
c t i v i t y

te p o r

2005

THEME NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team grand-large

Calcul parallèle et distribué à grande
échelle

Futurs

http://www.inria.fr/recherche/equipes/listes/theme_NUM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/grand-large.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-futurs.en.html




Table of contents

1. Team 1
2. Overall Objectives 2

2.1. Grand-Large General Objectives 2
3. Scientific Foundations 3

3.1. Large Scale Distributed Systems (LSDS) 3
3.1.1. Computing on Large Scale Global Computing systems 3
3.1.2. Building a Large Scale Distributed System for Computing 4

3.1.2.1. The resource discovery engine 4
3.1.2.2. Data storage and movement 4
3.1.2.3. Scheduling in large scale systems 5
3.1.2.4. Extension of MPICH-V 5

3.2. Volatility and Reliability Processing 6
3.2.1. Reliability Processing 7
3.2.2. Verification of Protocols 7

3.3. Parallel Programming on Peer-to-Peer Platforms (P5) 8
3.3.1. Large Scale Computational Sciences and Engineering 8
3.3.2. Experimentations and Evaluations 8
3.3.3. Languages, Tools and Interface 8

3.4. Methodology and Technologies for Large Scale Distributed Systems 9
3.4.1. Metodology 9
3.4.2. Technological Trends 10

4. Application Domains 10
4.1. Building a Large Scale Distributed System for Computing 10
4.2. Security and Reliability of Network Control Protocols 11
4.3. End-User Tools for Computational Science and Engineering 11

5. Software 12
5.1. XtremWeb 12
5.2. MPICH-V 13
5.3. YML 13
5.4. The Scientific Programming InterNet (SPIN) 14
5.5. V-Grid 14
5.6. FAult Injection Language (FAIL) 15

6. New Results 15
6.1. Large Scale Distributed Systems 15
6.2. Large Scale Peer to Peer Performance Evaluations 16
6.3. Volatility and Reliability Processing 18
6.4. Peer-to-peer systems conception 20
6.5. Nation Wide Experimental Platforms (testbed) 20

7. Other Grants and Activities 22
7.1. Regional, National and International Actions 22
7.2. Industrial Contacts 22

8. Dissemination 22
8.1. Services to the Scientific Community 22

8.1.1. Book/Journal edition 22
8.1.2. Conférence Organisation 23
8.1.3. Editorial Committee membership 23
8.1.4. Steering Committee membership 23



2 Activity Report INRIA 2005

8.1.5. Program Committee membership 24
8.1.6. School and Workshop organization 25
8.1.7. Session Chairing 25

8.2. Participation to Workshops, Seminars and Miscellaneous Invitations 26
8.2.1. Invited International Conference 26
8.2.2. Invited National Conference 26
8.2.3. Schools, Workshops 27
8.2.4. Seminaries 28

9. Bibliography 29



1. Team
Project-team Leader

Franck Cappello [Research Director at INRIA-Futurs]

Topic leaders
Franck Cappello [Middleware Design, Implementation and Test]
Joffroy Beauquier [Verification]
Serge Petiton [Large Scale Numerical Computing]

Administrative assistant
Gina Grisvard [Administrative assistant INRIA-Futurs]

Permanent Members
Joffroy Beauquier [Professor at Paris-Sud University]
Franck Cappello [Research Director at INRIA-Futurs]
Gilles Fedak [Junior Researcher at INRIA-Futurs]
Thomas Hérault [Assistant Professor at Paris Sud University]
Serge Petiton [Professor at University of Science and Technology of Lille]
Brigitte Rozoy [Professor at Paris-Sud University]
Sébastien Tixeuil [Assistant Professor at Paris-Sud University]

Non Permanent Position
Lamine Aouad [Teaching Assistant at Lille 1 University]
Samir Djilali [Teaching Assistant at Paris XII University]
Pierre Lemarinier [Teaching Assistant at Paris-Sud University]
Derrick Kondo [INRIA Post-Doctoral Fellow]
Bertier Marin [Teaching Assistant at Paris-Sud University]
Philippe Gauron [Teaching Assistant at Paris-Sud University]

Ph. D. student
Aurélien Bouteiller [MESR Grant (LRI)]
Matthieu Cargnelli [EADS Industrial Grant (CIFRE)]
Laurent Choy [INRIA et Région Nord (LIFL)]
Toussaint Guglielmi [MESR Grant (LIFL)]
William Hoarau [MESR Grant (LRI)]
Benoit Hudzia [Franco-Irish Grant (LIFL)]
David Ilcinkas [MESR Grant (LRI)]
Nicolas Nisse [MESR Grant (LRI)]
Oleg Lodygensky [LaL Engineer (Laboratoire de l’Accelerateur Lineaire)]
Benjamin Quettier [MESR Grant (LRI)]
Baohua Wei [Industrial Chinese Grant (LRI)]

Research scientist (partner)
Pierre Fraigniaud [Research Director at CNRS]
Rosaz Laurent [Assistant Professor at Paris Sud University]

Project technical staff
Julien Leduc [INRIA Exper Engineer]
Phillipe Marty [INRIA Expert Engineer]
Vincent Neri [CNRS Study Engineer]
Eric Rodriguez [INRIA Associate Engineer]



2 Activity Report INRIA 2005

2. Overall Objectives
2.1. Grand-Large General Objectives

Grand-Large is a Grid research project investigating the issues raised by computing on Large Scale
Distributed Systems (LSDS), where participants execute different applications on shared resources belonging
to other participants, possibly geographically and administratively independent. More specifically, we consider
large scale parallel and distributed computing on P2P, Global Computing and Desktop Grid systems. Our
research focuses on middleware and low level programming environments design, proof and experiments.
Fundamentally, we address the impact of LSDS, gathering several methodological tools: theoretical models,
simulators, emulators and real size systems.

The project aims:

1. to study experimentally, and formally, the fundamental mechanisms of LSDS for high performance
computing;

2. to design, implement, validate and test real software, middleware and platform;

3. to define, evaluate and experiment approaches for programming applications on these platforms.

Compared to other European and French projects, we gather skills in large scale systems (large scale
scheduling, volatility tolerance, heterogeneity, inter administration domain security, etc.) acquired with the
XtremWeb project (LRI, Cluster and Grid team), formal design and validation of algorithms and protocols for
distributed systems (LRI, Parallelism team) and programming, evaluation, analysis and definition of program-
ming languages and environments for parallel architectures and distributed systems (LIFL, methodologies and
parallel algorithms).

This project pursues short and long term researches aiming to have scientific and industrial impacts.
Research topics include:

1. the design of a middleware enlarging the application domain of Desktop Grid;

2. resource discovery engine on large scale system with volatil participants;

3. large scale storage on volatile nodes;

4. simulation of large scale scheduling;

5. fault tolerant MPI for large scale systems;

6. algorithm for large scale fault tolerance;

7. protocol verification;

8. algorithms, programming and evaluation of scientific applications on desktop Grids;

9. tools and languages for large scale computing.

These researches should have some applications in the domain of LSDS, Grid and large clusters.
At a longer term, we investigate the convergence conditions of Global Computing, P2P and Grid systems

(how Grid Services can be used in Desktop Grid) and experimental tools for improving the methodology
associated with research in LSDS. For example we have the responsibility of the Grid eXplorer project founded
by the French ministry of research and we are deeply involved in the Grid5000 project.



