%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Arénaire

Computer Arithmetic

Rhone-Alpes

- THEME SYM -

dlctivity

http://www.inria.fr/recherche/equipes/listes/theme_SYM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/arenaire.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-ra.en.html

=

Table of contents

Team
Overall Objectives
2.1. Overall Objectives
Scientific Foundations
3.1. Introduction
3.2. Hardware Arithmetic Operators
3.2.1. Number Representation
3.2.2. Algorithms
3.2.3. Architectures and Tools
3.3. Floating-Point Arithmetic
3.3.1. Formal Specifications and Proofs
3.3.2. Elementary Functions and Correct Rounding
3.4. Algorithms and Arithmetics
3.4.1. Numerical Algorithms using Arbitrary Precision Interval Arithmetic
3.4.2. Computational Algorithms for Exact Linear Algebra
Application Domains
4.1. Application Domains
Software
5.1. Introduction
5.2. CRIibm: a Library of Elementary Functions with Correct Rounding
5.3. Divgen: a Divider Circuit Generator
5.4. FPLibrary: a Library of Operators for “Real” Arithmetic on FPGAs
5.5. HOTBM: a VHDL Generator for the Higher-Order Table-Based Method
5.6. LinBox: High Performance Software for Matrix Computations
5.7. MPFI: Multiple Precision Floating-Point Interval Arithmetic
5.8. MPCheck: Testing the Quality of Elementary Functions
5.9. Boost Interval Arithmetic Library
5.10. MEPLIib : Machine-Efficient Polynomials Library
5.11. PFF: Formal Proofs about Floats
5.12. A part of the NASA Langley PVS Libraries
5.13. Gappa: a Tool for Certifying Numerical Programs
5.14. FLIP: Floating-point Library for Integer Processors
New Results
6.1. Hardware Arithmetic Operators
6.1.1. Evaluation of Functions
6.1.2. Division
6.1.3. Low-Power Arithmetic Operators
6.1.4. Hash Functions
6.1.5. Code-Based Digital Signature
6.1.6. Iterative Modular Multiplication
6.1.6.1. Survey and Practical Aspects
6.1.6.2. High-Radix Carry-Save Algorithm Based on Horner’s Rule
6.1.7. RN-Codings
6.1.8. Publication of Previous Works
6.2. Software Division
6.2.1. Algorithms for Floating-Point Arithmetic on Integer Processors
6.2.2. Division by Constant

OO OWOWOOMOONN~NOOOODOODOOD U URABMMDMDMNWWWEREPRPE

2 Activity Report INRIA 2005

6.3. Properties and Proofs on Floating-Point Arithmetic 14
6.3.1. Functions Computable with a Fused Multiply-and-Add Instruction 14
6.3.2. Formalization and Proved Results in Floating-Point Arithmetic Using PVS 14
6.3.3. Double Rounding 14

6.4. Correct Rounding of Elementary Functions 14
6.4.1. Double Precision Correctly Rounded Elementary Functions 14
6.4.2. Correct Rounding of Algebraic Functions 15
6.4.3. Publication of Previous Works 15

6.5. Approximation 15
6.5.1. Efficient Polynomial Approximation 15
6.5.2. Modular Functions 15

6.6. Certified Numerical Codes, Interval Arithmetic and Taylor Models 15
6.6.1. PVS-Guaranteed Proofs using Interval Arithmetic 16
6.6.2. Formal Certification of Arithmetic Filters for Geometric Predicates 16
6.6.3. Formal Proofs on Taylor Models Arithmetic 16
6.6.4. Efficient and Accurate Computations on Taylor Models with Floating-Point Arithmi&éic

6.7. Algorithms and Software for High Performance Linear Algebra 16

7. Contracts and Grants with Industry 17

7.1. Région Rhéne-Alpes Grant 17

8. Other Grants and Activities 17

8.1. National Initiatives 17
8.1.1. ANR GECKO Project 17
8.1.2. Ministry Grant ACI “Cryptology” 17
8.1.3. Ministry Grant ACI “Security in Computer Science” 17
8.1.4. Ministry Grant ACI “New Interfaces of Mathematics” 18
8.1.5. Working group on “Set Methods for Control Theory”, CNRS GDR MACS 18
8.1.6. “Adaptive and Hybrid Algorithms”, Imag-Inria project 18
8.1.7. Roxane Initiative 18

8.2. European Initiatives 18
8.2.1. Mathlogaps Marie Curie Early Stage Training 18

8.3. International Initiatives 19
8.3.1. Contributions to Standardization Bodies (ANSI-IEEE 754R and ISO/IEC

JTC1/SC22/WG21) 19
8.3.2. LinBox Initiative 19
8.3.3. Grant of the Japanese Society for the Promotion of Sciences 19
8.3.4. Certifications of Properties of Floating-Point Arithmetic (CNRS-NASA) 19
8.3.5. Collaboration ATIPS-LIP 20
9. Dissemination 20

9.1. Conferences, Edition 20

9.2. Doctoral School Teaching 21

9.3. Other Teaching and Service 21

9.4. Leadership within Scientific Community 21

9.5. Committees 21

9.6. Seminars, Conference and Workshop Committees, Invited Conference Talks 22

10. Bibliography 23

1. Team

Arénaire is a joint project of CNRS, Ecole Normale Supérieure de Lyon, Inria, and Université Claude
Bernard de Lyon. A part of the Laboratoire de I'Informatique du Parallélisme (UibIR 5668), it is located
at Lyon in the buildings of the ENS.

The year 2005 is marked by the departure of three researchers whose investment for Arénaire has been
considerable. Jean-Luc Beuchat who has finished a four years postdoctoral period, Marc Daumas who moves
as CR1 CNRS to Montpellier-Perpignan, and Arnaud Tisserand who has been hired CR1 CNRS at Montpellier.

Head of the team
Gilles Villard [Research Scientist, CR CNRS]

Administrative Assistant
Sylvie Boyer [TR Inria, 20% on the project]

Inria Scientists
Edouard Bechetoille [Technical Staff, since October 1, 2005]
Nicolas Brisebarre [Research Scientist, CR (on partial secondment) until August 31, 2005, then Associate
ProfessorMaitre de Conférenced. J. Monnet St-Etienne]
Claude-Pierre Jeannerod [Research Scientist, CR]
Nathalie Revol [Research Scientist, CR]
Arnaud Tisserand [Research Scientist, CR until September 30, 2005, then visiting scientist]

CNRS Scientists
Marc Daumas [Research Scientist, CR, until November 30, 2005]
Jean-Michel Muller [Research Scientist, DR]

Ens Lyon Scientists
Florent de Dinechin [Associate Profesddigitre de Conférencés
Serge Torres [Technical Staff]

Post-Doctoral Fellows
Jean-Luc Beuchat [Post-doctoral fellow of thends National Suisse de la Recherche Scientifiduoen
November 1, 2001 to November 30, 2005]
llia Toli [Inria Post-doctoral Fellow since May 1, 2005]

PhD Students
Sylvie Boldo [ENS studendllocataire-monitriceENS (PhD defense on November 22, 2004), until August
31, 2005]
Francisco Chavedfuropean Marie Curie granvathlogaps, 2nd year]
Jérémie Detrey [ENS studeAtlocataire-moniteuiNSA, 3rd year]
Christoph LauterAllocataire-moniteuMESR ENS, 1st year]
Guillaume Melquiond [ENS studertlocataire-moniteutNSA, 3rd year]
Romain Michard [Inria grant, 2nd year]
Saurabh Kumar Raina [Grant from tR&gion Rhdne-Alpe8rd year]
Nicolas Veyrat-CharvillonAllocataire-moniteuMESR ENS, 2nd year]

2. Overall Objectives
2.1. Overall Objectives

Keywords: Computer arithmeticFPGA circuit VLSI circuit approximated computatiowomputer algebra
elementary functiorfinite field floating-point representatigrinteger computatioyinterval arithmetic linear
algebra low-power operatormultiple-precision arithmetiaeliability of numerical software

The Arénaire project aims at elaborating and consolidating knowledge in the fi€lohoputer Arithmetic
Reliability, accuracy, and performance are the major goals that drive our studies.

2 Activity Report INRIA 2005

We contribute to the improvement of the available arithmetic, at the hardware level as well as at the software
level, on computers, processors, dedicated or embedded chips, etc. Improving computing does not necessarily
mean getting more accurate results or getting them more quickly: we also take into account other constraints
such as power consumption, or the reliability of numerical software.

Whatever the target (hardware or software), the choice of the number system (and, more generally, of
the data representation) is of uttermost importance. Typical examples aredinedant number systems
(e.g., carry-save, borrow-save). Such systems are used inside multipliers, dividers, etc. The input and output
operands of these operators are represented in a conventional number system: only their internal calculations
are performed in redundant arithmetic. For a general purpose microprocessor, floating-point arithmetic seems
an unavoidable choice (even if current implementations can certainly be improved), but for special purpose
systems, other ways of representing numbers might prove more useful (fixed-point format, some special
redundant systems). The ways of representing the elements of a finite field are not standardized, and have
strong impact on the performance of a special purpose circuit. On a higher level, the performance of an interval
arithmetic depends on the underlying real arithmetic.

The conception of a hardwired operator is not only assembling small parts. The designer must also take
into account numerous technological constraints and data. Due to the quick evolution of technologies, it is
for instance necessary to master the placement and routing tools, if one wishes to design efficient chips. The
power consumption of an integrated circuit depends, among other parameters, on its activity, which in turn
depends on the value of the inputs: this makes the choice of the number system crucial. Some encodings are
used specially in fast algorithms, some others minimize energy consumption.

Computer designers have always needed to implement the basic arithmetic functions (with software
or hardware), for a medium-size precision (say, on words from 8 to 128 bits). Of course, addition and
multiplication have been much studied, but their performance is still critical concerning silicon area (for
multiplication) or speed (for both operations). Division and square-root are less critical, but with these
operations there certainly remains more room for possible improvement. When elementary functions are at
stake (cosine, sine, exponential, logarithm, etc.), algorithm designers have mainly focused on speed or savings
of physical resources. Research on algorithms and architectures for multiplication, division and elementary or
special functions is still very active. Implemented solutions are still evolving fast. The members of Arénaire
have a strong reputation in these domains and they intend to continue to work on them.

Thanks to past and recent efforts, the semantics of the floating-point operations is well defined. Indeed, the
adoption of the IEEE-754 standard for floating-point arithmetic in 1985 was a major step forward in computer
arithmetic. The standard specifies the various formats and the behavior of the floating-point operations, this
represents a key point for improving numerical reliability. Standardization is also related to properties of
floating-point arithmetic—we mean invariants that operators or sequences of operators may satisfy. We work
on establishing new properties such as exact rounding or the representation of roundoff errors. An important
objective is further to have these results progressively integrated into the future standards of floating-point
arithmetic.

For certifying the properties that we identify, and the compliance of the numerical programs we develop
with their specifications, we rely on formal proving. Proofs are checked using &hag well as PVS§3]
proof assistants. In particular, this is made possible by a careful specification of the arithmetic operators that
are involved.

An increasingly growing demand exists for certified numerical results, we mean for computing with known
or controlled errors. Our answer is the conception of modern and efficient error-measurement tools. We first
concentrate on two types of errors: roundoff errors, polynomial and power series approximation errors. Our
objective here is the conception and the implementation of automatic tools for computing certified (exact)
error bounds.

