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2. Overall Objectives
2.1. Overall Objectives

Our goal is to develop computer algebra methods and software for solving functional equations,
i.e. equations where the unknowns represent functions rather than numerical values, as well as to foster the
use of such methods in engineering by producing the programs and tools necessary to apply them to industrial
problems. We study in particular linear and nonlinear differential and(q)-difference equations, partial and
ordinary.

3. Scientific Foundations
3.1. Differential ideals and D-modules

Keywords: D-modules, algebraic analysis, control theory, differential algebra, differential elimination, dif-
ferential systems, formal integrability, formal integrability, holonomic systems, involution.

Algorithms based on algebraic theories are developed to investigate the structure of the solution set of
general differential systems. Different algebraic and geometric theories are the sources of our algorithms.

3.1.1. Differential elimination and completion
Formal integrability is the first problem that our algorithms address. The idea is tocompletea system of

partial differential equation so as to be in a position to compute theHilbert differential dimension polynomialor
equivalently, its coefficients, theCartan characters. Those provide an accurate measure of the arbitrariness that
comes in the solution set (how many arbitrary functions of so many variables). Closely related is the problem
of determining theinitial conditionsthat can be freely chosen for having a well-posed problem (i.e. that lead
to existence and uniqueness of solutions). This is possible if we can compute all the differential relations up
to a given order, meaning that we cannot obtain equations of lower order by combining the existing equations
in the system. Such a system is calledformally integrableand numerous algorithms for making systems of
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partial differential equations formally integrable have been developed using different approaches by E. Cartan
[25], C. Riquier [61], M. Janet [44] and D. Spencer [67].

Differential elimination is the second problem that our algorithms deal with. One typically wants to
determine what are the lowest differential equations that vanish on the solution set of a given differential
system. The sense in whichlowesthas to be understood is to be specified. It can first be order-wise, as it is of
use in the formal integrability problem. But one can also wish to find differential equations in a subset of the
variables, allowing the model to be reduced.

The radical differential ideal generated by a set of differential polynomialsS, i.e. the left hand side of
differential equations where the right hand side is zero, is the largest set of differential polynomials that vanish
on the solution set ofS. This is the object that our algorithms manipulate and for which we compute adequate
representations in order to answer the above questions.

In the nonlinear case the best we can hope for is to have information outside of some hypersurface. Actually,
the radical differential differential ideal can be decomposed into components on which the answers to formal
integrability and eliminations are different. For each component thecharacteristic setdelivers the information
about the singular hypersurface together with the quasi-generating set and membership test.

Triangulation-decomposition algorithms perform the task of computing a characteristic set for all the
components of the radical differential ideal generated by a finite set of differential polynomials. References
for those algorithms are the book chapters written by E. Hubert [5], [4]. They are based on the differential
algebra developed by Ritt [62] and Kolchin [46].

The objectives for future research in the branch of triangulation-decomposition is the improvement of the
algorithms, the development of alternative approaches to certain class of differential systems and the study of
the intrinsic complexity of differential systems.

Another problem, specific to the nonlinear case, is the understanding and algorithmic classification of
the different behaviors of interference of the locus of one component on the locus of another. The problem
becomes clear in the specific case of radical differential ideals generated by a single differential polynomial.
One then wishes to understand the behavior of non singular solutions in the vicinity of singular solutions. Only
the case of the first order differential polynomial equations is clear. Singular solutions are either the envelope
or the limit case of the non singular solutions and the classification is algorithmic [62], [43].

3.1.2. Algebraic analysis
When the setS represent linear differential equations, we use the theory ofD-modules (algebraic analysis,

based on algebraic techniques such as module theory and homological algebra) as well as the formal integra-
bility theories mentioned in the previous section (based on geometric techniques such as differential manifolds,
jet spaces, involution and Lie groups of transformations). Using the duality between matrices of differential
operators and differential modules, we can apply techniques that have been developed independently for those
two approaches.

In addition, thanks to the works of B. Malgrange [49], V. Palamodov [58] and M. Kashiwara [45], the the-
ory of D-modules yields new results and information about the algebraic and analytic properties of systems
of linear partial differential equations, their solutions and associated geometric invariants (e.g. characteristic
varieties). The above theories are becoming algorithmic thanks to the recent development of Gröbner bases
[28] and involutive bases in rings of differential operators, enabling the implementation of efficient algorithms
for making systems formally integrable, as well as for computing special closed-form solutions [53], [54].
By using formal adjoints, it is now finally possible to algebraically study systems of linear partial differential
equations, and our objectives in that field are: (i) to develop and implement efficient algorithms for computing
the polynomial and rational solutions of such systems and, further, for factoring and decomposing their asso-
ciatedD-modules; (ii) to study the links between the algebraic and analytic properties of such systems (since
the algorithmic determination of the algebraic properties yields information about the analytic properties); (iii)
to apply the above algorithms to the design and analysis of linear control systems.
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3.2. Groups of transformations
Keywords: Hamiltonian mechanics, closed-form solutions, differential Galois group, differential invariants,
dynamical systems, formal integrability, linear systems of partial differential equations, nonlinear differential
systems, symmetry, variational equations.

3.2.1. Lie groups of transformations
Though not a major subject of expertise, the topic is at the crossroads of the algorithmic themes developed

in the team.
The Lie group, or symmetry group, of a differential system is the (biggest) group of point transformations

leaving the solution set invariant. Besides the group structure, a Lie group has the structure of a differentiable
manifold. This double structure allows to concentrate on studying the tangent space at the origin, the Lie
algebra. The Lie group and the Lie algebra thus capture the geometry of a differential system. This geometric
knowledge is exploited tosolvenonlinear differential systems.

The Lie algebra is described by the solution set of a system of linear partial differential equations, whose
determination is algorithmic. The dimension of the solution space of that linear differential system is the
dimension of the Lie group and can be determined by the tools described in Section3.1. Explicit subalgebras
can be determined thanks to the methods developed within the context of Section3.2.2.