Project-Team grand-large 3

3. Scientific Foundations
3.1. Large Scale Distributed Systems (LSDS)

What makes a fundamental difference between pioneer Global Computing systems such as Seti@home,
Distributed.net and other early systems dedicated to RSA key cracking and former works on distributed
systems is the large scale of these systems. The notion of Large Scale is linked to a set of features that has
to be taken into account if the system should scale to a very high number of nodes. An example is the node
volatility: a non predictable number of nodes may leave the system at any time. Some researches even consider
that they may quit the system without any prior mention and reconnect the system in the same way. This feature
raises many novel issues: under such assumptions, the system may be considered as fully asynchronous (it is
impossible to provide bounds on message transits, thus impossible to detect some process failures), so as it is
well known [78] no consensus could be achieved on such a system. Another example of feature is the complete
lack of control of nodes and networks. We cannot decide when a node contributes to the system nor how.
This means that we have to deal with the in place infrastructure in terms of performance, heterogeneity and
dynamicity but also with the fact that any node may intermittently inject Byzantine faults. These features set up
a new research context in distributed systems. The Grand-Large project aims at investigating theoretically as
well as experimentally the fundamental mechanisms of LSDS, especially for the high performance computing
applications.

3.1.1. Computing on Large Scale Global Computing systems
Currently, largest LSDS are used for Computing (SETI@home, Folding@home, Decrypthon, etc.), file ex-

changes (Napster, Kazaa, eDonkey, Gnutella, etc.), networking experiments (PlanetLab, Porivo) and commu-
nication such as instant messaging and phone over IP (Jabber, Skype). In the High Performance Computing
domain, LSDS have emerged while the community was considering clustering and hierarchical designs as
good performance-cost tread-offs.

LSDS as a class of Grid systems, essentially extends the notion of computing beyond the frontier of
administration domains. The very first paper discussing this type of systems [103] presented the Worm
programs and several key ideas that are currently investigated in autonomous computing (self replication,
migration, distributed coordination, etc.). LSDS inherit the principle of aggregating inexpensive, often already
in place, resources, from past research in cycle stealing/resource sharing. Due to its high attractiveness, cycle
stealing has been studied in many research projects like Condor [91] , Glunix [84] and Mosix [57] , to cite
a few. A first approach to cross administration domains was proposed by Web Computing projects such as
Jet [95] , Charlotte [58] , Javeline [74] , Bayanihan [100] , SuperWeb [54] , ParaWeb [64] and PopCorn
[67]. These projects have emerged with Java taking benefit of the virtual machine properties: high portability
across heterogeneous hardware and OS, large diffusion of virtual machine in Web browsers and a strong
security model associated with bytecode execution. Performance and functionality limitations are some of the
fundamental motivations of the recent generation of Global Computing systems like COSM [66] , BOINC
[56] and XtremWeb [77].

The high performance potential of LSDS platforms has also raised a significant interest in the industry.
Companies like Entropia [73] , United Devices [109] , Platform [96] , Grid systems [114] and Datasynapse
[113] propose LSDS middleware often known as Desktop Grid or PC Grid systems. Performance demanding
users are also interested by these platforms, considering their cost-performance ratio which is even lower than
the one of clusters. Thus, several Desktop Grid platforms are daily used in production in large companies in
the domains of pharmacology, petroleum, aerospace, etc.

LSDS systems share with Grid a common objective: to extend the size and accessibility of a computing
infrastructure beyond the limit of a single administration domain. In [79] , the authors present the similarities
and differences between Grid and Global Computing systems. Two important distinguishing parameters are
the user community (professional or not) and the resource ownership (who own the resources and who is
using them). From the system architecture perspective, we consider two main differences: the system scale



4 Activity Report INRIA 2005

and the lack of control of the participating resources. These two aspects have many consequences, at least on
the architecture of system components, the deployment methods, programming models, security (trust) and
more generally on the theoretical properties achievable by the system.

3.1.2. Building a Large Scale Distributed System for Computing
This set of studies considers the XtremWeb project as the basis for research, development and experi-

mentation. This LSDS middleware is already operational. This set gathers 4 studies aiming at improving the
mechanisms and enlarging the functionalities of LSDS dedicated to computing. The first study considers the
architecture of the resource discovery engine which, in principle, is close to an indexing system. The second
study concerns the storage and movements of data between the participants of a LSDS. In the third study, we
will address the issue of scheduling in LSDS in the context of multiple users and applications. Finally the last
study seeks to improve the performance and reduce the resource cost of the MPICH-V fault tolerant MPI for
desktop grids.

3.1.2.1. The resource discovery engine
A multi-users/multi-applications LSDS system for computing would be in principle very close to a P2P

file sharing system such as Napster [101] , Gnutella [101] and Kazaa [90] , except that the ultimate shared
resource is the CPUs instead of files. The scale and lack of control are common features of the two kinds of
systems. Thus, it is likely that similar solutions will be adopted for their fundamental mechanisms such as
lower level communication protocols, resource publishing, resource discovery and distributed coordination.
As an example, recent P2P projects have proposed distributed indexing systems like CAN [97] , CHORD
[105] , PASTRY [99] and TAPESTRY [112] that could be used for resource discovery in a LSDS dedicated to
computing.

The resource discovery engine is composed of a publishing system and a discovery engine, which allow a
client of the system to discover the participating nodes offering some desired services. Currently, there is as
much resource discovery architectures as LSDS and P2P systems. The architecture of a resource discovery
engine is derived from some expected features such as speed of research, speed or reconfiguration, volatility
tolerance, anonymity, limited used of the network, matching between the topologies of the underlying network
and the virtual overlay network. The currently proposed architectures are not well motivated and seem to be
derived from arbitrary choices.

This study has two objectives: a) compare some existing resource discovery architectures (centralized,
hierarchical, fully distributed) with relevant metrics; and b) potentially propose a new protocol improving
some parameters. Comparison will consider the theoretical aspects of the resource discovery engines as well
as their actual performance when exposed to real experimental conditions.

3.1.2.2. Data storage and movement
Application data movements and storage are major issues of LSDS since a large class of computing

applications requires the access of large data sets as input parameters, intermediary results or output results.
Several architectures exist for application parameters and results communication between the client node

and the computing ones. XtremWeb uses an indirect transfer through the task scheduler which is implemented
by a middle tier between client and computing nodes. When a client submits a task, it encompasses the
application parameters in the task request message. When a computing node terminates a task, it transfers it to
the middle tier. The client can then collect the task results from the middle tier. BOINC [56] follows a different
architecture using a data server as intermediary node between the client and the computing nodes. All data
transfers still pass through a middle tier (the data server). DataSynapse [113] allows direct communications
between the client and computing nodes. This architecture is close to the one of file sharing P2P systems. The
client uploads the parameters to the selected computing nodes which return the task results using the same
channel. Ultimately, the system should be able to select the appropriate transfer approach according to the
performance and fault tolerance issues. We will use real deployments of XtremWeb to compare the merits of
these approaches.



