of the former MIAOU-project
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to privilege some specific physical parameters of the system, it is generally important, in the second step, to
compute optimal or nearly optimal approximants. Rational approximation in the complex plane is a classical
and difficult problem, for which only few effective methods exist. In relation to system theory, mainly two dif-
ficulties arise: the necessity of controlling the poles of the approximants (to ensure the stability of the model),
and the need to handle matrix-valued functions in the case where the system has several inputs and outputs.
Moreover, in connection with inverse problems, the behaviour of the poles of best approximants to certain
functions constructed from the observations can be viewed as an estimator of singularities to be detected, and
therefore receives a great deal of attention within the team.

Rational approximation in theLp sense to a transfer function on the imaginary axis (i.e., the boundary of the
right half-plane) acquires a particular significance in this context forp = 2 andp = ∞. If p = 2, it corresponds
to parametric identification of minimum variance when the system is fed with white noise input (the case of
a colored noise corresponds to a weighted approximation), and it also corresponds to the minimization of the
L2 → L∞ error in operator norm in the time domain. Ifp = ∞, the approximation consists in minimizing the
power transferL2 → L2 of the error (both in the time and frequency domains since the Fourier transform is an
isometry). These problems contribute to a generalization (both rational and matrix-valued) of Szegö theory on
orthogonal polynomials, that seems the most natural framework for setting out many optimization problems
related to linear system identification. Concerning this second step, it is worth pointing out that the analogs to
rational functions in higher dimensions are the gradients of Newtonian potentials of discrete measures. Very
little is known at present on the approximation-theoretic properties of such objects, and a recent endeavour of
the project is to study them in the prototypical –though somewhat particular– case of a spherical geometry.

We shall explain in more detail the above steps in the sub-paragraphs to come. For convenience, we
shall approach them on the circle rather than the line, which is the framework for discrete-time rather than
continuous-time systems. The two frameworks are mathematically equivalent via a Möbius transform.

3.1.1. Analytic approximation of incomplete boundary data
Participants: Laurent Baratchart, José Grimm, Juliette Leblond, Jean-Paul Marmorat [CMA, École des
Mines], Jonathan Partington, Fabien Seyfert.

Key words: meromorphic approximation, frequency-domain identification, extremal problems.

The title refers to the construction of a convolution model of infinite dimension from frequency data in
some bandwidthΩ and some reference gauge outsideΩ. The class of models consists of stable transfer
functions (i.e., analytic in the domain of stability, be it the half-plane, the disk, etc), and possibly also transfer
functions with finitely many poles in the domain of stability i.e., convolution operators corresponding to linear
differential or difference equations with finitely many unstable modes. This issue arises in particular for the
design and identification of linear dynamical systems, and in some inverse problems for the Laplacian in
dimension two.

Since the question under study may occur on the boundary of planar domains with various shapes when it
comes to inverse problems, it is common practice to normalize this boundary once and for all, and apply in
each particular case a conformal transformation to recover the normalized situation. The normalized contour
chosen here is the unit circle. We denote byD the unit disk, byHp the Hardy space of exponentp (i.e. the
closure of polynomials in theLp-norm on the circle if1 ≤ p <∞ and the space of bounded holomorphic
functions ifp = ∞), byRN the set of all rational functions having at mostN poles inD, and byC(X) the set
of continuous functions on a spaceX. We are looking for a function inHp +RN , taking on an arcK of the
unit circle values that are close to some experimental data, and satisfying onT rK some gauge constraints,
so that a prototypical Problem is:

(P ) Let p ≥ 1, N ≥ 0, K be an arc of the unit circleT , f ∈ Lp(K), ψ ∈ Lp(T rK) andM > 0; find a
functiong ∈ Hp +RN such that‖g − ψ‖Lp(TrK) ≤M and such thatg − f is of minimal norm inLp(K)
under this constraint.

In order to impose pointwise constraints in the frequency domain (for instance if the considered models are
transfer functions of loss-less systems, see section4.3.2), one may wish to express the gauge constraint on
T rK in a more subtle manner, depending on the frequency:
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(P ′) Let p ≥ 1, N ≥ 0, K be an arc of the unit circleT , f ∈ Lp(K), ψ ∈ Lp(T rK) and
M ∈ Lp(T rK); find a function g ∈ Hp +RN such that |g − ψ| ≤M a.e. onT rK and such that
g − f is of minimal norm inLp(K) under this constraint.

Problem(P ) is an extension to the meromorphic case, and to incomplete data, of classical analytic extremal
problems (obtained by settingK = T andN = 0), that generically go under the namebounded extremal
problems. These have been introduced and intensively studied by the Team, distinguishing the casep = ∞ [47]
from the cases1 ≤ p <∞, among which the casep = 2 presents an unexpected link with the Carleman
reconstruction formulas[4].

Deeply linked with Problem(P ), and meaningful for assessing the validity of the linear approximation in
the considered pass-band, is the following completion Problem:

(P ′′) Let p ≥ 1, N ≥ 0, K an arc of the unit circleT , f ∈ Lp(K), ψ ∈ Lp(T rK) andM > 0; find a
functionh ∈ Lp(T rK) such that‖h− ψ‖Lp(TrK) ≤M , and such that the distance toHp +RN of the
concatenated functionf ∨ h is minimal inLp(T ) under this constraint.

A version of this problem where the constraint depends on the frequency is:
(P ′′′) Let p ≥ 1, N ≥ 0, K an arc the unit circleT , f ∈ Lp(K), ψ ∈ Lp(T rK) andM ∈ Lp(T rK);

find a functionh ∈ Lp(T rK) such that|h− ψ| ≤M a.e. onT rK, and such that the distance toHp +RN

of the concatenated functionf ∨ h is minimal inLp(T ) under this constraint.
Let us mention that Problem(P ′′) reduces to Problem(P ) that in turn reduces, although implicitly, to an

extremal Problem without constraint, (i.e., a Problem of type(P ) whereK = T ) that is denoted conventionally
by (P0). In the case wherep = ∞, Problems(P ′) and(P ′′′) can viewed as special cases of(P ) and(P ′′)
respectively, but ifp <∞ the situation is different. One can also chose different exponentsp onK andT rK
(the Problem is then said to be of mixed type). This comes up naturally when identifying lossless systems for
which the constraint|h| ≤ 1 must hold at each point while the data, whose signal-to-noise ratio is small at
the endpoints of the bandwidth, are better approximated in theL2 sense. Mixed Problems are currently under
study. It is perhaps non-intuitive that these problems have in general no solution when no constraint is provided
on T rK (that is, ifM = +∞). For instance, considering Problem(P ′′), a function given by its trace on a
subsetK of positive measure on the unit circle can always be extended in such a manner that it is arbitrarily
close, onK, to a function analytic in the disk; however, it goes to infinity in norm onT rK when the
approximation error goes to zero, unless we are in the ideal case where the initial data areexactlythe trace on
K of an analytical function. The phenomenon illustrates the ill-posedness of the analytic continuation on the
boundary of the analyticity domain, which is germane to the well-known unstability of the Cauchy problem
for the Laplace equation[65].

The solution to(P0) is classical ifp = ∞: it is given by the Adamjan-Arov-Krein (in short: AAK) theory.
If p = 2 andN = 0, then(P0) reduces to an orthogonal projection. AAK theory plays an important role in
showing the existence and uniqueness of the solution to(P ′′) whenp = ∞, under the assumption that the
concatenated functionf ∨ ψ belongs toH∞ + C(T ), and for the computation of this solution by solving
iteratively a spectral problem relative to a family of Hankel operators whose symbols depend implicitly on
the data. The robust convergence of this algorithm in separable Hölder-Zygmund classes has been established
[46]. In the Hilbertian casep = 2, again forN = 0, the solution of(P ) is obtained by solving a spectral
equation, this time for a Toeplitz operator, depending linearly on a parameterλ that plays the role of a Lagrange
multiplier and makes the dependence of the solution implicit inM . The ill-posed character of the analytic
continuation described above is to the effect that, if the data are not exactly analytic, the approximation error on
K tends to 0 if, and only if, the constraintM onT rK goes to infinity[4]. This phenomenon can be quantified
in Sobolev or meromorphic classes of functionsf , and asymptotic estimates of the behavior ofM and of the
error respectively can be obtained, based on a constructive diagonalization scheme for Toeplitz operators due
to Rosenblum and Rovnyak, that makes the spectral theorem effective[3]. These results indicate that the error
decreases much faster, asM increases, if the data have a holomorphic extension to a neighborhood of the unit
disk, this being conceptually interesting for discriminating between nearly analytic data and those that are not
close to a linear stable model. From the constructive viewpoint, we face the problem of representing functions
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through expansions that are specifically adapted to the underlying geometry, for instance, rational bases whose
poles cluster at the endpoints ofK. Research in this direction is in its infancy.

The study of Problem(P ′) has been recently carried out in the case wherep = 2 (with ψ = 0) which
encompasses all mixed problems where the exponent onT rK is greater than 2[49]. It turns out that the
solution uniquely exists and that the constraint is saturated pointwise, that is|g| = M a.e. onT rK, unless
f is the trace onK of andH2-function satisfying the constraint; the latter fact is perhaps counter-intuitive.
Although non-smooth, this infinite-dimensional convex problem has a critical point equation and solves a
min−max equation where the multiplier is a function onT rK. The solution can be expressed in terms of
the multiplier through a Toeplitz spectral equation as well as a Cauchy-type representation. More details on an
algorithmic approach can be found in section6.8.

Smoothness issues in Problems(P ) and(P ′) are both delicate and important in practice. In fact, the solution
to such problems is bound to be very irregular at the endpoints ofK unlessM is adjusted tof ; sufficient
conditions for smoothness are only emerging.

Let us also emphasize that(P ) has many analogs, equally interesting, that occur in different contexts
connected to conjugate functions. For instance one may consider the following extremal Problem, where the
constraint on the approximant is expressed in terms of its real and imaginary parts while the criterion takes
only its real part into account:

Letp ≥ 1,K be an arc of the unit circleT , f ∈ Lp(K), ψ ∈ Lp(T rK), andα, β,M > 0; find a function
g ∈ Hp such thatα ‖Re(g − ψ)‖Lp(TrK) + β ‖Im(g − ψ)‖Lp(TrK) ≤M and such that Re(g − f) is of
minimal norm inLp(K) under this constraint.

This is a natural formulation for issues concerning the Dirichlet-Neumann problem for the Laplace operator,
see sections4.2and6.3, where data and physical prior information concern real (or imaginary) parts of analytic
functions.

For p = 2, existence and uniqueness of a solution have been established in[68], as well as a constructive
procedure which, in addition to the Toeplitz operator that characterizes the solution of(P ) in the casep = 2
andN = 0, also involves a Hankel operator (this extends the results of[63]).

In the non-Hilbertian case, wherep 6= 2, ∞, but stillN = 0, the solution of(P ) can be deduced from that
of (P0) in a manner analogous to the casep = 2, though the situation is a bit more tricky concerning duality,
because one remains in a convex setup (infinite-dimensional of course), for which local optimization methods
can be applied.

Up to now, if p <∞ andN > 0, no demonstrably convergent solution to Problem(P0) is available.
However, a coherent picture has emerged and rather efficient numerical schemes have been devised, although
their convergence has only been established for prototypical classes of functions. The essential features of the
approach are summarized below.

First of all, the casep = 2 andN > 0 of Problem(P0), which is of particular importance, reduces to rational
approximation as described in more details in section3.1.2. Here, the link with classical interpolation theory,
orthogonal polynomials, and logarithmic potentials is strong and fruitful. Second, a general AAK theory in
Lp has been proposed which is relatively complete forp ≥ 2 [8]. Although it does not have, forp 6= ∞, the
computational power of the classical theory, it has better continuity properties and stresses a continuous link
between rational approximation inH2 (see section3.1.2) and meromorphic approximation in the uniform
norm, allowing one to use, in either context, the techniques available from the other. Hence, similar to the
casep = ∞, the best meromorphic approximation with at mostn poles in the disk of a functionf ∈ Lp(T )
is obtained from the singular vectors of the Hankel operator of symbolf between the spacesHs andH2

with 1/s+ 1/p = 1/2, the error being here again equal to the(n+ 1)st singular number of the operator.
This generalization has a strong topological flavour and relies on the critical points theory of Ljusternik-
Schnirelman as well as on the particular geometry of the Blaschke products of given degree. A matrix-valued
version has been recently obtained along the same lines. A noticeable common feature to all these problems
is the following: the critical point equations express non-Hermitian orthogonality of the denominator (i.e., the
polynomial whose zeroes are the poles of the approximant) against polynomials of lower degree, for a complex
measure that depends however on this denominator (because the problem is non-linear). This allows one to
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1. extend the index theorem to the case2 ≤ p ≤ ∞ [40] and tackle the uniqueness problem,

2. study asymptotic errors with classical techniques of potential theory,

3. characterize the asymptotic behavior of the poles of the approximants for functions with connected
singularities that are of particular interest for inverse problems (cf. section3.1.3).

In connection with the second and third items above, there are two types of asymptotics, namely weak and
strong ones. Weak asymptotics begin to be reasonably understood for functions with branched singularities.
Strong asymptotics for non Hermitian orthogonality relations have only been obtained recently in some
particular cases, see section6.7.

In light of these results, and despite the fact that many questions remain open, algorithmic progress is
expected concerning(P0) for N > 0 andp ≥ 2 in the forthcoming years. Subsequently, it is conceivable that
the transition from(P0) to (P ) would follow the same lines as in the analytic case[73].

The case where1 ≤ p < 2 remains largely open, especially from the constructive point of view, because
if the approximation error can still be interpreted in terms of singular values, the Hankel operator takes an
abstract form which does not lead to a functional identification of its singular vectors. This is unfortunate
as this range of values forp is quite interesting: for instance theL1 criterion induces the operator norm
L∞ → L∞ in the frequency domain, which is interesting for damping perturbations. It is possible that some
appropriate duality relates the casep < 2 to the case2 < p, but this has not been established yet.