When conventional floating-point arithmetic does not suffice, we use other kinds of arithmetics. Especially
in the matter of error bounds, we work on interval arithmetic libraries, including arbitrary precision intervals.
Intervals give an “exact” answer when the problem is to bound the result of a computation. Here a main
domain of application is global optimization. Original algorithms dedicated to this type of arithmetic must

Project-Team Arénaire 3

be designed in order to get accurate solutions or sometimes simply to avoid divergence, i.e. infinite intervals.
We also investigate exact arithmetics in computer algebra, for computing in algebraic domains such as finite
fields, unlimited precision integers, and polynomials (linear algebra in mathematical computing).

To conclude we emphasize that the research directions mentioned above are supported by the development
and diffusion of corresponding libraries, either in hardware or in software. The features of our libraries are the
quality of the implemented algorithms, and code optimization for performance.55&w 8etails about each
of these libraries.

3. Scientific Foundations

3.1. Introduction

Our goal is to improve arithmetic operators. Under various hardware and software constraints we focus on
reliability, accuracy, and speed. We identify three main directions: hardware arithmetic operators, floating-
point operations, and impact of the arithmetic on the algorithms. These three interrelated topics are described
below with the methodologies and techniques they implement.

3.2. Hardware Arithmetic Operators

A given computing application may be implemented using different technologies, with a large range
of tradeoffs between the various aspects of performance, unit cost, and non-recurring costs (including
development effort).

e A software implementation, targeting off-the-shelf microprocessors, is easy to develop and repro-
duce, but will not always provide the best performance.

e For cost or performance reasons, some applications will be implemented as application specific
integrated circuits (ASIC). An ASIC provides the best possible performance and may have a very
low unit cost, at the expense of a very high development cost.

e An intermediate approach is the use of reconfigurable circuits, or field-programmable gate arrays
(FPGA).

In each case, the computation is broken down into elementary operations, executed by elementary hardware
elements, omrithmetic operatorsin the software approach, the operators used are those provided by the
microprocessor. In the ASIC or FPGA approaches, these operators have to be built by the designer, or taken
from libraries. The design of hardware arithmetic operators is one of the goals of the Arénaire project.

A hardware implementation may lead to better performance than a software implementation for two main
reasons: parallelism and specialization. The second factor, from the arithmetic point of view, means that
specific data types and specific operators may be used which would require costly emulation on a processor.
For example, some cryptography applications are based on modular arithmetic and bit permutations, for
which efficient specific operators can be designed. Other examples include standard representations with non-
standard sizes, and specific operations such as multiplication by constants.

A circuit may be optimized for speed or area (circuit cost). In addition, power consumption is becoming an
increasingly important challenge in embedded applications. Here again, data and operator specialization has
to be combined with generic power-aware techniques to achieve the lowest power consumption.

Those considerations motivate the study of arithmetic operators for ASIC and FPGA. More specifically we
consider the following aspects.

4 Activity Report INRIA 2005

3.2.1. Number Representation

The choice of a number representation system may ease the implementation of a given operation. A typical
example is thdogarithmic number systenwhere a number is represented by its logarithm in radix 2. In
this system, the multiplication and the division are exact (involving no rounding) and easy, but the addition
becomes very expensive. A more standard example is thratlahdanthumber systems, like carry-save and
borrow-save, often used within multipliers and dividers to allow very fast addition of intermediate results. We
also work on other number systems such as finite fields or residue number systems for cryptography. In the
case of computations on real values, we consider two different solutions with fixed-point and floating-point
number systems.

3.2.2. Algorithms

Many algorithms are available for the implementation of elementary operators. For example, there are two
classes of division algorithms: digit-recurrence and function iteration. The choice of an algorithm for the
implementation of an operation depends on (and sometimes imposes) the choice of a number representation.
Besides, there are usually technological constraints (area and power budget, available low-level libraries).

Research is active on algorithms for the following operations:

e Basic operations (addition, subtraction, multiplication), and their variations (multiplication and
accumulation, multiplication or division by constants, etc.);

e Algebraic functions (division, inverse, and square root, and in general powering to an integer, and
polynomials);

e Elementary functions (sine, cosine, exponential, etc.);
e Combinations of the previous operations (norm for instance).

3.2.3. Architectures and Tools

Implementing an algorithm (typically defined by equations) in hardware is a non-trivial task. For example,
control signals are needed for correct initialization, most circuits involve memory elements and clock signals
which have to be managed carefully, etc.

In this process, computer-aided design tools play a major role. Unfortunately, such tools currently have very
poor arithmetic support (typically only radix-2 integer representations, with simple adders and sometimes
multipliers). Improving this situation by developing specific design tools is an important research direction.

Finally, even though an algorithm has been formally proven, its hardware realization needs to be checked, as
errors may be introduced by the synthesis process and in the physical realization. For this purpose, test vectors
are used to validate the final circuit. For small circuits, such vectors may exhaustively test all the combinations
of the inputs. When this exhaustive approach becomes impractical, it is the responsibility of the designer to
provide test vectors ensuring sufficient coverage of all the possible faults. This again is a non-trivial task.

3.3. Floating-Point Arithmetic

Floating-point numbers are represented by triplet,) associated with

(71)8 xXn X /Bea

whereg is the radix of the system. In practigeé = 2 or 5 = 10, however, studying the system independently

of the value of3 allows a better understanding of its behaviour. An arithmetic operator handling floating-point
numbers is more complex than the same operator restricted to integer numbers. It is necessary to correctly
round the operation with one of the four rounding modes proposed by the IEEE-754 standard (this standard
specifies the formats of the numbers and the arithmetic operations), to handle at the same time the mantissa
and the exponent of the operands, and to deal with the various cases of exception (infinite, subnormal numbers,
etc).

Project-Team Arénaire 5

3.3.1. Formal Specifications and Proofs

Very mediatized problems (the Pentium bug, or the fact #iéfl!/2000! = 1 in Maple 7) show that
arithmetic correctness is sometimes difficult to obtain on a computer. Few tools handle rigorous proofs on
floating-point data. However, thanks to the IEEE-754 standard, the arithmetic operations are completely
specified, which makes it possible to build proofs of algorithms and properties. But it is difficult to present a
proof including the long list of special cases generated by these calculations. The formalization of the standard,
begun with our collaboration with the Lemme project (ARC AOC) in year 2000, makes it possible to use a
proof assistant such as Cogd] to guarantee that each particular case is considered and handled correctly.
Thanks to funding from CNRS and NASA, the same specification is now also available in PVS.

Systems such as Coq and PVS make it possible to define new objects and to derive formal consequences
of these definitions. Thanks to higher order logic, we establish properties in a very general form. The proof
is built in an interactive way by guiding the assistant with high level tactics. At the end of each proof, Coq
builds an internal object, called a proof term, which contains all the details of derivations and guarantees that
the theorem is valid. PVS is usually considered less reliable because it builds no proof term.

3.3.2. Elementary Functions and Correct Rounding

Many libraries for elementary functions are currently available. The functions in question are typically those
defined by the C99 standard, and are offered by vendors of processors, compilers or operating systems. The
majority of these libraries attempts to reproduce the mathematical properties of the given functions: monotony,
symmetries and sometimes range.

Concerning the correct rounding of the result, it is not required by the IEEE-754 standard: during the
elaboration of this standard, it was considered that correctly rounded elementary functions was impossible
to obtain at a reasonable cost, because of the so cadleld Maker's Dilemmaan elementary function is
evaluated to some internal accuracy (usually higher than the target precision), and then rounded to the target
precision. What is the accuracy necessary to ensure that rounding this evaluation is equivalent to rounding
the exact result, for all possible inputs? The answer to this question is generally unknown, which means
that correctly rounding elementary functions requires arbitrary multiple-precision, which is very slow and
resource-consuming.

Indeed, correctly rounded libraries already exist, such as MRER:{www.mpfr.org, the Accurate
Portable Library released by IBM in 2002, or thebmcr library, released by Sun Microsystems in late
2004. However they have worst-case execution time and memory consumption up to 10,000 worse than usual
libraries, which is the main obstacle to their generalized use.

We have focussed in previous years on computing bounds on the intermediate precision required for
correctly rounding some elementary functions in IEEE-754 double precision. This allows us to design
algorithms using a large but fixed precision instead of arbitrary multiple-precision. That makes it possible to
offer the correct rounding with an acceptable overhead: we have experimental code where the cost of correct
rounding is negligible in average, and less than a factor 10 in the worst case. It also enables to prove the
correct-rounding property, and to prove bounds on the worst-case performance of our functions. This proof
concern is mostly absent from IBM’s and Sun’s libraries, and indeed we have found many misrounded values
in each of them.

The design of a library with correct rounding also requires the study of algorithms in large (but not arbitrary)
precision, as well as the study of more general methods for the three stages of the evaluation of elementary
functions: argument reduction, approximation, and reconstruction of the result.

3.4. Algorithms and Arithmetics

Today, scientific computing needs not only floating-point arithmetic or multi-precision arithmetic. On the
one hand, when validated results or certified enclosures of a solution are nidead| arithmeticis the
arithmetic of choice. It enables to handle uncertain data, such as physical measures, as well as to determine
a global optimum of some criterion or to solve a set of constraints. On the other hand, there is an increasing

http://www.mpfr.org

6 Activity Report INRIA 2005

demand for exact solutions to problems in various areas such as cryptography, combinatorics or algorithmic
geometry. Here, symbolic computation is used together ettt arithmetic

General purpose computing environments such as Matlab or Maple now offer all these types of arithmetic
and it is even possible to switch from one to another in the middle of a computation. Of course, such
capabilities are quite useful and, in general, users already can enhance the quality of the answers to small
problems.

However, most general purpose environments are still poorly suited for large computations and interfacing
with other existing softwares remains an issue. Our goal is thus to provide high-performance easy-to-reuse
software components for interval, mixed interval/multi-precision, finite field, and integer arithmetics. We
further aim to study the impact of these arithmetics on algorithms for éxesztr algebraand constrained
as well as unconstraineglobal optimization

3.4.1. Numerical Algorithms using Arbitrary Precision Interval Arithmetic

When validated results are needed, interval arithmetic can be used. New problems can be solved with this
arithmetic which computes with sets instead of numbers. In particular, we target the global optimization of
continuous functions. A solution to obviate the frequent overestimation of results is to increase the precision
of computations.

Our work is twofold. On the one hand, efficient software for arbitrary precision interval arithmetic is
developed, along with a library of algorithms based on this arithmetic. On the other hand, new algorithms
that really benefit from this arithmetic are designed, tested, and compared.

3.4.2. Computational Algorithms for Exact Linear Algebra

The techniques for solving linear algebra problems exactly have been evolving rapidly in the last few years,
substantially reducing the complexity of several algorithms. Our main focus is on matrices whose entries
are integers or univariate polynomials over a field. For such matrices, our main interest is how to relate the
size of the data (integer bit lengths or polynomial degrees) to the cost of solving the problem exactly. A first
goal is to design asymptotically faster algorithms for the most basic tasks (determinant, matrix inversion,
matrix canonical forms, ...), to reduce problems to matrix multiplication in a systematic way, and to relate
bit complexity to algebraic complexity. Another direction is to make these algorithms fast in practice as well,
especially since applications yield very large matrices that are either sparse or structured. The techniques used
to achieve our goals are quite diverse: they range from probabilistic preconditioning via random perturbations
to blocking, to the baby step /giant step strategy, to symbolic versions of the Krylov-Lanczos approach, and to
approximate arithmetic.