Project-Team grand-large 5

Currently there is no LSDS system dedicated to computing that allows the persistent storage of data in
the participating nodes. Several LSDS systems dedicated to data storage are emerging such as OCEAN Store
[87] and Ocean [72]. Storing large data sets on volatile nodes requires replication techniques. In CAN and
Freenet, the documents are stored in a single piece. In OceanStore, Fastrack and eDonkey, the participants store
segments of documents. This allows segment replications and the simultaneous transfer of several documents
segments. In the CGP2P project, a storage system called US has been proposed. It relies on the notion of blocs
(well known in hard disc drivers). Redundancy techniques complement the mechanisms and provide raid like
properties for fault tolerance. We will evaluate the different proposed approaches and the how replication,
affinity, cache and persistence influence the performances of computational demanding applications.

3.1.2.3. Scheduling in large scale systems
Scheduling is one of the system fundamental mechanisms. Several studies have been conducted in the

context of Grid mostly considering bag of tasks, parameter sweep or workflow applications [70] , [68].
Recently some researches consider scheduling and migrating MPI applications on Grid [104]. Other related
researches concern scheduling for cycle stealing environments [98]. Some of these studies consider not
only the dynamic CPU workload but also the network occupation and performance as basis for scheduling
decisions. They often refer to NWS which is a fundamental component for discovering the dynamic parameters
of a Grid. There are very few researches in the context of LSDS and no existing practical ways to measure the
workload dynamics of each component of the system (NWS is not scalable). There are several strategies to deal
with large scale system: introducing hierarchy or/and giving more autonomy to the nodes of the distributed
system. The purpose of this research is to evaluate the benefit of these two strategies in the context of LSDS
where nodes are volatile. In particular we are studying algorithms for fully distributed and asynchronous
scheduling, where nodes take scheduling decisions only based on local parameters and information coming
from their direct neighbors in the system topology. In order to understand the phenomena related to full
distribution, asynchrony and volatility, we are building a simulation framework called V-Grid. This framework,
based on the Swarm [94] multi-agent simulator, allows describing an algorithm, simulating its execution by
thousands of nodes and visualizing dynamically the evolution of parameters, the distribution of tasks among
the nodes in a 2D representation and the dynamics of the system with a 3D representation. We believe that
visualization and experimentation are a first necessary step before any formalization since we first need to
understand the fundamental characteristics of the systems before being able to model them.

3.1.2.4. Extension of MPICH-V
MPICH-V is a research effort with theoretical studies, experimental evaluations and pragmatic implemen-

tations aiming to provide a MPI implementation based on MPICH [93] , featuring multiple fault tolerant
protocols.

There is a long history of research in fault tolerance for distributed systems. We can distinguish the
automatic/transparent approach from the manual/user controlled approach. The first approach relies either
on coordinated checkpointing (global snapshot) or uncoordinated checkpointing associated with message
logging. A well known algorithm for the first approach has been proposed by Chandy and Lamport [71].
This algorithm requires restarting all processes even if only one process crashes. So it is believed not to scale
well. Several strategies have been proposed for message logging: optimistic [110] , pessimistic [55] , causal
[111]. Several optimizations have been studied for the three strategies. The general context of our study is
high performance computing on large platforms. One of the most used programming environments for such
platforms is MPI.

Whithin the MPICH-V project, we have developed and published 3 original fault tolerant protocols for
MPI: MPICH-V1 [61] , MPICH-V2 [62] , MPICH-V/CL [63]. The two first protocols rely on uncoordinated
checkpointing associated with either remote pessimistic message logging or sender based pessimistic message
logging. We have demonstrated that MPICH-V2 outperforms MPICH-V1. MPICH-V/CL implements a
coordinated checkpoint strategy (Chandy-Lamport) removing the need of message logging. MPICH-V2 and
V/CL are concurrent protocols for large clusters. We have compared them considering a new parameter for
evaluating the merits of fault tolerant protocols: the impact of the fault frequency on the performance. We have



6 Activity Report INRIA 2005

demonstrated that the stress of the checkpoint server is the fundamental source of performance differences
between the two techniques. Under the considered experimental conditions, message logging becomes more
relevant than coordinated checkpoint when the fault frequency reach 1 fault every 4 hours, for a cluster of 100
nodes sharing a single checkpoint server, considering a data set of 1 GB on each node and a 100 Mb/s network.

The next step in our research is to investigate a protocol dedicated for hierarchical desktop Grid (it would
also apply for Grids). In such context, several MPI executions take place on different clusters possibly using
heterogeneous networks. An automatic fault tolerant MPI for HDG or Grids should tolerate faults inside
clusters and the crash or disconnection of a full cluster. We are currently considering a hierarchical fault
tolerant protocol combined with a specific runtime allowing the migration of full MPI executions on clusters
independently of their high performance network hardware.

The performance and volatility tolerance of MPICH-V make it attractive for :

1. large clusters;

2. clusters made from collection of nodes in a LAN environment (Desktop Grid);

3. Grid deployments harnessing several clusters;

4. and campus/industry wide desktop Grids with volatile nodes (i.e. all infrastructures featuring
synchronous networks or controllable area networks).

3.2. Volatility and Reliability Processing
In a global computing application, users voluntarily lend the machines, during the period they don’t use

them. When they want to reuse the machines, it is essential to give them back immediately. There is no time
for saving the state of the computation. Because the computer may not be available again, it is necessary
to organize checkpoints. When the owner takes control of his machine, one must be able to continue the
computation on another computer from a checkpoint as near as possible from the interrupted state. The
problem that arises from this way of managing computations are numerous and difficult. They can be put
into two categories: synchronization and repartition problems.

• Synchronization problems (example). Suppose that the machine that is supposed to continue the
computation is fixed and has a recent checkpoint. It would be easy to consider that this local
checkpoint is a component of a global checkpoint and to simply rerun the computation. But on
one hand the scalability and on the other hand the frequency of disconnections makes the use of
a global checkpoint totally unrealistic. Then the checkpoints have to be local and the problem of
synchronizing the recovery machine with the application is raised.

• Repartition problems (example). As it is also unrealistic to wait for the computer to be available
again before rerunning the interrupted application. One has to design a virtual machine organization,
where a single virtual machine is implemented as several real ones. With too few real machines for
a virtual one, one can produce starvation; with too many, the efficiency is not optimal. The good
solution is certainly in a dynamic organization.

These types of problems are not new ([82]). They have been studied deeply and many algorithmic solutions
and implementations are available. What is new here and makes these old solutions not usable is scalability.
Any solution involving centralization is impossible to use in practice. Previous works validated on former
networks can not be reused.



Project-Team grand-large 7

3.2.1. Reliability Processing
We voluntarily presented in a separate section the volatility problem because its specificity both with respect

to type of failures and to frequency of failures. But in a general manner, as any distributed system, a global
computing system has to resist to a large set of failures, from crash failures to Byzantine failures, that are
related to incorrect software or even malicious actions (unfortunately, this hypothesis has to be considered
as shown by DECRYPTON project or the use of erroneous clients in SETI@HOME project), with transient
failures as loss of message duplication in between. On the other hand, failures related accidental or malicious
memory corruptions have to be considered because they are directly related of the very nature of the Internet.
Traditionally, two approaches (masking and non-masking) have been used to deal with reliability problems. A
masking solution hides the failures to the user, while a non-masking one may let the user notice that failures
occur. Here again, there exists a large literature on the subject (cf. [92] [106] [75] for surveys). Masking
techniques, generally based on upon consensus, because they systematically use generalized broadcasting
are not scalable. The self-stabilizing approach (a non-masking solution) is well adapted (specifically its time
adaptive version, cf. [89] [88] , [59] , [60] , [83] ) for three main reasons:

1. Low overhead when stabilized. Once the system is stabilized, the overhead for maintaining correc-
tion is slow because it only involves communications between neighbors.

