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2. Overall Objectives
2.1. Introduction

The Espresso project-teamproposes models, methods and tools for computer-aided design of embedded
systems.

• The model considered by the project-team is polychrony [8]. It is based on the paradigm of the
synchronous hypothesis and allow for the specification of multi-clocked systems.

• The methods considered by the project-team put this model to work for the refinement-based (top-
down) and component-based (bottom-up) design of embedded systems using correctness-preserving
model transformations.

• The project-team makes a continuous effort to develop the Polychrony toolbox, freely available at
http://www.irisa.fr/espresso/Polychrony.

Polychrony is an integrated development environment and technology demonstrator consisting of a com-
piler, a visual editor and a model checker. It provides a unified model-driven environment to perform embed-
ded system design exploration by using top-down and bottom-up design methodologies formally supported by
design model transformations from specification to implementation and from synchrony to asynchrony.

The company TNI-Valiosys supplies its commercial implementation, RT-Builder, used for industrial scale
projects by Snecma/Hispano-Suiza and EADS – Airbus Industries (seehttp://www.tni-valiosys.com). Past and
present collaborators of project-team Espresso through European, French and bilateral collaborations include
CS-SI, CEA-List, MBDA, AONIX, SILICOMP, THALES, EDF, AIRBUS, VERIMAG, CEA.

http://www.irisa.fr/espresso/Polychrony
http://www.tni-valiosys.com
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2.2. Context and motivations
High-level embedded system design has gained prominence in the face of rising technological complexity,

increasing performance requirements and shortening time to market demands for electronic equipments.
Today, the installed base of intellectual property (IP) further stresses the requirements for adapting existing
components with new services within complex integrated architectures, calling for appropriate mathematical
models and methodological approaches to that purpose.

Over the past decade, numerous programming models, languages, tools and frameworks have been proposed
to design, simulate and validate heterogeneous systems within abstract and rigorously defined mathematical
models. Formal design frameworks provide well-defined mathematical models that yield a rigorous method-
ological support for the trusted design, automatic validation, and systematic test-case generation of systems.

However, they are usually not amenable to direct engineering use nor seem to satisfy the present industrial
demand. As a matter of fact, the attention of the industry tends to shift to modeling frameworks based
on general-purpose programming language variants, in response to a growing industry demand for higher
abstraction-levels in the system design process and an attempt to fill the so-calledproductivity gap.

At present, a possibility of widening divergences between formal methods and industrial practices is
perceivable. It seems that any useful methodology cannot avoid the industrial trend of using emerging
programming languages. This contrasted picture calls for an effort toward the convergence between the theory
of formal methods and the industrial practice and trends in system design.

Project-team Espresso aims at this convergence by considering the formal modeling framework of the
Polychrony toolbox to serve as pivot formalism to import, transform, validate and export heterogeneous
formalisms and languages.

2.3. The polychronous approach
Despite overwhelming advances in embedded systems design, existing techniques and tools merely provide

ad-hoc solutions to the challenging issue of the productivity gap. The pressing demand for design tools
has sometimes hidden the need to lay mathematical foundations below design languages. Many illustrating
examples can be found, e.g. the variety of very different formal semantics found in state-diagram formalisms.
Even though these design languages benefit from decades of programming practice, they still give rise to some
diverging interpretations of their semantics.

The need for higher abstraction-levels and the rise of stronger market constraints now make the need for un-
ambiguous design models more obvious. This challenge requires models and methods to translate a high-level
system specification into a distribution of purely sequential programs and to implement semantics-preserving
transformations and high-level optimizations such as hierarchization (sequentialization) or desynchronization
(protocol synthesis).

In this aim, system design based on the so-called “synchronous hypothesis” has focused the attention of
many academic and industrial actors. The synchronous paradigm consists of abstracting the non-functional
implementation details of a system and lets one benefit from a focused reasoning on the logics behind the
instants at which the system functionalities should be secured.

With this point of view, synchronous design models and languages provide intuitive models for embedded
systems [3]. This affinity explains the ease of generating systems and architectures and verify their function-
alities using compilers and related tools that implement this approach.

In the relational mathematical model behind the design language Signal, the supportive data-flow notation
of Polychrony, this affinity goes beyond the domain of purely sequential systems and synchronous circuits
and embraces the context of complex architectures consisting of synchronous circuits and desynchronization
protocols: globally asynchronous and locally synchronous architectures (GALS).

This unique feature is obtained thanks to the fundamental notion ofpolychrony: the capability to describe
systems in which components obey to multiple clock rates. It provides a mathematical foundation to a notion
of refinement: the ability to model a system from the early stages of its requirement specifications (relations,
properties) to the late stages of its synthesis and deployment (functions, automata).
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The notion of polychrony goes beyond the usual scope of a programming language, allowing for specifi-
cations and properties to be described. As a result, the Signal design methodology draws a continuum from
synchrony to asynchrony, from specification to implementation, from abstraction to refinement, from interface
to implementation. Signal gives the opportunity to seamlessly model embedded systems at multiple levels of
abstraction while reasoning within a simple and formally defined mathematical model.

The inherent flexibility of the abstract notion of signal handled in Signal invites and favors the design of
correct-by-construction systems by means of well-defined model transformations that preserve the intended
semantics and stated properties of the architecture under design.

3. Scientific Foundations
3.1. Scientific Foundations

Embedded systems are not new, but their pervasive introduction in ordinary-life objects (cars, telephone,
home appliances) brought a new focus onto design methods for such systems. New development techniques
are needed to meet the challenges of productivity in a competitive environment. Synchronous languages [13]
rely on thesynchronous hypothesis, which lets computations and behaviors be divided into a discrete sequence
of computation stepswhich are equivalently calledreactionsor execution instants. In itself this assumption
is rather common in practical embedded system design. But the synchronous hypothesis adds to this the fact
that,inside each instant, the behavioral propagation is well-behaved (causal), so that the status of every signal
or variable is established and defined prior to being tested or used. This criterion, which may be seen at
first as an isolated technical requirement, is in fact the key point of the approach. It ensures strong semantic
soundness by allowing universally recognized mathematical models to be used as supporting foundations.
In turn, these models give access to a large corpus of efficient optimization, compilation, and formal
verification techniques. The synchronous hypothesis also guarantees full equivalence between various levels
of representation, thereby avoiding altogether the pitfalls of non-synthesizability of other similar formalisms.
In that sense the synchronous hypothesis is, in our view, a major contribution to the goal ofmodel-based
designof embedded systems.

We shall describe the synchronous hypothesis and its mathematical background, together with a range
of design techniques enpowered by the approach. Declarative formalisms implementing the synchronous
hypothesis can be cast into a model of computation [8] consisting of adomainof traces or behaviors and
of semi-lattice structure that renders the synchronous hypothesis using a timing equivalence relation: clock
equivalence. Asynchrony can be superimposed on this model by considering a flow equivalence relation as
well as heterogeneous systems [35] by parameterizing composition with arbitrary timing relations.

3.1.1. A synchronous model of computation
We consider a partially-ordered set of tagst to denote instants seen as symbolic periods in time during which

a reaction takes place. The relationt1 ≤ t2 says thatt1 occurs beforet2. Its minimum is noted 0. A totally
ordered set of tagsC is called achainand denotes the sampling of a possibly continuous or dense signal over
a countable series of causally related tags. Events, signals, behaviors and processes are defined as follows:

- anevente is a pair consisting of a valuev and a tagt,
- asignals is a function from achainof tags to a set of values.
- abehaviorb is a function from a set of namesx to signals.
- aprocessp is a set of behaviors that have the same domain.

In the remainder, we writetags(s) for the tags of a signals, vars(b) for the domains ofb, b|X for the projection
of a behaviorb on a set of namesX andb/X for its complementary. Figure1 depicts a behaviorb over three
signals namedx, y andz. Two frames depict timing domains formalized by chains of tags. Signalsx andy
belong to the same timing domain:x is a down-sampling ofy. Its events are synchronous to odd occurrences
of events alongy and share the same tags, e.g.t1. Even tags ofy, e.g.t2, are ordered along its chain, e.g.
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Figure 1. Behaviorb over three signalsx, y andz in two clock domains

t1 < t2, but absent fromx. Signalz belongs to a different timing domain. Its tags, e.g.t3 are not ordered with
respect to the chain ofy, e.g.t1¬ ≤ t3 andt3¬ ≤ t1.

Synchronous compositionis notedp || q and defined by the unionb ∪ c of all behaviorsb (from p) andc
(from q) which hold the same values at the same tagsb|I = c|I for all signalx ∈ I = vars(b) ∩ vars(c) they
share. Figure2 depicts the synchronous composition (Figure2, right) of the behaviorsb (Figure2, left) and
the behaviorc (Figure2, middle). The signaly, shared byb andc, carries the same tags and the same values
in bothb andc. Hence,b ∪ c defines the synchronous composition ofb andc.