Within the LinBox international project (se& % and 8.3) we work on a software library that corresponds
to our algorithmic research mentioned above. Our goal is to provide a generic library that allows to plug
external components in a plug-and-play fashion. The library is devoted to sparse or structured exact linear
algebra and its applications; it further offers very efficient implementations for dense linear algebra over finite
fields. The library is being developed and improved, with a special emphasis on the sensitivity of computational
costs to the underlying arithmetic implementations. The target matrix entry domains are finite fields and their
algebraic extensions, integers and polynomials.

4. Application Domains

4.1. Application Domains

Keywords: arithmetic operator control, cypher dedicated circuit hardware implementatignnumerical
software proof, validation

Our expertise covers application domains for which the quality, such as the efficiency or safety, of the
arithmetic operators is an issue. On the one hand, it can be applied to hardware oriented developments, for
example to the design of arithmetic primitives which are specifically optimized for the target application and

Project-Team Arénaire 7

support. On the other hand, it can also be applied to software programs, when numerical reliability issues
arise: these issues can consist in improving the numerical stability of an algorithm, computing guaranteed
results (either exact results or certified enclosures) or certifying numerical programs.

e Developments ifCog andPVS are used to formallypound values and roundoff errorsfor safety
critical applications such as flight control. Our automatic tool (Se&3 checks for overflows and
performs forward error analysis with interval arithmetic. It generates all the necessary assessments
and proofs related to each variable of a given program. Such technique has been coinesibées
formal methodsOur tool also refers to our growing library of validated properties to enhance the
containment intervals.

e Developments otorrectly rounded elementary functionsis critical to thereproducibility of
floating-point computations. Exponentials and logarithms, for instance, are routinely used in ac-
counting systems for interest calculation, where roundoff errors have a financial meaning. Our cur-
rent focus is on bounding the worst-case time for such computations, which is required to allow their
use insafety critical applications.

e Arbitrary precision interval arithmetic can be used in two waywvatidate a numerical result
To quickly check the accuracyof a result, one can replace the floating-point arithmetic of the
numerical software that computed this result by high-precision interval arithmetic and measure the
width of the interval result: a tight result corresponds to good accuracy. \@étéing a guaranteed
enclosureof the solution is an issue, then more sophisticated procedures, such as those we develop,
must be employed: this is the case of global optimization problems.

e The application domains of hardware arithmetic operatorsdagital signal processing image
processing embedded applicationsandcryptography.

e The design of faster algorithms for matrix polynomials provides faster solutions to various problems
in control theory, especially those involving multivariable linear systems.

5. Software

5.1. Introduction

Arénaire proposes various software and hardware realizations that are accessible from the web page
http://www.ens-lyon.fr/LIP/Arenaire/War&Ve describe below only those which progressed in 2005.

5.2. CRlibm: a Library of Elementary Functions with Correct Rounding
Keywords: correct rounding double precision arithmetj@lementary functiodibm.
Participants: F. de Dinechin, C. Lauter, J.-M. Muller.

The CRIibm project aims at developing a mathematical libratyf) which provides implementations of

the double precision C99 standard elementary functions,
- correctly rounded in the four IEEE-754 rounding modes,
- with a comprehensive proof of both the algorithms used and their implementation,

- sufficiently efficient in average time, worst-case time, and memory consumption to replace existisg
transparently.

In 2005, we released the stable version 0.8, with implementations of exponential, natural logarithm,
hyperbolic sine and cosine, arctangent, and the trigonometric functions (sine, cosine and tangent), and
complete proofs of these implementations. The infrastructure was also improved in many ways, especially
concerning testing and validation.

Then we released the interim versions 0.10beta, then 0.11beta with three more functions (logarithms in base
2 and 10, and arcsine), and a complete rewrite of the previous logarithms and exponential: the new versions

http://www.ens-lyon.fr/LIP/Arenaire/Ware

8 Activity Report INRIA 2005

use double-extended hardware when available, and also reduce the worst-case execution time by a factor 10
using either double-double-extenddd] or triple-double p2], [22].

In the beta versions, the code is complete, working and validated by an extensive self-test procedure, but the
proof of correct rounding is not complete yet. These new releases include machine-assisted proofs using the
Gappa tool 48].

The library includes an extensive documentation and proof which makes an excellent tutorial on elementary
function software development.

The library has been downloaded more than 1000 times. It is used in the LHC@home project of CERN
(http://Incathome.cern.chy/and is considered for inclusion as the default libm in several open-source compiler
projects.

Status: Beta releaseTarget: ia32, ia64, Sparc, PPQ.icense:LGPL / OS: Unix / Programming Language:C /URL: http://www.ens-
lyon.fr/LIP/Arenaire

5.3. Divgen: a Divider Circuit Generator
Keywords: ASIC FPGA, circuit, division
Participants: R. Michard, A. Tisserand, N. Veyrat-Charvillon.

Divgen is a divider generator. It generates synthesizable VHDL descriptions of division units. Various al-
gorithms, representations, radices, and parameters are supported. Both ASIC and FPGA targets are supported.
This generator is developed within a collaboration between Inria and CEA-Léti ¢sBe §

Status: Beta release Target: ASIC, FPGA /License: GPL / OS: Unix, Linux, Windows (Cygwin) /Programming Language: C++,
VHDL / URL: http://lipforge.ens-lyon.fr/projects/divgen

5.4. FPLibrary: a Library of Operators for “Real” Arithmetic on FPGAs
Keywords: FPGA LNS arithmetic operatorsfloating-point function evaluation
Participants: J. Detrey, F. de Dinechin.

FPLibrary is a VHDL library that describes arithmetic operators (addition, subtraction, multiplication,
division, and square root) for two formats of representation of real numbers: floating-point, and logarithmic
number systeml[g]. These formats are parametrized in precision and range.

It has been extended in 2005 by the addition of floating-point logarithm and exponential opeBitors [
which exhibit 10x speedup when compared with the processor. FPLibrary is the first hardware library to offer
parametrized hardware architectures for such elementary functions.

Status: stable /Target: FPGA and ASIC /License: LGPL / OS: any / Programming Language: VHDL / URL: http://www.ens-
lyon.fr/LIP/Arenaire

5.5. HOTBM: a VHDL Generator for the Higher-Order Table-Based Method
Keywords: FPGA, fixed-point function evaluation
Participants: J. Detrey, F. de Dinechin.

HOTBM is a VHDL generator for fixed-point function evaluation operators using the Higher-Order Table-

Based Method34]. The key features of this method are:

- piecewise polynomial approximation,

- parallel computation of all the terms,

- ad-hoc powering units,

- optimized look-up tables,

- small multipliers,

- and guaranteed faithful rounding.
Status: Beta release Target: FPGA / License: GPL / OS: any / Programming Language: C++ / URL: http:/lipforge.ens-
lyon.friwww/hotbm

http://lhcathome.cern.ch/
http://www.ens-lyon.fr/LIP/Arenaire
http://www.ens-lyon.fr/LIP/Arenaire
http://lipforge.ens-lyon.fr/projects/divgen
http://www.ens-lyon.fr/LIP/Arenaire
http://www.ens-lyon.fr/LIP/Arenaire
http://lipforge.ens-lyon.fr/www/hotbm
http://lipforge.ens-lyon.fr/www/hotbm

Project-Team Arénaire 9

5.6. LinBox: High Performance Software for Matrix Computations

Keywords: black box exact arithmeticfinite field generic library, integer, matrix computationpolynomial
rational numbey sparse or structured matrix

Participant: G. Villard.

This software library is developed within an international initiative between Canada, United States, and
France (see &.3).

LinBox is a C++ template library for exact and high-performance linear algebra computation with sparse
and structured matrices. Base domains for the matrix coefficients are finite fields, the rational numbers, and
univariate polynomials. Implementing standard interfaces the library uses a plug-and-play methaodglogy [
offers connections to external softwares like Maple, and provides online servers. LinBox 1.0 (July 2005) is
available. This is the first non-beta and stable release. The algorithmic solutions provided to the user have
undergone a major revision and extension with the purpose of making the linear algebra functions easily
invoked. Also the example directory contains illustrative uses of each function. The new algorithms released
concern especially Dixon’s rational solving, the characteristic polynomial, block Krylov solvers, and a hybrid
algorithm for the Smith normal form. A Linbox/Maple interface has been developed by P. Giorgi (who left
Arénaire early 2005) during his postdoctoral stay at the Symbolic Computation Group (Waterloo University,
Canada). LinBox is part of the Roxane project (sBelg
Status: Stable License:LGPL / OS: Unix, Linux, Windows (Cygwin), WInNT Programming Language:C++/DependenciesGMP,

ATLAS / URL: http://www.linalg.org

5.7. MPFI: Multiple Precision Floating-Point Interval Arithmetic
Keywords: arbitrary precision correct rounding interval arithmetic
Participant: N. Revol.

MPFl is a C library specifically developed for interval arithmetic using arbitrary preciSioR¢r efficiency
and portability reasons, it is based on GMP and MPFR and the implementation takes advantage of these
specific libraries. Modifications made this year mainly concern the compatibility with new releases of MPFR.
Status: stable (alpha for the C++ interface)Target: x86, PPC /License: GPL / OS: Unix, Windows (Cygwin) /Programming
Language:C, C++ /DependenciesGMP v4.1.0 or higher, MPFR v2.2.0 or highedRL: http://www.ens-lyon.fr/LIP/Arenaire

5.8. MPCheck: Testing the Quality of Elementary Functions
Keywords: elementary functiomrmathematical libraryquality, rounding
Participant: N. Revol.

The MPCheck program, version 1.1.0, designed with P. Zimmermann and P. Pélissier (Spaces project, Inria
Lorraine), is freely distributed. It tests the elementary functions available in binary floating-point mathematical
libraries (correct rounding, output range, monotonicity, symmetry), by performing numerous evaluations of
these functions on random arguments.

Status: stable (available only for the double precisioflgfget: x86, PPC, Sparc, Itaniumlicense: GPL / OS: Unix / Programming
Language:C / Dependenciesgcc 3.3, GMP 4.1.0, MPFR 2.1.0, or highddRL: http://www.loria.fr/~zimmerma/mpcheck/

5.9. Boost Interval Arithmetic Library
Keywords: generic C++ library, interval arithmetic policy-based design
Participant: G. Melquiond.

In collaboration with H. Bronnimann (Polytechnic U. Brooklyn, NY USA) and S. Pion (Géométrica team,
Sophia Antipolis).

This library of the Boost projecth(tp://www.boost.orjjis a C++ library designed to efficiently handle
mathematical intervals in a generic way. Our design is unique in that it uses policies to specify three

http://www.linalg.org
http://www.ens-lyon.fr/LIP/Arenaire
http://www.loria.fr/~zimmerma/mpcheck/
http://www.boost.org

10 Activity Report INRIA 2005

independent variable behaviors: rounding, checking, comparisons. As a result, with the proper policies, this
interval library is able to emulate almost any of the specialized libraries available for interval arithmetic,
without any loss of performance nor sacrificing the ease of use. The version 1.32 has been released and the
library is now considered fully operational.

The interval arithmetic library is an integral part of the Boost project. This project aims at providing free
peer-reviewed C++ libraries and the 1.32 release has been downloaded more than 130,000 times.
Status: stable /Target: x86, PPC, Sparc License: Boost Software License 1.00S: any / Programming Language: C++ / URL:
http://www.boost.org

5.10. MEPLIb : Machine-Efficient Polynomials Library

Keywords: fixed-point arithmeticfloating-point arithmeticlinear programming minimax approximation
polynomial approximatioypolytopes

Participants: N. Brisebarre, J.-M. Muller, A. Tisserand, S. Torres.

