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2. Overall Objectives
2.1. Overall Objectives

CORIDA is a team labelled by INRIA, by CNRS and by University Henri Poincaré, via the Institut Elie
Cartan of Nancy (UMR 7502 CNRS-INRIA-UHP). The main focus of our research is the robust control of
systems governed by partial differential equations (calledPDE’s in the sequel). A special attention is devoted
to systems with a hybrid dynamics such as the fluid-structure interactions. The equations modelling these
systems couple either partial differential equations of different types or finite dimensional systems and infinite
dimensional systems. We mainly consider inputs acting on the boundary or which are localized in a subset of
the domain.

3IECN
1École Supérieure des Sciences et Technologies de l’Ingénieur de Nancy
2Ecole Supérieure d’Informatique et Applications de Lorraine
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Infinite dimensional systems theory is motivated by the fact that a large number of mathematical models
in applied sciences are given by evolution partial differential equations. Typical examples are the transport,
heat or wave equations, which are used as mathematical models in a large number of problems in physics,
chemistry, biology or finance. In all these cases the corresponding state space is infinite dimensional. The
understanding of these systems from the point of view of control theory is an important scientific issue which
received a considerable attention during the last decades. Let us mention here that a basic question like the
study of the controllability of infinite dimensional linear systems requires sophisticated techniques such as non
harmonic analysis (cf. Russsell [51]), multiplier methods (cf. Lions [43]) or micro-local analysis techniques
(cf. Bardos-Lebeau-Rauch [34]). Like in the case of finite dimensional systems, the study of controllability
should be only the starting point of the study of important and more practical issues like feedback optimal
control or robust control. It turns out that most of these questions are open in the case of infinite dimensional
systems. Consequently, our aim is to develop tools for the robust control of infinite dimensional systems. More
precisely, given an infinite dimensional system one should be able to answer two basic questions:

1. The existence of a feedback operator with robustness properties;

2. Find an algorithm allowing the approximate computation of this feedback operator

The answer to question 1 above requires the study of infinite dimensional Riccati operators and it is a
difficult theoretical question. The answer to question 2 depends on the sense of the word "approximate". In our
meaning "approximate" means "convergence", i.e., that we look approximate feedback operators converging
to the exact one when the discretization step tends to zero. From the practical point of view this means that
our control laws should give good results if we use a large number of state variables. This fact is no longer a
practical limitation of such an approach, at least in some important applications where powerfull computers
are now available. We intend to develop a methodology applicable to a large class of applications. Let us
mention here only two of them, which received a considerable attention during the last year.

1. Acoustics and aero-acoustics.We consider two types of applications :

– Noise reduction by using active control (in a bounded region such as a plane cockpit) or
by using absorbing materials (in open regions around highways, airports or railways).

– Times reversal techniques for acoustic focusing in medical imaging, non destructive testing
or sub-marine communication.

2. The control of VLT’s (Very Large Telescopes).The operation of the current telescopes is based
on the reception of infra-red waves. The reception is inevitably disturbed by the atmosphere, from
where a correction of the wavefront is needed. Currently this correction is carried out by a mirror,
whose diameter is approximately 20 cm, provided by a thousand of piezoelectric actuators. The
future telescopes will be characterized by diameters much larger and the fact that the spectrum of
the analyzed wavefront lies in the visible field. It is estimated that to correct the image with the same
quality, the density of the actuators will have to be a hundred higher and that it will be necessary to
replace the piezoelectric actuators by actuators resulting from micro-technology. It is thus a question
of developing tools to model and to control the mirrors, allowing this change of scale.
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3. Scientific Foundations
3.1. Analysis and control of fluids and of fluid-structure interactions

Keywords: Analysis and control of fluids and fluid-structure interactions, Korteweg de Vries equations,
Navier-Stokes equations, motion of solids in viscous fluids.

The problems we consider are modeled by the Navier-Stokes, Euler or Korteweg de Vries equations (for the
fluid) coupled to the equations governing the motion of the solids. One of the main difficulties of this problem
comes from the fact that the domain occupied by the fluid is one of the unknowns of the problem. We have
thus to tackle afree boundary problem.

The control of fluid flows is a major challenge in many applications: aeronautics, pollution issues, regulation
of irrigation channels or of the flow in pipelines,· · ·. All these problems cannot be easily reduced to finite
dimensional models so a methodolology of analysis and control based on PDE’s is an essential issue. In a
first approximation the motion of fluid and of the solids can be decoupled. The most used models for an
incompressible fluid are given by the Navier-Stokes or by the Euler’s equations.