Figure 2. Synchronous composition ofb ∈ p andc ∈ q

A scheduling structure is defined to schedule the occurrence of events along signals during an instantt.
A scheduling→ is a pre-order relation between datesxt wheret represents the time andx the location of the
event. Figure3 depicts such a relation superimposed to the signalsx andy of Figure1. The relationyt1 → xt1 ,
for instance, requiresy to be calculated beforex at the instantt1. Naturally, scheduling is contained in time:
if t < t′ thenxt →b xt′ for anyx andb and ifxt →b xt′ thent′¬ < t.

Figure 3. Scheduling relations between simultaneous events

A synchronous structure is defined by a semi-lattice structure to denote behaviors that have the same
timing structure. The intuition behind this relation is depicted in Figure4. It is to consider a signal as an elastic
with ordered marks on it (tags). If the elastic is stretched, marks remain in the same relative (partial) order
but have more space (time) between each other. The same holds for a set of elastics: a behavior. If elastics are
equally stretched, the order between marks is unchanged. In the figure4, the time scale ofx andy changes but
the partial timing and scheduling relations are preserved. Stretching is a partial-order relation which defines
clock equivalence. Formally, a behaviorc is astretchingof b of same domain, writtenb ≤ c, iff there exists an
increasing bijection on tagsf that preserves the timing and scheduling relations. If so,c is the image ofb by
f . Last, the behaviorsb andc are saidclock-equivalent, written b ∼ c, iff there exists a behaviord s.t.d ≤ b
andd ≤ c.
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Figure 4. Relating synchronous behaviors by stretching.

3.1.2. Declarative design languages
Signal [4] is a declarative design language expressed within the polychronous model of computation. In

Signal, a processP is an infinite loop that consists of the synchronous compositionP ||Q of simultaneous
equationsx = y f z over signals namedx, y, z. The restriction of a signal namex to a processP is noted
P/x.

P,Q ::= x = y f z | P/x | P ||Q

Equationsx = y f z in Signal more generally denote processes that define timing relations between input and
output signals. There are four primitive combinators in Signal:

• delayx = y $ init v, initially defines the signalx by the valuev and then by the previous value of
the signaly. The signaly and its delayed copyx = y $ init v are synchronous: they share the same
set of tagst1, t2, · · ·. Initially, at t1, the signalx takes the declared valuev and then, at tagtn, the
value ofy at tagtn−1.

y •t1,v1 •t2,v2 •t3,v3 · · ·
y $ init v •t1,v •t2,v1 •t3,v2 · · ·

• samplingx = y when z, definesx by y whenz is true (and bothy andz are present);x is present
with the valuev2 at t2 only if y is present withv2 at t2 and if z is present att2 with the value true.
When this is the case, one needs to schedule the calculation ofy andz beforex, as depicted by
yt2 → xt2 ←− zt2 .

• mergex = y default z, definesx by y wheny is present and byz otherwise. Ify is absent andz
present withv1 at t1 thenx holds(t1, v1). If y is present (att2 or t3) thenx holds its value whether
z is present (att2) or not (att3).

y • •t2,v2 · · ·
↓

y when z •t2,v2 · · ·
↑

z • •t1,0 •t2,1 · · ·

y •t2,v2 •t3,v3 · · ·
↓ ↓

y default z •t1,v1 •t2,v2 •t3,v3 · · ·
↑

z •t1,v1 • · · ·

The structuring element of a Signal specification is a process. A process accepts input signals originating
from possibly different clock domains to produce output signals when needed. This allows, for instance, to
specify a counter where the inputstick andreset and the outputvalue have independent clocks. The body
of counter consists of one equation that defines the output signalvalue. Upon the eventreset, it sets the
count to 0. Otherwise, upon atick event, it increments the count by referring to the previous value ofvalue
and adding 1 to it. Otherwise, if the count is solicited in the context of the counter process (meaning that its
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clock is active), the counter just returns the previous count without having to obtain a value from thetick and
reset signals.
process counter = (? event tick, reset ! integer value)

(| value := (0 when reset)
default ((value$ init 0 + 1) when tick)
default (value$ init 0)

|);
A Signal process is a structuring element akin to a hierarchical block diagram. A process may structurally

contain sub-processes. A process is a generic structuring element that can be specialized to the timing context
of its call. For instance, the definition of a synchronized counter starting from the previous specification
consists of its refinement with synchronization. The input tick and reset clocks expected by the process
counter are sampled from the boolean input signalstick andreset by using thewhen tick andwhen
reset expressions. The count is then synchronized to the inputs by the equationreset ^= tick ^= count.
process synccounter = (? boolean tick, reset ! integer value)

(| value := counter (when tick, when reset)
| reset ^= tick ^= value
|);

3.1.3. Compilation of Signal
Sequential code generation starting from a Signal specification starts with an analysis of its implicit

synchronization and scheduling relations. This analysis yields the control and data flow graphs that define
the class of sequentially executable specifications and allow to generate code.

3.1.3.1. Synchronization and scheduling analysis
In Signal, the clock̂ x of a signalx denotes the set of instants at which the signalx is present. It is

represented by a signal that is true whenx is present and that is absent otherwise. Clock expressions represent
control. The clockwhen x (resp.not x) represents the time tags at which a boolean signalx is present and true
(resp. false). The empty clock is written 0 and clocks expressionse combined using conjunction, disjunction
and symmetric difference. Clocks equationsE are Signal processes: the equationeˆ = e′ synchronizes the
clockse ande′ while eˆ <e′ specifies the containment ofe in e′. Additionally, explicit scheduling relations
x→ y when e allow to schedule the calculation of signals (e.g.x aftery at the clocke).

e ::= ˆx | when x | not x | eˆ+ e′ | eˆ− e′ | ê + e′ | 0 (clock expression)
E ::= () | eˆ = e′ | eˆ <e′ | x→ y when e | E ||E′ | E/x (clock relations)

Any Signal processP corresponds to a system of clock relationsE that denotes its timing and scheduling
structure. It can be defined by the inference systemP : E of Figure5.

Figure 5. Clock inference system
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3.1.3.2. Hierarchization
The clock and scheduling relationsE of a processP define the control-flow and data-flow graphs that hold

all necessary information to compile a Signal specification upon satisfaction of the property ofendochrony.
A process is said endochronous iff, given a set of input signals and flow-equivalent input behaviors, it has the
capability to reconstruct a unique synchronous behavior up to clock-equivalence: the input and output signals
are ordered in clock-equivalent ways.

To determine the orderx � y in which signals are processed during the period of a reaction, clock relations
E play an essential role. The process of determining this order is called hierarchization and consists of an
insertion algorithm which hooks elementary control flow graphs (in the form of if-then-else structures) one to
the others. For instance, right, let h3 be a clock computed using h1 and h2. Let h be the head of a tree from
which h1 and h2 are computed (an if-then-else), h3 is computed after h1 and h2 and placed under h.

Figure 6.

3.1.3.3. Example
The implications of hierarchization for code generation can be outlined by considering the specification of

a one-place buffer in Signal. Processbuffer implements two functionalities. One is the processalternate
which desynchronizes the signalsi ando by synchronizing them to the true and false values of an alternating
boolean signalb.
process buffer = (? i ! o)
(| alternate (i, o)
| o := current (i)
|) where

process alternate = (? i, o ! )
(| zb := b$1 init true
| b := not zb
| o ^= when not b
| i ^= when b
|) / b, zb;

process current = (? i ! o)
(| zo := i cell ^o init false
| o := zo when ^o
|) / zo;

The other functionality is the processcurrent. It defines acell in which values are stored at the input
clock^i and loaded at the output clock̂o. cell is a predefined Signal operation defined by:

x := y cell z init v =def (m := x $ init v ||x := y default m ||ˆxˆ = ŷˆ+ ẑ) /m

Clock inference applies the clock inference system of Figure5 to the processbuffer to determine three
synchronization classes. We observe thatb, c_b, zb, zo are synchronous and define the master clock
synchronization class ofbuffer.
(| c_b ^= b
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| b ^= zb
| zb ^= zo
| c_i := when b
| c_i ^= i
| c_o := when not b
| c_o ^= o
| i -> zo when ^i
| zb -> b
| zo -> o when ^o
|) / zb, zo, c_b, c_o, c_i, b;
There are two other synchronization classes,c_i andc_o, that corresponds to the true and false values of

the boolean flip-flop variableb, respectively:

b ≺� c_b ≺� zb ≺� zo and b � c_i ≺� i and b � c_o ≺� o

This defines three nodes in the control-flow graph of the generated code. At the main clockc_b, b andc_o
are calculated fromzb. At the sub-clockb, the input signali is read. At the sub-clockc_o the output signalo
is written. Finally,zb is determined. Notice that the sequence of instructions follows the scheduling relations
determined during clock inference.
buffer_iterate () {
b = !zb;
c_o = !b;
if (b) {
if (!r_buffer_i(&i))
return FALSE;

}
if (c_o) {
o = i;
w_buffer_o(o);

}
zb = b;
return TRUE;

}
Whereas Signal uses a hierarchization algorithm to find a sequential execution path starting from a system

of clock relations, Lustre leaves this task to engineers, which must provide a well-synchronized program:
well-synchronized Lustre programs correspond to hierarchized Signal specifications.