This software library is developed within a national initiative Ministry Grant ACI “New interfaces of
mathematics” (see&1).

MEPLIb is a library for automatic generation of polynomial approximations of functions under various
constraints, imposed by the user, on the coefficients of the polynomials. The constraints may be on the size in
bits of the coefficients or the values of these coefficients or the form of these coefficients. It should be useful
to engineers or scientists for software and hardware implementations.

Status: Beta release Target: various processors, DSP, ASIC, FPGA.itense: GPL / OS: Unix, Linux, Windows (Cygwin) /
Programming Language:C / URL: http://lipforge.ens-lyon.fr/projects/meplib

5.11. PFF: Formal Proofs about Floats
Keywords: Cogq, floating-point arithmeticformal proof
Participants: S. Boldo, M. Daumas, G. Melquiond.

Our library of theorems and proofs about floating-point arithmetic is based on the library originated by M.
Daumas, L. Rideau and L. Théry during the ARC AOC. The theorems are in the most possible general form.
Most of them do not depend on the radix or on the rounding mode. We based our results on many lemmas from
the literature. This allows any reader to understand and use our results without having to learn our formalism.

Four research teams use their developer’s privilege to add their proofs and theorems to PFF. Other teams
download the library anonymously or use a more stable version available as a Coq contribution.

Status: stable LLicense:LGPL / Programming Language: Coq /URL: http://lipforge.ens-lyon.frimww/pff

5.12. A part of the NASA Langley PVS Libraries
Keywords: PVS floating-point arithmeticformal proof
Participants: S. Boldo, M. Daumas.

The Cog formalization of floating-point numbers originated in the ARC AOC was ported in PVS by S.
Boldo and C. Mufioz. This formalization and new results (s&&)&re now part of the NASA Langley PVS
Libraries which is one of the most well-known and most complete PVS libraries available.

Status: stable /License:free /Programming Language:PVS /URL: http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

5.13. Gappa: a Tool for Certifying Numerical Programs

Keywords: certification fixed-point arithmeticfloating-point arithmeticformal proof roundoff error.
Participants: M. Daumas, G. Melquiond.

http://www.boost.org
http://lipforge.ens-lyon.fr/projects/meplib
http://lipforge.ens-lyon.fr/www/pff
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

Project-Team Arénaire 11

Given a logical property involving interval enclosures of mathematical expressions, Gappa tries to verify
this property and generates a formal proof of its validity. This formal proof can be machine-checked by an
independent tool like the Coq proof-checker, so as to reach a high level of confidence in the certification.

Since these mathematical expressions can contain rounding operators in addition to usual arithmetic opera-
tors, Gappa is especially well suited to prove properties that arise when certifying a numerical application, be
it floating-point or fixed-point. Gappa makes it easy to compute ranges of variables and bounds on absolute or
relative roundoff errors.

Various people use this tool in order to certify their numerical code. For example, in CRlibm, floating-point
elementary functions are proved with its help (séelg
Status: Beta release/Target: any / License: GPL / OS: any / Programming Language: C++ / URL: http://lipforge.ens-
lyon.friwww/gappa

5.14. FLIP: Floating-point Library for Integer Processors

Keywords: VLIW processaraddition, division floating-point arithmetic multiplication single precision
software library square root

Participants: C.-P. Jeannerod, S.-K. Raina, A. Tisserand.

FLIP is a C library for the software support of single precision floating-point arithmetic on processors
without floating-point hardware units such as VLIW (Very Large Instruction Word) or DSP (Digital Signal
Processor) processors for embedded applications. The current target architecture is the VLIW ST200 family
from STMicroelectronics. This research project is funded by Région Rhdne-Alpes.

The library provides the five basic operations: addition, subtraction, multiplication, division and square-root
for the single-precision IEEE 754 FP format. It also provides some running modes with relaxed characteristics:
no subnormal numbers nor restricted rounding modes for instance. The latest version (Flip-0.2) also includes
the following optimized additional operators: square, FMA, reciprocal and square root reciprocal.

Status: Beta release (Flip-0.2) Target: VLIW processors (ST200 family from STMicroelectronict)jtense: LGPL / OS: Linux,
Windows /Programming Language:C / URL: http://lipforge.ens-lyon.friwww/flip

6. New Results

6.1. Hardware Arithmetic Operators

Keywords: ASIC FPGA arithmetic operatorscircuit generator division, function evaluationintegrated
circuit, low-power consumption

Participants: J.-L. Beuchat, J. Detrey, F. de Dinechin, R. Michard, J.-M. Muller, A. Tisserand, N. Veyrat-
Charvillon, G. Villard.

6.1.1. Evaluation of Functions

J. Detrey and F. de Dinechin have worked on general methods for the hardware evaluation of fixed-
point elementary functions. The Higher-Order Table-Based Method is a generalization of previous first-order
methods 11] to arbitrary polynomials. It provides implementations both smaller and faster thanks to the use
of small multipliers and powering unit84)].

The previous fixed-point function generators have been used to build the first floating-point elementary
function library for FPGAs: J. Detrey and F. de Dinechin have studied the floating-point logagtihnthen
the exponentiald3]. Although the basic floating-point operators in FPGAs are usually much slower than their
processor counterparts, both elementary functions exhibit 10x speedup when compared with the processor,
thanks to specific algorithms. This work will be published in the Special Issue on FPGA-based Reconfigurable
Computing of the Journal of Microprocessors and Microsysteips [

R. Michard, A. Tisserand and N. Veyrat-Charvillon have proposed a new method for the approximation of
functions without multipliers. This method uses degree-2 or degree-3 polynomial approximations with at most

http://lipforge.ens-lyon.fr/www/gappa
http://lipforge.ens-lyon.fr/www/gappa
http://lipforge.ens-lyon.fr/www/flip

12 Activity Report INRIA 2005

3 non-zero bits for the coefficients and low precision estimations of the powersTbk first implementation
on FPGAs leads to very small operators by replacing the costly multipliers by a small number of addifjons |
(best paper award of the ASAP 2005 Conference).

R. Michard, A. Tisserand and N. Veyrat-Charvillon have worked on an efficient FPGA implementation
of a shift-and-add algorithm, for polynomial and rational approximation of functions. These operators are
high-radix iterations of the E-method proposed by M. Ercegovac. The results show high performances by
mixing the simple architecture of shift-and-add algorithms and the generic nature of polynomial and rational
approximations4Q].

M. Ercegovac, J.-M. Muller and A. Tisserand have worked on the approximation of the reciprocal and the
square root reciprocal in hardware. The proposed method is based on degree-1 polynomial approximation with
specific coefficients and a tablgq). These approximations can be used to speed up the division and square
root software iterations.

6.1.2. Division

R. Michard, A. Tisserand and N. Veyrat-Charvillon have developed a software for the generation of
division circuits 9. This software, calledivgen, allows the comparison of various parameters (sizes, radix,
algorithm type, optimizations...) for architecture exploration. This work has been done within a collaboration
between Inria and CEA-Léti. This software is released in version 0.11.

6.1.3. Low-Power Arithmetic Operators

R. Michard, A. Tisserand and N. Veyrat-Charvillon have done a statistical study of the activity due to
the selection function in the polynomial approximation algorithm called E-method and proposed by M.
Ercegovac. The latitude in the choice of the result digits in the selection function, when using a redundant
representation, allows to consider a reduced electrical activity in some cases. Power consumption benefits can
be expectedq?].

6.1.4. Hash Functions

R. Glabb, a Phd student at ATIPS laboratory at University of Calgary, and N. Veyrat-Charvillon studied
the SHA-2 family of hash functions. They implemented more efficient stand-alone versions of the separate
operators, and devised a multi-mode operator able to compute all algorithms in a single architecture with a
very-high level of hardware sharing between the modes. This collaboration took place during September at
LIP, and in October at ATIPS.

6.1.5. Code-Based Digital Signature

An algorithm producing cryptographic digital signatures less than 100 bits long with a security level
matching nowadays standards has been recently proposed by Courtois, Finiasz, and Séhdties fcheme
is based on error correcting codes and consists in generating a large number of instances of a decoding problem
until one of them is solved (abo@! = 362880 attempts are needed). A careful software implementation
requires more than one minute on a 2GHz Pentium 4 for signing.

In 2004, J.-L. Beuchat, N. Sendrier, A. Tisserand, and G. Villard proposed a first hardware implementation
which allows to sign a document in 0.86 second on an XCV300E-7 FPGA, hence making this scheme
practical p4]. However, N. Sendrier modified the first step of the algorithm to prevent a possible flaw.
This step involved a multiplication by a matrix stored in the memory blocks of the FPGA. Since the
new version does not require this matrix anymore, intermediate results can now be stored in the memory
blocks and more configurable logic is available to implement computing units. Therefore, we decided to
study a new architecture from scratch. Our second architecture reduces the signature time (place-and-route
results), while improving the security. We plan to design a prototype on a ZestSC1 FPGA USB board (see
http://www.orangetreetech.cofor details) and to publish our results.

6.1.6. Iterative Modular Multiplication

Modular multiplication is often implemented in a parallel-serial fashionr#mt operandy” is stored in a
register andX is processed digit by digit. At each step, a partial prodietY” is formed and added (modulo

http://www.orangetreetech.com

Project-Team Arénaire 13

M) to the previous intermediate result. The well-known Montgomery’s algoriitidllows to design LSDF
(Least Significant Digit First) algorithms. MSDF (Most Significant Digit First) schemes are based on Horner's
rule.

6.1.6.1. Survey and Practical Aspects
J.-L. Beuchat, J.-M. Muller, M. Neve (UCL Crypto Group), and E. Peeters (UCL Crypto Group) studied
and implemented most of iterative schemes published in the open literature. They plan to carry out a fair
comparison of these algorithms on FPGA and to write a survey on this topic.

6.1.6.2. High-Radix Carry-Save Algorithm Based on Horner's Rule
MSDF algorithms are based on the following iteration:

Q] = 2Q[i + 1]4+=;Y) mod M,

whereQ[r] = 0 and@[0] = XY mod M. Several improvements of this algorithm have been proposed. The
basic idea consists in computing a number congruent@jthmoduloM, which requires less hardware than
a moduloM addition.

Public key cryptography often involves modular multiplication of large operands (160 up to 2048 bits).
Several researchers have proposed iterative algorithms whose internal data are carry-save numbers. This num-
ber system is unfortunately not well suited to today’s Field Programmable Gate Arrays (FPGAs) embedding
dedicated carry logic.

J.-L. Beuchat, J.-M. Muller, R. Beguenane (Université du Québec a Chicoutimi), and S. Simard (Université
du Québec a Chicoutimi) proposed to perform modular multiplication in a high-radix carry-save number
system, where theum bitof the well-known carry-save representation is replaced byrma word[24]. The
originality of this approach is to analyze the modulus in order to select the most efficient high-radix carry-
save representation. Place-and-route results show that this approach reduces the area up to 50% and does not
increase the critical path compared to previously published algorithms based on Horner’s rule.