The optimal open loop control approach of these models has been developed from both the theoretical
and numerical points of view. Controllability issues for the equations modeling the fluid motion are by now
well understood (see, for instance, [41] and the references therein). The feedback control of fluid motion has
also been recently investigated by several research teams (see, for instance [33] and references therein) but
this field still contains an important number of open problems (in particular those concerning observers and
implementation issues). One of our aims is to develop efficient tools for computing feedback laws for the
control of fluid systems.

In real applications the fluid is often surrounded by or it surrounds an elastic structure. In the above situation
one has to study fluid-structure interactions. This subject has been intensively studied during the last years, in
particular for its applications in noise reduction problems, in lubrication issues or in aeronautics. In this type
of problems, aPDE’s system modelling the fluid in a cavity (Laplace equation, wave equation, Stokes, Navier-
Stokes or Euler systems) is coupled to the equations modelling the motion of a part of the boundary. The
difficulties of this problem are due to several reasons such as the strong nonlinear coupling and the existence
of a free boundary. This partially explains the fact that applied mathematicians have only recently tackled
these problems from either the numerical or theoretical point of view. One of the main results obtained in our
project concerns the global existence of solutions in the case of a two-dimensional Navier-Stokes fluid (see
[5]). On the other hand, it seems that the corresponding problem for a perfect fluid (modelled by the Euler
equation) has not yet been investigated.

The numerical methods used for computing the solutions of fluid or fluid structure problems in a direct
setting (i.e., with given inputs) considerably progressed during the last years. For the corresponding control
problems the literature contains only a small number of effective methods. Our first results in this direction
concern a model arising in hydraulics (the linearized Saint-Venant equations).

Another topic of great interest is the control of the interface of two fluids (typically water and air) by using
as input the velocity of a moving wall which is a part of the boundary. One of the most popular models for this
problem is given by the shallow water equations (Saint Venant equations) which neglect the dispersive effects.
The controllability of several important systems governed by this type of equations has received a considerable
attention during the last decade. Let us mention here the important work by Coron [35]. If dispersive effects
are considered the relevant model is given by the Korteweg de Vries equation. The first work on the control
of this equation goes back to Russell and Zhang (see [52]). An important advance in the study of this problem
has been achieved in the work [4] where, for the first time, the influence of the length of the channel has been
precisely investigated.

3.2. Well–posed linear systems and weak coupling
Keywords: boundary control, coupling mechanism, linear evolution equations, stabilization.
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We consider well posed systems coupling two typesPDE’s or coupling PDE’s and ordinary differential
equations. The methods we use combine energy estimates, multipliers techniques and spectral analysis.

Well–posed linear systems form an important class of infinite dimensional systems which has been
introduced by Salamon in [53]. Roughly speaking awell–posed linear systemis a linear time-invariant system
such that on any finite time interval, the operator from the initial state and the input function to the final state
and the output function is bounded. An important subclass of well–posed linear systems is formed by the
conservative systemswhich satisfy an energy-balance equation. More precisely, in a conservative system, the
energy stored in the system at timeτ plus the outgoing power equals the sum of the initial energy stored in the
system and of the incoming power. It turns out that a large number of systems governed by partial differential
equations are of this type. Moreover, conservative systems have remarkable properties like the fact that their
exact controllability is equivalent to their stability. Therefore a systematic functional analytic approach to this
system seems important for the infinite dimensional systems community.

We are in particular interested in problems in which two types ofPDE’s interact such as: a plate equation
and a wave equation, a wave or plate type equation coupled to ordinary differential equations, or two wave
equations coupled by lower order terms. This type of system is sometimes designed as a "hybrid system"
(notice that this term is often used for a different notion in control theory). The main difficulty of these
problems is that the inputs act in only one of the equations of the system. In this case we say that we have a
weak coupling. The basic question is to know if such a system is stabilizable. A general framework for this
type of problem has been given in Alabau [2] and [1] where the use of multipliers method yields promising
results. A different way to tackle the same problem is to first study the simultaneous controllability of the
uncoupled systems. The case in which one of the systems is finite dimensional has been tackled in Tucsnak
and Weiss [6].

3.3. Optimal location of sensors and of actuators
Keywords: decay rate, robustness.

We focus here on algorithms for optimizing the location and the shape of actuators and of sensors for the
stabilization of systems governed byPDE’s.

Consider a control problem for a system governed byPDE’s with the input acting at the interior of the domain
or on a part of the boundary. An important question is to find the location and the form of the control region in
order to optimize a criterion imposed by the user. This criterion should take in consideration the energy decay
rate and the robustness properties. A priori the topology of the control region is unknown so the first step in
such a study should be the application of topological optimization techniques. An important particular case
which occurs if the actuators and sensors contain smart materials. Generally, the optimal location problems
are far from the classical convex optimization problems and they don’t have a unique global optimum. To our
knowledge, the only problem where the explicit solution is known has been studied in Ammari, Henrot and
Tucsnak [31]. This is why finding numerical methods to be used in order to approach the optimum location is
a hard task.