A valuable endeavor is to extend to higher dimensions (in particular in 3-D) parts of the the above analysis,
where harmonic fields replace analytic functions. On the ball or the half-space, it seems that many of the
necessary ingredients are available after the development of real Hardy space theory from harmonic analysis
[75], with the notable exception of multiplicative techniques which are unfortunately essential to define Hankel
operators. Any progress on these multiplicative aspects would yield corresponding progress in harmonic
identification and its use in elliptic inverse problems. Some recent research developments within the team
aim in this direction, see section6.3.1.

3.1.2. Scalar rational approximation
Participants: Laurent Baratchart, Martine Olivi, Edward Saff, Herbert Stahl [TFH Berlin], Maxim Yattselev.

Key words: rational approximation, critical point, orthogonal polynomials.

Rational approximation is the second step mentioned in section3.1and we first consider it in the scalar case,
for complex-valued functions (as opposed to matrix-valued ones). The Problem can be stated as:

Let 1 ≤ p ≤ ∞, f ∈ Hp andn an integer; find a rational function without poles in the unit disk, and of
degree at mostn that is nearest possible tof in Hp.

The most important values ofp, as indicated in the introduction, arep = ∞ andp = 2. In the latter case,
the orthogonality between Hardy spaces of the disk and of the complement of the disk (the last one being
restricted to functions that vanish at infinity to exclude the constants) makes rational approximation equivalent
to meromorphic approximation, i.e., we are back to Problem(P ) of section3.1.1with p = 2 andK = T .
Although no demonstrably convergent algorithm is known for a single value ofp, the former Miaou project
(the predecessor of APICS) has designed a steepest-descent algorithm for the casep = 2 whose convergence
to a local minimumis guaranteed in theory, and it is the first satisfying this property. Roughly speaking, it
is a gradient algorithm, proceeding recursively with respect to the ordern of the approximant, that uses the
particular geometry of the problem in order to restrict the search to a compact region of the parameter space[1].
This algorithm can generate localminimaif several exist, thus allowing one to discriminate between them. If
there is no localmaximum, a property which is satisfied when the degree is large enough, every localminimum
can be obtained from an initial condition of lower order. It is not proved, however, that the absoluteminimum
can always be obtained using the strategy of the hyperion or RARL2 software (see section5.2) that consists
in choosing the collection of initial points corresponding to critical points of lower degree; note that we do not
know of a counter-example either, still assuming that there is nomaximum, so there is room for a conjecture
at this point.
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It is only fair to say that the design of a numerically efficient algorithm whose convergence to the best
approximant would be proved is the most important problem from a practical perspective. However, the
algorithms developed by the team seem rather effective and although their global convergence has not been
established.A contrario, it is possible to consider an elimination algorithm when the function to approximate
is rational, in order to find all critical points, since the problem is algebraic in this case. This method is surely
convergent, since it is exhaustive, but one has to compute the roots of an algebraic system withn variables of
degreeN , whereN is the degree of the function to approximate and there can be as many asNn solutions
among which it is necessary to distinguish those that are coefficients of polynomials having all their roots in the
unit disk; the latter indeed are the only ones that generate critical points. Despite the increase of computational
power, such a procedure is still unfeasible granted that realistic values forn andN are like a ten and a couple
of hundreds respectively (see section4.3.2).

To prove or disprove the convergence of the above-described algorithms, and to check them against practical
situations, the team has undergone a long-haul study of the number and nature of critical points, depending
on the class of functions to be approximated, in which tools from differential topology and operator theory
team up with classical approximation theory. The study of transfer functions of relaxation systems (i.e.,
Markov functions) was initiated in[9] and more or less completed in[51], as well as the case ofez (the
prototype of an entire function with convex Taylor coefficients) and the case of meromorphic functions (à la
Montessus de Ballore)[7]. After these studies, a general principle has emerged that links the nature of the
critical points in rational approximation to the regularity of the decrease of the interpolation errors with the
degree, and a methodology to analyze the uniqueness issue in the case where the function to be approximated
is a Cauchy integral on an open arc (roughly speaking these functions cover the case of singularities of
dimension one that are sufficiently regular, see section3.1.3) has been developed. This methodology relies
on the localization of the singularities via the analysis of families of non-Hermitian orthogonal polynomials,
to obtain strong estimates of the error that allow one to evaluate its relative decay. Note in this context an
analogue of the Gonchar conjecture, that uniqueness ought to hold at least for infinitely many values of the
degree, corresponding to a subsequence generating theliminf of the errors. This conjecture actually suggests
that uniqueness should be linked to the ratio of the to-be-approximated function and its derivative on the circle.
When this ratio is pointwise greater than 1 (i.e., the logarithmic variation is small), it has been recently proved
using Morse theory and the Schwartz lemma that uniqueness holds in degree 1[39]. The generalization to
higher dimensions is an exciting open question.

Another uniqueness criterion has been obtained[8] for rational functions, inspired from the spectral
techniques of AAK theory. This result is interesting in that it is not asymptotic and does not require pointwise
estimates of the error; however, it assumes a rapid decrease of the errors and the current formulation calls for
further investigation.

The introduction of a weight in the optimization criterion is an interesting issue induced by the necessity to
balance the information one has at the various frequencies. For instance in the stochastic theory, minimum
variance identification leads to weight the error by the inverse of the spectral density of the noise. It is
worth noting that most approaches to frequency identification in the engineering practice consists of posing
a least-square minimization problem, and to weigh the terms so as to obtain a suitable result using a generic
optimization toolbox. In this way we are led to consider minimizing a criterion of the form:∥∥∥∥f − pm

qn

∥∥∥∥
L2(dµ)

(1)

where, by definition,

‖g‖2L2(dµ) =
1
2π

∫ π

−π

|g(eiθ)|2dµ(θ),
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andµ is a positive finite measure onT , pm is a polynomial of degree less or equal tom andqn a monic
polynomial of degree less or equal ton. Such a problem is nicely put whenµ is absolutely continuous with
respect to the Lebesgue measure and has invertible derivative inL∞. For instance whenµ is the squared
modulus of an invertible analytic function, introducingµ-orthogonal polynomials instead of the Fourier basis
makes the situation similar to the non-weighted case, at least ifm ≥ n− 1 [69]. The corresponding algorithm
was implemented in the hyperion software. The analysis of the critical points equations in the weighted case
gives various counter-examples to unimodality in maximum likelihood identification[70].

It is worth pointing out thatmeromorphicapproximation is better behaved (i.e., essentially invariant) with
respect to the introduction of a weight, see6.6. Another kind of rational approximation, that arises in several
design problems where only constraints on the modulus are sought, consists in approximating the module of a
function by the module of a rational function, that is, solving for

min
∥∥∥∥|f | − ∣∣∣∣pn

qn

∣∣∣∣∥∥∥∥
Lp(T )

.

This problem is strongly related to the previous ones; in fact, it can be reduced to a convergent series of
standard rational approximation problems. Note also that ifp = ∞, and if moduli are squared, i.e., if the
feasibility of ∥∥∥∥∥|f |2 −

∣∣∣∣pn

qn

∣∣∣∣2
∥∥∥∥∥

L∞(T )

< ε,

is required, one can use the Féjèr-Riesz characterization of positive trigonometric polynomials on the unit as
squared moduli of algebraic polynomials to approach this issue as a convex problem in infinite dimension.
This constitutes another fundamental direction for dealing with rational approximation in modulus that arises
naturally in filter design problems.

3.1.3. Behavior of poles of meromorphic approximants and inverse problems for the Laplacian
Participants: Laurent Baratchart, Erwin Mina Diaz, Edward Saff, Herbert Stahl [TFH Berlin], Vilmos Totik
[univ. Szeged and Sci. Acad., Hungary], Maxim Yattselev.

Key words: singularity detection, free boundary inverse problems, meromorphic approximation, rational
approximation, orthogonal polynomials, discretization of potentials.

We refer here to the behavior of the poles of best meromorphic approximants, in theLp-sense on a closed
curve, to functions defined as Cauchy integrals of complex measures whose support lies inside the curve.
If one normalizes the contour to be the unit circle (which is no restriction in principle thanks to conformal
mapping but raises of course difficult questions from the constructive point of view), we find ourselves again
in the framework of sections3.1.1and3.1.2, and the invariance of the problem under such transformation was
established in[50]. The research so far has focused on functions that are analytic on and outside the contour,
and have singularities on an open arc inside the contour.

Generally speaking, the behavior of poles is particularly important in meromorphic approximation to obtain
error rates as the degree goes large and also to tackle more constructive issues like uniqueness. However, the
original motivation of APICS is to consider this issue in connection with the approximation of the solution
to a Dirichlet-Neumann problem, so as to extract information on the singularities. This way to tackle a free
boundary problem, classical in every respect but still quite open, illustrates the approach of the team to certain
inverse problems, and gives rise to an active direction of research at the crossroads of function theory, potential
theory and orthogonal polynomials.

As a general rule, critical point equations for these problems express that the polynomial whose roots are
the poles of the approximant is a non-Hermitian orthogonal polynomial with respect to some complex measure
(that depends on the polynomial itself and therefore vries with the degree) on the singular set of the function
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to be approximated. New results were obtained in recent years concerning the location of such zeroes. The
approach to inverse problem for the Laplacian that we outline in this section appears to be attractive when the
singularities are one-dimensional, for instance in the case of a cracked domain (see section4.2). When the
crack is sufficiently smooth, the approach in question is in fact equivalent to the meromorphic approximation
of a function with two branch points, and we were able to prove[50][15] that the poles of the approximants
accumulate in a neighborhood of the geodesic hyperbolic arc that links the endpoints of the crack[5]. Moreover
the asymptotic density of the poles turns out to be the equilibrium distribution on the geodesic arc of the Green
potential and it charges the end points, that arede factowell localized if one is able to compute sufficiently
many zeros (this is where the method could fail). It is interesting to note that these results apply also, and
even more easily, to the detection of monopolar and dipolar sources, a case where poles as well as logarithmic
singularities exist. The case of more general cracks (for instance formed by a finite union of analytic arcs)
requires the analysis of the situation where the number of branch points is finite but arbitrary. It is conjectured
that the poles tend to the contourC that links the end points of these analytic arcs while minimizing the
capacity of the condenser(T,C), whereT is the exterior boundary of the domain (see section6.7). The
conjecture is confirmed numerically and has been actually proved (paper in preparation) in the case where the
locus of minimal capacity isconnected; this covers a large number of interesting cases, including the case of
general polynomial cracks, or of cracks consisting of sufficiently smooth arcs. This breakthrough, we hope,
will constitute a substantial progress towards a proof of the general case. It would of course be very interesting
to know what happens when the crack is “absolutely non analytic”, a limiting case that can be interpreted as
that of an infinite number of branch points, and on which very little is known, although there are grounds to
conjecture that the endpoints at least are still accumulation points of the poles. This is an outstanding open
question for applications to inverse problems6.3. Concerning the problem of a general singularity, that may
be two dimensional, one can formulate the following conjecture: iff is analytic outside and on the exterior
boundary of a domainD and ifK is the minimal compact set included inD that minimizes the capacity of
the condenser(T,K) under the constraint thatf is analytic and single-valued outsideK (it exists, it is unique,
and we assume it is of positive capacity in order to avoid degenerated cases), then every limit point (in the
weak star sense) of the sequenceνn of probability measures having equal mass at each pole of an optimal
meromorphic approximant (with at mostn poles) off in Lp(T ) has its support inK and sweeps out to the
boundary ofK as the equilibrium measure onK of the condenser(T,K). Yet this conjecture is far from being
solved.

Results of this type open new perspectives in non-destructive control (see section4.2), in that they link
issues of current interest in approximation theory (the behavior of zeroes of non-Hermitian orthogonal
polynomials) to some classical inverse problems for which a dual approach is proposed: to approximate the
boundary conditions and not the equation. Note that the problem of finding a crack suggests non-classical
variants of rational and meromorphic approximation where the residues of the approximants must satisfy some
constraints in order to take into account the boundary conditions, normal or tangential, along the singularity.
In fact, the afore-mentioned results dealing with (unconstrained) meromorphic approximation lead to identify
a deformation of the crack (the arc of minimal capacity that links its end points) rather than the crack itself,
which is valuable to initialize a heavier direct method but which is not conclusive by itself. In order to limit
the deformation which is due to the fact that we did not keep track of the limiting-conditions (especially the
fact that the jump across the crack is real), one may consider approximating the complexified solutionF of a
Neumann problem in a cracked domainD by a meromorphic function of the type

∑n
j=1 aj/(z−zj) + g(z),

whereg is analytic inD, under the constraint that
∑

k 6=j ak/(zj − zk) + g(zj) is real for eachj; in effect,
if the poleszj are distributed along an arc, the above sum is a discrete estimation of the Hilbert transform of
the measure defining the function, and enforcing that it is zero should help satisfying the Neumann condition
along the arc. Such modifications of the initial problem are only beginning to be considered within the team.

We conclude by mentioning that the problem of approximating, by a rational or meromorphic function,
in theLp sense on the boundary of a domain, the Cauchy transform of a real measure, localized inside the
domain, can be viewed as an optimal discretization problem for a logarithmic potential according to a criterion
involving a Sobolev norm. This formulation can be generalized to higher dimensions, even if the computational
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power of complex analysis is no longer actual, and this makes for a long-term research project with a wide
range of applications. It is interesting to mention that the case of sources in dimension three in a spherical
geometry, can be attacked with the above 2D techniques as applied to planar sections (see section6.3).

3.1.4. Matrix-valued rational approximation
Participants: Laurent Baratchart, Andrea Gombani, Martine Olivi, José Grimm.

Key words: rational approximation, inner matrix, reproducing kernel space realization theory.

Matrix-valued approximation is necessary for handling systems with several inputs and outputs, and generates
substantial additional difficulties with respect to scalar approximation, theoretically as well as algorithmically.
In the matrix case, the McMillan degree (i.e., the degree of a minimal realization in the System-Theoretic
sense) generalizes the degree. Hence the problem reads:Let 1 ≤ p ≤ ∞, F ∈ (Hp)m×l and n an integer;
find a rational matrix of sizem× l without poles in the unit disk and of McMillan degree at mostn nearest
possible toF in (Hp)m×l. To fix ideas, we may define theLp norm of a matrix as thep-th root of the sum of
thep powers of the norms of its entries.