6.1.7. RN-Codings
A property of the original Booth recoding is that the first non-zero digit following a 1 is necessariind
vice versa. This allows to prove that truncating the Booth recoding of a nuMbgrequivalent to rounding
x to the nearest. P. Kornerup and J.-M. Muller investigated the positional, fadixmber systems sharing
this rounding property and called them RN-codingg] [(where “RN” stands for “Round to Nearest”). J.-
L. Beuchat and J.-M. Muller studied addition, multiplication, and squaring algorithms for radix 2 RN-codings
(i.e. Booth recodings)Je], [25].

6.1.8. Publication of Previous Works

The work done in 2001-2003 by F. de Dinechin and A. Tisserand on the multipartite table method has been
published inEEE Transactions on Computeis]].

The work done in 2002—-2004 by N. Boullis and A. Tisserand on the generation of optimized circuits for the
problem of multiplication by constants has been publishd&EE Transactions on Computefs3].

6.2. Software Division

Keywords: DSP, SRT VLIW, division, division by constanfloating-point divisionhigh-radix SRTshift-and-
add algorithms

Participants: C.-P. Jeannerod, J.-M. Muller, S.-K. Raina, A. Tisserand.

6.2.1. Algorithms for Floating-Point Arithmetic on Integer Processors

In [36] we present floating-point division algorithms and implementations. We compare all standard
algorithms and propose a high-radix digit-recurrence algorithm which gives a speed-up factor of about 3.

14 Activity Report INRIA 2005

6.2.2. Division by Constant
The work done in 2001-2003 by J.-M. Muller, A. Tisserand, B. Dupont de Dinechin (STMicroelectronics)
and C. Monat (STMicroelectronics) on the division by constant for the ST100 DSP processor has been
presented in ARITH1743].

6.3. Properties and Proofs on Floating-Point Arithmetic
Keywords: PVS floating-point arithmeticformal proof fused multiply-and-add
Participants: S. Boldo, N. Brisebarre, M. Daumas, G. Melquiond, J.-M. Muller.

6.3.1. Functions Computable with a Fused Multiply-and-Add Instruction

The fused multiply-and-add instructiofi(z) that is available on some current processors such as the Power
PC or the Itanium eases some calculations.

N. Brisebarre and J.-M. Muller have shown that thea instruction can often be used for performing
correctly-rounded multiplication by a constarithat is not exactly representable in floating-point arithmetic.
They give methods for checking whether, for a given valueCond a given floating-point format, this
algorithm returns a correctly rounded result for anj29]. These results have been presented at ARITH17.
The authors are currently working on an extended and improved versi@®JofThey prove that if a larger
precision (one additional bit does suffice) than the target precision is available then the methods developed in
[29] become simpler and faster.

S. Boldo and J.-M. Muller have given examples of some floating-point functions (sudhpés) or
Nextafter(x, y)), or some useful tests, that are easily computable using a fused-mac. They have also proved
that the error of a fused-mac instruction is exactly representable as the sum of two floating-point numbers and
given an algorithm that computes that errd8][

6.3.2. Formalization and Proved Results in Floating-Point Arithmetic Using PVS
During and after her stay at the National Institute for Aerospace (NIA, Hampton, VA) between February
and April 2005, S. Boldo has been working on floating-point arithmetic properties in PVS. This collaboration
was initiated by M. Daumas who worked out its funding and its scientific framework. This work is both a part
of the former Coq formalization (se&8.1) and a new result about polynomial evaluation that is formally
proved to be faithful on mild assumptions (met for example when computing elementary funcligingIf
the developments are part of the NASA Langley PVS Libraries (5eE28

6.3.3. Double Rounding
Double-rounding consists in a first rounding in an intermediate extended precision and then in a second
rounding in the working precisiorbp]. The natural question is then of the accuracy and correctness of the
final result. S. Boldo and G. Melquiond proved an efficient algoritGi for the double rounding to give the
correct rounding to the nearest value assuming the first rounding is to odd. As this rounding is unusual and
this property is surprising, we formally proved this property using the Coqg automatic proof checker.

6.4. Correct Rounding of Elementary Functions
Keywords: correct rounding double precision arithmetjaouble-extended precisipelementary function
libm.

Participants: N. Brisebarre, F. de Dinechin, C. Lauter, G. Melquiond, J.-M. Muller.

6.4.1. Double Precision Correctly Rounded Elementary Functions
F. de Dinechin, A. Ershov (Intel Corporation) and N. Gast (ENS) demonstrated that correct rounding of
elementary function in double precision entailed no overhead in term of average case speed, worst-case speed,
and memory consumption for processors with double-extended hardW@re&[Lauter then extended this
result to all processors with double precision hardware, thanks to a redundant triple-double f&ijmat [

Project-Team Arénaire 15

range of implementations of correctly-rounded logarithm functions will be published in a special issue of the
Journal of Theoretical Informatic&%].

As the main difficulty in such work is the proof of the correct rounding property, F. de Dinechin, G.
Melquiond and C. Lauter developed and used the Gappa tool, a high-level proof assistant which helps building
machine-checkable proofs of numerical properti&3.[

Meanwhile, the CRIibm library was developed further, with the additionleg2, 1log10 and asin
functions, a complete rewrite afxp, a version oflog optimized for IA32 and |A64 instruction sets, the
addition of a self-test, bits of Gappa proofs for various functions, experimental code for interval functions, and
many other improvements. The stable version 0.8 was released in April, and the next stable version (0.11) is
scheduled for early 2006.

crlibm is used by the LHC@Home project at CERN, where it allows to manage the distribution of the
computation on a network of heterogeneous computers. An article on the subject was submitted by F. de
Dinechin, E. McIntosh (CERN) and F. Schmidt (CERN).

F. de Dinechin and G. Villard were invited by nuclear physicists to present a survey on the subject of
quadruple precision at the Workshop on Advanced Computing and Analysis Techniques in Physics Research
(ACAT'05) [23].

6.4.2. Correct Rounding of Algebraic Functions

In [15], N. Brisebarre and J.-M. Muller explicit the link between the computer arithmetic problem of
providing correctly rounded algebraic functions and some diophantine approximation issues. This allows to
get bounds on the accuracy with which intermediate calculations must be performed to correctly round these
functions.

6.4.3. Publication of Previous Works

A former work on range reduction has been published . [The proposed algorithm is fast for most cases
and accurate over the full range. Furthermore, the statistical distribution of these cases has been determined.
In [30], S. Chevillard and N. Revol present an algorithm for the evaluation of the error functions erf and
erfc in arbitrary precision with correct rounding.

6.5. Approximation

Keywords: Chebyshev polynomialBourier coefficientHankel functionautomatic generatigrtircle method
floating-point arithmeticlinear programmingminimax approximatioymodular functionmodular invariang
polynomial approximatiorpolytopes

Participants: N. Brisebarre, J.-M. Muller, A. Tisserand.

6.5.1. Efficient Polynomial Approximation

In [1], N. Brisebarre, J.-M. Muller and A. Tisserand provide a general and efficient method for finding
the best polynomial approximation under constraints of form and size in bits of the coefficients. The method
described in] is currently implemented in the C library MEPLib (cf58.0).

6.5.2. Modular Functions

The modular invariang is an important function in number theorg4]. G. Philibert (LARAL, Saint-
Etienne) and N. Brisebarre established 1i][precise upper and lower bounds for the Fourier coefficients
of j™ for all m € N~ {0}. These results improve on previously known results, especially those of Mahler
[60] and Herrmann57].

6.6. Certified Numerical Codes, Interval Arithmetic and Taylor Models
Keywords: Cog, PVS Taylor modelsformal proof interval arithmetic
Participants: F. Chaves, M. Daumas, G. Melquiond, N. Revol.

16 Activity Report INRIA 2005

6.6.1. PVS-Guaranteed Proofs using Interval Arithmetic

With C. Mufioz (National Institute of Aerospace), we have designed a set of tdfjl$or mechanical
reasoning using interval arithmetic in the PVS proof assistagjt [The tools implement two techniques for
reducing variable dependency: interval subdivisions and Taylor expansions. Although the tools are designed
for the proof assistant system PVS, expertise on PVS is not required. The ultimate goal of the tools is to
provide guaranteed proofs of numerical properties with a minimal human-theorem prover interaction.

6.6.2. Formal Certification of Arithmetic Filters for Geometric Predicates

Floating-point arithmetic provides a fast but inexact way of computing geometric predicates. In order
for these predicates to be exact, it is important to rule out all the numerical situations where floating-point
computations could lead to wrong resul&5]. Taking into account all the potential problems is a tedious
and error-prone work if done by hand. In collaboration with S. Pion (Géométrica team), we have studied a
floating-point implementation of the 2D orientation predicate, and we have put in evidence how a formal and
partially automatized verification of this algorithm avoided many pitfedig.[The presented method is not
limited to this particular filter, though; it can easily be used to produce correct semi-static floating-point filters
of other geometric predicate&(]. These filters have been added to the latest release of the CGAL software
http://www.cgal.org/

6.6.3. Formal Proofs on Taylor Models Arithmetic
Computing with a Taylor model amounts to determine a Taylor expansion of arbitrary order, often high,
along with an interval which encloses Lagrange remainder, truncation error etc. The advantage of Taylor
models, compared to usual interval arithmetic, is to reduce the decorrelation of variables.
Defining operations in a proof assistant is usually very simple. However, work is needed since we have
to prove that the operators implement what they are supposed to implement. We have proven the arithmetic
operations and a few elementary functions on Taylor models using the proof assistant system PVS.

6.6.4. Efficient and Accurate Computations on Taylor Models with Floating-Point Arithmetic

When arithmetic on Taylor models is implemented using floating-point arithmetic for the coefficients of the
Taylor models, roundoff errors due to the representation and to previous computations are also accounted for
in the interval remainder7]. Using the properties of the IEEE-754 floating-point arithmetic and algorithms
proposed by Rump6p], accurate algorithms have been proposed for the arithmetic operations on Taylor
models using floating-point arithmetié4].

6.7. Algorithms and Software for High Performance Linear Algebra

Keywords: Padé approximantsasymptotic complexityleterminantinversion matrix fraction matrix multi-
plication, nullspace polynomial matrixrank, reduced form

Participants: C.-P. Jeannerod, G. Villard.

We have pursued our study of asymptotically fast algorithms for the most basic operations on polynomial
matrices, with an emphasis on reductions to the multiplication problem. The target matrices are typically
n x n of degreed with univariate entries ifK[z] for K an arbitrary commutative field. Among the studied
operations are computing thank, anullspacebasis, thaleterminanbr areduced formthere is also the task
of computing the matrix of fractions which is equal to iheerseof a generic polynomial matrix4]. In [51]
we highlight the role played by two problems when designing asymptotically fast algorithms for any of the
operations aboveomputing minimal basedf some matrix Padé approximants, agbanding/reconstructing
polynomial matrix fractionsWe show that reducing these two problems to polynomial matrix multiplication
implies the same kind of reductions for all the other operations, hence cost estimaies’ihlog™ n log? d)
operations irK wherew is the exponent of scalar matrix multiplication, and witland 5 two real constants.

The latter type of reduction has been developeddis] for establishing that a polynomial nullspace basis
(almost minimal) can be computed using about the same number of operations as for multiplying two

http://www.cgal.org/

Project-Team Arénaire 17

polynomial matrices. These studies, and an algorithm we propose for computing the Kalmas 3 nmay
be useful for the treatment of multivariable linear systems in control.
Part of these theoretical developments yield software components in the LinBox libranpb(8ee §

7. Contracts and Grants with Industry
7.1. Région Rhoéne-Alpes Grant

Keywords: emulation of floating-point arithmetiinteger processor
Participants: C.-P. Jeannerod, J.-M. Muller, S. K. Raina, A. Tisserand.