3.4. Frequency domain methods for the analysis and control of systems
governed by pde’s
Keywords: Helmholtz equation, control and stabilization, numerical approximation of LQR problems, time-
reversal.

We use frequency tools to analyze different types of problems. The first one concerns the control, the
optimal control and the stabilization of systems governed byPDE’s, and their numerical approximations. The
second one concerns time-reversal phenomena, while the last one deals with the numerical approximation of
the Helmholtz equation using domain decompositions techniques.
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3.4.1. Control and stabilization for skew-adjoint systems
The first area concerns theoretical and numerical aspects in the control of a class of PDE’s. More precisely,

in a semigroup setting, the systems we consider have a skew-adjoint generator. Classical examples are the
wave, the Bernoulli-Euler or the Schrödinger equations. Our approach is based on an original characterization
of exact controllability of second order conservative systems proposed by K. Liu [44]. This characterization
can be related to the Hautus criterion in the theory of finite dimensional systems (cf. [40]). It provides for time-
dependent problems exact controllability criteriathat do not depend on time, but depend on the frequency
variable conjugated to time. Studying the controllability of a given system amounts then to establishing
uniform (with respect to frequency) estimates. In other words, the problem of exact controllability for the wave
equation, for instance, comes down to a high-frequency analysis for the Helmholtz operator. This frequency
approach has been proposed first by K. Liu for bounded control operators (corresponding to internal control
problems), and has been recently extended to the case of unbounded control operators (and thus including
boundary control problems) by L. Miller [47]. Let us emphasize here that one further important advantage
of this frequency approach lies in the fact that it can also be used for the analysis of space semi-discretized
control problems (by finite element or finite differences). The estimates to be proved must then be uniform
with respect toboth the frequency and the mesh size.

3.4.2. Time-reversal
The second area in which we make use of frequency tools is the analysis of time-reversal for harmonic

acoustic waves. This phenomenon [38] is a direct consequence of the reversibility of the wave equation in
a non dissipative medium. It can be used tofocus an acoustic waveon a target through a complex and/or
unknown medium. To achieve this, the procedure followed is quite simple. First, time-reversal mirrors are
used to generate an incident wave that propagates through the medium. Then, the mirrors measure the acoustic
field diffracted by the targets, time-reverse it and back-propagate it in the medium. Iterating the scheme,
we observe that the incident wave emitted by the mirrors focuses on the scatterers. An alternative and more
original focusing technique is based on the so-called D.O.R.T. method [39]. According to this experimental
method, the eigenelements of the time-reversal operator contain important information on the propagation
medium and on the scatterers contained in it. More precisely, the number of nonzero eigenvalues is exactly the
number of scatterers, while each eigenvector corresponds to an incident wave that selectively focuses on each
scatterer.

Time-reversal has many applications covering a wide range of fields, among which we can citemedicine
(kidney stones destruction or medical imaging),sub-marine communicationandnon destructive testing.
Let us emphasize that in the case of time-harmonic acoustic waves, time-reversal is equivalent to phase
conjugation and involves the Helmholtz operator.

3.4.3. Domain decomposition
The limitation of the noise level generated by airplanes or trains is of major interest during the architecture

and construction process of new airports and/or railway stations. The analysis of different configurations of
the buildings or the uses of new architectural materials can be performed very quickly through numerical sim-
ulation. In order to obtain accurate numerical results, realistic mathematical models involving the Helmholtz
equation are needed. The numerical resolution of such problems requires then large computer memory. The
use of parallel computers or PC networks has become very helpful for such purposes. Our research is to de-
velop new mathematical domain decomposition methods suitable for the fast and accurate simulation of such
problems. These methods are based on two steps. First, the global domain is split into several sub-domains
and some interface boundary conditions are introduced on the interfaces between the sub-domains. Secondly,
a sub-structuring formulation of the global problem leads to a condensed interface problem which is solved
iteratively. Each iteration involves the solution of an acoustic problem in each sub-domain.

Interface boundary conditions are the key ingredient to design efficient domain decomposition methods.
Without a global preconditioner, convergence cannot be obtained by any method in a number of iterations less
than the number of sub-domains minus one in the case of a one-way splitting. This optimal convergence can be
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obtained with generalized Robin type boundary conditions associated with an operator equal to the Steklov-
Poincaré operator in the continuous case and to the Schur complement matrix in the discrete case. However, in
practice, this optimal condition cannot be implemented since it is too expensive to be computed exactly. Our
goal is to define new approximations of the Steklov-Poincaré operator and of the Schur complement matrix.