The main interest of the Apics Team lies in the casep = 2. Then, the approximation algorithm designed
in the scalar case generalizes to the matrix-valued situation[10]. The first difficulty consists here in the
parametrization of transfer matrices of given McMillan degreen, and the inner matrices (i.e., matrix-valued
functions that are analytic in the unit disk and unitary on the circle) of degreen enter the picture in an essential
manner: they play the role of the denominator in a fractional representation of transfer matrices using the so-
called Douglas-Shapiro-Shields factorization. The set of inner matrices of given degree has the structure of a
smooth manifold that allows one to use differential tools as in the scalar case. In practice, one has to produce
an atlas of charts (parameterizations valid in a neighborhood of a point), and she must handle changes of chart
in the course of the algorithm. The tangential Schur algorithm[33] provides us with such a parameterization
and allowed the team to develop two rational approximation codes. The first one is integrated in the hyperion
software dealing with transfer matrices while the other, which is developed under the Matlab interpreter, goes
by the name of RARL2 and works with realizations. Both have been experimented on measurements by the
CNES (branch of Toulouse), IRCOM, and Alcatel Space, and they give high quality results[2] in all cases
encountered so far. These codes are now of daily use by Alcatel Space and IRCOM, coupled with simulation
software like EMXD to design physical coupling parameters for the synthesis of hyperfrequency filters made
of resonant cavities, see7.1.

In the above application, obtaining physical couplings requires the computation of realizations, also called
internal representation in system theory. Among the parameterizations obtained via the Schur algorithm, some
have a particular interest from this viewpoint[72]. They lead to a simple and robust computation of balanced
realizations and form the basis of the RARL2 algorithm.

Problems relative to multiple local minima naturally arise in the matrix-valued case as well, but deriving
criteria that guarantee uniqueness is much more difficult than in the scalar case. The case of rational functions
of the right degree already uses rather heavy machinery[6], and that of matrix-valued Markov functions, that
are the first example beyond rational function has made progress only recently (see section6.6).

In practice, a method similar to the one used in the scalar case has been developed to generate local minima
of a given order from those at lower orders. In short, one sets out a matrix of degreen by perturbation of
a matrix of degreen− 1 where the drop in degree is due to a pole-zero cancellation. There is an important
difference between polynomial representations of transfer matrices and their realizations: the former lead to
an embedding in a ambient space of rational matrices that allows a differentiable extension of the criterion on
a neighborhood of the initial manifold, but not the latter (the boundary is strongly singular). Generating initial
conditions in a recursive manner is more delicate in terms of realizations, and some basic questions on the
boundary behavior of the gradient vector field are still open.

Let us stress that the algorithms mentioned above are first to handle rational approximation in the matrix
case in a way that converges to local minima, while meeting stability constraints on the approximant.



12 Activity Report INRIA 2005

3.1.5. Linear parametric identification
Participants: Laurent Baratchart, Martine Olivi.

Key words: rational approximation, parametric identification, topology of rational matrices, critical points.

The asymptotic study of likelihood estimators is a natural companion to the research on rational approximation
described above. The context is ultra-classical. Given a discrete processy(t) with values inRp, and another
process with values inRm, we check for an explanation ofy in terms ofu as a finite order linear model:

ŷ(t) = Hu(t) + Le(t),

wheree is a white noise withp components, uncorrelated tou, assumed to represent the uncertainty iny(t), and
where the transfer matrix[L H] that links(e u)t to ŷ is rational and stable of McMillan degreen, the matrix
L being also of stable inverse (among all noises with same covariance, and given innovation, we chose those
whose spectral factor has minimum phase). The numbern is, by definition, the order of the model. If we only
suppose that[H L] belongs to the Hardy spaceH2 and thatL is outer (this means stably invertible in some
sense), such a representation is in fact general forregular (i.e., purely non-deterministic) stationary processes.
Identification in this context appears then as a rational approximation problem for which the classical theory
makes a trade-off between two antagonistic factors, namely the bias error on the one hand that decreases when
n increases and the variance error on the other hand that increases withn since the dispersion is amplified with
the number of parameters. This is the stochastic version of the complexity versus precision alternative which
is all-pervasive in modeling.

If one introduces now as a new variable the rational matrixR defined by

R =
(
L H
0 Im

)−1

and if T stands for the first block-row, normalizing the variance of the noise to be the identity matrix,
the maximum likelihood estimator is asymptotically equivalent, when the sample size increases, to the
minimization of

‖T‖2Λ = Tr
{

1
2π

∫ 2π

0

T (eiθ) dΛ(θ)T ∗(eiθ)
}
, (2)

whereΛ is the spectral measure of the process(y u)t (which positive and matrix-valued) and whereTr
indicates the trace. If we further restrict the class of models by assuming that we deal with white noise, that is
if L = Im, one obtains a weighted rational approximation problem corresponding to the minimization of the
variance on the output error. If moreoveru itself is (observed) white noise, the situation becomes that of3.1.4.

Formulation (2) shows that stochastic identification aims at a twofold generalization, both rational and
matrix-valued, of the Szegö theory of orthogonal polynomials on the circle, and this sets up a link with classical
function theory.

The consistency problem arises from the fact that the measureΛ is not available, so that one has to
estimate (2) from time averages of the observed samples, assuming that the process is ergodic. The question is
then to decide whether the argument of the minimum of the estimated functional tends to that of (2) when the
sample size increases, and what is the speed of convergence. The most significant result here is perhaps the one
asserting that if there exists a functional model linkingu to y (i.e.,u is indeed the cause of the phenomenon),
and without assuming compactness of the class of models[61], then consistency holds under weak ergodicity
conditions and persistent excitation assumptions. An analogous of the law of large numbers indicates, in this
context, that convergence is in the order of1/

√
N , whereN is the sample size.

In the preceding result, consistency holds in the sense of pointwise convergence of the estimates on the
manifold of transfer functions of given size and order. One contribution of the former Miaou project has been
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to show that the result holds even if we do not postulate a causal dependency between inputs and outputs,
the measureΛ being simply defined as the weak limit of the covariances. A second contribution is that this
convergence holds uniformly with all its derivatives on each compact subset of the manifold of models, thereby
drawing a path between the algorithmic behavior of the rational approximation problem (number and nature
of critical points, decrease of error, behavior of the poles) and that of the minimization of empirical means.
This allows one to translate in terms of asymptotic behavior of the estimators virtually all properties that
are uniform with respect to the order of the approximants, and without having to assume that the “true”
system belongs to the class of models. Let us mention for instance that uniqueness of a critical point inH2

rational approximation, in the case where the system to approximate is nearly rational of degreen, implies[6]
uniqueness of a local minimizer for the output error when the input is a white noise, asymptotically almost
surely on every compact, when the density ofy with respect tou is nearly rational of degreen. In the case of
relaxation systems, with one input-output, that is, if the transfer function is a Markov function, we obtain, in
the light of the results exposed in module3.1.2, the same conclusion when the order of approximation is large
enough. This is the first known case of unimodality where the “true” system does not belong to the class of
models. An extension to the case of matrix-valued-Markov function was obtained recently, see section6.6. An
application of this to the localization of the poles of rational estimates of the output error of a long memory
system can be found in[44]. Here, we face again the question, already mentioned in the introduction, of
how to expand functions in bases that are adapted to the singularities of the spectral density of long memory
processes. We believe this research direction would be worth exploring.

3.2. Structure and control of non-linear systems
In order to control a system, one generally relies on a model, obtained froma priori knowledge, like physical
laws, or from experimental observations. In many applications, one is satisfied with a linear approximation
around a nominal point or trajectory. However, certain control problems, such as path planning, are not of a
local nature and cannot be answered via a linear approximation; it is also often the case that linear control
does not apply, either because the magnitude of the control is limited or because the linear approximation is
not controllable.

Module3.2.1describes a problem of this nature, where the controllability of the linear approximation is of
little help. The structural study described in module3.2.2aims at exhibiting invariants that can be used, either
to bring the study back to that of simpler systems or to lay grounds for a non-linear identification theory. The
latter would give information on model classes to be used in case there is noa priori reliable information and
still the black-box linear identification is not satisfactory.

3.2.1. Feedback control and optimal control
Key words: control, stabilization of non-linear systems, non-linear control, non holonomic mechanical
system.

Participants: Alex Bombrun, José Grimm, Jean-Baptiste Pomet, Mario Sigalotti.

Stabilization by continuous state feedback—or output feedback, that is, the partial information case—consists
in designing a control law which is a smooth (at least continuous) function of the state making a given point (or
trajectory) asymptotically stable for the closed system. One can consider this as a weak version of the optimal
control problem: to compute a control that optimizes a given criterion (for instance to reach a prescribed state
in minimal time) leads in general to a very irregular dependence on this state; stabilization is aqualitative
objective (i.e., to reach that state asymptotically) which is more flexible and allows one to impose a lot more
regularity.

Lyapunov functions are a well-known tool to study stability of non-control dynamic systems. For a control
system, aControl Lyapunov Functionis a Lyapunov function for the closed-loop system where the feedback
is chosen appropriately. It can be expressed by a differential inequality called the “Artstein (in)equation[36]”,
that looks like the Hamilton-Jacobi-Bellmann equation but is largely under-determined. One can easily deduce
from the knowledge of a control Lyapunov function a continuous stabilizing feedback.
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The team is engaged in obtaining control Lyapunov functions for certain classes of systems. This should be
the first step in synthesizing a stabilizing control, but even when such a control is known beforehand, obtaining
a control Lyapunov function can still be very useful to study the robustness of the stabilization, or to modify
the initial control law into a more robust one. Moreover, if one has to deal with a problem where it is important
to optimize a criterion, and if the optimal solution is hard to compute, one can look for a control Lyapunov
function which comes “close” (in the sense of the criterion) to the solution of the optimization problem but
leads to a control which is easier to work with.

These constructions are exploited in the joint collaborative research conducted with Alcatel Space (see
module7.2), where minimizing a certain cost is very important (fuel consumption / transfer time) while at the
same time a feedback law is preferred because of robustness and ease of implementation.

3.2.2. Transformations and equivalences of non-linear systems and models
Participants: David Avanessoff, Laurent Baratchart, Monique Chyba [U. of Hawaii (USA)], Jean-Baptiste
Pomet.

Key words: non-linear control, non-linear feedback, classification, non-linear identification.

Here we study certain transformations of models of control systems, or more accurately equivalence classes
modulo such transformations. The interest is two-fold:

• From the point of view of control, it is that a command satisfying specific objectives on the
transformed system can be used to control the original system including the transformation in the
controller. Of course the favorable case is when the transformed system has a structure that can easily
be exploited, for instance when it is a linear controllable system.

• From the point of view of identification and modeling, in the non-linear case, the interest is either
to derive qualitative invariants to support the choice of a non-linear model given the observations,
or to contribute to a classification of non-linear systems which is missing sorely today. Indeed, the
success of the linear model, in control or in identification, is due to the deep understanding one
has of it; in the same fashion, a refined knowledge of invariants of non-linear systems under basic
transformations is a prerequisite for a theory of non-linear identification and control.

Concerning the classes of transformations, astatic feedbacktransformation of a dynamical control system is
a (non-singular) reparametrization of the control depending on the state, together with a change of coordinates
in the state space. Adynamic feedbacktransformation of a dynamic control system consists of a dynamic
extension (adding new states, and assigning them a new dynamics) followed by a state feedback on the
augmented system. Let us now stress two specific problems that we are tackling.

3.2.2.1. Dynamic linearization.
The problem of dynamic linearization, still unsolved, is that of finding explicit conditions on a system for the
existence of a dynamical feedback that would make it linear.

Over the last years[58], the following property of control systems has been emphasized: for some systems
(in particular linear ones), there exists a finite number of functions of the state and of the derivatives of the
control up to a certain order, that are differentially independent (i.e., coupled by no differential equation) and
do “parameterize all the trajectories”. This property and its importance in control, has been brought in light
in [58], where it is calleddifferential flatness, the above mentioned functions being calledflat or linearizing
functions, and it was shown, roughly speaking, that a system is differentially flat if, and only if, it can be
converted to a linear system by dynamic feedback. On the one hand, this interesting property of the set of
trajectories is at least as important in control than the equivalence to a linear system, and on the other hand it
gives a handle for tackling the problem of dynamic linearization, namely to find linearizing functions.

An important question remains open: how can one algorithmically decide that a given system has this
property or not, i.e., is dynamically linearizable or not? This problem is both difficult and important for non-
linear control. For systems with four states and two controls, whose dynamics is affine in the control (these
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are the lowest dimensions for which the problem is really non-trivial), necessary and sufficient conditions[12]
for the existence of linearizing functions depending on the state and the control (but not the derivatives of the
control) can be given explicitly, but they do point to the complexity of the issue.

From the algebraic-differential point of view, the module of differentials of a controllable system is free
and of finite dimension over the ring of differential polynomials ind/dt with coefficients in the space of
functions of the system, and for which a basis can be explicitly constructed[35]. The question is to find out
if it has a basis made of closed forms, that is, locally exact forms. Expressed in this way, it is an extension
of the classical integrability theorem of Frobenius to the case where coefficients are differential operators.
Together with stability by exterior differentiation (the classical condition), further conditions are required here
to ascertain the degree of the solutions is finite, the mid-term goal being to obtain a formal and implementable
algorithm, able to decide whether or not a given system is flat around a regular point. One can further consider
sub-problems having their own interest, like deciding flatness with a given pre-compensator, or characterizing
“formal” flatness that would correspond to a weak interpretation of the differential equation. Such questions
can also be raised locally, in the neighborhood of an equilibrium point.

3.2.2.2. Topological Equivalence
In what precedes, we have not taken into account the degree ofsmoothnessof the transformations under
consideration.