For a given group of transformations on a set of independent and dependent variables there exist invariant
derivations and a finite set of differential invariants that generate all the differential invariants [69]. This forms
an intrinsic frame for expressing any differential system invariant under this group action. This line of ideas
took a pragmatic shape for computation with the general method of M. Fels and P. Olver [34] for computing
the generating set of invariants. The differential algebra they consider has features that go beyond classical
differential algebra. We are engaged in investigating the algebraic and algorithmic aspect of the subject.

3.2.2. Galois groups of linear functional equations
Differential Galois theory, developed first by Picard and Vessiot, then algebraically by Kolchin, associates

a linear algebraic group to a linear ordinary differential equation or system. Many properties of its solutions,
in particular the existence of closed-form solutions, are then equivalent to group-theoretic properties of the
associated Galois group [65]. By developing algorithms that, given a differential equation, test such properties,
Kovacic [47] and Singer [64] have made the existence of closed-form solutions decidable in the case of
equations with polynomial coefficients. Furthermore, a generalization of differential Galois theory to linear
ordinary difference equations [66] has yielded an algorithm for computing their closed-form solutions [40].
Those algorithms are however difficult to apply in practice (except for equations of order two) so many
algorithmic improvements have been published in the past 20 years. Our objectives in this field are to improve
the efficiency of the basic algorithms and to produce complete implementations, as well as to generalize them
and their building blocks to linear partial differential and difference equations.

An exciting application of differential Galois theory to dynamical systems is the Morales-Ramis theory,
which arose as a development of the Kovalevskaya-Painlevé analysis and Ziglin’s integrability theory [72],
[73]. By connecting the existence of first integrals with branching of solutions as functions of complex time to a
property of the differential Galois group of a variational equation, it yields an effective method of proving non-
integrability and detecting possible integrability of dynamical systems. Consider the system of holomorphic
differential equations

ẋ = v(x), t ∈ C, x ∈ M, (1)

defined on a complexn-dimensional manifoldM . If φ(t) is a non-equilibrium solution of (1), then the maximal
analytic continuation ofφ(t) defines a Riemann surfaceΓ with t as a local coordinate. Together with (1) we
consider its variational equations (VEs) restricted toTΓM , i.e.

ξ̇ = T (v)ξ, ξ ∈TΓM.
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We can decrease the order of that system by considering the induced system on the normal bundle
N := TΓM/TΓ of Γ:

η̇ = π✩(T (v)π−1η), η ∈ N

whereπ : TΓM → N is the projection. The system ofs = n− 1 equations obtained in that way yields the
so-called normal variational equations (NVEs). Their monodromy groupM ⊂ GL(s, C) is the image of the
fundamental groupπ1(Γ,t0) of Γ obtained in the process of continuation of the local solutions defined in a
neighborhood oft0 along closed paths with base pointt0. A non-constant rational functionf(z) of s variables
z = (z1, ..., zs) is called an integral (or invariant) of the monodromy group iff(g · z) = f(z) for all g ∈ M.
In his two fundamental papers [72], [73], Ziglin showed that if (1) possesses a meromorphic first integral, then
M has a rational first integral. Ziglin found a necessary condition for the existence of a maximal number of
first integrals (without involutivity property) for analytic Hamiltonian systems, whenn = 2m, in the language
of the monodromy group. Namely, let us assume that there exists a non-resonant elementg ∈ M. If the
Hamiltonian system withm degrees of freedom hasm meromorphic first integralsF1 = H, ..., Fm, which
are functionally independent in a connected neighborhood ofΓ, then any other monodromy matrixg′ ∈ M

transforms eigenvectors ofg to its eigenvectors.
There is a problem however in making that theory algorithmic: the monodromy group is known only

for a few differential equations. To overcome that problem, Morales-Ruiz and Ramis recently generalized
Ziglin’s approach by replacing the monodromy groupM by the differential Galois groupG of the NVEs. They
formulated [51] a new criterion of non-integrability for Hamiltonian systems in terms of the properties of the
connected identity component ofG: if a Hamiltonian system is meromorphically integrable in the Liouville
sense in a neighborhood of the analytic curveΓ, then the identity component of the differential Galois group of
NVEs associated withΓ is Abelian. SinceG always containsM, the Morales-Ramis non-integrability theorem
always yields stronger necessary conditions than the Ziglin criterion.

When applying the Morales-Ramis criterion, our first step is to find a non-equilibrium particular solution,
which often lies on an invariant submanifold. Next, we calculate the corresponding VEs and NVEs. If we
know that our Hamiltonian system possessesk first integrals in involution, then we can consider VEs on
one of their common levels, and the order of NVEs is equal tos = 2(m− k) [22], [23]. In the last step we
have to check if the identity component ofG is Abelian, a task where the tools of algorithmic Galois theory
(such has the Kovacic algorithm) become useful. In practice, we often check only whether that component is
solvable (which is equivalent to check whether the NVEs have Liouvillian solutions), because the system is
not integrable when that component is not solvable.

Our main objectives in that field are: (i) to apply the Morales-Ramis theory to various dynamical systems
occurring in mechanics and astronomy; (ii) to develop algorithms that carry out effectively all the steps of
that theory; (iii) to extend it by making use of non-homogeneous variational equations; (iv) to generalize it
to various non-Hamiltonian systems, e.g. for systems with certain tensor invariants; (v) to formulate theorems
about partial integrability of dynamical systems and about real integrability (for real dynamical systems) in
the framework of the Morales-Ramis theory;

3.3. Mathematical web services
Keywords: Computer algebra, MathML, OpenMath, Web services, communication, deductive databases,
formula databases.

The general theme of this aspect of our work is to develop tools that make it possible to share mathematical
knowledge or algorithms between different software systems running at arbitrary locations on the web.

Most computer algebra systems deal with a lot of non algorithmic knowledge, represented directly in their
source code. Typical examples are the values of particular integrals or sums. A very natural idea is to group
this knowledge into a database. Unfortunately, common database systems are not capable to support the kind
of mathematical manipulations that are needed for an efficient retrieval (doing pattern-matching, taking into
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account commutativity, etc.). The design and implementation of a suitable database raise some interesting
problems at the frontier of computer algebra. We are currently developing a prototype for such a database
that is capable of doing some deductions. Part of our prototype could be applied to the general problem of
searching through mathematical texts, a problem that we plan to address in the near future.