3.5. Implementation
Keywords: Dicretization, Riccati equation.

This is a transverse research axis since all the research directions presented above have to be validated by
giving control algorithms which are aimed to be implemented in real control systems. We stress below some of
the main points which are common (from the implementation point of view) to the application of the different
methods described in the previous sections.

For many infinite dimensional systems the use of co-located actuators and sensors and of simple propor-
tional feed-back laws gives satisfying results. However, for a large class of systems of interest it is not clear
that these feedbacks are efficient, or the use of co-located actuators and sensors is not possible. This is why a
more general approach for the design of the feedbacks has to be considered. Among the techniques in finite
dimensional systems theory those based on the solutions of infinite dimensional Riccati equation seem the
most appropriate for a generalization to infinite dimensional systems. The classical approach is to approxi-
mate an LQR problem for a given infinite dimensional system by finite dimensional LQR problems. As it has
been already pointed out in the literature this approach should be carefully analyzed since, even for some very
simple examples, the sequence of feedbacks operators solving the finite dimensional LQR is not convergent.
Roughly speaking this means that by refining the mesh we obtain a closed loop system which is not expo-
nentially stable (even if the corresponding infinite dimensional system is theoretically stabilized). In order to
overcome this difficulty, several methods have been proposed in the literature : filtering of high frequencies,
multigrid methods or the introduction of a numerical viscosity term. We intend to first apply the numerical
viscosity method introduced in [56], for optimal and robust control problems.

4. Application Domains
4.1. Panorama

Keywords: acoustics, aero-acoustics, control of VLT’s (Very Large Telescopes).

As we already stressed in the previous chapters the robust control of infinite dimensional systems is an
emmerging theory. Our aim is to develop tools applicable to a large class of problems which will be tested on
models of increasing complexity. We describe below only the applications in which the members of our team
have important achievements in 2005.

4.2. Acoustics
Keywords: Helmholtz equation, Noise reduction.

One of the application domains of our work concerns the reduction of the noise due to the plane’s engines
during the take-off. This problem is addressed in the framework of the PhD thesis of Stefan Duprey at the
Research Center of EADS (CIFRE contract). Antoine Henrot is his advisor, but his work is also supervised in
Nancy by Frédéric Magoulès and Karim Ramdani. In EADS, at Suresnes, his work is supervised by Isabelle
Terrasse and François Dubois.

The main steps of this study of noise reduction are the following :

1. We write a code to compute the flow. Starting from the Euler equations in the potential and isentropic
case, we are lead to solve a well-known non-linear elliptic problem, studied for example, in classical
books like Glowinski or Něcas. To solve numerically this non linear problem, we use a fixed-point
algorithm which turns out to be convergent.
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2. We assume the acoustic perturbation to be potential and decoupled from the flow. By linearization
of Euler equations, we get a linear problem satisfied by the acoustic potential. The coefficients of
this equation involve the potential flow computed at step 1. The boundary conditions are either of
Neumann or impedance type.

3. We have to write a code to compute the solution of step 2. The fact that the flow can be considered
constant at infinity simplifies the equation outside a large domain containing the plane. This leads
to two possible ways to solve this problem: using globally a Lorentz transform or using a domain
decomposition method.

4. When the two previous codes work satisfactory, we can imagine optimization procedures by acting
either on the shape of the engine or on its coating.

Stefan Duprey has completely finished point 1 (including a theoretic study of the convergence of the
algorithm). Point 2 is now well understood. The theoretical questions of existence and uniqueness are currently
studied and the work is in progress.

4.3. Control of VLT’s (Very Large Telescopes)
Keywords: adaptive optics, robust control, turbulence, wavefront.

The objective of this work is to use of the tools of infinite-dimensional system automatics for the control of
large telescopes.

The future telescopes will be characterized by diameters much larger and the fact that the spectrum of the
analyzed wavefront lies in the visible field. It is estimated that to correct the image with the same quality,
the density of the actuators will have to be multiplied by one hundred and that it will be necessary to replace
the piezoelectric actuators by actuators resulting from micro-technology. In theory, a telescope provided with
actuators and sensors can be modeled like a finite-dimensional system. When the number of sensors and
actuators becomes very large it is often difficult to use this type of modeling to control the telescope.

Our prime objective is to obtain, by techniques of asymptotic analysis, models based on systems of partial
differential equations, with distributed control. According to the structure of the obtained system we suggest
to apply modern techniques resulting from the theory of the control ofinfinite -dimensional systems. The
input and the output of the system will remain of finite dimensions, which will allow the direct application
of the results to the initial system. The obtained systems will couple equations modeling the structure and
the equations modeling the sensors and the actuators (for example equations of electrostatics). One of the
difficulties of the problem lies in the fact that control occurs only in one of the equations of the system. A
detailed attention will be given to the problems of optimal positioning of the control fields. It is the question
of finding the localization and the form to be given to the actuators and the sensors so that the control is as
effective as possible.