In the case of dynamical systems without control, it is well known that, away from degenerate (non
hyperbolic) points, if one requires the transformations to be merely continuous, every system islocally
equivalent to a linear system in a neighborhood of an equilibrium (the Hartman-Grobman theorem). It is
thus tempting when classifyingcontrol systems, to look for such equivalence modulo non-differentiable
transformations and to hope bring about some robust “qualitative” invariants and perhaps stable normal forms.
A Hartman-Grobman theorem for control systems would say for instance, that outside a “meager” class of
models (for instance, those whose linear approximation is non-controllable), and locally around nominal
values of the state and the control, no qualitative phenomenon can distinguish a non-linear system from a
linear one, all non-linear phenomena being thus either of global nature or singularities. Such a statement is
wrong: if a system is locally equivalent to a controllable linear system via a bi-continuous transformation—a
local homeomorphism in the state-control space—it isalsoequivalent to this same controllable linear system
via a transformation that is as smooth as the system itself, at least in the neighborhood of a regular point (in
the sense that the rank of the control system is locally constant), see[41] for details;a contrario, under weak
regularity conditions, linearization can be done by non-causal transformations (see the same report) whose
structure remains unclear, but acquire a concrete meaning when the entries are themselves generated by a
finite dimensional dynamics.

The above considerations call for the following question, which is important for modeling control systems:
are there local “qualitative” differences between the behavior of a non-linear system and its linear approxima-
tion when the latter is controllable?

4. Application Domains
4.1. Introduction

The botton line of the team’s activity is twofold, namely optimization in the frequency domain on the one hand,
and the control of systems governed by differential equations on the other hand. Therefore one can distinguish
between two main families of applications: one dealing with the design and identification of diffusive and
resonant systems (these are inverse problems), and one dealing with the control of certain mechanical or
optical systems. For applications of the first type, approximation techniques as described in module3.1.1
allow one to deconvolve linear equations, analyticity being the result of either the use of Fourier transforms
or the harmonic character of the equation itself. Applications of the second type mostly concern the control of
systems that are “poorly” controllable, for instance low thrust satellites or optical regenerators. We describe
all these below in more detail.
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4.2. Geometric inverse problems for the Laplacian
Participants: Amina Amassad [UNSA], Bilal Atfeh, Laurent Baratchart, Amel Ben Abda [ENIT, Tunis], Imen
Fellah [ENIT, Tunis], José Grimm, Mohamed Jaoua [UNSA], Juliette Leblond, Moncef Mahjoub [LAMSIN-
ENIT], Jonathan R. Partington [Leeds Univ.], Edward Saff [Vanderbilt Univ.].

Key words: inverse problem, Laplace equation, non destructive control, tomography.

Localizing cracks, pointwise sources or occlusions in a two-dimensional material, using thermal, electrical,
or magnetic measurements on its boundary is a classical inverse problem. It arises when studying fatigue
of structures, behavior of conductors, or else magneto-encephalography as well as the detection of buried
objects (mines, etc). However, no really efficient algorithm has emerged so far if no initial information on the
location or on the geometry is known, because numerical integration of the inverse problem is very unstable.
The presence of cracks in a plane conductor, for instance, or of sources in a cortex (modulo a reduction
from 3D to 2D, see later on) can be expressed as a lack of analyticity of the (complexified) solution of the
associated Dirichlet-Neumann problem that may in principle be approached using techniques of best rational
or meromorphic approximation on the boundary of the object (see sections3.1.1 to 3.1.3and6.3). In this
connection, the realistic case where data are available on part of the boundary only is a typical opportunity to
apply the analytic and meromorphic extension techniques developed earlier.

The 2D approach proposed here consists in constructing, from measured data on a subsetK of the boundary
Γ of a plane domainD, the trace onΓ of a functionF which is analytic inD except for a possible singularity
across some subsetγ ⊂ D (typically: a crack). One can then use the approximation techniques described
above in order to:

• extendF to all Γ if the data are incomplete (it may happen thatK 6= Γ) if the boundary is not fully
accessible to measurements), for instance to identify an unknown Robin coefficient, see[55] where
stability properties of the procedure are established;

• detect the presence of a defectγ in a computationally efficient manner,[52];

• obtain information on the location ofγ [15], [14].

Thus, inverse problems of geometric type that consist in finding an unknown boundary from incomplete
data can be approached this way[5], usually in combination with other techniques[52]. Preliminary numerical
experiments have yielded excellent results and it is now important to process real experimental data, that the
team is currently busy analysing. In particular, contacts with the Odyssée Team of Inria Sophia Antipolis
(within the ACI “Obs-Cerv”) has provided us with 3D magneto-encephalographic data from which 2D
information was extracted, see section6.3. The team is also in contact with other laboratories (e.g., Vanderbilt
Univ. Physics Dept.) in order to work out 2D or 3D data from physical experiments.

The team has begun this year to study this type of methods for problems with variable conductivity governed
by a 2-D Beltrami equation (these appear in plasma confinment for thermonuclear fusion, for example, a
subject on which a collaboration has started with the Laboratoire J.Dieudonné of the University of Nice);
it is the object of the post-doctoral stay of E. Sincich. In the longer term, we envisage also applying such
techniques to the Helmholtz equation. Using convergence properties of approximation algorithms in order to
establish stability results for these inverse problems is an appealing direction for future research.

4.3. Identification and design of resonant systems
Key words: telecommunications, multiplexing, filtering device, hyperfrequency, surface waves.

One of the best training ground for the research of the team in function theory is the identification and design
of physical systems for which the linearity assumption is well-satisfied in the working range of frequency,
and whose specifications are made in frequency domain. Resonant systems, acoustic or electromagnetic, are
prototypical examples of common use in telecommunications. We shall be more specific on two examples
below.
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4.3.1. Design of surface acoustic wave filters
Participants: Laurent Baratchart, Andrea Gombani, José Grimm, Martine Olivi.

Surface acoustic waves filters are largely used in modern telecommunications especially for cellular phones.
This is mainly due to their small size and low cost. Unidirectional filters, formed ofSingle Phase UniDirec-
tional Transducers(in short: SPUDT) that contain inner reflectors (cf. Figure1), are increasingly used in this
technological area. The design of such filters is more complex than traditional ones.
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Figure 1. Transducer model.
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Figure 2. Configuration of the filter

We are interested here in a filter formed of two SPUDT transducers (Figure2). Each transducer is composed
of cells of the same lengthτ each of which contains a reflector and all but the last one contain a source
(Figure 1). These sources are all connected to an electrical circuit, and cause electro-acoustic interactions
inside the piezo-electric medium. In the transducer SPUDT2 represented on Figure2, the reflectors are
positioned with respect to the sources in such a way that near the central frequency, almost no wave can
emanate from the transducer to the left (Sg ≈ 0), this being called unidirectionality. In the right transducer
SPUDT1, reflectors are positioned in a symmetric fashion so as to obtain unidirectionality to the left.

Specifications are given in the frequency domain on the amplitude and phase of the electrical transfer
function. This function expresses the power transfer and can be written as
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E(r, g) = 2
V2

I0
=

2
√
G1G2 Y12
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,

whereY is the admittance of the coupling:(
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)
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(
Y11 Y12

Y21 Y22

) (
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)
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The design problem consists in finding the reflection coefficientsr and the source efficiency in both transducers
so as to meet the specifications.

The transducers are described by analytic transfer functions called mixed matrices, that link input waves
and currents to output waves and potentials. Physical properties of reciprocity and energy conservation endow
these matrices with a rich mathematical structure that allows one to use approximation techniques in the
complex domain (see module7.1) according to the following steps:

• describe the setE of electrical transfer functions obtainable from the model,

• set out the design problem as arational approximation problemin a normed space of analytic
functions:

min
E∈E

‖D − E‖,

whereD is the desired electrical transfer,

• use a rational approximation software (see module5.2) to identify the design parameters.

The first item, is the subject of ongoing research. It connects the geometry of the zeroes of a rational
matrix to the existence of an inner symmetric extension without increase of the degree (reciprocal Darlington
synthesis), see6.5. A collaboration with TEMEX (Sophia-Antipolis) was initiated this year on the subject.

4.3.2. Hyperfrequency filter identification
Participants: Laurent Baratchart, Stéphane Bila, José Grimm, Jean-Paul Marmorat [CMA-EMP], Fabien
Seyfert.

In the domain of space telecommunications (satellite transmissions), constraints specific to onboard technol-
ogy lead to the use of filters with resonant cavities in the hyperfrequency range. These filters serve multiplexing
purposes (before or after amplification), and consist of a sequence of cylindrical hollow bodies, magnetically
coupled by irises (orthogonal double slits). The electromagnetic wave that traverses the cavities satisfies the
Maxwell equations, forcing the tangent electrical field along the body of the cavity to be zero. A deeper study
(of the Helmholtz equation) states that essentially only a discrete set of wave vectors is selected. In the con-
sidered range of frequency, the electrical field in each cavity can be seen as being decomposed along two
orthogonal modes, perpendicular to the axis of the cavity (other modes are far away, and their influence can
be neglected).

Each cavity (see Figure3) has three screws, horizontal, vertical and midway (horizontal and vertical are
two arbitrary directions, the third direction makes an angle of 45 or 135 degrees, the easy case is when all
the cavities have the same orientation, and when the directions of the irises are the same, as well as the input
and output slits). Since the screws are conductors, they act more or less as capacitors; on the other hand, the
electrical field on the surface has to be zero, which modifies the boundary conditions of one of the two modes
(for the other mode, the electrical field is zero, and hence is not influenced by the screw), the third screw
acts as a coupling between the two modes. The effect of the iris is to the contrary of a screw: no condition
is imposed where there is a hole, which results in a coupling between two horizontal (or two vertical) modes
of adjacent cavities (in fact the iris is the union of the rectangles, the important parameter being their width).
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TUNING SCREW

COUPLING SCREW

Figure 3. Schematic 4-cavities dual mode filter. Each cavity has 3 screws to couple the modes within the cavity, so
that there are 12 quantities that should be optimized. Quantities like the diameter and length of the cavities, or the

width of the 8 slits are fixed in the design phase.

The design of a filter consists in finding the size of each cavity, and the width of each iris. After that, the filter
can be constructed, and tuned by adjusting the screws. Finally, the screws are glued. In what follows, we shall
consider a typical example, a filter designed by the CNES in Toulouse, with four cavities near 11 Ghz.

Near the resonance frequency, a good approximation of the Maxwell equations is given by the solution
of a second order differential equation. One obtains thus an electrical model for our filter as a sequence of
electrically-coupled resonant circuits, and each circuit will be modeled by two resonators, one per mode,
whose resonance frequency represents the frequency of a mode, and whose resistance represent the electric
losses (current on the surface).

In this way, the filter can be seen as a quadripole, with two ports, when plug on a resistor at one end and
fed with some potential at the other. We are then interested in the power transmitted and reflected. This leads
to defining a scattering matrixS, that can be considered as the transfer function of a stable causal linear
dynamical system, with two inputs and two outputs. Its diagonal termsS1,1, S2,2 correspond to reflections at
each port, whileS1,2, S2,1 correspond to transmission. These functions can be measured at certain frequencies
(on the imaginary axis). The filter is rational of order 4 times the number of cavities (that is 16 in the example),
and the key step consists in expressing the components of the equivalent electrical circuit as a function of the
Sij (since there are no formulas for expressing the length of the screws in terms of parameters of this electrical
model). On the other hand, this is also useful for the design of the filter, for analyzing numerical simulations
of the Maxwell equations, and for checking the design, particularly the absence of higher resonant modes.

In reality, resonance is not studied via the electrical model, but via a low pass equivalent obtained upon
linearizing near the central frequency, which is no longer conjugate symmetric (i.e., the underlying system
may not have real coefficients) but whose degree is divided by 2 (8 in the example).

In short, the identification strategy is as follows:

• measuring the scattering matrix of the filter near the optimal frequency over twice the pass band
(which is 80Mhz in the example).

• solving bounded extremal problems, inH2 norm for the transmission and in Sobolev norm for
the reflection (the module of he response being respectively close to 0 and 1 outside the interval
measurement) cf. module3.1.1. This gives a scattering matrix of order roughly 1/4 of the number
of data points.
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• Then one rationally approximate with fixed degree (8 in this example) via the hyperion software cf.
module3.1.4.

• A realization of the transfer function is thus obtained, and some additional symmetry constraints are
imposed.

• Finally one builds a realization of the approximant and looks for a change of variables that eliminates
non-physical couplings. This is obtained by using algebraic-solvers and continuation algorithms on
the group of orthogonal complex matrices (symmetry forces this kind of change of basis).
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Figure 4. Nyquist Diagram. Rational approximation (degree 8) and data -S22

The final approximation is of high quality. This can be interpreted as a validation of the linearity hypothesis
for the system: the relativeL2 error is less than10−3. This is illustrated by a reflection diagram (Figure4).
Non-physical coupling are less than10−2.

The above considerations are valid for a large class of filters. These developments have also been used for
the design of unsymmetric filters, useful for the synthesis of repeating devices.

The team investigates today the design of output multiplexors (OMUX) where several filters of the previous
type are coupled on a common guide. In fact, it has undergone a rather general analysis of the question "How
does an OMUX work?" With the help of numerical simulations and Schur analysis, general principles are
being digged out to take into account:

• within each channel the coupling between the filter and the "Tee" that connects it to the manifold,

• the coupling between two consecutive channels.

The model is obtained upon chaining the corresponding scattering matrices, and mixes up rational elements
and complex exponentials (because of the delays) hence constitutes an extension of the previous framework. Its
study is being conducted under contract with the CNES in collaboration with Alcatel-Alenia-Space (Toulouse),
see7.1).
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4.4. Spatial mechanics
Participants: Alex Bombrun, José Grimm, Jean-Baptiste Pomet, Mario Sigalotti.

Key words: spatial mechanics, satellite, orbital control, telecommunications.

The use of satellites in telecommunication networks motivates a lot of research in the area of signal and image
processing; see for instance section4.3for an illustration.

Of course, this requires that satellites be adequately located and positioned (correct orientation). This
problem and other similar ones continue to motivate research in control from the part of the team. Aerospace
engineering in general is a domain that requires sophisticated control techniques, and where optimization is
often crucial, due to the extreme conditions.

The team has been working for two years on control problems in orbital transfer with low-thrust engines,
under contract with Alcatel Space Cannes, see module7.2. Technically, the reason for using these (ionic) low
thrust engines, rather than chemical engines that deliver a much higher thrust, is that they require much less
“fuel”; this is decisive because the total mass is limited by the capacity of the launchers: less fuel means more
payload, and fuel represents an impressive part of the total mass.