The computer algebra community recognized more than ten years ago that in order to share knowledge such
as the above database on the web, it was first necessary to develop a standard for communicating mathematical
objects (via interprocess communication, e-mail, archiving in databases). We actively participated in the
definition of such a standard, OpenMath (partly in the course of a European project). We were also involved
in the definition of MathML by the World Wide Web Consortium. The availability of these two standards are
the first step needed to develop rich mathematical services and new architectures for computer algebra and
scientific computation in general enabling a transparent and dynamic access to mathematical components.
We are now working towards this goal by experimenting with our mathematical software and emerging
technologies (Web Services) and participating in the further development of OpenMath.

4. Application Domains
4.1. Panorama

We have applied our algorithms and programs for computing differential Galois groups to determine
necessary conditions for integrability in mechanical modeling and astronomy. We also apply our research
on partial linear differential equations to control theory, for example for parameterization and stabilization
of linear control systems. Other applications include biology, where our algorithms for solving recurrence
equations have been applied to the steady-state equations of nonhomogeneous Markov chains modeling the
evolution of microsatellites in genomes.

5. Software
5.1. Maple package diffalg

Keywords: analysis of singular solutions, differential algebra, differential elimination, nonlinear differential
systems, triangulation-decomposition algorithms.

Participant: Evelyne Hubert.

Thediffalg library has been part of the commercial release of Maple since Maple V.5 (with an initial version
of F. Boulier) and has evolved up to Maple 7. The library implements a triangulation-decomposition algorithm
for polynomially nonlinear systems and tools for the analysis of singular solutions.

The recent development include an implementation of triangulation-decomposition algorithms for differen-
tial polynomial rings where derivations satisfy nontrivial commutation rules [10]. This new version also incor-
porates a specific treatment of parameters as well as improved algorithms for higher degree polynomials [42].

5.2. Library OreModules of Mgfun
Keywords: Constructive algebraic analysis, Gröbner bases, Ore algebras, linear systems.

Participants: Frédéric Chyzak, Alban Quadrat [correspondent], Daniel Robertz.

The library OREMODULES of MGFUN is dedicated to the study of over-/under-determined linear systems
over some Ore algebras (e.g., ordinary differential equations, partial differential equations, differential time-
delay equations, discrete equations) and their applications in mathematical physics (e.g., research of potentials,
computations of the field equations and the conservation laws) and in linear control theory (e.g., controlla-
bility, observability, parameterizability, flatness of multidimensional systems with varying coefficients). The

http://www-sop.inria.fr/cafe/Evelyne.Hubert/diffalg
http://algo.inria.fr/libraries
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main novelty of OREMODULES is to use the recent development of the Gröbner bases over some Ore alge-
bras (non-commutative polynomial rings) in order to effectively check some properties of module theory (e.g.,
torsion/torsion-free/reflexive/projective/stably free/free modules) and compute some important tools of homo-
logical algebra (e.g., free resolutions, split exact sequences, duality, extension functor, projective dimension,
Krull dimension, Hilbert power series).

A library of examples (e.g., a two pendulum mounted on a car, time-varying systems, systems of algebraic
equations, a wind tunnel model, a two reflector antenna, an electric transmission line, Einstein equations,
Maxwell equations, linear elasticity, Lie-Poisson structures) has been developed in order to illustrate the main
functions of OREMODULES.

The third release ofOREMODULES will be soon available with new functions, a larger library of examples
and the new package STAFFORD.

5.3. Library libaldor
Keywords: Aldor, arithmetic, data structures, standard.

Participant: Manuel Bronstein.

The LIBALDOR library, under development in the project for several years, became the standard ALDOR

library, bundled with the compiler distribution since 2001.

5.4. Library Algebra
Keywords: commutative algebra, computer algebra, linear algebra, polynomials.

Participants: Manuel Bronstein, Marc Moreno-Maza [University of Western Ontario].

The ALGEBRA library, written in collaboration with Marc Moreno-Maza, is now also bundled with the
ALDOR compiler, starting with version 1.0.2, which has been released in May 2004. It is intended to become
a standard core for computer algebra applications written in ALDOR.

5.5. Library Σit

Keywords: computer algebra, difference equations, differential equations, systems.

Participant: Manuel Bronstein.

TheΣit library contains our algorithms for solving functional equations. The stand-alone solver powers the
the web service athttp://www-sop.inria.fr/cafe/Manuel.Bronstein/sumit/bernina_demo.html.

6. New Results
6.1. Fast algorithms for linear differential and difference equations

Keywords: Linear differential and difference equations, baby step-giant step, binary splitting, complexity,
indefinite and definite summation, polynomial and rational solutions.

Participants: Thomas Cluzeau, Alin Bostan [projet ALGO], Frédéric Chyzak [projet ALGO], Bruno Salvy
[projet ALGO].

The search for rational (and thus polynomial) solutions of linear differential and difference equations lies at
the heart of several important algorithms in computer algebra.
In [16], we investigate the problem of computing polynomial solutions of linear differential equations. Even
for detecting the non-existence of non-zero polynomial solutions of a linear differential equation, there exists
no general algorithm in polynomial complexity. However, high degree polynomial solutions are controlled by
the differential equation. This allows to represent them with a compact data-structure: a linear recurrence and
initial conditions. This compact representation enables us to compute polynomial solutions in quasi-optimal
complexity (that is, optimal complexity modulo logarithm terms) using binary splitting and baby step/giant