3.1.3.4. Certification
The simplicity of the single-clocked model of Lustre eases program analysis and code generation and its

commercial implementation, Scade by Esterel Technologies, provides a certified C code generator. Its com-
bination to Sildex, the commercial implementation of Signal by TNI-Valiosys, as a front-end for architecture
mapping and early requirement specification is the methodology advocated in the IST project Safeair (URL:
http://www.safeair.org). The formal validation and certification of synchronous program properties has been
the subject of numerous studies. In [48], a co-inductive axiomatization of Signal in the proof assistant Coq [41],
based on the calculus of constructions [56], is proposed.

The application of this model is two-folds. It allows, first of all, for the exhaustive verification of formal
properties of infinite-state systems. Two case studies have been developed. In [44], a faithful model of the
steam-boiler problem was given in Signal and its properties proved with Signal’s Coq model. It is applied to
proving the correctness of real-time properties of a protocol for loosely time-triggered architectures, extending
previous work proving the correctness of its finite-state approximation [43].

http://www.safeair.org
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Another and important application of modeling Signal in the proof assistant Coq is being explored and
consists of developing a reference compiler translating Signal programs into Coq assertion. This translation
allows to represent model transformations performed by the Signal compiler as correctness preserving
transformations of Coq assertions, yielding a costly yet correct-by-construction synthesis of target code.

Other approaches to the certification of generated code have been investigated. In [51], validation is achieved
by checking a model of the C code generated by the Signal compiler in the theorem prover PVS with respect
to a model of its source specification: translation validation.

4. Application Domains
4.1. Application Domains

The application domains covered by the Polychrony toolbox are engineering areas where a system design-
flow requires high-level model transformations and verifications to be applied during the development-cycle.

The project-team has focused on developing such integrated design methods in the context of avionics
applications, through the European IST projects Sacres, Syrf, Safeair. This research track is being continued
in the submitted Espace (avionics) and Sea (automotive) projects.

In this context, Polychrony is seen as a platform on which the architecture of an embedded system can
be specified from the earliest design stages until the late deployment stages through a number of formally
verifiable design refinements.

Recent trends insystem-level designshow, in a far from unrelated way, the need for modeling systems on
chips as globally asynchronous and locally synchronous systems. It is indeed manifest in the charter of the
ACM-IEEE MEMOCODE conference. It is the subject of an ongoing collaboration of project-team Espresso
with UC San Diego and Virginia Tech through INRIA associate-projects program.

5. Software
5.1. The Polychrony workbench

Participants: Loic Besnard, Thierry Gautier, Paul Le Guernic.

Polychrony is an integrated development environment and technology demonstrator consisting of a com-
piler, of a visual editor and of a model checker. It provides a unified model-driven environment to perform em-
bedded system design exploration by using top-down and bottom-up design methodologies formally supported
by design model transformations from specification to implementation and from synchrony to asynchrony.

Polychrony supports the synchronous, multi-clocked, data-flow specification language Signal. It is being
extended by plugins to capture SystemC modules or real-time Java classes within the workbench. It allows to
perform validation and verification tasks, e.g., with the integrated SIGALI model checker, the Coq theorem
prover, or with the Spin model checker.

Polychrony is registered at the APP and is freely distributed fromhttp://www.irisa.fr/espresso/Polychrony
for non-commercial use. Based on the Signal language, it provides a formal framework:

1. to validate a design at different levels,

2. to refine descriptions in a top-down approach,

3. to abstract properties needed for black-box composition,

4. to assemble predefined components (bottom-up with COTS).

The company TNI-Valiosys supplies a commercial implementation of Polychrony, called RT-Builder,
used for industrial scale projects by Snecma/Hispano-Suiza and Airbus Industries (seehttp://www.tni-
valiosys.com).

Polychrony is a set of tools composed of:

http://www.irisa.fr/espresso/Polychrony
http://www.tni-valiosys.com
http://www.tni-valiosys.com
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1. A Signal batch compiler providing a set of functionalities viewed as a set of services for, e.g., pro-
gram transformations, optimizations, formal verification, abstraction, separate compilation, map-
ping, code generation, simulation, temporal profiling, etc.

2. A GUI with interactive access to compiling functionalities.

3. The SIGALI tool, an associated formal system for formal verification and controller synthesis, jointly
developed with the Vertecs project-team (http://www.irisa.fr/vertecs).

Figure 7. Avionics application modeling using the visual editor of the Polychrony workbench

Polychrony offers services for modeling application programs and architectures starting from high-level and
heterogeneous input notations and formalisms. These models are imported in Polychrony using the data-flow
notation Signal. Polychrony operates these models by performing global transformations and optimizations
on them (hierarchization of control, desynchronization protocol synthesis, separate compilation, clustering,
abstraction) in order to deploy them on mission specific target architectures. C, C++, multi-threaded and
real-time Java and SynDex code generators are provided. The connection to the SynDEx distribution tool
(http://www-rocq.inria.fr/syndex) has been developed in the context of the RNTL project Acotris.

5.2. The APEX RTOS library
Participants: Abdoulaye Gamatié, Thierry Gautier.

The Apex interface, defined in the ARINC standard [32], provides an avionics application software with
the set of basic services to access the operating-system and other system-specific resources. Its definition

http://www.irisa.fr/vertecs
http://www-rocq.inria.fr/syndex
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relies on the Integrated Modular Avionics approach (IMA, [33]). A main feature in an IMA architecture is that
several avionics applications (possibly with different critical levels) can be hosted on a single, shared computer
system. Of course, a critical issue is to ensure safe allocation of shared computer resources in order to prevent
fault propagations from one hosted application to another. This is addressed through a functional partitioning
of the applications with respect to available time and memory resources. The allocation unit that results from
this decomposition is thepartition.

A partition is composed ofprocesseswhich represent the executive units (an ARINC partition/process is
akin to a Unix process/task). When a partition is activated, its owned processes run concurrently to perform
the functions associated with the partition. The process scheduling policy is priority preemptive.

Each partition is allocated to a processor for a fixed time window within a major time frame maintained by
the operating system. Suitable mechanisms and devices are provided for communication and synchronization
between processes (e.g.buffer, event, semaphore) and partitions (e.g.portsandchannels).

The specification of the ARINC 651-653 services in Signal [12], [21], [29] is now part of the distribution
Polychrony and offers a complete implementation of the Apex communication, synchronization, process man-
agement and partitioning services. Its Signal implementation consists of a library of generic, parameterizable
Signal modules.

5.3. Signal-Meta, MIMAD, and their Interpreters
Participants: Christian Brunette, Abdoulaye Gamatié.

As detailed in further Sections (6.2, 6.3, and6.4), we have developed different metamodels in the Generic
Modeling Environment (GME):

• Signal-Meta is the metamodel of the SIGNAL language. It describes all syntactic elements specified
in [36]: all SIGNAL operators (e.g. arithmetic, clock synchronization), model (e.g. process frame,
module), and construction (e.g. iteration, type declaration).

• Signal-Meta has been extended to allow the definition of mode automata, which were originally
proposed by Maraninchi et al. [46] to extend the functionality-oriented data-flow paradigm with the
capability to model transition systems easily and provide an additional imperative flavor.

• MIMAD is also built as an extension of Signal-Meta and allows to design applications based on
the Integrated Modular Avionics(IMA) architecture, which relies on the avionic standard APEX-
ARINC [32], [33].

These metamodels aims at providing a user with a graphical framework allowing to model applications
using a component-based approach. Application architectures can be easily described by just selecting these
components via drag and drop, creating some connections between them and specifying their parameters as
component attribute. To complete this framework, we have developed, for each of these metamodels, GME
interpreters to transform the resulting graphical model to SIGNAL programs, and so to test and compile them
in Polychrony.
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5.4. SystemCXML: Extracting SystemC structural information
Participant: David Berner.

Structural information of electronic system level (ESL) design projects is important for many applications
such as design management and validation. SystemC does not offer any facility to extract or access this
information. As for our work in translating SystemC models into the SIGNAL formalism we needed access
to this information and, as we did not find any existing tool that conveniently could offer it, we decided to
implement it ourselves. The result is a SystemC front-end that parses existing SystemC projects, writes out
structural information of the project such as modules, signals, submodules, and ports into an XML file. It also
creates an internal data structure with the help of which this information can be conveniently accessed via an
API for any further processing and transformation.