From the control point of view, the low thrust makes the transfer problem delicate. In principle of course,
the control law leading to the right orbit in minimum time exists, but it is quite heavy to obtain numerically
and the computation is non-robust against many unmodelled phenomena. Progress on the approximation of
such a law by a feedback has been obtained this year, see section6.13.

4.5. Non-linear optics
Key words: Optics, 3R regeneration, optical fibers, networks, telecommunications.

The increased capacity of numerical channels in information technology is a major industrial challenge. The
most performing means nowadays for transporting signals from a server to the user and backwards is via
optical fibers. The use of this medium at the limit of its capacity of response causes new control problems in
order to maintain a safe signal, both in the fibers and in the routing and regeneration devices.

In a recent past, the team has worked in collaboration with Alcatel R&I (Marcoussis) on the control of “all-
optic” regenerators. Although no collaboration is presently active, we consider this a potentially rich domain
of applications

4.6. Transformations and equivalence of non-linear systems
Participants: Laurent Baratchart, Jean-Baptiste Pomet, David Avanessoff.

Key words: path planning, mobile cybernetics, identification.

The works presented in module3.2.2lie upstream with respect to applications. However, beyond the fact that
deciding whether a given system is linear modulo an adequate compensator is clearly conceptually important,
it is fair to say that “flat outputs” are of considerable interest for path planning[71]. Moreover, as indicated
in section3.2, a better understanding of the invariants of non-linear systems under feedback would result in
significant progress in identification.

5. Software
5.1. The Tralics software

Participant: José Grimm [manager].

The development of a LATEX to XML translator, named Tralics was continued. For more details, see module
6.2. TRALICS was sent to the APP in December 2002. Its IDDN number is InterDepositDigitalNumber =
IDDN.FR.001.510030.000.S.P.2002.000.31235. Binary versions are available for Linux, Windows and Mac-
OS X. Its web page ishttp://www-sop.inria.fr/apics/tralics. It is now licensed under the CeCILL license version
two, seehttp://www.cecill.info. The latest version is 2.6.

http://www-sop.inria.fr/apics/tralics
http://www.cecill.info/
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5.2. The RARL2 software
Participants: Jean-Paul Marmorat, Martine Olivi [manager].

RARL2 (Réalisation interne et Approximation Rationnelle L2) is a software for rational approximation
(see module3.1.4). Its web page ishttp://www-sop.inria.fr/miaou/RARL2/rarl2.html. The ‘miaou’ should
be replaced by ‘apics’ here. This software takes as input a stable transfer function of a discrete time system
represented by

• either its internal realization

• or its firstN Fourier coefficients

• or discretized values on the circle

It computes a local best approximant which isstable, of prescribed McMillan degree, in theL2 norm.
It is germane to the arl2 function of hyperion from which it differs mainly in the way systems are

represented: a polynomial representation is used in hyperion, while RARL2 uses realizations, this being very
interesting in certain cases. It is implemented in MATLAB. This software handlesmulti-variable systems
(with several inputs and several outputs), and uses a parameterization that has the following advantages

• it incorporates the stability requirement in a buit-in manner,

• it allows the use of differential tools,

• it is well-conditioned, and computationally cheap.

An iterative research strategy on the degree of the local minima, similar in principle to that of arl2, increases
the chance of obtaining the absolute minimum (see module6.4) by generating, in a structured manner, several
initial conditions. Contrary to the polynomial case, we are in a singular geometry on the boundary of the
manifold on which minimization takes place, which forbids the extension of the criterion to the ambient
space. We have thus to take into account a singularity on the boundary of the approximation domain, and it
is not possible to compute a descent direction as being the gradient of a function defined on a larger domain,
although the initial conditions obtained from minima of lower order are on this boundary. Thus, determining
a descent direction is nowadays, to a large extent, a heuristic step. While this step performs satisfactorily in
cases handled so far, it is still unknown how to make it truly algorithmic.

5.3. The RGC software
Participants: Fabien Seyfert, Jean-Paul Marmorat.

The identification of filters modeled by an electrical circuit that was developed inside the team (see module
4.3.2) has led to compute the electrical parameters of the filter. This means finding a particular realization
(A,B,C,D) of the model given by the rational approximation step. This 4-tuple must satisfy constraints that
come from the geometry of the equivalent electrical network and translate into some of the coefficients in
(A,B,C,D) being zero. Among the different geometries of coupling, there is one called “the arrow form”
[53] which is of particular interest since it is unique for a given transfer function and also easily computed.
The computation of this realization is the first step of RGC. However if the desired realization is not in arrow
form, one can show that it can be deduced by an orthogonal change of basis (in general complex). In this
case, RGC starts a local optimization procedure that reduces the distance between the arrow form and the
target, using successive orthogonal transformations. This optimization problem on the group of orthogonal
matrices is non-convex and has a lot of local and global minima. In fact, there is not always uniqueness of
the realization of the filter in the given geometry. Moreover, it is often interesting to know all the solutions
of the problem, because the designer cannot be sure, in many cases, which one is being handled, and also
because the assumptions on the reciprocal influence of the resonant modes may not be equally well satisfied
for all such solutions, hence some of them should be preferred for the design. Today, apart from the particular
case where the arrow form is the desired form (this happens frequently up to degree 6) the RGC software

http://www-sop.inria.fr/miaou/RARL2/rarl2.html
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gives no guarantee to obtain a single realization that satisfies the prescribed constraints. In the short-to-mid
term, the methodology underlying the RGC software should be replaced by a heavier but systematic approach
based on continuation methods and symbolic computation on which decisive progress was made this year, see
section6.9.

5.4. PRESTO-HF
Participant: Fabien Seyfert.

PRESTO-HF: a toolbox dedicated to lowpass parameter identification for hyperfrequency filtershttp://www-
sop.inria.fr/miaou/Fabien.Seyfert/Presto_web_page/presto_pres.htmlThe ‘miaou’ should be replaced by
‘apics’ here. In order to allow the industrial transfer of our methods, a Matlab-based toolbox has been
developed, dedicated to the problem of identification of low-pass hyperfrequency filter parameters. It allows
to run the following algorithmic steps, one after the other, or all together in a single sweep:

• determination of delay components, that are caused by the access devices (automatic reference plane
adjustment);

• automatic determination of an analytic completion, bounded in module for each channel, (see
module6.8);

• rational approximation, of fixed McMillan degree;

• determination of a constrained realization.

For the matrix-valued rational approximation stage Presto-HF relies either on hyperion (Unix or Linux
only) or RARL2 (platform independent), both rational approximation engines were developed within the team.
Constrained realizations are computed by the RGC software. As a toolbox, Presto-HF has a modular structure,
which allows one for example to include some building blocks in an already existing software.

The delay compensation algorithm is based on the following strong assumption: far off the passband, one
can reasonably expect a good approximation of the rational components ofS11 andS22 by the first few terms
of their Taylor expansion at infinity, a small degree polynomial in1/s. Using this idea, a sequence of quadratic
convex optimization problems are solved, in order to obtain appropriate compensations. In order to check the
previous assumption, one has to measure the filter on a larger band, typically three times the pass band.

This toolbox is currently used by Alcatel Space in Toulouse. In a near future it should incorporate new
algorithms for delay-compensation and data completion (see section6.8).

5.5. The Endymion software
Participant: José Grimm [manager].

We have started the development of Endymion, a software licensed under the CeCILL license version two, see
http://www.cecill.info. This software will offer most of the functionalities of hyperion (whose development
has been abandonned in 2001), like thearl2 andpeb2procedures. It will be much more portable, since it is no
more dependent on an external garbage collector or a plotter likeagat.

6. New Results
6.1. Tools for producing the Activity Report (this document)

Participants: José Grimm, Bruno Marmol [DISC], Marie-Pierre Durollet [DISC].

Key words: XML, module, DTD, configure, make, Perl.

The great novelty in the RAWEB2002 (Scientific Annex to the Annual Activity Report of Inria), was the use
of XML as intermediate language, and the possibility of bypassing LATEX. A working group, formed of M.P.
Durollet, J. Grimm, L. Pierron, and I. Vatton (not forgetting A. Benveniste, J.-P. Verjus and J.-C. Le Moal) is

http://www-sop.inria.fr/miaou/Fabien.Seyfert/Presto_web_page/presto_pres.html
http://www-sop.inria.fr/miaou/Fabien.Seyfert/Presto_web_page/presto_pres.html
http://www.cecill.info/
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Figure 6. A diagram that explains how the raweb operates. Rectangular boxes contain tools, diamond-shape boxes
are style sheets, and circles contain language names. The name ‘XML’ is in a double circle, it is the central object;
the arrow labelled ‘D4’ that connects it to itself indicates conversion from one DTD to the other, used in 2004. The

box containing ‘em’ represents the Perl scriptextract-math.pl that handles the math formulas; it uses tools
borrowed fromlatex2html. This figure was made using the ‘pgf’ package, a new portable graphic format, not yet

understood by Tralics.
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now in charge of the definition of the tools; in 2003, B. Marmol joined the group, and he is in charge of the
dissemination of the package.

The construction of the raweb is explained schematically on figure6. The input is either a LATEX file, or an
XML file. Since 2002, the LATEX to XML translator is theTralics software, described in module6.2; it was
originally a Perl script, nowadays it is a C++ executable. An XSLT processor (for instancexsltproc, from
the Gnome tools) is used to convert the XML either into HTML, or into an XSL-FO document, by adding
some formatting instructions (in this phase, we explain for instance that the text font should be Times). This
file is formatted by TEX or pdfTEX, thanks to thexmltex package that teaches TEX the subtleties of XML and
utf-8 encoding, and two packages for the XSL-FO and MathML commands.

In the original version, one could instructTralics to produce the XML output, or to convert it also to HTML
or Pdf. One could also ask for a direct PostScript version (by-passing the XML phase). This is now governed
by a Perl script, calledrahandler.pl. One can modify this script (for instance, change the name or the
pathname of the XSLT processor, or the location of the SGML catalog file); this is now the recommended
procedure (of course, it is still possible to specify in theTralics configuration file these names, which are
transmitted to the script). The raweb package uses a Makefile to callTralicswithout options, and then all other
tools, (in this caserahandler.pl is unused).

As a byproduct, all bibliographical references of years 2000 to 2003 have been translated to XML, sorted
by authors, type, year, and put on the web (currently the internal serverhttp://www.inria.fr/interne/disc/).

One important issue was the choice of the DTD (document type definition). On one hand, it should follow
the pseudo-DTD as defined for the RAWEB six years ago (the Activity Report is a set of modules, with
contributors, key-words, etc), and on the other hand, it must be as close as possible to standard DTDs. We have
decided to use a variant of the TEI (text encoding initiative, seehttp://www.tei-c.org/) for the text, MathML
for the mathematics, and an ad-hoc DTD for the bibliography. This DTD was modified in 2004, independently
of Tralics. In other words, on Figure6, a new arrow has to be added: it goes from the old DTD to the new one.

The main difficulty comes from the mathematics: consider a formula likeXy = lim
x→0

sin2 (x). This is

translated byTralics into a formula that contains a script X, coded as<mi>&Xscr;</mi>. After conversion
to the new DTD, entities are replaced by Unicode characters, so that the X becomes<mi>&#119987;</mi>.
This character seems to be unknown by browsers like Amaya or Mozilla, and is rendered by a question mark
or a little box containing the Unicode value (here 01D4B3). This is one of the reasons why math formulas are
still replaced by images; in the case$x+\alpha$, only theα is converted; this has the advantage to reduce the
number of images, but in some cases is not very elegant.

Conversion is done by a dedicated Perl script that extracts from the XML file all formulas, and converts
them to a set of pages in a dvi file (we use here the same algorithm for converting the XML to PostScript).
Each page is converted to an image via pstoimg, which is a Perl code, part of latex2html. We try to
associate each image an Alt field that describes the formula, but this is difficult: for the example we get
${\#119987 _y=lim_{x\#8594 0}sin^2{(x)}}$.

6.2. Tralics: a Latex to XML Translator
Participant: José Grimm.

Key words: Scanner, parsing, validation.

The Tralics software is a C++ written LATEX to XML translator, based upon a Perl script that was used for
the raweb, and described in[60]. It was presented at the EuroTEX conference in Brest,[24] in 2003. One
application of the software is examplified by figure6, and described in module6.1. Some specific features
of the Raweb have been removed from the binary, and put in a configuration file (for instance, the names the
Inria research themes, or the sections of the raweb). The default processing mode is no more the raweb; fewer
intermediary files are generated.

A second application is the following: when researchers wish to publish an Inria Research Report, they
send their PostScript or Pdf document, together with the start of the LATEX source. This piece of document is

http://www.inria.fr/interne/disc/
http://www.tei-c.org/
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converted byTralics, using a special configuration file, that extracts only the title page information (author
names, abstract, etc). A perl script removes useless pieces, and produces an HTML notice (see for instance
http://www.inria.fr/rrrt/rr-5316.html). As you can see, math formulas like$(2^n+1)$, $n\times n$ are
output more or less verbatim, by changing the\catcode of some characters, and by redefining all Greek
letters and symbols like\times.

The main philosophy ofTralics is to have the same parser as TEX, but the same semantics as LATEX. This
means that commands like\chardef, \catcode, \ifx, \expandafter, \csname, etc., that are not described
in the LATEX book and not implemented in translators like latex2html, tth, hévéa, etc., are recognised by Tralics.
The program is configurable: the translation depends on some options, and the\documentclass. All element
names (except p) can be changed by the user.

This year we added constructions like\long and\outer (if a command is not\long, \par tokens are
forbidden in its arguments).

Full first names are retained when translating the bibliography; of course this works only if they appear in
the data base files.

There are still some unsolved problems: for instance, a figure environment should contain only graphics
together with a single caption, commands defined by the picture environment are translated (but refused by
the style sheet), non-math material in a math formula is rejected (unless it is formed of characters only).

For more information, see theTralics web page. It contains a description of each command. We have written
a technical report in two parts:[32], [31]; the first part explains Tralics, and the second part its applications to
the Raweb.