http://wwwb.math.rwth-aachen.de/OreModules
http://www-sop.inria.fr/cafe/Manuel.Bronstein/libaldor
http://www-sop.inria.fr/cafe/Manuel.Bronstein/algebra
http://www-sop.inria.fr/cafe/Manuel.Bronstein/sumit
http://www-sop.inria.fr/cafe/Manuel.Bronstein/sumit/bernina_demo.html
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step techniques. The timings of our implementations in Maple and Magma confirm the complexity estimates
in practice.
We then addressed the problem of computing rational solutions. The compact representation of polynomial
solutions of linear differential equations also allows to evaluate, in quasi-optimal complexity, their value and
that of their derivatives at a rational or algebraic point. We can also perform divisions by high powers of a
monomial which leads directly to an algorithm in quasi-optimal complexity to compute rational solutions of
linear differential equations.
We now continue our work by looking at the case of difference equations. The calculation of polynomial
solutions works in the same way except that the coefficients of these polynomials satisfy a linear recurrence
equation in the binomial basis instead of the monomial basis. The generalization of our techniques for
computing rational solutions is a little bit more difficult because of the appearance of a new phenomenon
called the dispersion. However, binary splitting and baby step/giant step techniques together with the compact
representation of the numerator allows us to obtain an algorithm in quasi-optimal complexity. As a direct
consequence, we obtained fast versions of Abramov’s algorithm computing rational solutions of linear
recurrence equations, Gosper’s algorithm for indefinite summation, and Zeilberger’s algorithm for definite
summation.

6.2. Algorithms for solving and factoring linear partial functional systems
Keywords: Linear (partial) functional systems, Picard–Vessiot extensions, decomposition, factorization,
modules over Laurent-Ore algebras, polynomial solutions, rational solutions.

Participants: Manuel Bronstein, Ziming Li, Min Wu.

Linear (partial) functional systems consist of linear partial differential or (q)-difference equations and any
mixture thereof. We continued our work towards developing effective algorithms and programs to solve and
factor linear functional systems with finite-dimensional solution spaces (called fLFS).

Our research involves two basic issues in the study of fLFS: constructing a suitable ring that contains all
solutions of a system, and factoring a system into "subsystems" with lower-dimensional solution spaces.

In order to check in practice whether a linear functional system has finite-dimensional solution space and
to compute its linear dimension, we present two algorithms [7]: one is based on Gröbner basis techniques in
Laurent-Ore algebras and is applicable to general systems; the other is based merely on the Gröbner basis
computation in Ore algebras and linear algebra, and is applicable to the system with finite rank in the Ore
setting.

By introducing the notion of modules of formal solutions, we generalize the notion of Picard-Vessiot
extensions from linear ordinary differential/difference equations [66], [65] to fLFS and prove the existence
of Picard-Vessiot extensions [17]. We also give an algorithmic approach to completing partial solutions of
fLFS, which points out how to solve an fLFS when its factors are known.

We interpret the factorization problem of fLFS using their modules of formal solutions. This is a generaliza-
tion of the cases of linear ODEs [65] and ofD-finite systems of linear PDEs [15]. Based on this interpretation,
we present an algorithm [7] for finding all submodules of a finite-dimensional module over a Laurent-Ore
algebra. This algorithm unifies several known algorithms for factoringD-finite systems of linear PDEs and
for factoring linear ordinary difference equations in a module-theoretic setting.

6.3. Formal solutions of partial differential systems at a singular point
Keywords: Pfaffian systems, normal crossings singularities, regular and irregular singularity.

Participants: Nicolas Le Roux, Moulay Barkatou [Université de Limoges], Evelyne Hubert.

Completely integrable systems are well studied. They are encountered for instance in isomonodromic
deformations or in differential geometry. We consider here completely integrable systems with normal
crossings singularities. These systems can be rewritten locally in the form
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(✩)


∂Y
∂x1

= x
−(p1+1)
1 A1Y

...
∂Y
∂xn

= x
−(pn+1)
n A1Y

TheAi arem×m matrices with entries in the ringC[[x1, ..., xn]] and thepi are non negative integers.Y is a
m× 1 vector of unknowns with coordinates in an extension ofC((x1, ..., xn)).

We investigate algorithms for the computation of formal solutions of completely integrable systems with
normal crossing singularities. We expect to extend the known algorithms for ordinary differential systems.

As in the ordinary case, there are three kinds of singularities at the origin. Singularities of thefirst kindare
those for whichpi = 0 for all i. Every system of the first kind is equivalent, by a transformationY = TZ with
T ∈ GLm(C((x))), to a system where the matrices have constant entries [39], [63]. These constant matrices
are the monodromy of the system. Singularities areregular if the system is equivalent to one of the first kind.
All other singularities are calledirregular. There are algorithms to decide whether a singularity is regular that
is based on a criterion by Deligne [30] and Van Den Essen [32]. Yet this is not constructive as the algorithm
does not produce the transformation.

For singularities of the first kind the solution space can be described in terms of the monodromy matrices.
The description of the solution space at regular singularities is then obtained if we have the transformation that
reduces the system to a system of the first kind. For irregular singularities, Charrière made the first attempt
at describing the solution space in the case where the system only involves two independent variables [26].
She showed that Turritin’s form for linear differential system [71] can be carried to this case. Her proof uses
the lattice approach initiated by Gérard & Levelt [38], [39]. Next the result was extended to the general case
independently by Levelt & Van Den Essen [33] and Charrière & Gérard [27].

Our first goal is to provide an algorithm for reducing the order of the singularity at the origin - that is the
length of(p1, ..., pn) - by linear transformations. Such a reduction process would allow us to decide whether
or not the singularity is regular. We have investigated the possibility to extend Moser’s algorithm [52], [24]
and Levelt’s algorithm [24] that work in the ordinary case. We clarified the relationship between those two
algorithms. The presentation with lattices by Levelt seems easier to extend. We have shown that it can be
extended to the casen = 2. This work is to be submitted to the international conference ISSAC 2006. It is also
implemented in Maple. We have used parts of the implementation of Moser’s algorithm by M. Barkatou [24].

For n > 2, the difficulties we encounter are twofold. First, the systems considered are not invariant under
transformationY = TZ. Secondly, there is no warranty that the lattices are free. The same problem arose in
[33], [27].

6.4. Linear systems over Ore algebras and applications
Keywords: (over-/under-determined) linear systems, Algebraic analysis, Gröbner bases for non-commutative
polynomial rings, Ore algebras, multidimensional systems.