2. Good adaptivity to the reliability level. Except when considering a system that is continuously under
attacks, self-stabilization provides very satisfying solutions. The fact that during the stabilization
phase, the correctness of the system is not necessarily satisfied is not a problem for all kind of
application.

3. Lack of global administration of the system. A peer to peer system does not admit a centralized
administrator that would be recognized by all components. A human intervention is thus not feasible
and the system has to recover by itself from the failures of one or several components, that is
precisely the feature of self-stabilizing systems.

We propose:

1. To study the reliability problems arising from a global computing system, and to design self-
stabilizing solutions, with a special care for the overhead.

2. For problem that can be solved despite continuously unreliable environment (such as information
retrieval in a network), to propose solutions that minimize the overhead in space and time resulting
from the failures when they involve few components of the system.

3. For most critical modules, to study the possibility to use consensus based methods.

4. To build an adequate model for dealing with the tradeoff between reliability and cost.

3.2.2. Verification of Protocols
For the past few years, a number of distributed algorithms or protocols that were published in the best

conferences or scholar journals were found to be incorrect afterwards. Some have been exploited for several
years, appearing to behave correctly. We do not pretend to design and implement fault free and vulnerability
free systems, but we want at least to limit their failures. This goal is achieved by the formal verification, at an
abstract level, of the implemented solutions. Obviously, algorithms are not to be verified by hand (incorrect
algorithms were provided with proofs), but rather by verification tools we developed (MARELLA) or proof
assistants. We propose that a substantial effort is done towards modelization and verification of probabilistic
protocols, which offer in a large number of cases efficient and low cost solutions. We also propose to design a
model that includes the environment. Indeed, computations of a distributed system are non-deterministic due
to the influence of numerous external factors, such as the communication delays due to traffic overhead, the
fact that failures can occur somewhere rather than somewhere else, etc. To prove a protocol independently of
its environment is pointless, and this is why the environment must be part of the model.



8 Activity Report INRIA 2005

3.3. Parallel Programming on Peer-to-Peer Platforms (P5)
Scientific applications that have traditionally performed on supercomputers may now run on a variety

of heterogeneous resources geographically distributed. New grand challenge applications would have to be
solved on large scale P2P systems. Peer-to-Peer computing paradigm for large scale scientific and engineering
applications is emerging as a new potential solution for end-user scientists and engineers. We have to
experiment and to evaluate such programming to be able to propose the larger possible virtualisation of the
underlying complexity for the end-user.

3.3.1. Large Scale Computational Sciences and Engineering
Parallel and distributed scientific application developments and resource managements in these environ-

ments are a new and complex undertaking. In scientific computation, the validity of calculations, the numer-
ical stability, the choices of methods and software are depending of properties of each peer and its software
and hardware environments; which are known only at run time and are nondeterministic. The research to ob-
tain acceptable frameworks, methodologies, languages and tools to allow end-users to solve accurately their
applications in this context is capital for the future of this programming paradigm.

GRID scientific and engineering computing exists already since a decade. Since the last few years, the
scale of the problem sizes and the global complexity of the applications increase rapidly [107]. The scientific
simulation approach is now general in many scientific domains, in addition to theoretical and experimental
aspects, often link to more classic methods. Several applications would be computed on world-spread networks
of heterogeneous computers using some web-based Application Server Provider (ASP) dedicated to targeted
scientific domains. New very strategic domains, such as Nanotechnologies, are in the forefront of these
applications. The development in this very important domain and the leadership in many scientific domains
will depend in a close future to the ability to experiment very large scale simulation on adequate systems
[102] , [86]. The P2P scientific programming is a potential solution, which is based on existing computers and
networks. The present scientific applications on such systems are only concerning problems which are mainly
data independents: i.e. each peer does not communicate with the others. To come at his age, P2P programming
has to be able to develop parallel programming with more sophisticate dependencies between peers. It is the
goal of our researches.

3.3.2. Experimentations and Evaluations
We have, first, to experiment on large P2P platforms to be able to obtain a realistic evaluation of the

performance we can expect. We can also set some hypothesis on peers, networks, and scheduling to be
able to have theoretical evaluations of the potential performance. We follow these two tracks. We choose a
classical linear algebra method well-adapted to large granularity parallelism and asynchronous scheduling: the
block Gauss-Jordan method to invert dense very large matrices. We also choose the calculation of one matrix
polynomial, which generate computation schemes similar to many linear algebra iterative methods, well-
adapted for very large sparse matrices. Thus, we were able to theoretically evaluate the potential throughput
with respect to several parameters such as the matrix size and the multicast network speed. Since these
evaluations, we begin to experiment the same parallel methods on a few dozen peer XtremWeb P2P Platform.
We plan to continue these experimentations on larger platforms to compare these results to the theoretical
ones. Then, we would be able to extrapolate and obtain potential performance for some scientific applications.
Experimentations and evaluation for several linear algebra methods for large matrices on P2P systems will
always be developed all along the Grand Large project, to be able to confront the different results to the reality
of the existing platforms. As a challenge, we would like to efficiently invert a dense matrix of size one million
using a several thousand peer platform.

Beyond the experimentations and the evaluations, we propose the basis of a methodology to efficiently
program such platforms, which allow us to define languages, tools and interface for the end-user.

3.3.3. Languages, Tools and Interface
The underlying complexity of the Large Scale P2P programming has to be mainly virtualized for the end-

user. We have to propose an interface between the end-user and the middleware which may extract the end-



Project-Team grand-large 9

user expertise or propose an on-the-shelf general solution. Targeted applications concern very large scientific
problems which have to be developed using component technologies and up-to-dated software technologies.

We may develop component-based technology interface which express the dependencies between comput-
ing tasks which composed the parallel applications. Then, instead of computing task we will manage compo-
nents. We introduced the YML language which allows us to express the dependencies between components,
specified using XML. Nevertheless, many component criteria depend of peer characteristics and are known
only at runtime. Then, we had to introduce different classes of components, depending of the level of abstrac-
tion they are concern to. A component catalogue has to be at the end-user level and another one has to be at the
middleware and peer level. Then, a scheduler has to attribute a computing component to a peer with respect to
the software proposed by this one, or has to decide to load new software to the targeted peer.

The YML framework and language propose a solution to develop scientific applications to P2P platform.
An end-user can directly develop programs using this framework. Nevertheless, many end-users would prefer
to do not program at this component and dependency graph level. Then, an interface has to be proposed, using
the YML framework. This interface may be dedicated to a special scientific domain to be able to focus on the
end-user vocabulary and P2P programming knowledge.

Based on the SPIN project, we plan to develop such version based on the YML framework and language.
The first targeted scientific domain will be very large linear algebra for dense or sparse matrices.

3.4. Methodology and Technologies for Large Scale Distributed Systems
Research in the context of LSDS involves understanding large scale phenomena from the theoretical point of

view up to the experimental one under real life conditions. The general research context should also considers
the fundamental technological trend toward a convergence between Grid and P2P systems.

3.4.1. Metodology
One key aspects of the impact of large scale on LSDS is the emergence of phenomena which are

not coordinated, intended or expected. These phenomena are the results of the combination of static and
dynamic features of each component of LSDS: nodes (hardware, OS, workload, volatility), network (topology,
congestion, fault), applications (algorithm, parameters, errors), users (behavior, number, friendly/aggressive).