The SystemCXML project is conceived as a lightweight and open solution. It avoids doing full fledged
parsing of C++ by running the SystemC code through Doxygen, a tool commonly used for the automated
generation of code documentation. Doxygen can generate XML output, which is much easier to be parsed
than C++. The XML output of Doxygen is then read in with the standard XML parsing library Xerces-C.
During this parsing step we extract the information we are interested in and write it into a clean XML file only
containing the structure of the SystemC project. In addition to the information about modules, submodules,
signals, etc. present in the code, we infer information such as the module hierarchy, the top-level modules, and
modules connections. In a further step the XML structural SystemC representation is then read into an internal
representation where it is made accessible through an API to client back-end passes such as visualization, test
generation, and transformations. We have implemented an example visualization back-end pass visualizing
the module hierarchy with the help of the DOT library in merely 60 lines of code [18]. Other than that we
have so far used the library for the generation of SIGNAL process skeletons, automated test generation, and
reflection and introspection [50].

SystemCXML has been made available as open source in a sourceforge project and can be downloaded
from http://systemcxml.sourceforge.net/.

5.5. A model of Signal in Coq
Participant: Jean-Pierre Talpin.

The verification of a reactive system is usually done by elaborating adiscretemodel of the system specified
in a dedicated formalism and then by checking a property against the model. The use of formal proof systems
enables to provehybrid propertiesabout infinite state systems: the correctnessand thecompletenessof a
reactive system.

To this aim, the Espresso project-team has developed a complete model of the Signal design language
in Coq [48]. More precisely, we have defined a translation scheme of the trace semantics of Signal to the
logical framework of Coq. We have conducted several case studies to demonstrate the applicability of the
approach to resolve sophisticated verification problems: a complete model and proof of the well-known steam-
boiler problem [44], the correctness of an implementation of a Signal protocol for loosely timed-triggered
architectures [43].

Such a proof, of course, cannot always be done automatically: it requires human-interaction to direct the
proof strategy. The prover can nonetheless automate its most tedious and mechanical parts. In general, formal
proofs of programs are difficult and time-consuming. In the particular case of modeling a reactive system
using Signal, experience however shows that this difficulty is significantly reduced thanks to the combined
declarative style of programming and a relational style of modeling.

6. New Results
6.1. The UML profile MARTE for Real-Time and Embedded Systems Design

Participants: Thierry Gautier, Jean-Pierre Talpin.

http://systemcxml.sourceforge.net/
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The CARROLL Research Programme (seehttp://www.carroll-research.org), which allows specific collabo-
rations between teams from INRIA, CEA and THALES Research and Technology, has been the right vector to
develop the idea of a synchronous UML model, through the PROTES project. This project groups together the
Espresso, Aoste and DaRT project-teams from INRIA, the CEA-List, and THALES Communications France,
THALES Airborne Systems, THALES Underwater Systems. The aim of the project is to define and standard-
ize at the Object Management Group (OMG) a UML 2.0 profile for real-time embedded systems.

At the OMG Technical Meeting held in Burlingame, CA, USA, in January 2005, was officially voted a new
RFP (Request For Proposals) invitation for a OMG profile on Real-Time and Embedded systems modeling
and analysis (codename: MARTE). The proposal was initiated from two main sources: first, the joint French
project PROTES between THALES, INRIA and CEA, aiming at providing modeling elements with a fine
understanding of (logical or physical) timing issues at this level; second, a will and a demand from the authors
of the previous SPT (schedulability, performance and time) profile to extend it and align it to the more recent
UML 2.0 standard. Then several other sources joined in to contribute further requirements, amounting to the
current set of objectives for the profile RFP, described below.

Main objectives of MARTE are the following[24]: defining time structures, concurrency and communication
models, mixing control-flow and intensive computational data-paths, modeling architectural platforms and
adopting Y-chart approaches for allocation of application functions onto architectural resources). It bears
strong connections with other OMG standardization attempts (some accepted already, some only proposed)
such as the SysML (System Engineering in UML) standard, or AADL and UML4SoC current RFC proposals.

MARTE is divided in three subparts (some would say subprofiles):

• TCR (Time and Concurrent Resources) is meant to provide the infrastructure notions of logi-
cal/discrete and physical/real time, and the basic concurrency and communication models relevant
to the profile. It should extend in many ways the corresponding parts of the SPT profile, in particular
in adding the notions of synchronous/clocked systems (with events simultaneity and well-defined
priorities).

• SPA (Schedulability and Performance Analysis) should provide with features allowing the non-
functional performance evaluation and static or dynamic scheduling policies of systems.

• RTEM (Real-Time Embedded Modeling) will take these time informations into account to provide
for behavioral definitions of hierarchical models, as in state and activity diagrams for instance).
It also claims for independent high-level modeling of architectural platforms and the platform-
based design methodology using useful feature of the two previous subprofiles to build and model
optimized allocation links between application and architectures. It also requires dedicated modeling
features for frequently encountered structures in real-time and embedded systems (for instance in
communication and multimedia treatments).

6.2. SIGNAL Metamodel
Keywords: Generic Modeling Environment, Metamodeling, Model transformation, SIGNAL.

Participants: Christian Brunette, Thierry Gautier, Jean-Pierre Talpin.

Our aim is to generalize the use of formal methods, and more precisely those proposed by Polychrony.
Therefore, such methods must be accessible in more popular framework, such as Eclipse. However, in a
world of rapid technology obsolescence, model engineering must be platform independent. To achieve this
independence, the higher their abstraction expression level is, the more adaptable to various operational
environments they will be. Model Driven Software Development is based on a number of common principles
such as like XMI, OCL and UML, that can be mapped to different standards and different environments. Thus,
we choose to express the SIGNAL language as a metamodel, called Signal-Meta.

To develop our metamodeling approach, we choose the Generic Modeling Environment (GME) developed
by the ISIS institute at Vanderbilt University. GME is a configurable UML-based toolkit that supports the

http://www.carroll-research.org
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Figure 8. Identifier paradigm sheet of Signal-Meta.

creation of domain-specific modeling and program synthesis environments [45]. Metamodels are proposed in
the environment to describemodeling paradigmsfor specific domains. Such a paradigm includes, for a given
domain, the necessary basic concepts to represent models from a syntactical viewpoint to a semantical one.

Figure 9. Description of a Modem in GME.

Describing a metamodel in GME consists in modeling all paradigm concepts as classes through usual
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UML class diagrams using some predefined UML-stereotypes, as shown in Figure8. Signal-Meta class
diagrams describe all the syntactic elements defined in SIGNAL V4 [36]. Among the described concepts,
SIGNAL operators (e.g. arithmetic operators, clock relations) are represented by elementary objects, SIGNAL
process frames or modules are represented as GME containers, called Model, and relations between SIGNAL
operators, such as definition and dependency, are represented as classes using the Connection stereotype.

In these class diagrams, GME provides a means to express the visibility of components within a model
through the notion ofAspect(i.e. one can decide which parts of the descriptions are visible depending on their
associated aspects). Signal-Meta comprises three main Aspects:Interface, Computation partandClock and
Dependence Relations. The first Aspect manages all input/output signals and static parameters. The two other
reflects respectively data-flow relations and clock relations between signals.

Figure9 represents the description of a modem using Signal-Meta in GME. At the bottom of the windows,
the left frame contains all concepts that can be manipulated in the upper frame by drag&drop.

6.2.1. Model Transformation
The graphical description constitutes a good front-end for SIGNAL specifications. To complete this front-

end, we need a means to transform the graphical Signal-Meta specifications to the SIGNAL language. GME
offers a means to develop and plug components into the GME environment. The role of such a component
consists of interacting with the graphical designs. GME distinguishes different families of components that
can be plugged to its environment depending of their role. We developed an Interpreter whose role is to
check information, such as the correctness of a model, and/or produce a result, such as a description file. This
interpreter is developed in C++ using theBuilder Object Network(BON2) API provided with GME.

Figure 10. Generation of SIGNAL models from GME.

There are three main steps in the interpretation as shown in Figure10. The first step consists in generating the
structure of the SIGNAL program as a tree in which each node corresponds to a SIGNAL process model, and
each leaf to a symbol (signal, constant). The second step consists in building the inner SIGNAL equations of
each node of the tree created at the previous step and to detect structural errors in the graphical specifications.
Finally, the last step writes the building SIGNAL equations in a file.
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6.2.2. Bridge to Eclipse
Within a work initiated at INRIA in the ATLAS team in Nantes, we studied the possible migration of

existing GME projects, and particularly Signal-Meta, into Eclipse. The ATLAS team has defined a model
engineering support on top of the Eclipse Modeling Framework (EMF), called the AMMA (ATLAS Model
Management Architecture) platform [30]. To be able to exchange models between an EMF based system and
a corresponding GME assumes an abstract understanding of both architectures and a precise organization of
the interoperability scheme.