Participants: Alban Quadrat, Daniel Robertz.

In [8], we study the structural properties of linear systems over Ore algebras (e.g., ordinary differen-
tial equations, differential time-delay equations, partial differential equations, difference equations). Us-
ing the recent development of Gröbner bases over some Ore algebras (i.e., non-commutative polynomial
rings), we show how to make some important concepts of homological algebra (e.g., free resolutions, split
exact sequences, duality, extension functor, projective dimension, Krull dimension, Hilbert power series)
constructive. Using these results, we obtain constructive algorithms which check the structural properties
of under-determined linear systems over Ore algebras described within a module-theoretic language (e.g.
torsion/torsion-free/reflexive/projective/stably free/free modules). In particular, we explain how these proper-
ties are related to the existence of successive parameterizations of all the solutions of a system. Moreover,
we show how these properties generalize the well-known concepts of primeness developed in the literature of
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multidimensional systems for systems with constant coefficients. Then, using a dictionary between the struc-
tural properties of under-determined linear systems over Ore algebras and some concepts of control theory,
we show that the previous algorithms allow us to effectively check whether or not a linear control system over
certain Ore algebras is (weakly, strongly) controllable, observable, parameterizable, flat,π-free... We note
that the problem of parameterizing all the solutions of controllable multidimensional linear systems has been
extensively studied by the school of M. Fliess in France [35], [36] and J. C. Willems [59] in the Netherlands.
Hence, our results allow us to constructively answer that problem for a large class of multidimensional systems
considered in the literature.

The different algorithms obtained in [8] have been implemented by D. Robertz and A. Quadrat in the second
release of the library OREMODULES(5.2). The main advantage of the language of homological algebra used in
[8] carries over the implementations in OREMODULES: up to the choice of the domain of functional operators
which occurs in a given system, all algorithms are stated and implemented in sufficient generality such that
linear systems defined over the Ore algebras developed in the Maple package ofOre−algebraare covered
at the same time. This approach is explained in [9] and illustrated on different systems (e.g., a linearized
pendulum, a time-varying differential algebraic system, a two reflector antenna and a vibrating string with an
interior mass).

The purpose of [20] is to study the so-calledMonge problemfor linear systems over some classes of Ore
algebras. This problem was first studied by J. Hadamard and E. Goursat for systems of partial differential
equations in the period 1900-1930. Using the algebraic analysis approach developed in [8], we derive a
necessary and sufficient condition so that we can find aMonge parametrizationof all the solutions of an
underdetermined linear system over an Ore algebra obtained by gluing the autonomous elements of the
system to the parameterizable subsystem. The autonomous elements and the parameterizable subsystem can
be computed by means of the algorithms developed in [8]. We point out that a Monge parametrization is more
general than the parameterizations used in [8] as it depends on arbitrary functions of a certain number of the
independent variables whereas we only consider parameterizations depending on all the independent variables
in [8]. Effective algorithms checking the given condition are obtained and implemented in OREMODULES.
These results are in particular useful if we want to parametrize the solutions of the Saint Venant equations or
some linear systems of partial differential equations appearing in the theory of elasticity.

It is well-know that an analytic time-varying controllable ordinary differential system isflat outside some
singularities [50]. In [19], we prove that every analytic time-varying controllable linear system is a projection
of a flat system. We give an explicit description of the flat system which projects onto a given controllable one.
This phenomenon is similar to a classical one largely studied in algebraic geometry and called theblowing-up
of a singularity. These results simplify the ones obtained in [50] and generalize them to multidimensional
linear systems over an Ore algebra. Finally, we prove that every controllable multi-input ordinary differential
linear system with polynomial coefficients is flat, answering a question asked by K. B. Datta.

A well-known and difficult result due to J. T. Stafford asserts that a stably free left moduleM over the
Weyl algebrasD = An(k) or Bn(k) of differential operators with polynomial/rational coefficients− where
k is a field of characteristic 0− with rankD(M) ≥ 2 is free. The purpose of [14] is to present a constructive
proof of this result as well as an effective algorithm for the computation of bases ofM . This algorithm, based
on the new constructive proofs [41], [48] of J. T. Stafford’s result on the number of generators of left ideals
over D, performs Gaussian eliminations on the columns of the formal adjoint of the presentation matrix of
M . Moreover, we show that J. T. Stafford’s result is a particular case of a more general one asserting that
a stably free leftD-moduleM with rankD(M) ≥ sr(R) is free, wheresr(R) denotes the stable range of
a ring D. This result is constructive if the stability of unimodular vectors with entries inD can be tested.
Finally, an algorithm which computes the left projective dimension of a general leftD-moduleM defined
by means of a finite free resolution is presented. In particular, it allows us to check constructively whether or
not the leftD-moduleM is stably free. All these algorithms have recently been implemented in the package
STAFFORD based on OREMODULES. Hence, we can now effectively compute the two generators of any left
ideal overD and a basis of any free leftD-module. These results can be used in order to recognize whether
or not a linear system of ordinary/partial differential equations with polynomial/rational coefficients admits
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an injective parametrization. This last result is in particular interesting in the theory of flat systems [35], [36],
[50].

6.5. Algebraic analysis approach to infinite-dimensional linear systems
Keywords: Systems of partial differential equations or differential time-delay equations, analysis and synthe-
sis problems, internal/strong/simultaneous/robust/optimal stabilization, module theory.

Participant: Alban Quadrat.

For single-input single output (SISO) linear systems, we show in [12] that a module-theoretic duality exists
between the operator-theoretic approach to analysis and synthesis problems developed in the literature of
infinite-dimensional systems (see [29] and the references therein) and the fractional ideal approach recently
developed in [60]. In particular, this new duality helps us to understand how the algebraic properties of systems
are reflected by the operator-theoretic approach and conversely. In terms of modules, we characterize the
domain and the graph of an internally stabilizable plant or that of a plant which admits a (weakly) coprime
factorization. Moreover, we prove that internal stabilizability implies that the graph of the plant and the one
of a stabilizing controller are the two direct summands of the global signal space. These results generalize
those obtained in the literature. Finally, we exhibit a class of signal spaces over which internal stabilizability
is equivalent to the existence of a bounded inverse for the linear operator mapping the errorse1 ande2 of the
closed-loop system to the inputsu1 andu2.