In a first approximation, which is valid for infra-red waves, we use the geometrical optics to study the
system. In this case, by linearizing the equations, we have justified some of the approximations used in
engineers literature. Currently, we work directly on the nonlinear equations obtained with the geometrical
optics approach, and we look for an approximation valid when the spectrum of the analyzed wavefront lies in
the visible field.

5. Software
5.1. SCISPT Scilab toolbox

Keywords: Scilab, sparse matrices.

Participant: Bruno Pinçon [correspondant].
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SCISPT is a Scilab toolbox which interfaces the sparse solvers umfpack v4.3 of Tim Davis and taucs snmf
of Sivan Toledo.

Our aim is to develop Scilab tools for the numerical approximation ofPDE’s. This task requires powerful
sparse matrix primitives, which are not currently available in Scilab. We have thus developed the SCISPT
Scilab toolbox, which interfaces the sparse solvers umfpack v4.3 of Tim Davis and taucs snmf of Sivan Toledo.
It also provides various utilities to deal with sparse matrices (estimate of the condition number, sparse pattern
visualization,...). We intend to extend this work in the framework of collaborations with the Scilab consortium
recently created.

5.2. Parallel Computational Acoustic Library
Participant: Frédéric Magoulès.

The Parallel Computational Acoustics Library is a finite element based library able to solve huge acoustics
problems in parallel.

This library contains three main types of functions - those for pre-processing (mesh data), those for
processing (involving numerical and matrix analysis), and those for post-processing (visualization, noise
rendering). This work was motivated by the need to integrate the various finite elements, mesh generation,
mesh partitioning, domain decomposition methods and parallel solvers, and plotting programs developed by
the group.

The Parallel Computational Acoustics Library contains currently the most recent and powerful develop-
ments in finite element methods for acoustics and parallel iterative domain decomposition methods. There are
two groups of algorithms in the library: the first one is based on well established methods which are gener-
ally used in the industry, while the second one uses the current result of research. This helps the library to
be used at the same time by industrial partners (ONERA, Hutchinson S.A.) and academics researchers. The
library is therefore able to solve huge acoustic problems that it was not possible to solve so far. The Paral-
lel Computational Acoustics Library is written is FORTRAN 90 and uses the MPI library for parallel data
exchange.

Interactive visualization tools using the VTK library have been developed. An additional noise rendering
interface is available in order to listen the results issue from the simulation.

6. New Results
6.1. Analysis and control of fluids and of fluid-structure interactions

Keywords: Korteweg de Vries equations, Navier-Stokes equations.

Participants: Patricio Cumsille, Lionel Rosier, Jean-François Scheid, Takéo Takahashi, Marius Tucsnak.

A part of our activity in this field since 2004 was devoted to the the study of welposedness and to
the numerical analysis of the equations modelling the motion of rigid bodies in an incompressible fluid.
Concerning the welposedness results, the main achievements are reported in the papers [55], [21] and in
the technical report [37]. In reference [55] we gave an existence and uniqueness result in the case of a viscous
fluid filling the exterior of an infinite cylinder. The generalization of this result to more general geometries is
studied in reference [37]. In a recent work of Cumsille and Tucsnak [15], the wellposedness of Navier-Stokes
flow in the exterior of a rotating obstacle has been proved. The main result of the paper [21] asserts the global
in time existence for the equations modelling the motion of a ball in a perfect incompressible fluid (the two
dimensional case). In a work in progress Rosier and Takahashi tackle the case of a rigid body of an arbitrary
form, moving in a perfect incompressible fluid. A new problem which we started to study in 2004 is the motion
of articulated bodies (i.e., formed by several rigid bodies) in a fluid. These models are aimed to contribute to
the understanding of an important question in fluid mechanics: giving mathematical models of the motion of
aquatic organisms.
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Concerning the numerical analysis of the system modelling the motion of rigid bodies in a viscous
incompressible fluid, our main results have been announced in the note [54] and their detailed proofs have
been given in the article [20]. These results give sufficient conditions for the convergence of the Lagrange-
Galerkin method applied to the equations modelling the motion of rigid bodies in a viscous incompressible
fluid. As in the proof of the existence results, the fact that we have free boundaries considerably complicates
the numerical analysis.