EMF and GME allows metamodel and model management. The designed models conforms to a previously
defined metamodel. Any metamodel design assumes the existence of a metametamodel (implicit or explicit).
So three levels have to be considered: metametamodel concepts mapping (M3), building metamodel projec-
tors (M2) and building model projectors (M1). Projectors are operational bridges between different technical
spaces, and are realize here using ATL (ATLAS Transformation Language), which allows model transfor-
mations in EMF technical space. The metamodel bridge is already effective. Only a part of the metamodel
concepts are translated into the ATLAS file. All graphical information and all OCL constraints are lost. The
file contains only information about concepts and their relations (e.g. inheritance, containment). So, it is possi-
ble to work on the old GME project into EMF. The GReAT [31] transformation language provided with GME
can also be replaced by ATL to work on the produced artifacts. This work is described in [19].

6.3. Compositional modeling and transformation of multi-clocked mode
automata
Keywords: Generic Modeling Environment, Mode automata, Model transformation, SIGNAL.

Participants: Jean-Pierre Talpin, Christian Brunette.

Gathering advantages of declarative and imperative approaches, mode automata were originally proposed
by Maraninchi et al. [46] to extend the functionality-oriented data-flow paradigm with the capability to model
transition systems easily and provide an additional imperative flavor. Similar variants and extensions of the
same approach to mix multiple programming paradigms or heterogeneous models of computation [37] have
been proposed until recently, the latest advance being the combination of stream functions with automata
in [39]. Nowadays, commercial toolsets such as the Esterel Studio’s Scade or Matlab/Simulink’s Stateflow are
largely inspired from similar concepts.

While the introduction of preemption mechanism in the multi-clocked data-flow formalism Signal was
previously studied by Rutten et al. in [52], no attempt has been made to extend mode automata with the
capability to model multi-clocked systems and multi-rate systems. Taking advantage of recent works extending
Polychrony with a metamodel (see Section6.2) in the model-driven engineering framework of GME (Generic
modeling environment [45]), we extend Signal-Meta with an inherited metamodel of multi-clocked mode
automata. A salient feature is the simplicity incurred by the separation of concerns between data-flow (that
expresses structure) and control-flow (that expresses a timing model) that is characteristic to the design
methodology of SIGNAL.

While the specification of mode automata in related works requires a primary address on the semantics
and on compilation of control, the use of SIGNAL as a foundation allows to waive this specific issue to its
analysis and code generation engine Polychrony and clearly expose the semantics and transformation of mode
automata in a much simpler way by making use of clearly separated concerns expressed by guarded commands
(data-flow relations) and by clock equations (control-flow relations).

6.3.1. Example of the switch
To illustrate our modeling techniques, we consider the example of a simple crossbar switch (see Figure11).

The switch is a typical example of specification where an imperative automata-like structure superimposed to
a native data-flow structure gives a shorter and more intuitive description of the system’s behavior. The mode
automata of the switch consists of two states flip and flop, in which routing is performed fromy1,2 to either
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Figure 11. Description of the crossbar switch.

x1,2 or x2,1 depending on the current mode of the automaton. The mode toggles from flip to flop, or converse,
upon an occurrence of the eventr (see Figure11).

The left of Figure12 represents the switch process in whichy1, y2, andr are declared as input signals,
x1 andx2 as output signals, andSwitchAtm as the mode automaton.DATA_TYPE is a parameter only used
to define a generic type for input and output signals. TheSwitchAtm object is a container in which all its
states are specified (see right of Figure12). TheSwitchAtm automaton contains two terminal states (flip
andflop). Transitions are guarded by the eventr, as labeled on the middle of transitions. The 0 indicates the
priority of the transition, which has been added to guarantee the determinism of a mode automata if there are
more than one outgoing transition on a state.

Figure 12. TheSwitch process and theSwitchAtm mode automaton specifications in GME.

The left of Figure12 also represents the synchronization of theSwitchAtm clock with the union of the
clock of y1, y2, andr. Because output signals are partially defined in states (see the content of stateflip
(resp.flop) at the left (resp. right) of Figure13), their clocks have to be specified explicitly. Therefore, the
MinClockoperator is used to define them as the union of clocks of their partial definitions.

Figure 13. Content of statesflip andflop.

6.3.2. Model Transformation
The transformation consists in expressing the graphical formalism as a SIGNAL code. Therefore, we have

extended the Signal-Meta interpreter to support the mode automata extension. The code below corresponds to
the application of the interpreter on the switch example specified in Figure12and13.
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process Switch =

{ type DATA_TYPE; }

( ? DATA_TYPE y1, y2; event r;

! DATA_TYPE x1, x2; )

(| min_clock(x1) | min_clock(x2)

| SwitchAtm::(| _SwitchAtm_0_currentState ^= (y1 ^+ y2 ^+ r)

| _SwitchAtm_0_reinit := ^0

| _SwitchAtm_0_nextState := (#flip when _SwitchAtm_0_reinit)

default (#flop when (r)) when (_SwitchAtm_0_currentState = #flip)

default (#flip when (r)) when (_SwitchAtm_0_currentState = #flop)

default _SwitchAtm_0_currentState

| _SwitchAtm_0_currentState := _SwitchAtm_0_nextState$ init #flip

| case _SwitchAtm_0_currentState in

{#flip}: (| x2 ::= y2 | x1 ::= y1 |)

{#flop}: (| x1 ::= y2 | x2 ::= y1 |)

end

|)

where type _SwitchAtm_0_type = enum(flip, flop);

_SwitchAtm_0_type _SwitchAtm_0_currentState, _SwitchAtm_0_nextState;

event _SwitchAtm_0_reinit;

end

|)

where label SwitchAtm;

end; % process Switch %

6.4. A modeling paradigm for Integrated Modular Avionics design
Keywords: Generic Modeling Environment, Integrated Modular Avionics, metamodeling.

Participants: Christian Brunette, Abdoulaye Gamatié, Thierry Gautier, Jean-Pierre Talpin.

We previously addressed the design of applications based on theIntegrated Modular Avionics(IMA)
architecture, which relies on the avionic standard APEX-ARINC [32], [33]. This leads to the implementation
of a library of components in Signal, providing real-time executive services defined by the APEX-ARINC
standard.

Now, we carry out this library in theGeneral Modeling Environment(GME) [28]. The primary purpose
is to increase the usability of the library by proposing the same concepts within a non domain-specific tool
such as GME. Therefore, without being an expert of synchronous technologies, a user could still be able to
design applications based on the IMA modeling approach proposed in the Polychrony environment. Today,
we observe that the attention of the industry tends to shift to frameworks based on general-purpose modeling
formalisms (e.g. UML), in response to a growing industry demand for higher abstraction-levels in the system
design process.

GME [45] is a configurable object-oriented toolkit, which supports the creation of domain-specific modeling
and program synthesis environments.Metamodelsare proposed in the environment to describemodeling
paradigmsfor specific domains: basic concepts required for model representation from a syntactical viewpoint
to a semantical one.

Our modeling paradigm for IMA design in GME, called MIMAD, is represented by the layer on the top
in Figure 14. The layers on the bottom are dedicated to domain-specific technologies. Here, we consider
Polychrony, which is associated with Signal. However, one can observe that the idea is extensible to further
technologies that offer specific useful functionalities to the MIMAD layer (e.g., the integrated environment
UPPAAL, which enables validation and verification of real-time systems using timed automata). As GME



Project-Team Espresso 19

Figure 14. A component-oriented modeling framework for IMA design.

enables to import and export XML files, information exchange between layers can rely on this intermediate
format. This favors a high flexibility and interoperability.

The MIMAD layer aims at providing a user with a graphical framework allowing to model applications
using a component-based approach. Application architectures can be easily described by just selecting these
components via drag and drop. Component parameters (e.g. period or deadline of an IMA process model) can
be specified. The resulting GME model is transformed in Signal (referred to asMimad2Sigin Figure14) based
on the XML intermediate format.

In the synchronous data-flow layer, the XML description obtained from the upper layer is used to generate
a corresponding Signal model of the initial application description. This is achieved by using the IMA-based
components already defined in PolychronyPolychrony [5]. Thereon, the formal analysis and transformation
techniques available in the platform can be applied to the generated Signal specification. Finally, a feedback
is sent to the MIMAD layer to notify the user with possible incoherences in initial descriptions.

6.5. Dealing with Real-Time Issues within the Polychronous Framework
Keywords: Polychrony, Real-time execution.

Participants: Abdoulaye Gamatié, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

We continue our investigations on the use of thepolychronousmodel to deal with practical issues in real-
time design [22]. In particular, we motivated and illustrated how this model can be used to address the dual
notions of abstraction (high level vision) and refinement (moving to the implementation), which are central
to decompose, understand and integrate the design of real-time systems. The key points we address include
temporal scalability(how to describe the deployment of a given component on different execution platforms),
modeling of interrupts within real-time executions, characterization of real-time constraintsoften imposed
to a system (mainly constraints involved by environments and those involved by execution platforms), and
temporal refinement(based on the over-sampling mechanism of the Signal language). From now, the discussed
ideas need to be “materialized” in order to be used by designers in a pragmatic way. Therefore, our future
efforts aim at carrying out these ideas within the Polychrony platform.