6.3. Inverse Problems for 2D and 3D elliptic operators
Participants: Amina Amassad [UNSA], Bilal Atfeh, Laurent Baratchart, Amel Ben Abda [LAMSIN-ENIT],
Maureen Clerc [Odyssée], Imen Fellah [LAMSIN-ENIT], José Grimm, Mohamed Jaoua [UNSA], Juliette
Leblond, Moncef Mahjoub [LAMSIN-ENIT], Jean-Paul Marmorat [CMA-EMP], Théodore Papadopoulo
[Odyssée], Jonathan R. Partington [Leeds Univ.], Stéphane Rigat [LATP-CMI, Univ. Provence], Edward Saff
[Vanderbilt Univ.].

Key words: inverse problems, Laplacian, non destructive control, tomography.

6.3.1. Sources recovery in 2D and 3D
The fact that 2D harmonic functions are real parts of analytic functions allows one to tackle issues in
singularity detection and geometric reconstruction from boundary data of solutions to Laplace equations
using the meromorphic and rational approximation tools developed by the team. Some electrical conductivity
defaults can be modeled by pointwise sources inside the considered domain. In dimension 2, the question
made significant progress in recent years: the singularities of the function (of the complex variable) which is
to be reconstructed from boundary measures are poles (case of dipolar sources) or logarithmic singularities
(case of monopolar sources). Hence, the behavior of the poles of the rational or meromorphic approximants,
described in module3.1.3, allows one to efficiently locate their position. This is the topic of the article[14],
where the related situation of small inhomogeneities connected to mine detection is also considered.

6.3.2. Application to EEG inverse problems
In 3D, epileptic regions in the cortex are often represented by pointwise sources that have to be localized
from measurements on the scalp of a potential satisfying a Laplace equation (EEG, electoencephalography).
Note that the patient’s head is here modeled as a nested sequence of spherical layers. This inverse EEG
problem is the object of a collaboration between the Apics and Odyssée Teams through the ACI “Obs-Cerv”.
A breakthrough was made last year which makes it possible now to proceed via best rational approximation
on a sequence of 2D disks along the inner sphere[45], [48]. The point here is that, up to an additive function
harmonic in the 3D ball, the trace of the potential on each boundary circle coincides with a function having
branched singularities in the corresponding disk. The behavior along the family of disks of the poles of their
best rational approximants on each circle is strongly linked to the location of the sources, using properties

http://www.inria.fr/rrrt/rr-5316.html
http://www-sop.inria.fr/apics/tralics/
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discussed in sections3.1.3 and 6.7. (in the particular case of a unique source, we end up with a rational
function); this is under study as well as a number of important related issues.

6.3.3. Cauchy problems in 2D and 3D
Solving Cauchy problems on an annulus or on a spherical layer in order to treat incomplete experimental
data is also a necessary ingredient of the above methodology, since it is involved in the propagation of
initial conditions from the boundary to the center of the domain, where singularities are seeked, when this
domain is formed of several homogeneous layers of different conductivities. On a spherical layer, this was
the aim of the post-doctoral trainee of B. Atfeh[37]. Constructive and numerical aspects of the expected
procedures (harmonic 3D projection, Kelvin and Riesz transformation, spherical harmonics) are under study
and encouraging results are already available on numerically computed data. This offers an opportunity to state
and solve extremal problems for harmonic fields[27] for which an analog to the Toeplitz operator approach to
bounded extremal problems has been obtained. More specifically, the density of traces of harmonic gradients
in L2 of a subset of the 3-D sphere was established, and a Toeplitz operator with symbol the characteristic
function of such a subset was defined. Then, a best approximation on the subset of a general vector field by
a harmonic gradient under aL2 norm constraint on the complementary subset can be computed by an inverse
spectral equation for the above-mentioned Toeplitz operator.

As to multiply connected domains, solving Cauchy problems on an annulus is the main theme of the PhD
thesis of M. Mahjoub. This arises when identifying a crack in a tube or a Robin coefficient on its inner skull.
It can be formulated as a best approximation problem on part of the boundary of a doubly connected domain,
which allowed both numerical algorithms and stability results to be obtained in this framework[67], [66],
[26], [25]. thereby generalizing the simply connected situation[55], [56].

In the 2D case again, with incomplete data, the geometric problem of finding, in a stable and constructive
way, an unknown (insulating) part of the boundary of a domain is considered in the Ph.D. thesis of I. Fellah
[21]. Approximation and analytic extension techniques described in section3.1.1 together with numerical
conformal transformations of the disk provide here also interesting algorithms for the inverse problem under
consideration. A related result was recently obtained, namely theLp existence and uniqueness of the solution
for the Neumann problem on a piecewiseC1,α domain with inward pointing cusps (note that the endpoints
of a crack are such cusps) when1 < p < 2. Although it is reminiscent of classicalLp theorem on Lipschitz
domains[64], it seems to be a new result and the first where a cusp is permitted while still controlling the
conjugate function; the proof uses weighted norm inequalities[50]. Moreover, a Cauchy-type representation
for the solution was obtained using Smirnov classes representation properties, and the technique generalizes to
mixed boundary conditions that occur when the crack is no longer assumed to be a perfect insulator. Describing
higher dimensional geometries with cusps to which the result can be extended is an interesting issue.

6.3.4. More general geometries
We also started to consider more realistic geometries for the 3D domain under consideration. A possibility
is to parametrize it in such a way that its planar cross-sections are quadrature domains or R-domains. In this
framework, best rational approximation can still be performed in order to recover the singularities of solutions
to Laplace equations but complexity issues have to be examined carefully.

The case of an ellipsoid has been the topic of the summer internship of C. Paduret, and is that of[34]. Finally,
we begin to consider actual 3D approximation for such inverse problems. Quaternionic analysis seems to be a
relevant tool, but the multiplicative side of the theory remains to be developed.

6.3.5. Others elliptic operators
Within the post-doctoral stay of E. Sincich, we began the study of more general elliptic equations, arising in
situations with variable conductivity, in particular the 2-D Beltrami equation. Then, generalized harmonic con-
jugation allow us to state Cauchy problems as bounded extremal issues, up to the recovery (or approximation)
of a quasi-conformal mappings. We have in mind an 2D (doubly connected) application to plasma confinment
for the thermonuclear fusion in a Tokamak; this is collaborative work being started in collaboration with J.
Blum from the Laboratoire J.Dieudonné of the University of Nice.
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6.3.6. Application to magnetic dipoles recovery
The magnetic field produced by a magnetic dipole−→m located at a point−→r ′ is

−→
B (−→r ) =

µ0

4π

{
3−→m(−→r ′) · (−→r −−→r ′)

|−→r −−→r ′|5
(−→r −−→r ′)−

−→m(−→r ′)
|−→r −−→r ′|3

}
. (3)

The problem is to identify the location−→r ′= (xk, yk, zk), and the momentum−→mk of a sequence ofN dipoles
indexed byk = 1, ..., N , given measurements from a SQUID (superconducting quantum interference device).
The assumption thatzk is independent ofk (i.e., all dipoles lie in a plane) is made, and we assume also that
−→mk is parallel to the z-axis for allk. In this case the previous formula simplifies to

Bz(x, y, z) =
µ0

4π
λk

2z2−(x−xk)2−(y−yk)2

[(x− xk)2+(y−yk)2 + z2]5/2

The effect of the pick-up coil needed by the SQUID can be modeled by averaging over a small disk, of radius
a. Thus we measure a quantity of the form

Cz(x, y, z) =
µ0

4π2a2

∑
k

λk

∫
D(0,a)

2z2−(x− α−xk)2−(y − β−yk)2

[(x− α−xk)2+(y − β−yk)2 + z2]5/2
dαdβ. (4)

We have written a simulator for the direct problem; an example is displayed on figure7. We have written
alternate formulas where the double integral is replaced by a simple one. Moreover, integrating by parts,
we can replace this integral by a similar one where the exponent on the denominator is3/2 instead of5/2,
thus making the singularities integrable. Writing down an extension of this integral to the complex variable
framework (ξ = x+ iy, thez-plane being fixed) shows that it admits poles and branchpoints as singularities
in disks, which account for the location of the sources. Another possibility is to transform thez-plane into
the boundary of a cylinder and to consider its slices at fixedx. This allows us to apply our approximation
tools (RARL2 or hyperion, for instance), in order to solve the inverse problem. Collaborators at Vanderbilt
University have measured the magnetic field induced by the ink on a dollar bill; we are currently developing
software to test our methods against these data.

6.4. Parametrizations of matrix-valued lossless functions
Participants: Rémi Drai [ESA], Bernard Hanzon [Univ. Libre (VU) of Amsterdam], Jean-Paul Marmorat,
Martine Olivi, Ralf Peeters [Univ. of Maastricht].

The objective of these studies is to have at one’s disposal a panel of parametrizations that could be used for our
approximation problems3.1.4and could take into account some particular property coming from the physics.
This could be symmetry or some other constraint on the realization matrix like for example the structure
imposed by the couplings of an hyperfrequency filter4.3.2.

Tangential Schur algorithms provide interesting tools to parameterize conservative functions by means of
interpolation values. Several parametrizations have been derived in the past from that approach, in which a
function can be represented by a balanced realization computed as a product of unitary matrices from the
Schur parameters[62]. Such parametrizations present a number of advantages in view of the approximation
problems we have in mind: it ensures identifiability, takes into account the stability constraint, preserves the
order and presents a nice numerical behavior. They have been used in the software RARL25.1.

This year, we paid a particular attention to the symmetry constraint. Symmetric inner rational functions
naturally arise in the description of physical systems which satisfy the conservation and reciprocity laws. In
particular, they occur in the description of hyperfrequency and SAW filters (see sections4.3.2, 6.5). In [28],
a Schur type algorithm, based on a two-sided Nudelman interpolation problem, has been presented which
provides parameters for these functions.
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Figure 7. Simulated field measure. On the figure you can see a functionY = f(X), corresponding toCz(x, y, z)
evaluated at 800 points of the unit circle (x = cosX, y = sinX, z), Computations on done by Matlab, via numeric
equation of (4). We havea = 0.050, z = 0.130, the factorµ0/4π2a2 is omitted. There are two sources atx1 = 1.7,

y1 = 0.3 with weight 1, andx2 = 0.4, y2 = −0.73 with a weight of0.05.
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Figure 8. Norm of Fourier coefficients. In this diagram we have shown the norm of the Fourier coefficients of the
curve of figure7 (fifty points of evaluation, linear interpolation between them).
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In [23], a chain-scattering approach to LMI multiobjective control has been presented. The possibility to
fertilize the pure algebraic LMI approach with the rich and vast topic of Schur analysis has been pointed out
and deserve to be further investigated.

6.5. The mathematics of Surface Acoustic Wave filters
Participants: Laurent Baratchart, Andrea Gombani, Martine Olivi.

Surface Acoustic Waves (in short: SAW) filters consist in a series of transducers which transmit electrical
power by means of surface acoustic waves propagating on a piezoelectric medium. They are usually described
by a mixed scattering matrix which relates acoustic waves, currents and voltages. By reciprocity and energy
conservation, these transfers must be either lossless, contractive or positive real, and symmetric. In the design
of SAW filters, the desired electrical power transmission is specified. An important issue is to characterize the
functions that can actually be realized for a given type of filter. In any case, these functions are Schur and can
be completed into a conservative matrix with an increase of at most 2 of the McMillan degree, this matrix
describing the global behavior of the filter. Such a completion problem is known as Darlington synthesis
and has always a solution for any higher McMillan degree in the rational case if the symmetry condition is
not superimposed. However in our case, additional constraints arise from the geometry of the filter as the
symmetry and certain interpolation condition. In[43], a complete mathematical description of such devices is
given, including realizations for the relevant transfer-functions, as well as a necessary and sufficient condition
for symmetric Darlington synthesis preserving the McMillan degree. More generally, in collaboration with P.
Enqvist from KTH (Stockholm, Sweden), we characterized in[42] the existence of a symmetric Darlington
synthesis with specified increase of the McMillan degree: a symmetric extension of a symmetric contractive
matrixS of degreen exists in degreen+ k if, and only if,I − SS∗ has at mostk zeros with odd multiplicity.
In the language of circuit theory, this results tells us about the minimal number of gyrators to be used in circuit
synthesis; an article is currently being written to report on these results.

6.6. Rational and Meromorphic Approximation
Participants: Laurent Baratchart, Edward Saff, Pascale Vitse [Université de Franche-Comté, Besançon],
Maxim Yattselev.

The results of[15] and[50] have been exploited this year to produce a proof of the convergence in capacity
of Lp-best meromorphic approximants on the circle (p ≥ 2) to Cauchy transforms of complex measure on a
hyperbolic geodesic plus a rational function. Some mild conditions (bounded variation of the argument and
power-thickness of the total variation) are required on the measure, and the argument makes use of classical
logarithmic potential theory together with the asymptotic convergence of the counting measure of the poles.
Recall that a sequence of function converges in capacity if the capacity of the set where the distance to the limit
is greater thanε goes to 0 along the sequence for each fixedε > 0. Actually, we proved a slightly more precise
result, namely the convergence is geometric and the poles of the approximated function attract a number of
poles of the approximant which is at least the multiplicity and not much more (the two numbers differ at most
by a fixed constant). This result is important for inverse problem of mixed type, like those mentioned in section
6.3.1, where monopolar and dipolar sources are present simultaneously. Quantifying the convergence further
is the next step in such a study. An article is being written on these results.

The study of matrix-valued rational approximation to matrix-Markov functions (i.e., Cauchy transforms of
a positive matrix valued measure) has also been pursued, although less actively. Essentially, we proved that
for Markov matrix-valued functions best meromorphic approximants have Markov-type singular part.