Grand-Large aims at gathering several complementary techniques to study the impact of large scale in
LSDS: theoretical models, simulation, emulation and experimentation on real platforms. Fundamental aspects
of LSDS as well as the development of middleware platforms are already existing in Grand-Large. We are also
involved in the development and deployment of simulators and emulators and real platforms (testbed).

We are currently developing a simulator of LSDS called V-Grid aiming at discovering, understanding and
managing implicit uncoordinated large scale phenomena. Several Grid simulators have been developed by
other teams: SimGrid [69] GridSim [65] , Briks [53]. All these simulators considers relatively small scale
Grids. They have not been designed to scale and simulate 10 K to 100 K nodes. Other simulators have been
designed for large multi-agents systems such as Swarm [94] but many of them considers synchronous systems
where the system evolution is guided by phases. V-Grid is built from Swarm and adds asynchrony in the sim-
ulator, node volatility and a set of specialized features for controlling and measuring the simulation of LSDS.
To exemplify the need of such simulator, we are first considering the fully distributed scheduling problem.
Using V-Grid for comparing several algorithms, we have already demonstrate the need for complementary vi-
sualization tools, showing the evolution of key system parameters, presenting the distributed system topology,
nodes and network global trends in a 2 dimensional shape and presenting the dynamics of the system com-
ponent activity in a 3 dimensional shape. Using this last representation, we have discover unexpected large
scale phenomena which would be very difficult to predict by a theoretical analysis of the simulated platform
features and the scheduling algorithms.

Emulation is another tool for experimenting systems and networks with a higher degree of realism.
Compared to simulation, emulation can be used to study systems or networks 1 or 2 orders of magnitude
smaller in terms of number of components. However, emulation runs the actual OS/middleware/applications
on actual platform. Compared to real testbed, emulation considers conducting the experiments on a fully



10 Activity Report INRIA 2005

controlled platform where all static and dynamic parameters can be controlled and managed precisely.
Another advantage of emulation over real testbed is the capacity to reproduce experimental conditions. Several
implementations/configurations of the system components can be compared fairly by evaluating them under
the similar static and dynamic conditions. Grand-Large is leading one of the largest Emulator project in Europe
called Grid explorer. This project uses a 1K CPUs cluster as hardware platform and gathers 24 experiments of
80 researchers belonging to 13 different laboratories. Experiments concern developing the emulator itself and
use of the emulator to explore LSDS issues. (http://www.lri.fr/~fci/GdX/).

Grand-Large members are also involved in the French Grid 5000 project which intents to deploy an
experimental Grid testbed for computer scientists. This testbed may feature up to 5000 K CPUs gathering
the resources of about 10 clusters geographically distributed over France. The clusters will be connected by
a high speed network (Renater or/and other). Grand-Large is a leading team in Grid 5000, chairing the eGrid
5000 Specific Action of the CNRS which is intended to prepare the deployment and installation of Grid 5000.
eGrid 5000 gathers about 30 engineers, researchers and team directors who have frequent meetings, discussing
about the testbed security infrastructure, experiment setup, cluster coordination, experimental result storage,
etc. (http://www.lri.fr/~fci/AS1/).

3.4.2. Technological Trends
The development of LSDS has followed a trajectory parallel to the one of Grid systems such as Globus [80]

and Unicore [76]. Nevertheless we can observe some convergence elements between LSDS and Grid. The
paper [79] gives many details about the similarities and differences between P2P and Grid systems. From the
technological perspective, the evolution of Globus to GT3 [81] with the notion of Grid services is one reason
of this convergence. The evolution of LSDS toward more generic and secure systems being able to provide
CPU, storage and communication sharing among participants is another element of this convergence, since
the notion of controllable services is likely to emerge from this perspective of more generality and flexibility.

Nowadays, Grid Computing is considering the notion of services through OGCSA [81] and OGSI [108].
A Grid service is an entity that must be auto-descriptive, dynamically published, creatable and destructible,
remotely invoked and manageable (including life time cycle). The standardization effort also includes the use
of well defined standards (WSDL, SOAP, UDDI...) of Web Services [115]. A typical LSDS platform gathering
client nodes submitting requests to a coordination service which schedules them on a set of participating nodes
can be implemented in term of services: the coordination service publishes application services and schedules
their instantiations on workers; the client service requests task (association of application and parameters)
executions corresponding to published application services and collects results from the coordination service;
the worker service computes tasks and sends their results back to the coordination service. Note that the
implementation of the coordination service can rely on sub-services such as a scheduler, a data server for
parameters and results, a service repository/factory which themselves may be implemented in centralized or
distributed way.

Thus we believe that LSDS could benefit from the standardization effort conducted in the Grid context by
reusing the same concepts of services and by adopting the same standards (OGSA and OGSI). For example,
the next version of XtremWeb will be implemented by a set of Grid services.

4. Application Domains
4.1. Building a Large Scale Distributed System for Computing

The main application domain of the Large Scale Distributed System developed in Grand-Large is high
performance computing. The two main programming models associated with our platform (RPC and MPI)
allow to program a large variety of distributed/parallel algorithms following computational paradigms like bag
of tasks, parameter sweep, workflow, dataflow, master worker, recursive exploration with RPC, and SPMD
with MPI. The RPC programming model can be used to execute concurrently different applications codes,
the same application code with different parameters and library function codes. In all these cases, there is no

http://www.lri.fr/~fci/GdX/
http://www.lri.fr/~fci/AS1/


Project-Team grand-large 11

need to change the code. The code must only be compiled for the target execution environment. LSDS are
particularly useful for users having large computational needs. They could typically be used in Research
and Development departments of Pharmacology, Aerospace, Automotive, Electronics, Petroleum, Energy,
Meteorology industries. LSDS can also be used for other purposes than CPU intensive applications. Other
resources of the connected PCs can be used like their memory, disc space and networking capacities. A
Large Scale Distributed System like XtremWeb can typically be used to harness and coordinated the usage
of these resources. In that case XtremWeb deploys on Workers services dedicated to provide and manage
a disc space and the network connection. The storage service can be used for large scale distributed fault
tolerant storage and distributed storage of very large files. The networking service can be used for server
tests in real life conditions (workers deployed on Internet are coordinated to stress a web server) and for
networking infrastructure tests in real like conditions (workers of known characteristics are coordinated to
stress the network infrastructure between them).

4.2. Security and Reliability of Network Control Protocols
The main application domain for self-stabilizing and secure algorithms is LSDS where correct behaviours

must be recovered within finite time. Typically, in a LSDS (such as a high performance computing system),
a protocol is used to control the system, submit requests, retrieve results, and ensure that calculus is carried
out accordingly to its specification. Yet, since the scale of the system is large, it is likely that nodes fail while
the application is executing. While nodes that actually perform the calculus can fail unpredictably, a self-
stabilizing and secure control protocol ensures that a user submitting a request will obtain the corresponding
result within (presumably small) finite time. Examples of LSDS where self-stabilizing and secure algorithms
are used, include global computing platforms, or peer to peer file sharing systems. Another application domain
is routing protocols, which are used to carry out information between nodes that are not directly connected.
Routing should be understood here in its most general acceptance, e.g. at the network level (Internet routing) or
at the application level (on virtual topologies that are built on top of regular topologies in peer to peer systems).
Since the topology (actual or virtual) evolves quickly through time, self-stabilization ensures that the routing
protocol eventually provides accurate information. However, for the protocol to be useful, it is necessary that
it provides extra guarantees either on the stabilization time (to recover quickly from failures) or on the routing
time of messages sent when many faults occur. Finally, additional applications can be found in distributed
systems that are composed of many autonomous agents that are able to communicate only to a limited set of
nodes (due to geographical or power consumption constraints), and whose environment is evolving rapidly.
Examples of such systems are wireless sensor networks (that are typically large of 10000+ nodes), mobile
autonomous robots, etc. It is completely unrealistic to use centralized control on such networks because
they are intrinsically distributed; still strong coordination is required to provide efficient use of resources
(bandwidth, battery, etc.).