A new research direction we considered is the control of fluid-structure interactions. We tackled three types
of problems:

1. Control of the motion of the rigid bodies moving in a fluid by using a velocity or a torque control
acting on the rigid only. In a forthcoming paper of Takahashi and Tucsnak (with Jorge San Martin)
we give several reachability results at low Reynolds number. These results seem to give a new insight
of the very interesting propulsions mechanism used by ocean micro-organisms (like ciliata).

2. Control of the motion of both the rigid bodies and of the fluid by using an input given by the velocity
field of the fluid on a part of the exterior boundary of the domain. This question has a more theoretical
motivation: we want to show that the presence of the rigid bodies doesn’t change in an essential
way the controllability properties of the system. In forthcoming joint work with O. Imanuvilov,
T. Takahashi has obtained a controllability result for the linearized problem.

3. Control of the motion of an articulated body moving in a fluid. In this case the input function is the
torque acting at the joint. This problem can be considered as a first step in the understanding of the
control mechanisms guiding fish motion.

6.2. Optimal location of sensors and of actuators
Participant: Antoine Henrot.

This topic was the subject of the thesis of Pascal Hébrard who left our team at the end of 2002. He is
currently working as a research engineer at Dassault Systems. Nevertheless, we kept in touch during this year
since we wanted to understand and write precisely the "spillover phenomenon" that we pointed out last year.
Let us explain what it is. When we want to damp a vibrating body, we have in principle to act on all the
eigenfrequencies of the body. In practice, it is common to consider that high frequencies are not so penalizing
and that we can only take into account the low frequencies. Therefore, we decided to simplify the criterion we
introduced in [3] and which involves all the eigenmodes (this criterion corresponds to some rate of decay of
the total energy of the system), by introducing a new criterion, sayJN involving only theN first eigenmodes
of the damped system. Then, we are led to look for an internal domain which damps thoseN modes as good
as possible, i.e. a domain which maximizes our criterionJN . We were able to prove, in one dimension (that is
to say for a damped string) that:

• There exists a unique solutionω∗
N to the previous minimization problem. This setω∗

N represents the
optimal location of actuators when we want to damp only theN first modes.

• The setω∗
N is composed of at mostN connected components.

• When the length constraintl goes to zero (i.e. we consider a small zone of control), the setω∗
N

concentrates on the nodes of the (N + 1)-th mode. It means that it does not control it at all. In other
terms, the best domain for theN -th first eigenmodes is the worst for the (N + 1)-th eigenmode!
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This work is published in [17]. We would now like to know if this phenomenon is related to the choice of
our model (criterion and state equation) or if it is a more general situation. Moreover, we would like to extend
this result to higher dimension. Even in two dimensions, for general domains, the formal proof seems much
harder, in particular we need spectral properties which are not known in a general context.

With Steve Cox, we started to study another problem also related to the damping of eigenmodes in a string.
It is a question relating to a model for harmonics on stringed instruments which could be set as: is it possible
to achieve “Correct Touch” in the pointwise damping of a fixed string? By correct touch, we consider the
following. When we place a finger lightly at one of the nodes of the low frequency harmonics, it forces the
string to play a note that sounds like a superposition of those normal modes with nodes at the location of the
finger. Now, the question is to determine what should be the pressure of the finger in order to best damps
the remaining modes. From a mathematical point of view, we consider the wave equation with a damping as
bδaut whereut is the speed,a the location of the pressure,δa is the Dirac distribution ata andb the intensity
of the pressure. We want to determine, for eacha what is theb which minimizes the spectral abscissa of the
modes not vanishing ata. This involves a precise qualitative analysis of the spectrum of the damped operator
in the complex plane. This is still a work in progress, but we have already obtained significant results which
are given in [36].

6.3. Frequency tools for the analysis of pde’s
Participants: Frédéric Magoulès, Bruno Pinçon, Karim Ramdani, Takéo Takahashi, Marius Tucsnak.

6.3.1. Control and stabilization of systems governed by pde’s and their numerical
approximation

It is well-known that the solution of LQR optimal control problems is given through a feedback operator
involving a Riccati operatorP . This operator solves a Riccati equation in infinite dimension. Of course, in
practice, one can only determine an approximate solutionPh of this equation, and the natural question that
arises is the following : does the approximate solution obtained using this operatorPh (instead ofP ) converge
to the solution of the continuous problem. This question has been so far studied by many authors (see for
instance [30], [42], [32]). In all these papers, one of the main assumptions is that the discretized systems should
beuniformly stabilizable with respect to the discretization parameterh. Unfortunately, most of the standard
numerical methods (finite element or finite differences) do not fulfill this condition. Using the frequency
characterization of stabilizability proposed by Liu and Zheng in [46], we have given in [50] a general technique
ensuring the uniform stabilizability of classical numerical methods (finite element or finite differences). This
technique consists in adding to the standard numerical schemes a suitable numerical viscosity. Compared to
the results of [56], the main novelties brought in by our results lie in their generality, since they hold for the
finite element space semi-discretization of a wide class of second order evolution equations.