6.6. A methodology to automatic building of formal models from SystemC
description
Keywords: Formal Methods, Signal, Synchronous Formalism, System Level Design, SystemC.

Participants: Hamoudi Kalla, David Berner, Jean-Pierre Talpin, Loïc Besnard.
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Design correctness of software and hardware functionalities of embedded system is one of the major
challenges and priorities for designers using software programming languages such as SystemC and C/C++ to
describe their systems. These programming languages allow for a comfortable design entry, fast simulation,
and software/hardware co-design. Moreover, as the complexity of systems increase, designers are bound
to reuse existing Intellectual Property components (IPs) in their design to improve the design productivity.
However, system validation is a critical challenge for design reuse based on software programming languages.
In recent years, many automated simulator and test tools [49] have been developed to deal with design
verification problems. However, mere simulation with non-formal development tools does by no means cover
all design errors. What we therefore need is to use formal methods [42] to ensure the quality of system designs.
One major problem with formal methods however is the building of the formal system models. This is still
considered too complex for a standard design engineer and an error prone and time consuming task. To deal
with this problem we propose an approach in which we automatically translate SystemC models into the
synchronous formalism Signal, hence enabling the application of formal methods without having to deal with
the complex and error prone task to build formal models by hand. We take advantage of the formal nature
of Signal to validate system design at different levels of abstraction [15]. The Signal compiler allows static
checking for types, dependencies, and clock constraints. Dynamic properties of Signal models can be checked
by the model-checking tool, Sigali [47].

Figure 15. The methodology

Figure15 shows the methodology of our approach to translate SystemC modules into Signal processes. In
a first step we analyze the original model and detect the structural information. The structure of the model
is mainly the modular partitioning, the hierarchy within the model and the netlist between the modules. It is
important to retain the structure in the resulting formal model, since this allows to formally verify only parts
of interest of the design, to abstract certain modules, and to localize errors when they occur. The extraction
of the structure is done with a tool called SystemCXML, that has an API, offering the structural information
also to other applications such as test generation and visualization. From this design structure, we generate
Signal process skeletons, that express the structure of the model in Signal, a formal, synchronous language.
This is done with a modified version of GCC that parses the code in question, simplifies the structure, converts
it into its intermediate Single Statement Assignement (SSA) form [40] and performs optimization passes such
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as dead code elimination on it. We added a transformation pass into GCC that we call SSA2Signal, which
generates Signal code that is functionally equivalent to the SystemC input. Once this is done, the Signal
process skeletons are filled with the behavior from the translation, and this for each module. The result is a
complete formal model of the system in question, obtained in a completely automated fashion.

If an error is detected in the formal model, it has to be corrected directly in the SystemC model. This is
because the transformation process is automated and there is no way to go back in the opposite direction.
An error found in the formal model therefore still has to be located in the SystemC model, however the
preservation of structure of the transformation is helping to localize it.

6.6.1. Extracting and translating SystemC structural information
The SystemCXML tool-flow (Figure16) consists of three steps. In the first step we process the SystemC

code with Doxygen in order to generate an XML output that contains all the information of the original
SystemC code, but embedded withing XML tags. While Doxygen is a tool for automated generation of
documentation of program code, it has an option for including the source code in the generated output. It
can generate several output formats, among them XML, which can be easily read and traversed with the help
of any standard XML parsing library. We take advantage of this functionality to approach the difficult problem
of parsing C++ code.

Figure 16. Tool-flow of the SystemCXML project

The second step consists of reading in the Doxygen generated XML data with the help of the Xerces-C++
XML parser [55], extract the structural information of interest, and write this information back into an XML
format in a way such that it is readily accessible for other purposes. We represent this extracted information in
an Abstract System Level Description (ASLD) XML file.

In the third step, we read in the ASLD and check if it conforms to the DTD description. We process the
information and store it in an internal structure that is both, easily accessible and one that closely resembles
the structure of SystemC code. As the structure of the IR is the basis for all data manipulations and back-end
passes, it is important for it to be generic and the appropriate accessory functions need to be implemented
to query the IR. These functions make is possible to traverse the module hierarchy and extract the required
structural information. The IR contains classes for all constructs that we extract such asInport, Outport,
Signal, Sensitivity, Process, andModule. Some information that is not readily available in the XML can be
obtained by analyzing the available data. Thetopmoduleslist that points to modules that are not instantiated
as a submodule, or the connection class that holds connectivity information are examples for this.

6.6.2. Extracting and translating SystemC behavioral code
The SSA2Signal tool-flow (Figure17) consists of two steps. The primary main objective SSA2Signal is to

extract behavioral code from SystemC modules, and then transforming this code into Signal equations, and
Signal processes.

The transformations of SSA2Signal are based on SSA and the GCC compiler. The SSA formalism allows
for a smooth translation of SystemC code into Signal equations. The SSA representation can be automatically
generated from SystemC modules using the GCC compiler. One of the reasons why we chose to use the
SSA form in our approach is that SSA has been adopted as an optimization framework by compilers, such as
GCC and theJava virtual machine Jikes RVM. This allows an easy use of our approach by designers using a
common software programming language to describe their systems. Our SSA2Signal compiler take as inputs
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Figure 17. Translating SystemC behavior

the original SystemC modules and their interfaces generated by SystemCXML. It first translates SystemC
modules into Gimple, CDFG form and then into SSA form. Next, it generates for each module interface its
behavioral code as Signal equations.

One advantage of our translation scheme is that systems modeled using programming languages that are
supported by GCC other than C++, such as Java and Fortran, could as well be translated into Signal processes
using the same transformation pass.

6.7. Extreme Formal Modeling
Keywords: Polychrony, Real-time execution.

Participant: David Berner.

The XFM approach is based on the hypothesis that the root of many implementation errors is actually within
the specification. Often specifications are not sufficiently clear and contain logical errors that go undetected
until very late into the development process. Costs for errors detected late are high, so the idea is to build a
clear formal specification with as few errors as possible in order to avoid later debugging costs. This spec can
then serve as a golden reference model for later implementation steps.

The intention behind this approach is obvious, however its implementation is not without problems. The
development of formal specifications is quite complex and not part of the skillset of the average engineer.
Building such a formal model also means to spend more time during specification stage, which can mean
to reach a first functional prototype later. The verification of formal specifications can take a lot of time
and resources in terms of memory and processor time, and abstractions have to be made for verifications to
complete in an acceptable time. However, once the formal specification is complete and verified, it can be used
as a starting point for a corresponding implementation. Depending on the languages and environments chosen
it may be difficult here to get a transition without semantic rupture, but even if there is a semantic rupture, the
formal specification can help to avoid many errors.

For the construction of formal specification models we propose a somewhat different approach. We use
agile methods that have been applied with success in the field of Extreme Programming (XP) in order to
incrementally construct formal models that verify from the beginning. The models grow with the number
of formal properties integrated in a correct by construction (CBC) fashion. We find that using this approach



Project-Team Espresso 23

we are able to build correct formal models faster and that they are better structured, which is facilitating the
transition to the implementation.

The journal paper [14] sums up all of our work so far on the subject of XFM. We describe there in detail
the different stages of the model building process such as how to describe formal properties and how to
iteratively extend the model. It also demonstrates the viability of the approach with several more or less
complex examples. There we also elaborate on the fact as to how the modeling order of properties is affecting
the modeling result. As we realize that by changing the order in which the formal properties are added the
size and state space of the resulting model changes, we study how different ordering schemes influence this
behavior. We see if their impact is reproducible for different models and what would be an optimal ordering
strategy when aiming for a minimal size, clear structure, and minimal state space of the final model. The paper
also presents a graphical interface that can be used to experiment with different orderings for the modeling of
formal properties.

6.7.1. Validation of Latency Insensitive Protocols
When modeling complex embedded systems with fast system clocks, there is a limit where certain wires are

longer than the signal propagation during one clock cycle. Based on optimistic estimations, a 10 GHz chip in
50 nm technology will contain wires with delays of 10 clock cycles [34]. For such a chip, a strictly synchronous
design is not possible any more, we need to introduce multiple clock domains or desynchronizations. The field
of latency insensitive protocols [38] is trying to deal with this problem domain. Several protocols have been
proposed that - in a more or less automated way - try to eliminate the consequences of long wires without
being forced to make drastic changes in the original synchronous components. One common problem of
latency insensitive protocols is the proof of correctness of the transformation. Even though the majority of the
approaches claim to be correct by construction, few of them deliver formal proofs for the behavior preservation
and those that do, are mostly incomplete or difficult to follow.