4.3. End-User Tools for Computational Science and Engineering
Another Grand Large application domain is Large Scale Programming for Computational Science and En-

gineering. Two main approaches are proposed. First, we have to experiment and evaluate such programming.
Second, we have to develop tools for end-users.

In addition to the classical supercomputing and the GRID computing based on virtual organization, the
large scale P2P approach proposes new computing facilities for computational scientists and engineers. Thus,
on one hand, it exists many applications, some of them are classical, such as Computational Fluid Dynamic
or Quantum Physic ones, for example, and others are news and very strategic such as Nanotechnologies,
which will have to use a lot of computing power for long period of time in the close future. On another
hand, it emerges a new large scale programming paradigm for existing computers which can be accessible
by scientific and engineer end-users for all classical application domains but also by new ones, such as
some Non-Governmental Organisations. During a first period, many applications would be based on large
simulations rather than classical implicit numerical methods, which are more difficult to adapt for such large



12 Activity Report INRIA 2005

problems and new programming paradigm. Nevertheless, we expected that more complex implicit methods
would be adapted in the future for such programming. The potential number of peer and the planed evolution
of network communications, especially multicast ones, would permit to contribute to solve some of the larger
grand challenge scientific applications.

Simulations and large implicit methods would always have to compute linear algebra routines, which will
be our first targeted numerical methods (we also remark that the powerful worldwide computing facilities
are still rated using a linear algebra benchmark [http://www.top500.org]). We will especially first focus on
divide-and-conquer and block-based matrix methods to solve dense problems and on iterative hybrid methods
to solve sparse matrix problems. As these applications are utilized for many applications, it is possible to
extrapolate the results to different scientific domains.

Many smart tools have to be developed to help the end-user to program such environments, using up-to-date
component technologies and languages. At the actual present stage of maturity of this programming paradigm
for scientific applications, the main goal is to experiment on large platforms, to evaluate and extrapolate
performance, and to propose tools for the end-users; with respect to many parameters and under some specify
hypothesis concerning scheduling strategies and multicast speeds [85]. We have to always replace the end-
user at the center of this scientific programming. Then, we have to propose a framework to program P2P
architectures which completely virtualized the P2P middleware and the heterogeneous hardware. Our approach
is based, on one hand, on component programming and coordination languages, and on one another hand, to
the development of an ASP, which may be dedicated to a targeted scientific domain. The conclusion would
be a P2P scientific programming methodology based on experimentations and evaluation on an actual P2P
development environment.

5. Software
5.1. XtremWeb

XtremWeb is an open source middleware, generalizing global computing plarforms for a multi-user and
multi-parallel programming context. XtremWeb relies on the notion of services to deploy a Desktop Grid
based on a 3 tiers architecture. This architecture gathers tree main services: Clients, Coordinators and Workers.
Clients submit requests to the coordinator which uses the worker resources to execute the corresponding tasks.
Currently tasks concern computation but we are also considering the integration of storage and communication
capabilities. Coordinator sub-services provide resource discovery, service construction, service instantiation
and data repository for parameters and results. A major concern is fault tolerance. XtremWeb relies on passive
replication and message logging to tolerate Clients mobility, Coordinator transient and definitive crashes and
Worker volatility.

The Client service provides a Java API which unifies the interactions between the applications and the
Coordinator. Three client applications are available: the Java API that can be used in any Java applications,
a command line (shell like) interface and a web interface allowing users to easily submit requests, consult
status of their tasks and retrieve results. A second major issue is the security. The origins of the treats are
the applications, the infrastructure, the data (parameters and results) and the participating nodes. Currently
XtremWeb provides user authentication, application sandboxing and communication encryption. We have
developed deployment tools for harnessing individual PCs, PCs in University or Industry laboratories and
PCs in clusters. XtremWeb provides a RPC interface for bag of tasks, parameter sweep, master worker
and workflow applications. Associated with MPICH-V, XtremWeb allows the execution of unchanged MPI
applications on Desktop Grids.

XtremWeb has been tested extensively harnessing a thousand of Workers and computing a million of tasks.
XtremWeb is deployed in several sites: University of Lille, University of Geneva, University of Tsukuba,
University of Paris Sud, University of California San Diego. In this last site, XtremWeb is the Grid engine
of the Paris Sud University Desktop Grid gathering about 500 PCs. Two multi-parametric applications are to

http://www.top500.org


Project-Team grand-large 13

be used in production since the beginning of 2004: Aires belonging to the HEP Auger project and a protein
conformation predictor using a molecular dynamic simulator.

The software, papers and presentations are available athttp://www.xtremweb.net.

5.2. MPICH-V
Currently, MPICH-V proposes 6 protocols: MPICH-V1, MPICH-V2, MPICH-V/CL, and 3 algorithms

for MPICH-Vcausal. MPICH-V1 implements an original fault tolerant protocol specifically developed for
Desktop Grids relying on uncoordinated checkpoint and remote pessimistic message logging. It uses reliable
nodes called Channel Memories to store all in transit messages. MPICH-V2 is designed for homogeneous
networks like clusters where the number of reliable component assumed by MPICH-V1 is too high. It reduces
the fault tolerance overhead and increases the tolerance to node volatility. This is achieved by implementing
a new protocol splitting the message logging into message payload logging and event logging. These two
elements are stored separately on the sender node for the message payload and on a reliable event logger
for the message events. The third protocol, called MPICH-V/CL, is derived from the Chandy-Lamport
global snapshot algorithm. It implements coordinated checkpoint without message logging. This protocol
exhibits less overhead than MPICH-V2 for clusters with low fault frequencies. MPICH-Vcausal concludes
the set of message logging protocols, implementing a causal logging. It provides less synchrony than the
pessimistic logging protocols, allowing messages to influence the system before the sender can be sure that
non deterministic events are logged, to the cost of appending some information to every communication. This
sum of information may increase with the time, and different causal protocols, with different cut techniques,
have been studied with the MPICH-V project.

MPICH-V3 will be studied for the Grids. It will rely on a new protocol mixing causal message logging and
pessimistic remote logging of message events. This is a hierarchical protocol able to tolerate fault inside Grid
sites (inside clusters) and faults of sites (the complete crash of clusters).

Another effort is pushed on the performances of MPICH-V for high-bandwidth networks. This introduces
the necessity of zero-copy implementations and raises new problems with respect to the algorithms and their
realization. The goal sought here is to provide fault tolerance without losing high performances.