2005 has been the second year of a 3 year joint project with STMicroelectronics (fall 2003-fall 2006). It
is supported by both thRégion Rhdne-Alpegnd STMicroelectronics. The goal is to design floating-point
arithmetic algorithms (basic operations as well as elementary functions) suitable for an implementation on
circuits that only have integer arithmetic units. The main issue here is to speed up computations by exploiting
both the characteristics of the circuits (and especially, for a first design, those3ifabe family processors)
and possibilities of specialization due to applications.

8. Other Grants and Activities

8.1. National Initiatives
8.1.1. ANR GECKO Project

Keywords: algorithm analysisgeometryinteger matrix polynomial matrix
Participant: G. Villard.

The GECKO projectGeometrical Approach to Complexity and Applicatipasd of 2005-2008) is funded
by ANR and headed by B. Salvy (ALGO project, Inria Rocquencourt). Other teams participating are at the
Ecole polytechnique, Université de Nice Sophia-Antipolis, and Université Paul Sabatier in Toulouse. The
project is at the meeting point of numerical analysis, effective methods in algebra, symbolic computation and
complexity theory. The aim is to improve significantly solution methods for algebraic or linear differential
equations by taking geometry into account.

In Lyon we will concentrate on polynomial and matrix problems (with integer or polynomial entries)
including some particular classes of structured matrices.

8.1.2. Ministry Grant ACI “Cryptology”

Keywords: FPGA encryption hardware operator for cryptography
Participants: J.-L. Beuchat, A. Tisserand, G. Villard.

The OPAC project@Pérateurs Arithmétiques pour la Cryptograph#02-2005), is a collaboration with
the teamArithmétique Informatiquef the Lirmm laboratory and the GTA team at Université de Montpellier
(seehttp://www.lirmm.fr/~bajard/ACI_CRYPT® The goal is the development of hardware operators for
cryptographic applications on FPGAs. The project focuses in particular on problems related to finite fields
and elliptic curves.

8.1.3. Ministry Grant ACI “Security in Computer Science”

Keywords: FPGA arithmetic operatordigital signature
Participants: J.-L. Beuchat, A. Tisserand, G. Villard.

The Ministry Grant ACI “Security in Computer Science” funds the OCAM proj&@pérateurs Cryp-
tographiques et Arithmétique Matériell2003-2006) in collaboration with the Codes team (Inria Rocquen-

court) and the teamrithmétique Informatiqueof the Lirmm laboratory at Montpellier (seettp://www-
rocg.inria.fr/codes/OCAN The goal of OCAM is the development of hardware operators for cryptographic

http://www.lirmm.fr/~bajard/ACI_CRYPTO
http://www-rocq.inria.fr/codes/OCAM
http://www-rocq.inria.fr/codes/OCAM

18 Activity Report INRIA 2005

applications based on the algebraic theory of codes. The FPGA implementation of a new digital signature
algorithm is used as a first target application (s@€)g

8.1.4. Ministry Grant ACI “New Interfaces of Mathematics”
Keywords: floating-point arithmeticlinear programming minimax approximationpolynomial approxima-
tion, polytope
Participants: N. Brisebarre, J.-M. Muller, A. Tisserand, S. Torres.
The GAAP project §tude et outils pour la Génération Automatique d’Approximants Polynomiaux efficaces
en maching2004-2007) is a collaboration with the LArAl laboratory of Université de Saint-Etienne. The
goal is the development of a C library MEPLIib aimed at obtaining very good polynomial approximants under

various constraints on the size in bits and the values of the coefficients. The target applications are software
and hardware implementations, such as embedded systems for instance.

8.1.5. Working group on “Set Methods for Control Theory”, CNRS GDR MACS

Keywords: control theory set computing
Participant: N. Revol.

This working group focuses on the topic of set computing with applications to control theory. The goal
of this group is to stimulate exchanges between researchers in computer science and researchers in control
theory. It is part of the CNRS GDR MACS (Modélisation, Analyse et Conduite des Systémes dynamiques). It
was headed by S. Lesecq (Lag, INPG Grenoble) and N. Revol.

8.1.6. “Adaptive and Hybrid Algorithms”, Imag-Inria project
Keywords: adaptive algorithmoptimization reliable computation

Participants: N. Revol, G. Villard.

The AHA project Adaptive and Hybrid Algorithms$viarch 2005-2007) is headed by J.-L. Roch (Labora-
toire ID-Imag), and supported by Imag Grenoble and Inria. Our motivation is the conception of algorithms
that may adapt themselves automatically to the execution context. Arénaire is involved for building reliable
algorithms (e.g. adaptive precision, general algorithms versus algorithms specific to interval arithmetic, ...).
Other partners of the project will focus on parallel developments for problems in optimization and vision.
Using the AHA approach our objective is to improve the performance of softwares such as LirtBg)»afl
Roxane (8.1).

8.1.7. Roxane Initiative
Keywords: algebraic computatiorefficiency numerical computatioropen-softwargreliability .
Participants: N. Revol, G. Villard.

Roxane stands foReliable Open Software-Components for Algebraic and Numeric Efficidingygoal
of this project is to mutualize the efforts of implementation that are done in different research teams.
Roxane integrates, in a homogeneous environment, tools to build dedicated and efficient components for
solving real problems, mainly in computer algebra. The promotion of Roxane is donettpidwww-
sop.inria.fr/galaad/logiciels/roxanand schools, software distribution CDs, etc.

8.2. European Initiatives

8.2.1. Mathlogaps Marie Curie Early Stage Training
Keywords: PVS applications formal proof interval arithmeti¢ mathematical logic
Participants: M. Daumas, F. Chaves.

Mathlogaps is a multi-participant effort to offer Early Stage Research Training in Logic and Applications
with three partners: (1) the Universities of Leeds and Manchester; (2) Université Claude Bernard Lyon 1 and

http://www-sop.inria.fr/galaad/logiciels/roxane
http://www-sop.inria.fr/galaad/logiciels/roxane

Project-Team Arénaire 19

Ecole Normale Supérieure at Lyon; (3) Ludwig Maximilians Universitat Miinchen. It is led by D. Macperson
(Leeds) and our local leader is P. Koiran (Lip).

F. Chaves has started a PhD in the Arénaire project in November 2004. He will develop the use and
certification of interval arithmetic with the PVS automatic proof checker (see the related res@lg)n §
M. Hofmann acts as a distant expert and a future host in Munich for this PhD.

8.3. International Initiatives

8.3.1. Contributions to Standardization Bodies (ANSI-IEEE 754R and ISO/IEC
JTC1/SC22/WG21)

The Department of Development and Industrial Relations (DirDRI) at Inria has supported our participation
to the ongoing revision of the IEEE Standard for Binary Floating-Point Arithmetic (ANSI-IEEE 754). Since
the first visit of M. Daumas, we have taken many opportunities to raise the impact of formal results from our
project and lately from the Spaces project that was also supported in 2005. In particular, correctly rounded
floating-point elementary functions are now considered for inclusion in the next revision of the IEEE-754
standard. G. Melquiond participated to the meeting of the revision committee in June 2005. Extended scientific
reports are available on the intranet of DirDRI.

The challenges encountered when developing the Boost library made clear how an interval arithmetic
library and the C++ language have to interact. As a consequence, G. Melquiond wrote, in collaboration
with H. Brénnimann (Polytechnic U. Brooklyn, NY USA) and S. Pion (Géométrica team, Sophia Antipolis),

a proposal $0] for integrating interval arithmetic to the C++ standard library which was submitted to the
C++ Standards committee (ISO/IEC JTC1/SC22/WG21). H. Bronnimann and S. Pion participated to the Fall
meeting of the revision committee in 2005.

8.3.2. LinBox Initiative
Keywords: exact arithmeticfinite field generic software librarymatrix computationrational numbeysparse
or structured matrix
Participant: G. Villard.

LinBox is an ongoing collaborative research project for efficient algorithms and a software library in exact
linear algebra (see586 and &.7). About thirty researchers from nine institutions in Canada, the USA and
France are participatinghttp://www.linalg.org

8.3.3. Grant of the Japanese Society for the Promotion of Sciences
Keywords: automatic differentiation

Participant: N. Revol.

N. Revol obtained a grant of the Japanese Society for the Promotion of Sciences for a short stay in Japan,
to collaborate with Prof. K. Kubota, Chuo Univ., Tokyo, on automatic differentiation (postponed due to the
pregnancy of N. Revol).

8.3.4. Certifications of Properties of Floating-Point Arithmetic (CNRS-NASA)
Keywords: Cog, PVS floating-point formal methodinterval arithmetic

Participants: S. Boldo, F. Chaves, M. Daumas, G. Melquiond.

CNRS PICS 2533 on “certifications of properties and uses of floating-point arithmetic” supports our
collaboration with the National Institute of Aerospace in Hampton, Virginia. It also involvesEtue
PolytechniquéG. Dowek) and the University of California at Berkeley (W. Kahan). French funding is matched
on a mission basis by a Research Cooperative Agreement awarded by NASA Langley Research Center to NIA.

Funding started in Fall 2004 with the visit of Professor Kahan (1989 ACM Turing Award) in Arénaire
project. He animated a series of seminal workshops.

http://www.linalg.org

20 Activity Report INRIA 2005

In 2005, this collaboration with NIA participated to a long post-doctoral visit of S. Boldo, and a short visit
of F. Chaves and F. KirchneE¢ole Polytechnigye In the meantime, G. Melquiond worked with colleagues
from University of California at Berkeley and presented a seminar at Intel in Portland.

8.3.5. Collaboration ATIPS—LIP

Keywords: cryptography efficient implementatigmardware arithmetic operatohash function
Participants: J.-L. Beuchat, A. Tisserand, N. Veyrat-Charvillon.

J.-L. Beuchat and A. Tisserand have been invited one month (June 2005) in the ATIPS laboratory, University
of Calgary, Canada, to work on the efficient implementation of arithmetic operators (dedicated modular
arithmetic support in current architecture and FPGA implementations).

R. Glabb (ATIPS) has been invited one month (September 2005) in Lyon and N. Veyrat-Charvillon has
been invited one month (October 2005) in Calgary on the implementation of an efficient multi-mode operator
computing all algorithms of the SHA-2 family of hash functions into a single architecture.

9. Dissemination
9.1. Conferences, Edition

e N. Brisebarre is member of the program committee of RN Conference on Real Numbers and
ComputersNancy, 2006).

e M. Daumas is co-program chair of t2@05 French Symposium on Computer Architec{@gmpA)
held at Croisic.

e M. Daumas is organizing the 2006 French joint conference Renpar, Sympa and CFSE to be held near
Perpignan.

e M. Daumas and J.-M. Muller are members of the steering committee ¢iréimeh Symposium on
Computer Architectur€SympA).

e M. Daumas and J.-M. Muller are members of the steering committee of RR¢@l (Numbers and
Computers.

e M. Daumas and N. Revol are guest editors of a special issdd@bretical Computer Scienan
Real Numbers and Computers, that will appear in 2006.

e J. Detrey and G. Melquiond organized thamurnées Arinewf.yon, France, May 2005).

e C.-P. Jeannerod has been in charge of the tutorials at thel@@0dbational Symposium on Symbolic
and Algebraic ComputatiodSSAC’05) and, with A. Enge (Inria, LIX) and A. Sedoglavic (UST
Lille, LIFL), of the Journées Nationales de Calcul Formel 20@5iminy, November 21-25, 2005).

e J.-M. Muller is member of the steering committee of tREE Symposium on Computer Arithmetic
(ARITH). He has been a member of the program committee of ARITH17.