In [22], we have obtained a new spectral formulation of the criterion of Liu [45], which is valid for boundary
control problems. This frequency test can be seen as an observability condition for packets of eigenvectors of
the operator. This frequency test has been succesfully applied in [22] to study the exact controllability of the
Schrödinger equation, the plate equation and the wave equation in a square.

In other recent works (see [23], [28] and [29]), we study the internal stabilization of the Bernoulli-Euler plate
equation in a square. The continuous and the space semi-discretizated problems are successively considered
and analyzed using a frequency domain approach. For the infinite dimensional problem, we provide a new
proof of the exponential stability result, based on a two dimensional Ingham’s type result. In the second and
main part of the paper, we propose a finite difference space semi-discretization scheme and we prove that this
scheme yields a uniform exponential decay rate (with respect to the mesh size).

6.3.2. Acoustics
In [11], a new boundary radiation condition is obtained. This is done by locally approximating the square

root of a non local operator by its Padé approximation. The precision of this new boundary condition for high
frequencies is proved on several examples.
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6.3.3. Domain decomposition
Optimized interface conditions have been developed for the non-overlapping Schwarz method in [18]. These

interface conditions are derived from an algebraic approximation of the Dirichlet-to-Neumann operator (see
[19], [27]). These techniques have been used to achieve image reconstructions in [16], and to noise reduction
in a car compartment in [26].

6.4. Miscellaneous
Participants: Fatiha Alabau, Jean-Pierre Croisille, Lionel Rosier, Antoine Henrot.

In this section we briefly describe several important achievements obtained during the last year and which
cannot be easily included in one of the themes above.

6.4.1. Fatiha Alabau
In references [10] and [25], the author proves formulae regarding the energy decay rate of solutions to

certain hyperbolic systems subjected to nonlinear dissipation conditions of polynomial or exponential growth
at the origin. In some situations the energy decay rates she obtains are shown to be optimal. The method
proposed is quite general and thus allows the author to generalize many existing results and obtain new ones.

In [9], piecewise multiplier technique are used to study Petrowsky equations with nonlinear dissipation.

6.4.2. Jean-Pierre Croisille
In [12], a pure-streamfunction formulation is introduced for the numerical simulation of the two-

dimensional incompressible Navier-Stokes equations. The idea is to replace the vorticity in the vorticity-
streamfunction evolution equation by the Laplacian of the streamfunction. A compact numerical scheme and
a number of numerical experiments are presented.

Reference [13] is devoted to the theoretical and numerical analysis of a degenerate, linear, periodic
advection-diffusion equation in one dimension. The numerical results of an upwind scheme, a finite volume
box-scheme, and a local discontinuous Galerkin method are discussed. These three schemes, automatically
select the physically acceptable solution, with the latter two schemes being more accurate.

In paper [14], we introduce a box-scheme for time-dependent convection-diffusion equations. This scheme
belongs to the category of mixed finite-volume schemes. We mainly focus on the design of the scheme in the
case of the 1D convection-diffusion equation.

6.4.3. Antoine Henrot
In the book [8], we provide a detailed analysis of theoretical questions related to shape variations and

optimization, like continuity with respect to the domain, existence of solutions, differentiability with respect
to the domain, geometric properties of optimal shapes and relaxation.

6.4.4. Lionel Rosier
Reference [7] is a second edition of a book devoted to the Liapunov theory and its applications to nonlinear

control theory. A special emphasis is put on the proof of Liapunov converse theorems for nonsmooth systems.
In [21], the authors show the existence and uniqueness of a classical solution for the problem of the motion of
a rigid ball surrounded by an incompressible perfect fluid in two space dimensions.
The evolution of density and temperature of a cloud of self-gravitating particles confined to a ball in the three
dimensional space is investigated in [24]. The authors prove the global in time existence, the uniqueness, and
the convergence of the solution towards an equilibrium state when the initial density profile behaves like1/r2

at the origin.

7. Contracts and Grants with Industry
7.1. Contracts and Grants with Industry

The collaboration with EADS described in Subsection 4.2 is formalized by a CIFRE contract. Another CIFRE
contract exists with IFP (French Center of Research and Industrial Developement for oil and automotive
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industries, based in Rueil-Malmaison). Indeed, S. Baillet began a PhD program (advisor A. Henrot), funded
by a CIFRE grant, in June 2004. The aim of this work consists in improving the efficiency of the pump
sucking the crude oil from the subsoil. The control variable is the geometry of the pump and the output of
the system is gap of pressure. The system is governed by the three-dimensional Navier-Stokes equations.
Instead of computing the exact gradient of the criterion (which seems too difficult or too costly), we intend to
compute an incomplete gradient, possibly coupled withone-shottype methods. Then, a classical gradient-type
or Quasi-Newton optimization algorithm will be performed.