In addition to fault tolerant properties, MPICH-V:

1. provides a full runtime environment detecting and re-launching MPI processes in case of faults;

2. works on high performance networks such as Myrinet, Infiniband, etc (the performances are still
divided by two);

3. allows the migration of a full MPI execution from one cluster to another, even if they are using
different high performance networks.

The software, papers and presentations are available athttp://www.mpich-v.net/

5.3. YML
The complexity of P2P platforms is important. An end-user cannot manage manually such complexity.

YML is a software package which allows to make use of the large scale platforms such as computing grids
and Peer-to-Peer systems. It offers a set of integrated tools to describe and execute applications for that type
of architectures.

YML is based on a language specially created for this project and which clearly separates computations
from communications. This language is defined to make possible to program the applications independently
of the middlewares used. Each grid or Peer-to-Peer middleware actually rests on its own communication,
interraction and remote execution mechanisms. YML currently supports two middlewares: the Xtremweb P2P
platform, and the OmniRPC framework.

YML defines a model of components in order to reach the goal of independence of the underlying middle-
ware or middlewares. Those components are organized in two levels of catalogues. The first catalogue lists the

http://www.xtremweb.net
http://www.mpich-v.net/


14 Activity Report INRIA 2005

pieces of information which are independent of the middlewares and the second family of catalogues contains
information specific to a given middleware. The two catalogues are respectively known as development and
execution catalogues.

YML is mainly based on two programms. First of them is a compiler for the dedicated programming
language and the other one is a real time scheduler. The former deals with the development step and does
not depend on the underlying middleware whereas the latter exclusively handles the execution step. These
two programmes are managed by a programme in charge of dealing with the client connections named the
manager.

To illustrate our approach, we did first experimentations for basic linear algebra routines on an XtremWeb
P2P platform with a small number of peers. We did performance evaluations and discussed on the necessity to
introduce a new accurate performance model for this new computing paradigm.

YML project was launched at the ASCI CNRS lab in 2001 and is developed now in collaboration with the
University of Versailles. YML is under integration into SPIN to propose a GUI ASP. It has been successfully
demonstrated at SC’05 Seattle at the INRIA booth.

5.4. The Scientific Programming InterNet (SPIN)
SPIN (Scientific Programming on the InterNet), is a scalable, integrated and interactive set of tools for

scientific computations on distributed and heterogeneous environments. These tools create a collaborative
environment allowing the access to remote resources.

The goal of SPIN is to provide the following advantages: Platform independence, Flexible parameterization,
Incremental capacity growth, Portability and interoperability, and Web integration. The need to develop a
tool such as SPIN was recognized by the GRID community of the researchers in scientific domains, such
as linear algebra. Since the P2P arrives as a new programming paradigm, the end-users need to have such
tools. It becomes a real need for the scientific community to make possible the development of scientific
applications assembling basic components hiding the architecture and the middleware. Another use of SPIN
consists in allowing to build an application from predefined components ("building blocks") existing in the
system or developed by the developer. The SPIN users community can collaborate in order to make more and
more predefined components available to be shared via the Internet in order to develop new more specialized
components or new applications combining existing and new components thanks to the SPIN user interface.

SPIN was launched at ASCI CNRS lab in 1998 and is now developed in collaboration with the University
of Versailles, PRiSM lab. SPIN is currently under adaptation to incorporate YML, cf. above. Nevertheless, we
study another solution based on the Linear Algebra KErnel (LAKE), developped by the Nahid Emad team at
the University of Versailles, which would be an alternative to SPIN as a component oriented integration with
YML.

5.5. V-Grid
This project is in its early stage. It started officially in September 2004. V-Grid is a virtualization software for

large scale distributed system emulation. This software allows folding a distributed systems 100 or 1000 times
larger than the experimental testbed. V-Grid virtualizes distributed systems nodes on PC clusters, providing
every virtual node its proper and confined operating system and execution environment. Thus compared to
large scale distributed system simulators or emulators (like MicroGrid), V-Grid virtualizes and schedules a
full software environment for every distributed system node. V-Grid research concerns emulation realism
and performance. A first work concerns the definition and implementation of metrics and methodologies to
compare the merits of distributed system virtualisation tools. Since there is no previous work in this domain,
it is important to define what and how to measure in order to qualify a virtualization system relatively to
realism and performance. We defined a set of metrics and methodologies in order to evaluate and compared
virtualisation tools for sequential system. For example a key parameter for the realism is the event timing: in
the emulated environment, events should occur with a time consistent with a real environment. An example
of key parameter for the performance is the linearity. The performance degradation for every virtual machine



Project-Team grand-large 15

should evolve linearly with the increase of the number of virtual machines. We conducted a large set of
experiments, comparing several virtualisation tools including Vserver, VMware, User Mode Linux, Xen, etc.
The result demonstrates that none of them provides both enough realism and performance. As a consequence,
we are currently studying approaches to cope with these limits.

5.6. FAult Injection Language (FAIL)
FAIL (FAult Injection Language) is a new project that was started in 2004. The goal of this project is

to provide a controllable fault injection layer in existing distributed applications (for clusters and grids). A
new language was designed to implement expressive fault patterns, and a preliminary implementation of the
distributed fault injector based on this language was developped.

6. New Results
6.1. Large Scale Distributed Systems

*A survey of Grid research tools: simulators, emulators and real life platforms* [39]
Grid infrastructures are becoming the largest and most complex distributed systems ever built. Because of

their size and complexity, they raise many algorithmic challenges for security, fault tolerance, faire share and
performance. When investigating a research issue, researchers are using different methodologies and different
tools. Most of the published Grid studies were conducted on real produc tion infrastructures or simulators.
There are others research tools such as mathematical models, emulators and large scale experimental testbeds.
In [39], we present a survey of existing tools and methodologies to investigate Grid research issues. We
describe the some mathematical models, the main generic simulators (Bricks, SimGrid, GridSim, GangSim
and OptorSim), a couple of emulators (MicroGrid and Grid eXplorer) and a couple of experimental testbeds
(DAS2 and Grid’5000). We briefly discuss their respective advantages and limitations and present the
validation approach used by their authors.

*V-Meter: Microbenchmark pour évaluer les utilitaires de virtualisation dans la perspective de
systèmes d’émulation à grande échelle*[40]

V-GRID is a large scale emulator to test applications which need a large number of machines. To do this,
we need to have many (100) virtual machines on each physical machine. We needed to choose between
4 virtualization tools to make this emulator : Vserver, Xen, UML and VMware. In [40], we compare
performances of 3 of these systems : Vserver, UML and Xen and we show none meets all the condition
specified (scalability, speed, usability,... ) for our emulator.

A Case for Efficient Execution of Data-Intense Applications with BitTorrent on Computational
Desktop Grid [43], [44]

Data-centric applications are still a challenging issue for large scale distributed computing systems. The
emergence of new protocols and software for collaborative content distribution over Internet offers a new
opportunity for efficient and fast delivery of high volume of data. In this paper, we investigate BitTorrent as a
protocol for data diffusion in the context of Computational Desktop Grid. We show that BitTorrent is efficient
for large file transfers, scalable when the number of nodes increases but suffers from a high overhead when
transmitting small files. The paper also investigates two approaches to overcome these limitations. First, we
propose a performance model to select the best of FTP and BitTorrent protocols according to the size of the file
to distribute and the number of receiver nodes. Next we propose enhancement of the BitTorrent protocol which
provides more predictable communication patterns. We design a model for communication performance and
evaluate BitTorrent-aware versions BT-MinMin, BT-MaxMin and BT-Sufferage scheduling heuristics against
a synthetic parameter-sweep application.