The purpose of the paper [11] is to develop a lattice approach to analysis and synthesis problems. This
new mathematical framework allows us to give simple and tractable necessary and sufficient conditions for
internal stabilizability and for the existence of (weakly) left-/right-/doubly coprime factorizations of multi-
input multi-output (MIMO) (infinite-dimensional/multidimensional) linear systems. These results extend the
ones recently obtained in [60] for SISO systems. In particular, we prove that every internally stabilizable
multidimensional system in the sense of the structural stability admits doubly coprime factorizations, solving
the Lin’s well-known conjecture in the literature of multidimensional systems.

Within the lattice approach to analysis and synthesis problems developed in [11], we obtain in [13] a
general parametrization of all stabilizing controllers for internally stabilizable MIMO plants which do not
necessarily admit doubly coprime factorizations. This parametrization is a linear fractional transformation
of free parameters and the set of arbitrary parameters is characterized. This parametrization generalizes for
MIMO plants the parametrization recently obtained in [60] for SISO plants. In particular, if the plant admits
a doubly coprime factorization, we then prove that this general parametrization becomes the classicalYoula-
Kučera parameterizationof all stabilizing controllers. Finally, we show that this parameterization also allows
us to rewrite the standard problem of finding the robust stabilizing controllers as affine, and thus, convex
problems. A self-contained proof of the existence of this general parametrization all stabilizing controllers is
also presented in the congress paper [18].

6.6. Jacobson and Hermit forms: Implementations and applications
Participants: Grégory Culianez [INSA de Toulouse], Alban Quadrat.

The purpose of this internship was to implement the Hermite and Jacobson forms over some classes of
non-commutative euclidean domains (e.g.,Q(t)

[
d
dt

]
, Q(n)[σ], Q(x, y)[∂x]) in the library OREMODULES.

Indeed, the Hermite and Smith forms only exist in Maple for some classes of commutative euclidean do-
mains. This implementation will be added to the next release of OREMODULES. Finally, applications of
these canonical forms for the study of general time-varying linear systems of ordinary differential equa-
tions and shift-variant linear systems of univariate discrete equations, as well as, in control theory (e.g., con-
trollability, observability, parameterizable) are demonstrated in G. Culianez’s final report available at www-
sop.inria.fr/cafe/Alban.Quadrat/stages.html.

6.7. Implementation of the Quillen-Suslin theorem in OreModules
Participants: Job Evers [MIT], Alban Quadrat.
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In 1955, a famous conjecture due to Serre asserted that if we take a row vectorv with coefficients in a
commutative polynomial ringA = k[x1, ..., xn] (k is a field) which admits a right-inverse overA, thenv
can be embedded into a square unimodular matrix, namely, a matrix with a non-zero constant determinant.
This conjecture was proved independently by Quillen and Suslin in 1976 and is nowadays called the Quillen-
Suslin theorem. In terms of module theory, Serre’s conjecture means that a projectiveA-module is free and
the computation of the unimodular matrix then gives an explicit basis for this module. Constructive proofs of
the Quillen-Suslin theorem have been largely studied in the literature of constructive algebra. The purpose of
this internship was to start implementing in OREMODULES the difficult computations of bases for projective
A-modules. This project was mainly achieved in time and the missing part of the algorithm has recently been
completed by A. Fiabanska (University of Aachen, Germany) in the framework of her PhD thesis partially
supervised by A. Quadrat. A package called QUILLEN -SUSLIN will be soon added to OREMODULES. The
Quillen-Suslin theorem has many applications in mathematical systems theory and, in particular, it shows a
way for the computation of flat outputs of flat shift-invariant multidimensional linear systems such as time-
invariant differential time-delay control systems. Hence, the present works gives the first implementation for
the computation of flat outputs of flat shift-invariant multidimensional linear systems. Applications of such
a class of systems were largely demonstrated in the literature of control theory and, in particular, for the
motion planning and tracking problems (e.g., see the library of examples of OREMODULES). Finally, these
constructive results have recently allowed A. Fabianska and A. Quadrat to show that every flat shift-invariant
multidimensional linear system is equivalent to a controllable 1-D linear system obtained by setting to 0 all but
one functional operators in the system matrix. Moreover, it was proved that a flat differential time-delay linear
system is equivalent to the controllable ordinary differential linear system without delays, i.e., the system
obtained by setting the time-delay amplitude to 0. The implementation of the Quillen-Suslin theorem gives a
constructive way to get the precise invertible transforms between these systems. Applications of these results
in the study of stabilization problems will be shown in forthcoming publications.

6.8. Algebraic construction and structure of differential invariants
Participants: Evelyne Hubert, Irina Kogan [North Carolina State University].

The theory of differential invariants [56] and algebraic invariants [70] seem to have developed indepen-
dently. Motivated by a wealth of applications [31], [37], [55], [57] both have become in recent years the
subject of computational mathematics [31], [34], [68] yet remained separate topics. Differential invariants are
intimately linked with physics, and more generally the study of differential systems, while an algebraic theory
provides the proper ground to symbolic algorithms.

Inspired by the geometric construction of [34], we provided a new and simple algorithm to compute a
generating set of rational invariants of a rational action [21]. The generating invariants come together with an
algorithm to rewrite any rational invariant in terms of them. They appear as the coefficients of the Gröbner
basis of the ideal of the graph of the action or only a section of it. This simple algorithm, based on algebraic
elimination, is easily implemented and can take advantage of the efficient symbolic software developed for
algebraic geometry. It opens up computational projects in order to address long standing challenges, for
instance in classical invariant theory.