Moreover, F. Magoulès participates to a contract with Hutchinson. The aim is to develop some GUI
(Graphics Users Interface) with the VTK (Visualization ToolKit) library able to deal with huge meshes in
a very short time. The VTK library is based on an OpenGL kernel and is programmed in C++ through an
object oriented approach. More details can be found in references [49], [48].

8. Other Grants and Activities
8.1. National initiatives

• At INRIA : Marius Tucsnak is member of the Evaluation Committee of INRIA and of the Project
Committee of INRIA-Lorraine.

• In the Universities and in CNRS committees:

– Antoine Henrot is the head of the Institut Elie Cartan de Nancy (IECN). He is also the
chair of the CNRS GDR entitled "ANOFOR" (New Applications of Shape Optimization)
until September 2005.

– Our team is part of the newly created GDR entitled "Fluid-Structure Interactions".

• Scientific consulter for ONERA.

8.2. Bilateral agreements

• PICASSO grant with the University of Sevilla;

• BRANCUSI grant with the University of Craïova (Romania).

8.3. Visits of foreign researchers
Steve Cox (Houston), Dalia Fishelov (Tel-Aviv), Pedro Freitas (Lisbonne), Jorge San Martin (Santiago),

Sorin Micu (Craiova), Gerard Philippin (Laval), George Weiss (Londres).

9. Dissemination
9.1. Participation to International Conferences and Various Invitations
9.1.1. Invited conferences

• J-P. Croisille:

– Pekin: Int. Workshop on Comp. Sciences and its Education, august 2005.

• A. Henrot:
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– Matrei (Autriche): Geometrical aspects of spectral theory, july 2005.

– Metz: Journées de Metz sur les valeurs propres, april 2005.

• L. Rosier:

– Sevilla: Análisis y control de ecuaciones diferenciales no lineales, february 2005.

– Benasque: Summer School and Workshop PDE, Optimal Design and Numerics, august
2005.

9.1.2. Participation to international conferences

• J-P. Croisille:
He co-organized the “Journées sur la simulation numérique pour les fluides”, CNAM, Paris.

– Int. SIAM Conf. Geosciences 2005, Avignon.

• F. Alabau:

– Workshop “Control systems, theory, numerics and applications” of the project “Controllo
e Numerica” of INDAM, April 2005, Rome.

– 22nd IFIP Conference on System Modeling and Optimization, July 2005, Turin.

• A. Henrot:
He was the co-organizer of three conferences (among which 2 are international):
- Smart materials and optimum design, Pôle Universitaire Leonard de Vinci - La Défense 17-18
mars.
- Optimisation de forme et image, Université Paris Dauphine - 28 juin
- Shape Optimization and applications, IECN - October 20-22

• K. Ramdani:

– July 2005:ENUMATH 2005, The Sixth European Conference on Numerical Mathematics
and Advanced Applications, Santiago de Compostella (Spain).

• L. Rosier:

– July 2005:16th IFAC World congress, Prague.

• T. Takahashi:

– December 2005:ECC 2005, 44th IEEE Conference on Decision and Control and European
Control Conference, Sevilla (Spain).

• M. Tucsnak:

– April 2005:Optimal Control of Coupled Systems of PDE, Oberwolfach (Germany).

– July 2005:International Workshop of Infinite Dimensional Sysytems, Université de Wa-
terloo, Waterloo (Canada).
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9.1.3. Invitations

• J-P. Croisille:

– University of Jerusalem, august 2005.

– Capital Normal Univ. Pekin, august-september 2005.

• L. Rosier:

– Santiago di Chile.

• T. Takahashi:

– Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz,
October 2005;

9.1.4. Editorial activities and scientific committee’s memberships

• M.Tucsnak is associated editor of "SIAM Journal on Control";

• M. Tucsnak is a member of the program Committee for the 13th Mediterranean Conference on
Control and Automation (MED05) and of the scientific committee of the ECCOMAS Conference
on Computational Fluid Dynamics (ECCOMAS CFD 2006)

9.2. Teaching activities
Most of the project members are professors or assistant professors so they have an important teaching

activity. We mention here only the graduate courses.

• Non linear analysis of PDE’s and applications (F. Alabau);

• Scientific Computing (A. Henrot);

• Control of systems governed by PDE’s (K. Ramdani)

• Introduction to Nonlinear Systems (L. Rosier);

• Distributions and Partial Differential Equations (M. Tucsnak);
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