¢ N. Revol co-organizes the Dagstuhl semiRaliable Implementation of Real Number Algorithms:
Theory and PracticeJanuary 2006.

e A. Tisserand organized the ARCHIO5 winter school@wmputer Architecture

e G. Villard is chair of the steering committee of theternational Symposium on Symbolic and
Algebraic Computation(2003-2006). He was member of the program committe€Computer
Algebra in Scientific Computing006; he is member of the program committeeTadnsgressive
Computing2006.

General public meetings:

e M. Daumas visited a junior school during the 2005 solar eclipse. He interacted with two classes, first
on the black board and later for a safe seeing.

¢ N. Revol visited high-schools in the region of Lyon. She gave an interview for the on-line magazine
L'Internaute(http://www.linternaute.com/femmes/carriere/0501metiers-d-homme/index)shtml

http://www.linternaute.com/femmes/carriere/0501metiers-d-homme/index.shtml

Project-Team Arénaire 21

9.2. Doctoral School Teaching

e N. Brisebarre, C.-P. Jeannerod and G. Villard give a 30h Master course “Algorithms for Computer
Algebra and Applications” dtniversité Claude Bernard - Lyon(2004 / 2005 / 2006).

e M. Daumas gives a 15h Master course at the Université Montpellier 2 with D. Defour “Algorithms
and Architectures of Computer Arithmetic” (2005 / 2006).

e F. de Dinechin gives a 30h ENSL Master course “Hardware Arithmetic Operators” (2004 / 2005,
2005 / 2006).

e C.-P. Jeannerod gives a 30h ENSL Master course “Algorithms for Computer Arithmetic”
(2005 / 2006).

e C.-P. Jeannerod and N. Revol organized a course of the Doctoral School MATHIF, “Applications of
Computer Science to Research and Technological Development”.

e J.-M. Muller gives a 30h ENSL Master course “Floating-point Arithmetic” (2005 / 2006).

e J.-M. Muller gives a 30h Master course “Computer ArithmeticUaiversité Claude Bernard - Lyon
1 (2004 / 2005 / 2006).

e A. Tisserand gives a 30h ENSL Master course “Digital Integrated Circuits” (2004 / 2005).
e G. Villard has been the head of the ENSL Masténfdrmatique Fondamentalentil July 2005.

9.3. Other Teaching and Service

e S. Boldo, N. Boullis, J. Detrey, G. Melq’uiond and N. Veyrat-Charvillon are teaching assis-
tants—moniteurs—they give courses at the ENS and INSA.

e F. de Dinechin teacheSomputer Architecturand Computer Science for Non-Computer Scientists
in Licence andCompilationin Master at ENSL.

e C.-P. Jeannerod has been examiner for the ENS admissions.

9.4. Leadership within Scientific Community

e M. Daumas is a member of the board of the CNRS Nationwide Initiative GDR ARP to become ASR.

e M. Daumas received from CNRS-STIC an incentive grant to promote emerging subjects at the
interface between mathematics and computer science. Participating laboratories were Lirmm, Lix,
Liens, LP2A, Lip, Lip6, Laco, A2X, Loria and Inria Sophia-Antipolis. A call for projects has been
issued and after discussion, the grant was spent to support five projects in 2005-2006.

e J.-M. Muller is head of the Lip laboratory (joint laboratory (UMR) of CNRS, Ecole Normale
Supérieure de Lyon, Inria and Université Claude bernard/Lyon 1 - about 90 persons).

e A. Tisserand installed and maintained the computers and softwares of CAD tools for the Lip
laboratory up to September 2005.

e G. Villard will be the vice-head of the Lip laboratory starting mid-2006.

9.5. Committees

e Hiring CommitteesN. Brisebarre, Math. Comm., U. J. Monnet Saint-Etienne. F. de Dinechin, Comp.
Sc. Comm., ENS Lyon. J.-M. Muller, Comp. Sc. Comm., ENS Lyon. N. Revol, App. Math. Comm.,
UJF Grenoble and Comp. Sc. Comm., ENS Lyon. G. Villard, App. Math. Comm., U. Sc. Tech. Lille
and Comp. Sc. Comm., U. Perpignan.

e G. Villard was in the PhD Advisory Committee aapporteur for the work of S. Graillat (U.
Perpignan, Nov. 2005), and of D. Stehlé (U. Nancy, Dec. 2005).

22

Activity Report INRIA 2005

9.6. Seminars, Conference and Workshop Committees, Invited Conference
Talks

The team members regularly give talks at the Department Seminar and at other French Institutions Seminars,
in 2005: Beuchat (LIRMM, Montpellier); Brisebarre (Univ. Montpellier and Univ. Lille); Melguiond (Ecole
polytechnique and Université de Perpignan); Villard (Inria ALGO Rocquencourt).

National meetings:

J.-L. Beuchat, N. Brisebarre, G. Melquiond, J.-M. Muller gave a talk ajtluenées Arinewd.yon,
France, May 2005.

F. Chaves, J. Detrey, F. de Dinechin, C. Lauter, S.-K. Raina and N. Veyrat-Charvillon gave a talk at
theJournées ArinewsPerpignan, France, November 2005.

G. Villard gave a talk at thé3rd Theoretical Computer Science Spring School, Computational
Complexity Montagnac-les-truffes, France, June 2005.

International:

Both J.-L. Beuchat and J. Detrey gave a talk at the Los Alamos National Laboratory, New Mexico,
USA, November 2005.

N. Brisebarre gave a talk at the Slovak Academy of Sciences.

F. de Dinechin was an invited researcher for three month (Feb-Apr 2005) at the Intel Nizhniy
Novgorod Lab (Russia), where he gave two seminars. He was also invited to give a talk at CERN
(Centre Européen de Recherche Nucléaire) in Geneva, January 2005. He was also invited to give a
talk at the ACAT workshop (Advanced Computing and Analysis Techniques in Physics Research) in
Zeuthen, May 2005.

G. Melquiond gave an invited talk at the Intel Hillsboro Lab, Oregon, U.S.A., June 2005.

N. Revol was an invited speaker at the 76th Annual Meeting of GAMM (Gesellschaft fur Ange-
wandte Mathematik und Mechanik) in Luxemburg, April 2005 (and had to cancel due to pregnancy).

A. Tisserand has an invited tutorial on “Algorithms and Number Systems for Hardware Computer
Arithmetic” at the ISSAC 2005 Conference, Beijing, China, July 2005.

G. Villard has participated to the workshop “Challenges in Linear and Polynomial Algebra in
Symbolic Computation Software”, Banff, Canada, October 2005.

Project-Team Arénaire 23

10. Bibliography
Major publications by the team in recent years

[1] N. BRISEBARRE, J.-M. MULLER, A. TISSERAND. Computing machine-efficient polynomial approximatjons
in "ACM Transactions on Mathematical Software", to appear.

[2] D. DEFOUR, G. HANROT, V. LEFEVRE, J.-M. MULLER, N. REvOL, P. ZMMERMANN . Proposal for a stan-
dardization of mathematical function implementation in floating-point arithmigtitNumerical Algorithms”,
vol. 37, r? 1-4, dec 2004, p. 367-375.

[3] J. DETREY, F. DE DINECHIN. Parameterized floating-point logarithm and exponential functions for FE@As
"Journal of Microprocessors and Microsystems", to appear.

[4] C.-P. EANNEROD, G. VILLARD. Essentially optimal computation of the inverse of generic polynomial
matrices in "Journal of Complexity", vol. 21,%1, 2005, p. 72-86.

[5] E. KALTOFEN, G. VILLARD . On the complexity of computing determinaits"Computational Complexity",
vol. 13, r? 3-4, 2005, p. 91-130.

[6] J.-M. MULLER. Elementary Functions: Algorithms and ImplementatiSacond, Birkhduser, Boston, 2006.

[7] N. RevoL, K. MAKINO, M. BERz. Taylor models and floating-point arithmetic: proof that arithmetic
operations are validated in COS$SYh "Journal of Logic and Algebraic Programming”, vol. 64, 2005, p.
135-154.

[8] N. REvOL, F. RouILLIER. Motivations for an arbitrary precision interval arithmetic and the MPFI libraig
"Reliable Computing", vol. 11,94, 2005, p. 275-290.

[9] A. TISSERAND. Low-Power Arithmetic Operatorsn "Low Power Electronics Design”, C.I®UET (editor). ,
chap. 9, CRC Press, November 2004.

[10] F. DE DINECHIN, A. ERSHOV, N. GAST. Towards the post-ultimate libnm "17th Symposium on Computer
Arithmetic", IEEE Computer Society Press, June 2005.

[11] F. DE DINECHIN, A. TISSERAND. Multipartite table methodsn "IEEE Transactions on Computers”, vol. 54,
n° 3, March 2005, p. 319-330.

Articles in refereed journals and book chapters

[12] B. BECKERMANN, G. LABAHN, G. VILLARD . Normal forms for general polynomial matricds "Journal
of Symbolic Computation”, to appear, 2005.

[13] N. BouLLis, A. TISSERAND. Some Optimizations of Hardware Multiplication by Constant Matridas
"I[EEE Transactions on Computers", vol. 54,10, October 2005, p. 1271-1282.

24 Activity Report INRIA 2005

[14] N. BRISEBARRE, D. DEFOUR, P. KORNERUR J.-M. MULLER, N. REVOL. A new range reduction algorithm
in "IEEE Transactions on Computers", vol. 52,3) 2005, p. 331-339.

[15] N. BRISEBARRE J.-M. MULLER. Correct Rounding of Algebraic Functionén "RAIRO Theoretical
Informatics and Applications”, to appear, 2005.

[16] N. BRISEBARRE, G. PHILIBERT. Effective lower and upper bounds for the Fourier coefficients of powers of
the modular invariang, in "J. Ramanujan Math. Soc.", vol. 2@, 4, 2005, p. 255-282.

[17] A. DARTE, R. SCHREIBER, G. VILLARD. Lattice based memory allocatipin "IEEE Transactions on
Computers", vol. 54,4110, 2005, p. 1242-1257.

[18] J. DETREY, F. DE DINECHIN. Outils pour une comparaison sans a priori entre arithmétique logarithmique et
arithmétique flottantgin "Technique et science informatiques”, to appear, 2005.

[19] P. KORNERUR J.-M. MULLER. Choosing Starting Values for Certain Newton-Raphson Iteration$Theo-
retical Computer Science", 2004.

[20] G. MELQUIOND, S. RON. Formally certified floating-point filters for homogeneous geometric predicates
"Theoretical Informatics and Applications”, to appear, 2006.

[21] J. A. PNEIRO, S. F. BERMAN, J.-M. MULLER, J. D. BRUGUERA. High-Speed Function Approximation
using a Minimax Quadratic Interpolatpm "IEEE Transactions on Computers", 2004.

[22] F.DE DINECHIN, C. Q. LAUTER, J.-M. MULLER. Fast and correctly rounded logarithms in double-precision
in "Theoretical Informatics and Applications", to appear, 2005.

[23] F. DE DINECHIN, G. VILLARD . High precision numerical accuracy in physics reseaioi'Nuclear Inst. and
Methods in Physics Research, A", to appear, 2006.