The second variant of the above construction relies on the choice of across-sectionto the orbits, i.e. an
irreducible algebraic variety that is generically transverse to the orbits. A generic linear affine space of the
appropriate dimension can take up this role. We show that the field of rational functions on the cross-section
to the orbits is an algebraic extension of the field of rational invariants. We describe this extension by a prime
zero dimensional ideal over the field of rational invariants of which we can compute a set of generators. This is
thus a constructive version of results in [70]. On the other hand, we establish the bridge between this algebraic
vision and the moving frame method of [34] in differential geometry, enhancing thereby this latter with a fully
algorithmic construction circumventing the use of the implicit function theorem.

Thereplacement invariantswe introduce as the zeros of the prime zero dimensional ideal are the algebraic
analogues of Cartan’snormalized invariants. Rewriting any rational invariant in terms of a replacement
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invariant is a trivial substitution. We thus have a new class of algebraic invariants having the structure and
properties that could be exploited from a computational point of view. Seeing invariants as functions on
the cross-section also provides the basis for our investigation of the structure of differential invariants as a
differential ring. Other questions in algebraic geometry and of practical interest are raised by this construction.

7. Other Grants and Activities
7.1. National initiatives

A. Quadrat is a member of the working group “Systèmes à Retards” of theGdR Automatique.

7.2. European initiatives
7.2.1. ECO-NET Program

TheECO-NETprogram, grant number 08119TG, was extended to 2005. This is for a collaboration between
Prof. S.A. Abramov (Moscow), Prof. M. Petkovšek (Ljubljana), and M. Bronstein (CAFE). His program is now
continued with A. Quadrat.

7.2.2. PAI Amadeus
A collaboration with RISC (Research Institute in Symbolic Computation) in Hagenberg, Austria was funded

by the PAI program AMADEUS. The coordinators are Ralf Hemmecke for the Austrian side and Evelyne
Hubert replaced Manuel Bronstein in June for the French side. One objective of the collaboration is to develop
and implement a very generic and efficient engine to compute Gröbner basis with ideals and modules over
rings of linear operators, such as Ore algebras or Poincare-Birkhoff-de Witt algebras

7.3. Other international initiatives
7.3.1. Actions of the European and International Affairs Department

The projectA-Lie-Gorithmto collaborate with P. Olver, University of Minneapolis, on algebraic algorithms
for determining the structure of Lie pseudo-groups, was accepted for funding after theMini-call "USA, Scan-
dinavian countries, Taiwan"http://www-direction.inria.fr/international/PROGRAMMES/miniappel.eng.html.

7.3.2. China
Following the termination of our PRA with Z. Li (Academia Sinica), our collaboration continues with the

co-direction of the thesis of Min Wu, who is alternating 6-month stays in our project and in Beijing.

7.4. International networks and working groups
Stéphane Dalmas is a member of the Math Interest Group of the World Wide Web Consortium. This

group is responsible for maintaining existing documents related to MathML, working with other W3C groups
and provide general support on MathML and mathematics on the Web. Stéphane Dalmas was a member
of the W3C Math Working Group, the group responsible for defining MathML, an XML application for
describing mathematical notation and capturing both its structure and content. The goal of MathML is to
enable mathematics to be served, received, and processed on the World Wide Web, just as HTML has enabled
this functionality for text.

7.5. Visiting scientists
7.5.1. France

Jacques-Arthur Weil, University of Limoges, visited February 1-4th, and September 11-15th 2005 for
collaboration with team members.

http://www.egide.asso.fr/fr/programmes/econet/
http://www-sop.inria.fr/cafe/Evelyne.Hubert/ALieGorithm.html
http://www-direction.inria.fr/international/PROGRAMMES/miniappel.eng.html
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Marc Rybowicz , University of Limoges, visited from May 30th to June 10th, 2005 to collaborate with M.
Bronstein on integration.

J.-F. Pommaret, Ecole Nationale des Ponts et Chaussées (CERMICS), has been invited for a week for a
series of lectures entitled “An introduction to the Galois theory for partial differential equations” (October
3-7th, 2005) and for a collaboration with A. Quadrat.

M. Barakatou and N. Le Roux, University of Limoges, visited October 24-28th, 2005 for collaboration with
E. Hubert.

7.5.2. Europe
D. Robertz, University of Aachen, visited A. Quadrat from March 1st to April 8th. They have collaborated

on theirOREMODULES projectin the framework of D. Robertz’s PhD thesis.
Ralf Hemmecke (RISC Linz, Austria) visited our project for one week in October in order to collaborate on

the design of theLIBALDOR and ALGEBRA libraries (see5.3) to include non-commutative polynomials. The
visit is funded by the PAI Amadeus (section7.2).

7.5.3. Outside Europe
Rouchdi Bahloul, Kobe University, visited January 4-5th, 2005.
Peter Olver, University of Minneapolis, visited June 20-29, 2005, for collaboration with E. Hubert on the

A-Lie-Gorithm(see7.3).

8. Dissemination
8.1. Leadership within scientific community

• M. Bronstein was a member of the editorial boards for theJournal of Symbolic Computationand for
theAlgorithms and Computation in MathematicsSpringer monograph series.

• M. Bronstein was vice-chair of theSIGSAMspecial interest group of ACM.

• Evelyne Hubert is member of the council of the associationfemmes & mathématiques. As such she
participates to the monthly meetings of the council to propose, discuss and undertake the actions of
the association. Those aim at promoting scientific education and careers for women.

• Evelyne Hubert is the founding chair of theSéminaires Croisés. Theséminaires croisésis a unique
initiative of global scientific animation within the site of INRIA Sophia Antipolis. It is now organized
by the service REV.

• Evelyne Hubert is a member of theCOLORScommittee chaired by Rose Dieng.

8.2. Teaching

• Evelyne Hubert taught a course of practical computer algebra inMaster in Numerical Mechanics
(March 2005) and inISIA (April 2005) both being affiliated to theEcole des Mines de Paris.

• Evelyne Hubert taught computer science and computer algebra in theclasses préparatoires scien-
tifiquesat the Centre International de Valbonne.