In [26] we formally verify the preservation of behavior between the original synchronous model and the
latency insensitive one. This is done for several different protocols, one of them being our modification of the
Carloni implementation that eliminates the need for relay stations. This protocol results in fewer alterations of
the design as no blocks are added along the long interconnects; instead, some wires are duplicated in order to
make up for the performance loss. In [25] we use functional programming in order to validate different latency
insensitive protocols and finally in [54] we resume all our work in this area.

6.7.2. Using Structural Information for Design Validation
The increasing complexity and size of system level design models introduces a difficult challenge for

validating them. Hence, in most industries, design validation takes a large percentage of the overall design
time. The immediate solution is to automate certain procedures of generating testbenches from the design
given certain information about the model. However, the volatile nature of models used for design exploration
results in the designer having to alter the testbenches or the automation for the testbenches to reflect the
design changes. In efforts to alleviate this problem of constantly changing designs and generating appropriate
testbenches for the changed design, we propose a methodology of using structural reflection to extract
structural information from design sources allowing the use of tools such as testbench generators and model
viewers to seamlessly employ this extracted information. In [17] we present a methodology to automatically
extract structural information from already existing SystemC projects and we show how this information can
be exploited for system management and validation tasks. We illustrate example uses such as visualization,
design management tasks, and automated test generation. As part of this work we implemented an open source
tool to extract structural information from SystemC models called SystemCXML mentioned in Section5.4

6.8. Co-design with data-flow and polyhedral models
Keywords: affine clocks, polyhedral model.

Participants: Loïc Besnard, Thierry Gautier.
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With Anne Marie Chana, PhD student in the R2D2 project-team (half-time in Rennes, half-time at Yaoundé
University, Cameroon), we have started a new cooperation between Espresso and R2D2.

The context is the design of integrated circuits for multimedia applications using jointly data-flow and
polyhedral models. The objective is to take benefit of both models in order to optimize systems containing
both control aspects and intensive computations. The study relies on two modeling platforms: Polychrony
with Signal, and MMAlpha with Alpha.

The former FT project CAIRN [53] can be a first basis for this new study. In this project, we have defined
interfacing levels between Signal and Alpha. In Signal-Alpha systems, the refinement of an Alpha program
from a functional level to an architectural level oriented toward a particular implementation also induces a
refinement of the temporal indices in Signal. The new time indices are obtained throughaffine transformations
on the instants of time of the initial Signal specification. An affine clock calculus, complementary to the current
boolean clock calculus, has been defined in Irina Smarandache’s thesis. This affine clock calculus has been
partly integrated this year in Polychrony.

Other paths are being explored for the present study, considering in particular a functional level at which the
Alpha program is considered as a node of the Signal graph. Several work directions are envisaged, including
scheduling under constraints of the Alpha program (some constraints can be provided by Signal), pipelining
of the Signal graph, retiming of the Signal graph...

6.9. Synthesis of GALS architectures
Participants: Julien Ouy, Paul Le Guernic, Jean-Pierre Talpin.

Gathering advantages of both the synchronous and asynchronous approaches, the Globally Asynchronous
Locally Synchronous (GALS) architectures are emerging as an architecture of choice for implementing
complex specifications in both hardware and software. In a GALS system, locally-clocked synchronous
components are connected through asynchronous communication lines.

We consider the problem of synthesizing correct-by-construction GALS implementations from modular
synchronous specifications. This involves the synthesis of asynchronous wrappers that drive the synchronous
clocks of the modules and perform input reading in such a fashion as to preserve, in a certain sense, the
global properties of the system. Our approach is based on the weakly endochronous synchronous model,
which gives criteria guaranteeing the existence of simple and efficient asynchronous wrappers. We focus on
the transformation (by means of added signalling) of the synchronous modules of a multiclock synchronous
specification into weakly endochronous modules, for which simple and efficient wrappers exist.

In [16], We propose a process algebraic model to support system design with a formal model of computation
and serve as a type system to capture the behavior of system components at the interface level. The
proposed algebra is conceptually minimal, equipped with a formal semantics defined in a synchronous
model of computation. It supports a scalable notion and a flexible degree of abstraction. We demonstrate its
benefits by considering the type-based synthesis of latency-insensitive protocols, showing that the synthesis
of component wrappers can be optimized by behavioral information carried by interface type descriptions and
yield minimized stalls and maximized throughput.

In [27], we focus on the analysis and the transformation of high-level modular synchronous and multi-
clocked specifications (written in languages such as Signal, Lustre, or Esterel) to ensure the weak endochrony
and absence of deadlocks. We define a new intermediate representation for synchronous programs, which
does not suffer from the state explosion problem of the microstep automata of the weakly endochronous
synchronous model (so that real-life systems can be represented and analyzed). At this level, we define
symbolic analysis and synthesis algorithms that ensure the needed properties by means of added signalling.

In [23], a survey and discussions are proposed on existing techniques and challenges for the synthesis of
GALS architectures starting from multi-clocked synchronous specifications.

6.10. Verification of GALS architectures
Participant: Jean-Pierre Talpin.
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Starting with modules described in Signal synchronous programming language, we present in [20] an
approach to verification of GALS systems. Since asynchronous parts of a GALS system can not be described
in Signal, we use a mixture of synchronous descriptions in Signal and asynchronous descriptions in Promela.
Promela is the input language to the SPIN asynchronous model checker. This allows us to achieve globally
asynchronous composition (Promela) of locally synchronous components (Signal).

We present three key results:

• First, we present a translation from Signal modules to Promela processes and prove their equivalence.

• Second, we present a technique to abstract a communication bus designed for GALS, the Loosely
Time-Triggered Architecture (LTTA) bus, to a finite FIFO channel. The benefit of this abstraction is
improved scalability for model checking larger specifications using SPIN.

• Third, we prove the trace equivalence of the model of the GALS system in Promela and a hardware
implementation of it. This allows the verification of GALS systems based on the Promela model.

We then use our technique to verify a central locking system for automobiles built on a GALS architecture
using the LTTA.

6.11. Toward multi-clocked synchronous stream functions
Participant: Jean-Pierre Talpin.

Functional programming framework both provide the necessary sound semantic framework to formally rea-
son on system modeling, and significantly raise design productivity by offering programming environments in
which error-prone and time-consuming engineering tasks such as type consistency and memory management
can be automatically handled by the compiler.

However, functional programming frameworks used so far for capturing such models are not capable of ex-
pressing multi-clocked computations. The ability to automatically recognize the independence of computation
fragments from each other, and therefore the ability to assign distinct clocks to these computations can have
both performance implications, as well as other resource scheduling implications.

In [26], we propose a type inference system for representing a synchronous and multi-clocked model of
computation in the typed and functional programming language ML. Along the way, we address the issue
of performing an automated refinement of implicitly timed stream functions in a model of computation
that supports reasoning on partially ordered signal clocks, allowing for formal design transformation and
verification to be performed in the context of a functional programming environment.

6.12. New features in Polychrony
Participants: Loïc Besnard, Thierry Gautier.

This year, the affine clock calculus [53] has been partly integrated in Polychrony. It is an extension of the
boolean clock calculus based on free boolean conditions. The affine relations allow to express that successive
values of some signal are provided at specific micro-instants between any two successive macro-instants in a
regular manner.

To express affine relations, three predefined processes have been introduced.

• affine_sample={integerφ, d} (? x ! y ), with φ ≥ 0 andd > 0, defines a signaly as an undersampling
of an other onex. A value ofy is available eachdth value ofx, and the occurrence of the first value
of y is given by the phases (φ + 1). Forφ = 3 andn = 4, the process is illustrated on figure18.
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Figure 18. Example: y := affine_sample{3,4} (x)

Figure 19. Example: clock_affine{5,4,7}(x,y)

• affine_clock_relation={integern, φ, d} (? x, y) defines the fact that the clock of the input signals
x and y are in affine relation withn, φ, d as parameters. To implement this process, a clock (I)
greater than the clock ofx andy is built such that the clock ofx is synchronized with the clock
of affine_sample{ max(0,−φ), n }( I), and the clock ofy is synchronized with the clock of
affine_sample{ max(0, φ), d }( I).
Forn = 5, φ = 4 andd = 7, the process is illustrated on figure19.

• affine_unsample={integern, φ} (?x, z ! y) with n > 0 andφ ≥ 0, defines the signaly, synchronized
with the signalz, as an oversampling from the input signalx; the input signalz is used to fix the
values ofy whenx is absent. Forn = 3, φ = 1, the process is illustrated on figure20.