Publications in Conferences and Workshops

[24] R. BEGUENANE, J.-L. BEUCHAT, J.-M. MULLER, S. SMARD. Modular Multiplication of Large Integers on
FPGA in "39th Asilomar Conference on Signals, Systems & Computers", IEEE Signal Processing Society,
November 2005.

[25] J.-L. BEUCHAT, J.-M. MULLER. Multiplication Algorithms for Radix-2 RN-Codings and Two's Complement
Numbers in "Proceedings of the 16th IEEE International Conference on Application-Specific Systems,
Architectures, and Processors”, SAS8ILIADIS, N. DIMOPOULOS, S. RAJOPADHYE (editors). , IEEE
Computer Society, 2005, p. 303—308.

[26] J.-L. BEUCHAT, J.-M. MULLER. RN-codes : algorithmes d’addition, de multiplication et d’élévation au
carré, in "SympA2005: 10 € m e édition du SYMPosium en Architectures nouvelles de machines”, April
2005, p. 73-84.

Project-Team Arénaire 25

[27] S. BoLbo, G. MELQUIOND. When double rounding is oddh "Proceedings of the 17th IMACS World
Congress on Computational and Applied Mathematics, Paris, France", 2005.

[28] S. BoLDO, J.-M. MULLER. Some Functions Computable with a Fused-niratProc. 17th IEEE Symposium
on Computer Arithmetic (ARITH-17), Cape Cod, USA", POMTUSCHI, E. SCHWARZ (editors). , 2005, p.
52-58 http://arith17.polito.it/program.html

[29] N. BRISEBARRE, J.-M. MULLER. Correctly rounded multiplication by arbitrary precision constarits'Proc.
17th IEEE Symposium on Computer Arithmetic (ARITH-17)", IEEE Computer Society Press, June 2005.

[30] S. CHEVILLARD, N. RevoL. Computation of the error functions erf and erfc in arbitrary precision with
correct rounding in "17th IMACS Conf. on Scientific Computation, Applied Math. and Simulation, Paris,
France", July 2005.

[31] M. DAUMAS, G. MELQUIOND, C. MuRNoz. Guaranteed proofs using interval arithmetio "Proceedings of
the 17th IEEE Symposium on Computer Arithmetic, Cape Cod, Massachusetts, USAGNEUMECH|, E.
SCHWARZ (editors). , 2005, p. 188—-195.

[32] J. DETREY, F. DE DINECHIN. A Parameterizable Floating-Point Logarithm Operator for FPGAs"39th
Asilomar Conference on Signals, Systems & Computers”, IEEE Signal Processing Society, November 2005.

[33] J. DETREY, F. DE DINECHIN. A Parameterized Floating-Point Exponential Function for FPGiks'|IEEE
International Conference on Field-Programmable Technology (FPT'05)", IEEE Computer Society Press,
December 2005.

[34] J. DETREY, F. DE DINECHIN. Table-based polynomials for fast hardware function evaluatieril6th Intl
Conference on Application-specific Systems, Architectures and Processors", IEEE Computer Society Press,
July 2005.

[35] M. D. ERCEGOVAC, J.-M. MULLER, A. TISSERAND. Simple Seed Architectures for Reciprocal and Square
Root Reciprocalin "Proc. 39th Asilomar Conference on Signals, Systems and Computers, Pacific Grove,
California, U.S.A.", October 2005.

[36] C.-P. EANNEROD, S.-K. RaINA, A. TISSERAND. High-Radix Floating-Point Division Algorithms for
Embedded VLIW Integer Processois "Proc. 17th World Congress on Scientific Computation, Applied
Mathematics and Simulation IMACS, Paris, France", July 2005.

[37] P. KORNERUR J.-M. MULLER. RN-coding of numbers: definition and some properiie$Proceedings of the
17th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, Paris", July
2005.

[38] G. MELQUIOND, S. RON. Formal certification of arithmetic filters for geometric predicatas"Proceedings
of the 17th IMACS World Congress on Computational and Applied Mathematics, Paris, France", 2005.

[39] R. MICHARD, A. TISSERAND, N. VEYRAT-CHARVILLON. Divgen: a divider unit generatorin "Proc.
Advanced Signal Processing Algorithms, Architectures and Implementations XV, San Diego, California,
U.S.A", F. T. Luk (editor). , vol. 5910, SPIE, August 2005, 59100M.

http://arith17.polito.it/program.html

26 Activity Report INRIA 2005

[40] R. MICHARD, A. TISSERAND, N. VEYRAT-CHARVILLON. Evaluation de polyndmes et de fractions ra-
tionnelles sur FPGA avec des opérateurs a additions et décalages en grandénbdskeme SYMPosium
en Architectures nouvelles de machines (SYMPA), Le Croisic", April 2005, p. 85-96.

[41] R. MICHARD, A. TISSERAND, N. VEYRAT-CHARVILLON. Small FPGA polynomial approximations with
3-bit coefficients and low-precision estimations of the powets, @f "Proc. 16th International Conference
on Application-specific Systems, Architectures and Processors (ASAP), Samos, Greeca8s8.ADIS,

N. DIMOPOULOS, S. RAJOPADHYE (editors). , Best Paper Award, IEEE Computer Society, July 2005, p.
334-339.

[42] R. MICHARD, A. TISSERAND, N. VEYRAT-CHARVILLON . Etude statistique de I'activité de la fonction de
sélection dans l'algorithme de E-méthode"5iéme journées d'études Faible Tension Faible Consommation
(FTFC), Paris", May 2005, p. 61-65.

[43] J.-M. MULLER, A. TISSERAND, B. DUPONT DEDINECHIN, C. MONAT. Division by Constant for the ST100
DSP Microprocessaqtin "Proc. 17th Symposium on Computer Arithmetic (ARITH), Cape Cod, MA., U.S.A",
P. MoNTuscHI, E. ScHWARZ (editors). , IEEE Computer Society, June 2005, p. 124-130.

[44] N. RevoL. Bounding roundoff errors in Taylor models arithmetio "17th IMACS Conf. on Scientific
Computation, Applied Math. and Simulation, Paris, France", July 2005.

[45] A. STORJOHANN, G. VILLARD . Computing the rank and a small nullspace basis of a polynomial maitrix
"Proc. International Symposium on Symbolic and Algebraic Computation, Beijing, China", ACM Press, July
2005, p. 309-316.

[46] A. TISSERAND. Algorithms and Number Systems for Hardware Computer Arithmati¢international
Symposium on Symbolic and Algebraic Computation (ISSAC), Beijing, China", Invited tutorial, July 2005.

[47] G. VILLARD. Efficient algorithms in linear algebra33rd Theoretical Computer Science Spring School,
Computational Complexity, Montagnac-les-truffes, May 2005.

[48] F. DE DINECHIN, C. Q. LAUTER, G. MELQUIOND. Assisted verification of elementary functions using
Gappa in "Symposium on Applied Computing”, to appear, 2005.

Internal Reports

[49] S. BoLDoO, C. MuNoOz. A formalization of floating-point numbers in PVRchnical report, National Institute
for Aerospace, 2005.

[50] H. BRONNIMANN, G. MELQUIOND, S. RON. A Proposal to add Interval Arithmetic to the C++ Standard Li-
brary, Technical report, h5646, C++ standardization committee, 2008p://www.inria.fr/rrrt/rr-5646.html

[51] C.-P. EANNEROD, G. VILLARD . Asymptotically fast polynomial matrix algorithms for multivariable systems
Research report,°nccsd-00008211, ArXiv ¢s.SC/0505030, Laboratoire de I'lnformatique du Parallélisme,
ENS Lyon, August 2005ttp://hal.ccsd.cnrs.fr/ccsd-00008211

http://www.inria.fr/rrrt/rr-5646.html
http://hal.ccsd.cnrs.fr/ccsd-00008211

Project-Team Arénaire 27

[52] C. Q. LAUTER. Basic building blocks for a triple-double intermediate formggchnical report, hRR2005-
38, LIP, September 2005ftp://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2005/RR2005-38.pdf

[53] C. PERNET, A. RONDEPIERRE G. VILLARD. Computing the Kalman formResearch report,°nccsd-
00009558, ArXiv ¢s.SC/0510014, IMAG, Grenoble, October 200%),//hal.ccsd.cnrs.fr/ccsd-00009558

Bibliography in notes

[54] J.-L. BEUCHAT, N. SENDRIER, A. TISSERAND, G. VILLARD. FPGA Implementation of a Recently
Published Signature SchemiResearch report,°r6158, Institut National de Recherche en Informatique et
en Automatique, March 2004ttp://www.inria.fr/rrrt/rr-5158.html

[55] N. CourTOls, M. FINIASz, N. SENDRIER. How to achieve a McEliece-based Digital Signature Scheme
"Advances in Cryptology — ASIACRYPT 2001", C.d&¥D (editor). , Lecture Notes in Computer Sciencg, n
2248, Springer, 2001, p. 157-174.

[56] D. GoLDBERG. What every computer scientist should know about floating-point arithmietitACM
Computing Surveys", vol. 23,°nl, 1991, p. 5-47http://www.acm.org/pubs/articles/journals/surveys/1991-
23-1/p5-goldberg/p5-goldberg.pdf

[57] O. HERRMANN. Uber die Berechnung der Fourierkoeffizienten der Funkji@n, in "J. Reine Angew. Math.",
vol. 274/275, 1975, p. 187-195.

[58] G. HUET, G. KAHN, C. PAULIN-MOHRING. The Coq Proof Assistant: A Tutorial: Version 6:Technical
Report, § 204, Inria, 1997http://www.inria.fr/rrrt/rt-0204.html

[59] E. KALTOFEN. Challenges of symbolic computation: my favorite open prohlém&s). Symbolic Computa-
tion", vol. 29, P 6, 2000, p. 891-919.

[60] K. MAHLER. On the coefficients of transformation polynomials for the modular funciiotfBull. Austral.
Math. Soc.", vol. 10, 1974, p. 197-218.

[61] P. L. MONTGOMERY. Modular Multiplication without Trial Division in "Mathematics of Computation”, vol.
44, r? 170, April 1985, p. 519-521.

[62] T. OGITA, S. RUMP, S. QsHI. Accurate Sum and Dot Prodydh "SIAM Journal on Scientific Computing
(SISC)", vol. 26, A 6, 2005, p. 1955-1988.

[63] S. OwWRE, J. M. RUsHBY, N. SHANKAR. PVS: a Prototype Verification Systeiin "11th International
Conference on Automated Deduction, Saratoga, New-York", BPWR (editor). , Springer-Verlag, 1992,
p. 748-752http://pvs.csl.sri.com/papers/cade92-pvs/cade92-pvs.ps

[64] J.-P. £RRE. Cours d'arithmétiqueP.U.F., 1970.

[65] J. R. SHEWCHUK. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predjdates
"Discrete and Computational Geometry", vol. 18, 1997, p. 305-363.

http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2005/RR2005-38.pdf
http://hal.ccsd.cnrs.fr/ccsd-00009558
http://www.inria.fr/rrrt/rr-5158.html
http://www.acm.org/pubs/articles/journals/surveys/1991-23-1/p5-goldberg/p5-goldberg.pdf
http://www.acm.org/pubs/articles/journals/surveys/1991-23-1/p5-goldberg/p5-goldberg.pdf
http://www.inria.fr/rrrt/rt-0204.html
http://pvs.csl.sri.com/papers/cade92-pvs/cade92-pvs.ps