• Evelyne Hubert was invited to present a tutorial course at the International Symposium of Symbolic
and Algebraic Computation (Beijing, China, July 2005).

http://wwwb.math.rwth-aachen.de/OreModules/
http://www.math.umn.edu/~olver
http://www-sop.inria.fr/cafe/Evelyne.Hubert/ALieGorithm.html
http://www.acm.org/sigsam/
http://www.femmes-et-maths.fr.fm
http://www-sop.inria.fr/manifestations/seminaires/index_en.shtml
http://www-sop.inria.fr/maestro/personnel/Ephie.Deriche/COLOR/
http://www.cma.fr/formations/mecanum.html
http://www-isia.cma.fr
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8.3. Dissertations and internships
Doctorates completed in 2004:

1. Min Wu, University of Nice and Chinese Academy of Sciences:On Solutions of Linear Functional
Systems and Factorization of Modules over Laurent-Ore Algebras. Co-directed by Manuel Bronstein
(CAFE) and Ziming Li (Chinese Academy of Sciences).

Doctorates in progress in the project:

1. Nicolas Le Roux, University of Limoges:Local study of systems of partial differential equations.
Co-directed by Moulay Barkatou (University of Limoges) and Evelyne Hubert.

2. Daniel Robertz is partially supervised by A. Quadrat in the framework with his PhD thesis at the
University of Aachen (Germany) with Prof. W Plesken.

3. Anna Fabianska is partially supervised by A. Quadrat in the framework with her PhD thesis at the
University of Aachen (Germany) with Prof. W Plesken.

Internships completed in 2005:

1. Job Evers, Internship from MIT:Implementation of the Quillen-Suslin theorem inOREMODULES,
supervised by Alban Quadrat (June-August 2005)

2. Grégory Culianez, Internship from ENSTA:Hermit and Jacobson forms: Implementation and
applications, supervised by Alban Quadrat (June-July 2005)

8.4. Conferences and workshops, invited conferences
M. Bronsteinwas invited to give a colloquium talk at RISC, Austria.

E. Hubertparticipated and gave submitted talks at theMEGA conferencein Sardinia and theJournees
National de Calcul Formelin Luminy. She presented a poster at theISSACconference which received the best
poster award. She was invited to participate and give talks in the Symbolic Analysis workshop of theFoCM
conference in Spain and the workshopChallenges in Linear and Polynomial Algebra in Symbolic Computation
Softwareheld in Alberta, Canada.

E. Hubertwas invited to visit University of Kent (UK, March 20-27th, 2005) by E. Mansfield. She visited
P. Olver at theUniversity of Minneapolis(Minnesota) in the frame of the collaborationA-Lie-Gorithm (see
7.3). At this occasion she was invited to present her work on algebraic invariants at the Algebraic Geometry
seminar at the School of Mathematics.

A. Quadratpresented his recent work at the16th IFAC World Congress(2 papers) in Prague (Czech
Republic) and a join paper will be presented by D. Robertz at the44th IEEE Conference on Decision and
Control and European Control Conference CDC-ECC 2005in Seville (Spain). Moreover, A. Quadrat will give
a talk at theJournées Nationales de Calcul Formelin Luminy (France) as well as one talk at theResearch
Institute for Symbolic Computation(RISC-Linz, Austria) while visiting R. Hemmecke in December (PAI
Amadeus).

A. Quadratwas invited to expose his work at the workshopMathematics, Algorithms, Proofs(Dagstuhl,
Germany), at theSéminaire de Calcul Formel de l’IRMAR(Rennes, France), at the NETCA Workshop
Verification and Theorem Proving for Continuous Systems(Oxford, United Kingdom) and at the colloquium
Graduiertenkolleg Hierarchie und Symmetrie in mathematischen Modellenof the University of Aachen
(Germany). Finally, he will be invited to give two talks at theKolloquium Mathematikof the University
of Innsbruck (Austria) in December.

http://mega.dm.unipi.it
http://www.lifl.fr/~sedoglav/JNCF2005/presentation.html
http://www.lifl.fr/~sedoglav/JNCF2005/presentation.html
 http://www.mmrc.iss.ac.cn/~issac2005
http://www.damtp.cam.ac.uk/user/na/FoCM/FoCM05
http://www.pims.math.ca/birs/workshops/2005/05w5039
http://www.pims.math.ca/birs/workshops/2005/05w5039
http://www.math.umn.edu/
http://www-sop.inria.fr/cafe/Evelyne.Hubert/ALieGorithm.html
http://www.ifac.cz/
http://www.esi2.us.es/~cdcecc05/
http://www.esi2.us.es/~cdcecc05/
http://www.lifl.fr/~sedoglav/JNCF2005/presentation.html
http://www.risc.uni-linz.ac.at/
http://www.risc.uni-linz.ac.at/
http://www.dagstuhl.de/05021/
http://www.math.univ-rennes1.fr/geomreel/index.html.en.html
http://www.dcs.qmul.ac.uk/~pbo/NETCA-workshop.html
http://wwwb.math.rwth-aachen.de/index_en.html
http://www2.uibk.ac.at/mathematik/aktuelles/kolloquium.html
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A. Quadratwas finally invited to present the contributions of C. Méray in the theory of systems of partial
differential equations at theColloque en hommage à Charles Méray, Mathématicien et Vigneron Chalonnais
(1835-1911)in Chalon Sur Saône (France).

M. Wu gave a talk at University of Limoges (January 2005). She presented her work at RISC, Austria
(Februrary 2005). She took part in theEcole Jeunes Chercheurs en Algorithmique et Calcul Formel 2005in
Montpellier (April 4-8th). She gave a contributed talk on the joint work with Manuel Bronstein and Ziming Li
at theISSAC’2005conference. She defended her PhD thesis in Beijing on July 28th, 2005.

T. Cluzeauwas invited by theALGORITHMS projectof the INRIA to collaborate with A. Bostan, F. Chyzak
and B. Salvy in october and november 2005. He gave a talk at theJournées Nationales de Calcul Formelin
Luminy (France). T. Cluzeau joined the ECO-NET meeting (section7.2) in Ljubljana (Slovenia) in december
2005. The object of this meeting is to work with S. Abramov and M. Petkovšek on the subject: computer
algebra andq-hypergeometric terms.
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