6.7. Behavior of poles
Participants: Laurent Baratchart, Erwin Mina Diaz, Edward Saff, Vilmos Totik [univ. Szeged and Acad. of
Sciences, Hungary], Maxim Yattselev.
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It is known after[8] that the denominators of best rational of meromorphic approximants in theLp norm on
a closed curve (say the unit circleT to fix ideas) satisfy forp ≥ 2 a non-Hermitian orthogonality relation for
functions described as Cauchy transforms of complex measures on a curveγ (locus of singularities) contained
in the unit diskD. This has been used to assess the asymptotic behavior of the poles of such an approximant
whenγ is a hyperbolic geometric arc, that is, under weak conditions on the measure, the counting measure
of these poles converges weak-star to the equilibrium distribution of the condenser(T, γ) whereT is the unit
circle. Non asymptotic bounds were also obtained for the sum of the complement toπ of the hyperbolic angles
under which the poles “see”γ: the sum of these complements over all the poles (they aren in total if the
approximant has degreen) is bounded by the aperture ofγ plus twice the variation of the argument of the
measure (which is independent ofn). This produces “hard” testable inequalities for the location of the poles,
that should prove particularly valuable in inverse source problem (because they are not asymptotic in nature),
see[15].

The more general situation whereγ is a so-called “minimal contour” for the Green potential (of which a
geodesic arc is an example) has been essentially settled with the same conclusion concerning the convergence
of the counting measure of the poles. The writing up of this (rather technical) result is underway, and of
particular significance with respect to the determination of2−D sources or piecewise analytic cracks from
overdetermined boundary data, see module3.1.3and6.3.

This year it was proved that strong asymptotics, that do not deal with the counting measure of the poles (this
entails only results in proportion) but with the behaviour ofall of them were obtained for Cauchy transforms
of smooth nonvanishing complex mesures on a hyperbolic arc in the disk, provided the density blows up at
the end points of the arc. This is a new and very interesting result, that paves the way for further study on
uniqueness of local best approximants and inverse source problem. The technical problem facing us is to get
rid of the blowing-up assumptions at the endpoints which is induced by the technique (going over to the circle
in order to use Fourier analysis and compactness of Hankel operators with continuous symbol) but not very
satisfactory. A numerical illustration of the results is shown in figures9 for approximants to the functionF
given below.

The function :

F (z) = 7
∫
[−6/7,−1/8]

eitdt
z−t −(3 + i)

∫
[2/5,1/2]

1
t−2i

dt
z−t+(2− 4i)

∫
[2/3,7/8]

ln(t)dt
z−t

+ 2
(z+3/7−4i/7)2 + 6

(z−5/9−3i/4)3 + 24
(z+1/5+6i/7)4 .

The team also obtained this year strong convergence results for zeros of orthogonal polynomials on polyno-
mial lemniscates. Specifically, all the zeros go to the surrounding lemniscate in the case of a meromorphic and
branched positive weight for the measure. Beyond their own interest for inverse 2-D boundary problemsvia
conformal mapping, these results have uncovered a new methodology, based on the expansion of reproduc-
ing kernels and a generalized Hadamard formula, to pass in many situations from exterior asymptotics of the
Szegö type to interior asymptotics (that are traditionally much more difficult to obtain). This rather unexpected
algorithm is currently being explored in details by E. Mina.

6.8. Analytic extension under pointwise constraints
Participants: Laurent Baratchart, Juliette Leblond, Fabien Seyfert.

To carry out identification and design of filters under passivity constraints (such constraints are common
since passive devices are ubiquitous, including in particular hyperfrequency filters), it is natural to consider
the mixed bounded extremal problem(P ′) stated in section3.1.1. An algorithm to asymptotically solve this
problem whenp = 2 in nested spaces of polynomials has been developed, and its connection to certain affine
Riemann-Hilbert problems has also been carried out. This connection provides a handle to analyze regularity
properties of the solution, and gives us an alternative process based on the solution of a min-max problem
with saddle point conditions. It also provides sufficient conditions for hölder smoothness of the solution,
that are linked to the regularity of the Cauchy transform. Such regularity condition should greatly impinge
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Figure 9. Approximations to the functionF ; first line: Padé and AAK at degree 30, second line: arl2 at order 13.
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on the numerical practice of the problem, and should be valuable to estimate delays in waveguides, thereby
complementing the existing procedures dealing with this issue in PRESTO-HF. An article reporting on these
results is currently being written.

6.9. Exhaustive determination of constrained realizations corresponding to a
transfer function
Participants: Laurent Baratchart, Jean Charles Faugère [project SALSA, Rocquencourt], Philippe Lenoir,
Fabien Seyfert.

We studied in some generality the case of parameterized linear systems characterized by the following classical
state space equation,

ẋ(t) = A(p)x(t) +B(p)u(t)
y(t) = C(p)x(t) (5)

wherep = {p1, · · · pr} is a finite set ofr parameters and(A(p), B(p), C(p)) are matrices whose entries
are polynomials (over the fieldC) of the variablesp1 · · · pr. For a parameterized systemσ andp ∈ Cr we
call πσ(p) the transfer function of the systemσ(p). Some important questions in filter synthesis concern the
determination of the following parameterized sets

p ∈ Cr1 , Eσ1(p) = {q ∈ Cr1 , πσ1(q) = πσ1(p)}
p ∈ Cr2 , Eσ1,σ2(p) = {q ∈ Cr1 , πσ1(q) = πσ2(p)}

(6)

General results were obtained about these sets, in particular a necessary and sufficient condition ensuring
their cardinality is finite. In the special case of coupled-resonators an efficient algebraic formulation has
been derived which allowed us to computeEσ(p) for nearly all common filter geometries. However for
a new class of high order filters first presented in[54] the latter procedure breaks down because of the
computational complexity of the Gröbner basis computation. This led us to consider homotopic methods based
on continuation techniques in order to solve the algebraic system definingEσ(p). The usual framework of these
methods that is based on the Bezout bound or on mixed volume computations appeared to be intractable in
our case mainly because of the degeneracy of our algebraic systems: for example for a 10th order filter, the
Bezout bound is about1044 whereas the number of solutions over the ground fieldC is known to be only
384. To overcome this difficulty we are currently developing a continuation method which consists of the
exploration of the monodromy group of an algebraic variety by following a family of paths that separate the
branch points. This method is still under study but preliminary numerical results that yielded the exhaustive
computation ofEσ(p) in the latter 10th order case are quite convincing. Using this method, we envisage to build
up a precomputed filter database that would allow a fast computation of high order filters for every specific
filtering characteristic.

Results were also obtained about the existence of a “real solution” in the setEσ(p) in the case of loss-less
characteristics. Note that realness is essential to be able to buid the filter. For the 5th order coupling topology
of figure10 it was shown that one can find an open setU of Cr for which for allp ∈ U the setEσ(p) contains
no “real” element. Conversely it was shown, by an argument based on the Borsuk-Ulam antipodal theorem,
that for lossless characteristics and the 6th order coupling topology of figure11there generically exists at least
one “real” element inEσ(p).

More recently we considered the application of latter results to identification procedures for tuning
purposes. The aim of these “de-embedding” procedures is to gain some information about the electromagnetic
couplings implemented in a filter when starting from measurements in the frequency domain. After a rational
approximation step yielding a rational model of the filter’s response one faces a constrained realization
problem. In particular, this implies that when dealing with filters implementing coupling topologies with
“multiple solutions“ (the fiberEσ(p) of equivalent realizations contains several elements) some additional
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Figure 10. Coupling geometry with no real solution
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Figure 11. 6th order extended boxed geometry

experiments have to be performed on the system in order to select the “correct” coupling matrix, i.e. the one
that is physically realized by the filter. Latter experiments are typically of differential nature and consist in the
study of the influence of the variation of a single physical parameter (iris length, for example) on the fiber of
equivalent realizations. The discriminant property of latter experiments is currently under study in connection
with the practical problem of tuning a dual-band filter (see section.6.10) with a coupling topology shown on
Fig.12whose “realization fiber” has, up to sign symmetries, cardinality 15.

Figure 12. 7th order geometry with “realization fiber” of cardinality 15

6.10. Zolotarev problem and multi-band filter design
Participants: Vincent Lunot, Philippe Lenoir, Fabien Seyfert.

The design of multi-band responses for high-frequency filters (see section4.3.2) amounts to solve the
following optimization problem of Zolotarev type:

En,m(K,K ′) = {p ∈Pm(K), q ∈Pn(K ′) such that∀x ∈ I ,
∣∣∣∣p(x)q(x)

∣∣∣∣ ≤ 1}

Solve: max
(p,q)∈Em,n(K,K′)

min
x∈J

∣∣∣∣pq
∣∣∣∣ (7)
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whereI =
⋃
Ii (resp.J =

⋃
Ji) is a finite union of compact intervalsIi of the real line corresponding to

the pass-bands (resp. stop-bands), andPm(K) stands for the set of polynomials of degree less thanm with
coefficients in the fieldK. Depending on physical symmetries of the filter, it is of interest to solve problem
(7) for K = K ′ = R (“real” problem),K = C,K ′ = R (“mixed” problem), orK = K ′ = C (“complex”
problem). We have shown that the “real” Zolotarev problem can be decomposed into a sequence of concave
maximization problems, the best solution of which yields the optimal solution to the original problem. A
characterization in terms of an alternation property has also be given for the solution to each of these sub-
problems. Based one this alternation, a Remez type algorithm has been derived. It computes the solutions to
these problems in the polynomial case when the denominatorq is fixed, and allows for the computation of
a dual-band response (see Fig.14) according to frequency specifications (see Fig.13 for an example from the
spacecraft SPOT5 (CNES)). The design of an algorithm for the rational case that, unlike methods based on
linear programming, avoids sampling in frequency is currently under study. This raises the question of the
"generic normality" of the approximant with respect to the interval’s boundary values. This question has not
received a definite answer yet. Finally the design of efficient numerical procedures to tackle the “mixed” and
the “complex” cases remains a challenging task. These matters will be pursued in V. Lunot’s doctoral work.

Figure 13. SPOT5 specifications

Figure 14. 7th order dual-band response and its critical points
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6.11. Frequency Approximation and OMUX design
Participants: Laurent Baratchart, Vincent Lunot, Jean-Paul Marmorat [CMA-EMP], Fabien Seyfert.

An OMUX (Output MUltipleXor) can be modeled in the frequency domain by scattering matrices of filters,
like those described in section4.3.2, connected in parallel to a common wave guide, see figure5. The problem
of designing an OMUX that satisfies given gauge constraints translates naturally into a set of constraints on
the values of the scattering matrices and phase shift introduced by the guide in the considered bandwidth.

An OMUX simulator on a matlab platform was designed in recent years. This year is has been used to test
some assumptions on the OMUX’way of functioning. Among them is that each right-section of the OMUX
acts as a short-circuit in the bandwidth of "upstream channels", and that each channel must reject a little
bit in his bandwidth in order to trap energy otherwise reflected by this short-circuit. Under the terms of a
contract with Alcatel-Alenia-Space, these assumptions will be used to design a dedicated software to optimize
OMUXes, by first trying to optimize a channel when the others are fixed and then by looking for a fixed point
over all channels.

The direct approach, currently used by the manufacturer, consists in coupling a simulator with a general
purpose optimizer, in order to reduce transmission and reflection wherever they are too large. This yields
unsatisfactory results in cases of high degree and narrow bandwidth, in particular because the convergence
often fails and multiple initial points must be used resulting in a very lengthy and sometimes unsuccessful
design. Besides, manifold-peaks arising from the dilation of the cavities caused by increased temperature
(when the satellite gets exposed to the sun), can ruin the design in operational conditions.

As a result, we expect to be able to produce a multi-phased tuning procedure, first relaxed, channel after
channel, then global, using a quasi-Newton method. Note that the discretizations in frequency of the integral
criterion and the near periodicity of the exponentials (that express the delays) interact in a complex manner
and generate numerous local minima. This is one reason for analysing the optimization problem further.

6.12. On the structure of optimal trajectories
Participants: Jean-Baptiste Pomet, Mario Sigalotti.

The results on the local regularity of trajectories in optimal control obtained previously have been published in
[17], [16]. Further work in that direction, and in particular on the behavior of switches in time optimal control
for three-dimensional systems is in progress[17].

6.13. Feedback for low thrust orbital transfer
Participants: Alex Bombrun, Jonathan Chetboun, Jean-Baptiste Pomet, Mario Sigalotti.

The study concerns the control of a satellite equipped with low thrust engine (like plasmic ones which are
efficient with respect to fuel consumption, but deliver a thrust much smaller than conventional “chemical”
engines, the ratio between the delivered acceleration and gravity they being of the order of10−3, sometimes
less). This problem was raised by Alcatel-Alenia Space, and Alex Bombrun’s PhD is supported under contract
by this company.

For the transfer between two orbits (say GTO-GEO), we have pursued a detailed investigation ofad hoc
Lyapunov functions, based on the five first integrals of the noncontrolled problem, and seeked how to chose
them so as to be close to the time-optimal trajectories. In particular, we have shown that any open-loop
trajectory can be approximated arbitrarily well (i.e. untill we reach a prescribed neighborhood of the target)
using a feedback control law of this kind.

This theoretical result is backed up by numerical practice. In fact, simulations illustrate results that are less
conservative: a rather restricted family of control Lyapunov functions (depending on a few parameters only)
yield a nearly time-optimal transfer by fitting the parameters adequately. Such numerical simulations also
show that Lyapunov-based feedbacks give very satisfactory trajectories from many different initial conditions.
These practical results are of great interest for satellite guidance due to the natural robustness properties of
feedback control. Moreover, the easy implementation of such control laws makes them attractive as compared
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to genuine optimal control. The deep reasons for this unexpectedly nice behaviour are still under investigation;
this work will be reported in a publication.

Another research in progress concerns the use of feedback for the controlled three-bodies problem. Here
again we investigate feedback control rather than open-loop. This is the topic of Jonathan Chetboun’s
internship within APICS. This activity is also supported under contract by Alcatel Alenia Space (Cannes),
where the above-mentioned internship will partly take place.

6.14. Local linearization (or flatness) of control systems
Participants: David Avanessoff, Laurent Baratchart, Jean-Baptiste Pomet.