Figure 20. Example: y := clock_unsample{3,1}(x, z)

Concerning the integrated development environment Polychrony5.1, it has been ported this year to
WINDOWS XP OS. So, Polychrony is now available on LINUX , SUNOS, MACOS X and WINDOWS. To
make the simulation program portable, the graphical part is written in Java. The predefined graphical library
defined in Signal and provided in Polychrony has been extended and many examples have been ported using
this graphical library.

A mid-term goal (beginning of 2006) is now to provide anopen-sourcediffusion of the environ-
ment. To achieve this, we have documented most sources of Polychrony using the systemDOXYGEN

(http://www.stack.nl/~dimitri/doxygen). This work is performed in parallel with the packaging of the data
structures of Polychrony as libraries. The next step will be the definition of the user interface of these libraries.
The aim is the use of theseAPIS for the definition of model transformations described in high-levelIDE tools
(UML -based, GME “Model-Integrated Computing”...).

http://www.stack.nl/~dimitri/doxygen
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Another use of theAPIS is the importation of models (SystemC, RTJava...) in Polychrony. In particular,
we study the transformation of GnuSSA to Polychrony.Static Single Assignment(SSA) is an intermediate
representation of theGCC compiler.

7. Contracts and Grants with Industry
7.1. Carroll project Protes (10/2003-10/2005)

Participants: Christian Brunette, Thierry Gautier, Jean-Pierre Talpin.

The partners of theCARROLL project Protes (http://www.carroll-research.org) are Thales, CEA-List and
the INRIA project-teams Espresso, Aoste and Dart. The aim of the project Protes is to propose a UML profile
for real-time and embedded systems and to defend it before the OMG. The participation of the project-team
to this collaboration is addressed section6.1.

7.2. Network of excellence Artist2
Participants: Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

The Espresso project-team is involved in the activity of the Artist2 network of excellence. The URL
http://www.artist-embedded.org/FP6) gives a detailed description of the aim and scope of the network.

8. Other Grants and Activities
8.1. INRIA associated projects program

Participants: David Berner, Abdoulaye Gamatié, Paul Le Guernic, Jean-Pierre Talpin.

The design productivity gap has been recognized by the semiconductor industry as one of the major
threats to the continued growth of system-on-chips and embedded systems. Ad-hoc system-level design
methodologies, that lift modeling to higher levels of abstraction, and the concept of intellectual property (IP),
that promotes reuse of existing components, are essential steps to manage design complexity. However, the
issue of compositional correctness arises with these steps. Given components from different manufacturers,
designed with heterogeneous models, at different levels of abstraction, assembling them in a correct-by-
construction manner is a difficult challenge. We address this challenge by proposing a behavioral type
inference system to capture SystemC components’ behavior at the interface level. The proposed type theory
grounds a modeling and specification methodology, formulated in terms of a module system, that reduces
compositional design correctness verification to the validation of synthesized proof obligations. The proposed
type theory is conceptually minimal, equipped with a formal semantics, defined in a synchronous model of
computation and supports a scalable notion and a flexible degree of abstraction. Our collaboration targets the
de factostandard SystemC, yet with generic and language-independent techniques. Its applications range from
the detection of local design errors to the compositional assembly of modules.

Visits performed in the frame of the collaboration brought new contacts to prospective collaborations
with Connie Heitmeyer (Naval Research Laboratories) and Ingolf Krueger (UC San Diego) and discussions
and proposals being for additional prospective collaborations and exchanges. Applications of Polychrony
to embedded system design in automotive are being investigated with Ingolf Krueger and his student
Massimiliano Menarini. A collaboration on synchronous modeling is being discussed with Connie Heitmeyer.
The partners of the collaboration participate to the proposal REUSSI submitted by INRIA to the IRES program
of the NSF.

The Third ACM-IEEE International Conference on Formal Methods and Models for Codesign (MEM-
OCODE’05) took place at the University of Verona, Italy, from July 11 until July 15, 2005. The conference
started on day one with a keynotes speech of Nicolas Halbwachs on "A Synchronous Language at Work: The

http://www.carroll-research.org
http://www.artist-embedded.org/FP6
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Story of LUSTRE". This was followed by presentations throughout the day on the topics of modeling lan-
guages, model checking and synthesis and finished with a tutorial on "Making PVS Do What You Want" given
by Myla Archer from the Naval Research Laboratory. There were 18 papers accepted for MEMOCODE’05,
which made up the core content for the presentations and discussions on the topic areas discussed above, giv-
ing the conference a continued reputation of high-quality competitive selection. Acknowledgment of support
from the Industry and Academia including INRIA, the ARTIST2 Network of Excellence, BlueSpec Incorpo-
rated and Celoxica, was included in printed material. Complete information on the MEMOCODE conference
series can be found athttp://memocode.irisa.fr.

9. Dissemination
9.1. Advisory

• Paul Le Guernic is executive board member of the Réseau National en Technologies Logicielles and
steering committee member of the Réseau National en Micro-Nano Technologies.

• Paul Le Guernic and Jean-Pierre Talpin are steering committee members of the ACM-IEEE confer-
ence on methods and models for codesign (MEMOCODE).

• Jean-Pierre Talpin is elected member of the evaluation commission at INRIA.
• Jean-Pierre Talpin is external advisory board member of the center of embedded systems at Virginia

Tech.
• Jean-Pierre Talpin is organization committee member of the GALS workshop series.

9.2. Conferences

• Jean-Pierre Talpin served as general co-chair of ACM-IEEE MEMOCODE’05 and technical pro-
gram committee co-chair of its satellite FMGALS’05 workshop. He served as technical program
committee member for the IEEE DATE’05 conference, for the embedded system track of the ACM
SAC’05 symposium and for the FESCA’05 ETAPS workshop.

• Paul Le Guernic served as technical program committee member of the ACM-IEEE MEM-
OCODE’04 conference.

• Thierry Gautier served as technical program committee member of SLAP’05 (Synchronous Lan-
guages, Applications, and Programming), an ETAPS’05 Satellite Event.

9.3. Events

• Loïc Besnard, Thierry Gautier and Jean-Pierre Talpin organized the 34th. IRISATECH seminar June
22nd. on formal modeling of embedded system design and received 50 participants. Interactive
multi-media presentations of the seminar are available on IRISA’s website:
http://www.irisa.fr/videos/irisatech/creaEntreprises/presentation.htm
The seminar started with the opening remarks by Jean-Loïc Delhaye, director for relations with
industry at INRIA-Rennes, and the introduction by Jean-Pierre Talpin, ESPRESSO project-team
leader. The first lecture was given by Albert Benveniste, project-team S4, on "Rich components for
heterogeneous systems modeling". This lecture was followed by a presentation by Patrick Farail,
project leader at AIRBUS Industry, on the TOPCASED initiative on an open-source environment
for avionics architecture design. Then, Thierry Gautier et Loïc Besnard, ESPRESSO project-team
members, gave an interactive demonstration of the POLYCHRONY workbench. The closing lecture
was given by Sandeep Shukla, Deputy Director of the FERMAT Laboratory at Virginia Tech, on
"System level design languages and the US CAD industry trend".

• Loïc Besnard and Abdoulaye Gamatié gave a demonstration of Polychrony at the Application of
Concurrency to System Design Conference - ACSD’05 (http://acsd2005.irisa.fr)

http://memocode.irisa.fr
http://www.irisa.fr/videos/irisatech/creaEntreprises/presentation.htm
http://acsd2005.irisa.fr
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9.4. Thesis

• Jean-Pierre Talpin served as referee in the thesis defense committee of Matthieu Moy at VERIMAG,
December 9.

• Jean-Pierre Talpin served as examiner in the thesis defense committee of Chaker Nakhly at VER-
IMAG, September 2.

9.5. Teaching

• Thierry Gautier and Loïc Besnard taught on real-time programming at the DIIC 2 Graduate Program
of University of Rennes I.

• Abdoulaye Gamatié gave courses as teaching assistant at the University of Rennes I.

9.6. Visits

• David Berner spent five weeks at Virgina Tech starting March 28 in the frame of our collaboration
with the INRIA associated team FERMAT lab of Prof. Sandeep Shukla. He collaborated with several
of the students there on subjects such as the formal verification of latency insensitive protocols
and continuing on the joint work on the extraction and exploitation of structural information from
SystemC models.

• Jean-Pierre Talpin visited Virginia Tech in March 2005 and UC San Diego in August 2005 in the
frame of the associated projects program.

• Abdoulaye Gamatié visited Virginia Tech in March 2005 in the frame of the associated projects
program and gave an invited talk at Virginia Tech on the “Polychronous Modeling of Real-Time
Systems”.

• Sandeep Kumar Shukla (Virginia Tech) visited IRISA as Invited Professor of the University of
Rennes in July 2005.

• Rajesh Gupta (UC San Diego) visited IRISA in February 2005 in the frame of the associated projects
program.

• Hiren Patel and Deepak Mathaikutty (Virginia Tech) visited IRISA in September 2005 in the frame
of the associated projects program.
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