Below we describe the achievements of D. Avanessoff’s PhD[13], defended in June. First, the links and
differences between “Monge parameterization” and “flatness” have been considerably clarified in this work.
Second, tools for analyzing some over-determined systems of PDEs where neither the number of independent
variables nor the order isa priori fixed have been designed. They are based on a valuation adapted to the
control system[38]. The equations arising when characterizing the system’s flatness involve a number of
variables which is finite, but not knowna priori... so it is tempting to take formal power series in infinitely
many variables as solutions. The above tools allow us to give a meaning to solutions in such formal power
series. A notion of “very” formal integrability was introduced, meaning existence of solutions in this class.
Obtaining a full characterization of flatness in this form is still under course. However, some results for small
dimensions were obtained. For systems with three states and two controls, a sufficient condition for flatness had
been given in[12]. We have proved that this condition is also necessary for “(x, u)-flatness”(in the language
of the above paragraph, a version of flatness where the number of variables to consider is decided in advance).
Moreover, the previous proof using computer algebra was very intricate, so that going beyond “(x, u)-flatness”
with the same method was out of reach. In[13], and also in[29], these systems are studied from the point of
view of parameterization and the results supersede[12] using much more natural arguments. The conjecture is
that systems that do not satisfy the above mentioned sufficient condition are not flat at all. This is not proved
yet, but a workable formulation of the question is now available.

6.15. Controllability for a general Dubins problem
Participants: Mario Sigalotti, Yacine Chitour [Lab. des Signaux et Systèmes (LSS, Supélec, Gif-sur-Yvette)].

Controllability results for systems with drift are usually obtained by a combination of local and global
properties of the system under study. Local controllability properties basically follow from the knowledge
of the Lie bracket configuration of the system, while global ones require particular symmetries or some sort
of ergodicity. A typical example is the one of a left-invariant control system on a Lie group. Classically, the
homogeneity of the manifold given by the group structure is used to obtain global properties out of local ones.

The aim of this research line is to obtain controllability/non-controllability results for special but inhomo-
geneous drifted systems.

The main object of our research is given by Dubins-like systems on Riemannian surfaces. The goal is to
answer, using control techniques, the following natural question, arising from the works of Dubins: given
a complete, connected, two-dimensional Riemannian manifoldM , and(p1, v1), (p2, v2) in TM , does there
exist a curveγ in M , with arbitrary small geodesic curvature, such thatγ connectsp1 to p2 and, fori = 1, 2,
γ̇ is equal tovi at pi? The answer clearly depends on the geometric properties ofM , and gives a meaning to
such properties from a control viewpoint. In[57] we proved that the small-curvature-connectedness introduced
above holds for compact surfaces, for unbounded surfaces whose Gaussian curvature tends to zero at infinity,
and for surfaces which are non-negatively curved outside a compact set. The case of non-positively curved
surfaces was addressed in[74], where necessary and sufficient conditions ensuring such connectedness have
been established. This has been presented in[22].

A different field of application for the analysis of controllability of inhomogeneous drifted systems is given
by non-linear switched systems. More precisely, given a switched system of the typeq̇ = X(q) + uY (q),
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u ∈ [−1, 1], q ∈ R2, whereX + Y andX − Y are globally asymptotically stable, we study its stability
properties (global uniform asymptotic stability, uniform stability, boundedness, ...) in terms of the topology of
the set whereX andY are parallel. All such stability properties can be re-interpreted in terms of the behavior
of attainable sets. See[19].

7. Contracts and Grants with Industry
7.1. Contracts CNES-IRCOM-INRIA

Contracts no04/CNES/1728/00-DCT094
In the framework of a contract involving CNES, IRCOM and Inria, and whose objective is to work out a

software package for identification and design of hyperfrequency devices, the work of Inria included:

• the modeling of delays, see module4.3.2,

• the exhaustive determination of the coupling coefficients on some case studies6.9),

• the OMUX stimulator with exact computation of derivatives,

This contract has been renewed for 16 months starting November 2004, in order to develop a generic code
for coupling determination and to carry out the optimization of OMUX.

7.2. Contract Alcatel Space (Cannes)
Contract no1 01 E 0726.

This contract started in 2001 and ended February, 2005. The topic is the design of control laws for satellites
with low-thrust engines. It finances Alex Bombrun’s PhD. It should be extended in 2006 with a new contract
including the transfer of some prototypical software.

8. Other Grants and Activities
8.1. Scientific Committees

L. Baratchart is a member of the editorial board ofComputational Methods and Function Theory.

8.2. National Actions
Together with project-teams Caiman and Odyssée (INRIA-Sophia Antipolis, ENPC), the University of Nice
(J.A. Dieudonné lab.), CEA, CNRS-LENA (Paris), and a few French hospitals, we participate in the national
action ACI Masse de données OBS-CERV, 2003-2006 (inverse problems, EEG). C. Paduret received
financial support from this ACI.

We were awarded a grant from the region PACA for exchanges with SISSA Trieste (Italy), 2003-2004.
The post-doctoral training of B. Atfeh and E. Sincich are funded by Inria.

8.3. Actions Funded by the EC
The team is the recipient of aMarie Curie EIF (Intra European Fellowship) FP6-2002-Mobility-5-502062,
for 24 months (2003-2005). This has financed Mario Sigalotti’s post-doc.

The Team is a member of theMarie Curie multi-partner training site Control Training Site, number
HPMT-CT-2001-00278, 2001-2005. Seehttp://www.supelec.fr/lss/CTS/.

The project is a member of the Working Group Control and System Theory of theERCIM consortium, see
http://www.ladseb.pd.cnr.it/control/ercim/control.html.

http://www.supelec.fr/lss/CTS/
http://www.ladseb.pd.cnr.it/control/ercim/control.html
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8.4. Extra-european International Actions
NATO CLG (Collaborative Linkage Grant), PST.CLG.979703, “Constructive approximation and inverse
diffusion problems”, with Vanderbilt Univ. (Nashville, USA) and LAMSIN-ENIT (Tunis, Tu.), 2003-2005.

EPSRC grant (EP/C004418) “Constrained approximation in function spaces, with applications”, with
Leeds Univ. (UK) and Univ. Lyon I, 2005-2006.

STIC-INRIA andAireDéveloppementgrants with LAMSIN-ENIT (Tunis, Tu.), “Problèmes inverses du
Laplacien et approximation constructive des fonctions”,

NSF EMS21RTG students exchange program (with Vanderbilt University).

8.5. The Apics Seminar
The following scientists gave a talk at the seminar:

• David Avanessoff, Apics Team,Paramétrisation de l’ensemble des solutions d’un système de
contrôle.

• Yuliya Babenko, Vanderbilt University, USA,Kolmogorov type inequalities for some special classes
of functions.

• Vladimir Chetverikov, Baumann University, Moscow,Flat control systems and deformations of
structures on diffieties

• José Grimm, Apics Team,SSH et X/Skey.
• Ekaterina Iakovleva, LSS (Laboratoire des signaux et systèmes), SupelecDiffraction inverse par des

petites inclusions.
• Philippe Lenoir, Apics Team,Développement de méthodes pour la synthèse de filtres complexes, dits

“à solutions multiples”.
• Erwin Mina-Diaz, Vanderbilt University,Orthogonal polynomials on the unit circle with respect to

weights having polar singularities.
• Peter J. Olver, University of Minnesota, USA,New algorithms for symmetry groups and pseudo-

groups.
• Mihaly Petreczky, CWI Amsterdam),Realization theory for hybrid systems.

Witold Respondek, Laboratoire de Mathématiques, INSA de Rouen,Canonical form, strict feedfor-
ward form and symmetries of nonlinear control systems.

• Maxim Yattselev, Vanderbilt University,Meromorphic and multipoint Padé approximants for com-
plex Cauchy transforms with polar singularities.

• El Hassan Youssfi, Université de Provence,Fonctions holomorphes de type positif.
• Igor Zelenko, SISSA, Trieste, Italy,A canonical frame for nonholonomic rank two distributions of

maximal class.

8.6. Exterior research visitors

• Jonathan Partington, School of Mathematics, Leeds Univ., U.K.,
• Karim Kellay, Stanislas Kupin, Stéphane Rigat, Hassan Youssfi,et l’équipe d’Analyse et Géométroie,

LATP-CMI, Université de Provence,
• Moncef Mahjoub, Lamsin-ENIT, Tunisie,
• Pierre Rouchon, Centre Automatique et Systèmes, Ecole des Mines de Paris,
• Edward B. Saff, Dept. of Mathematics, Vanderbilt University, USA,
• Abdellatif El Badia, UTC Compiègne,
• Yuliya Babenko, PhD student, Dept. of Mathematics, Vanderbilt University.
• Ugo Boscain, SISSA, Italy,
• Grégoire Charlot, University of Montpellier II,



Project-Team Apics 41

9. Dissemination
9.1. Teaching

Courses

– L. Baratchart, DEA Géométrie et Analyse, LATP-CMI, Univ. de Provence (Marseille), and
graduate program of the University of Cyprus in Nicosia (April).

– M. Olivi, Mathématiques pour l’ingénieur (Fourier analysis and integration), section Math-
ématiques Appliquées et Modélisation, 1ère année, Ecole Polytechnique de l’Université de
Nice.

Trainees

– Jonathan Chetboun (ENPC)

– Cristina Paduret (Mémoire de Master 3 de Mathématiques, Université de Provence, Aix-
Marseille I.)Résolution de problèmes inverses de source dans des domaines paramétrés
en dimension 3 par approximation méromorphe

Ph.D. Students

– Alex Bombrun, « Commande optimale, feedback, et tranfert orbital de satellites » (optimal
control, feedback, and orbital transfert for low thrust satellite orbit transfer)

– Imen Fellah, “Data completion in Hardy classes and applications to inverse problems”,
co-tutelle with Lamsin-ENIT (Tunis).

– Vincent Lunot, « Problèmes d’approximation fréquentielle et application à la synthèse
d’OMUX »,

– Moncef Mahjoub, “Complétion de données et ses application à la détermination de défauts
géométriques.” co-tutelle with Lamsin-ENIT (Tunis).

– Erwin Mina Diaz, “Asymptotic properties of orthogonal polynomials over regions and
curves.”

– Maxim Yattselev, “Meromorphic approximation and nonhermitian orthogonality.”

defended Ph.D. thesis

– David Avanessoff, « Linéarisation dynamique des systèmes non linéaires et paramétrage
de l’ensemble des solutions » (dynamic linearization of non linear control systems, and
parameterization of all trajectories). June 8, 2005.[13]

Jurys
• L. Baratchart sat on the PhD defence commitee of Florence Scalas (Univ. de Provence, December),

of D. Baranov (Univ. de Bordeaux, June) and on the commitee for the Habilitation of A. Borishev
(Univ. de Bordeaux, June).

• J. Leblond has been sitting on the commitee for the habilitation of Slim Chaabane (LAMSIN-ENIT,
Univ. Tunis II, april), and for the PhD theses of Bénédicte Dujardin and Jean-Gabriel Ramspacher
(UNSA, December).

• F. Seyfert has been sitting on the PhD defence commitee of Philippe Lenoir (IRCOM)

• J.-B. Pomet has been sitting on the PhD defence commitee of Vincent Andrieu (Ecole des Mines de
Paris, December)
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9.2. Community service
M. Sigalotti was in charge of organizing the seminar on control and identification.

L. Baratchart was a member of the “bureau” of the CP (Comité des Projets) of INRIA-Sophia Antipolis
untill July. He is a member of the “commission de spécialistes” (section 25) of the Université de Provence.

J. Grimm is a representative at the “comité de centre”. He is a member of the organising committee of
PICOF 2006 (“Inverse Problems, Control, and Shape Optimization”).

J. Leblond is a member (suppleant) of the “ Commission d’évaluation ” of INRIA, since September. She
has been involved in the working group in charge (for the “Comité des Projets”) of examining the creation
proposition of the team Asclepios. She participates to the working group “Doc”. She has been a member of
the admissibility jury for CR2 researchers at INRIA Lorraine. She is a member of the scientific committee of
PICOF 2006.

J. Leblond and J. Grimm are co-editors of the proceedings (to appear in 2006) of the CNRS-INRIA summer
school “Harmonic analysis and rational approximation: their rôles in signals, control and dynamical systems
theory” (Porquerolles, 2003)http://www-sop.inria.fr/apics/anap03/index.en.html[59].

M. Olivi is a member of the CSD (Comité de Suivi Doctoral) of the Research Unit of Sophia Antipolis.
F. Seyfert is a member of the CDL (Comité de développement logiciel) of the Research Unit of Sophia

Antipolis.

9.3. Conferences and workshops
A. Bombrun, B. Atfeh and L. Baratchart have presented a communication at CMFT2005 (Computational
Methods and Function Theory), Joensuu, Finland (June).

L. Baratchart presented a communication at the 22nd IFIP TC 7 Conference on System Modeling and
Optimization Turin, It. (july).

L. Baratchart was an invited speaker at the “Journées d’Analyse Fonctionnelle” of the University of
Bordeaux (June).

J. Grimm gave a talk about SSH and security at Inria.
J. Leblond was invited to give a plenary talk at WIP2005 (Workshop on Inverse Problems, Marseille,

Luminy, december) and a communication at the 22nd IFIP TC 7 Conference on System Modeling and
Optimization Turin, It. (july). She gave communications at the annual workshop ERNSI, Louvain-la-Neuve
(september), at the annual workshop of the ACI “Obs-Cerv”, Orsay (october), at seminars (APICS-LATP,
ONDES-Poems).

V. Lunot gave a talk at the analysis seminar of Vanderbilt University.
M. Mahjoub gave a communication at Tam-Tam’05 (Tendances dans les Applications Mathe’matiques

en Tunisie, Alge’rie, Maroc, Tunis, april) and at the 5th International Conference on Inverse Problems in
Engineering: Theory and Practice (Cambridge, UK, july).

I. Fellah gave a communication at Tam-Tam’05.
M. Clerc has presented a poster at ISBET2005 (Bern, Switz., october).
B. Atfeh gave a talk at the mini-symposium EEG of the Workshop on Optimization in Medecine, Coimbra,

Portugal (july).
Mario Sigalotti gave a talk at the 22nd IFIP TC 7 Conference on System Modeling and Optimization (Turin,

Italy, July).
M. Olivi gave a talk at the CDC 2005, Seville, Spain, 12-15 December.
F.Seyfert gave a talk at the IMS 2005 in Los-Angeles (“Coupling Matrix Synthesis for a New Class of

Microwave Filter Configuration”), and at the Ernsi Workshop in Brussell (“Design and identification of
algebraically parametrized linear dynamical systems”).

http://www-sop.inria.fr/apics/anap03/index.en.html
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