Impact of Event Logger on Causal Message Logging Protocols for Fault Tolerant MPI[30] Fault
tolerance in MPI becomes a main issue in the HPC community. Several approaches are envisioned from
user or programmer controlled fault tolerance to fully automatic fault detection and handling. For this last



16 Activity Report INRIA 2005

approach, several protocols have been proposed in the literature. In a recent paper, we have demonstrated
that uncoordinated checkpointing tolerates higher fault frequency than coordinated checkpointing. Moreover
causal message logging protocols have been proved the most efficient message logging technique. These
protocols consist in piggybacking non deterministic events to computation message. Several protocols have
been proposed in the literature. Their merits are usually evaluated from four metrics: a) piggybacking
computation cost, b) piggyback size, c) applications performance and d) fault recovery performance. In this
paper, we investigate the benefit of using a stable storage for logging message events in causal message logging
protocols. To evaluate the advantage of this technique we implemented three protocols: 1) a classical causal
message protocol proposed in Manetho, 2) a state of the art protocol known as LogOn, 3) a light computation
cost protocol called Vcausal. We demonstrate a major impact of this stable storage for the three protocols, on
the four criteria for micro benchmarks as well as for the NAS benchmark.

Hybrid Preemptive Scheduling of MPI Applications on the Grids [9] Time sharing between cluster
resources in a Grid is a major issue in cluster and Grid integration. Classical Grid architecture involves a
higher level scheduler which submits non-overlapping jobs to the independent batch schedulers of each cluster
of the Grid. The sequentiality induced by this approach does not fit with the expected number of users and
job heterogeneity of Grids. Time sharing techniques address this issue by allowing simultaneous executions
of many applications on the same resources.

Co-scheduling and gang scheduling are the two best known techniques for time sharing cluster resources.
Co-scheduling relies on the operating system of each node to schedule the processes of every application. Gang
scheduling ensures that the same application is scheduled on all nodes simultaneously. Previous work has
proven that co-scheduling techniques outperforms gang scheduling when physical memory is not exhausted.
In this paper, we introduce a new hybrid sharing technique providing checkpoint-based explicit memory
management. It consists in co-scheduling parallel applications within a set, until the memory capacity of
the node is reached, and using gang scheduling related techniques to switch from one set to another one.
We compare experimentally the merits of the three solutions: Co, Gang and Hybrid Scheduling, in the
context of out-of-core computing, which is likely to occur in the Grid context, where many users share the
same resources. Additionally, we address the problem of heterogeneous applications by comparing hybrid
scheduling to an optimized version relying on paired-scheduling. The experiments show that the hybrid
solution is as efficient as the co-scheduling technique when the physical memory is not exhausted, can benefit
from paired-scheduling optimization technique when applications are heterogeneous, and is more efficient
than gang scheduling and co-scheduling when physical memory is exhausted.

MPICH-V Project: a Multiprotocol Automatic Fault Tolerant MPI [10]
High performance computing platforms like Clusters, Grid and Desktop Grids are becoming larger and sub-

ject to more frequent failures. MPI is one of the most used message passing library in HPC applications. These
two trends raise the need for fault tolerant MPI. The MPICH-V project focuses on designing, implementing
and comparing several automatic fault tolerance protocols for MPI applications. We present an extensive re-
lated work section highlighting the originality of our approach and the proposed protocols. We present then
four fault tolerant protocols implemented in a new generic framework for fault tolerant protocol comparison,
covering a large spectrum of known approaches from coordinated checkpoint, to uncoordinated checkpoint as-
sociated with causal message logging. We measure the performance of these protocols on a micro-benchmark
and compare them for the NAS benchmark, using an original fault tolerance test. Finally, we outline the lessons
learned from this in depth fault tolerant protocol comparison for MPI applications.

6.2. Large Scale Peer to Peer Performance Evaluations
Peer to Peer Large Scale Linear Algebra, programming and experimentations[36]
We discuss the deployment of large scale numerical algorithms on a Grid. We minimize the communications

needs by using persistent storage of data and we introduce out-of-core programming for the task farming
paradigm. We discuss the performances of the bisection method to compute the eigenvalues of a real



Project-Team grand-large 17

symmetric tridiagonal matrix and a block-based matrix-vector product. As experimental middleware, we use
the XtremWeb system on two geographic sites: the university of Lille 1 and Paris-XI university at Orsay.

Matrix Peer-to-Peer Computing With Very Large Heterogeneous Plateforms[35]
After a short overview of global computing, also known as peer-to-peer computing, we study the deployment

of linear algebra problems on such distributed environments. Some applications are very easy to adapt by
means of parametric parallelism. We propose several techniques such that the persistence of data and out-of-
core programming which aim to decrease communications and to deal with limited quantity of memory on
peers. The experimentations use an XtremWeb platform deployed on two geographic sites in Lille, France,
and Tsukuba, Japan.

Large Scale Linear System Global Computing[38]
We present a typical parallel method GMRES to solve large sparse linear systems by the use of a lightweight

GRID system XtremWeb. We discuss the performances of this implementation deployed on two XtremWeb
networks: a local network with 128 nondedicated PCs in Polytech-Lille of University of Lille I in France, a
remote network with 3 clusters (91 CPUs) at the HPCS laboratory of Tsukuba in Japan. We do the tests as
well on the platform of supercomputer IBM SP4 and in a LAN MPI computing environment LAM-MPI. We
present the advantages and drawbacks of our implementations on the three computing systems.

GMRES Method on Lightweight GRID System [28]
We have implemented an important algorithm GMRES which is one of the key methods to resolve large,

nonsymmetric, linear problems. We discuss the performances of this algorithm deployed on two XtremWeb
networks: a local network with 128 non-dedicated PCs in Polytech-Lille of University of Lille I, a remote
network with 3 clusters (91 CPUs) in the High Performance Computing Center of University of Tsukuba. We
compare these performances with those of a MPI implementation of GMRES on the same platform.

Toward global and grid computing for large scale linear algebra problems[21]
In this paper, we gather resources of global and grid computing platforms in order to solve a linear algebra

problem. We fit the algorithm of bisection on the platform of global computing, XtremWeb, and on the
platform of RPC programming, OmniRPC. Those software are deployed on two different geographic sites at
the engineer school of Polytech’Lille, France, and at the HPCS laboratory of Tsukuba, Japan. The combination
of two different software and two geographic sites allows to do and analyse a wide range of tests.

Cluster and Grid Matrix Computation with Persistent Storage and Out-of-core Programming [18]
We present a performance evaluation of a large-scale numerical application on a cluster and a global

Grid/Cluster platform. The computational resources are a cluster of clusters (34 nodes, 84 processors) and
a local area network Grid (128 nodes), distributed on two geographic sites: Tsukuba university (Japan) and
university of Lille I (France). As experimental Grid middleware we use the XtremWeb. We compare a classical
MPI version with global Grid/Cluster versions. We also present and test some techniques based on out-of-core
programming and an efficient data placement. We discuss the performances of a block-based Gauss-Jordan
method for large matrix inversion.

Towards a scheduling policy for hybrid methods on computational grids[31]
We propose a cost model for running particular component based applications on a computational Grid. This

cost is evaluated by a metascheduler and negotiated with the user by a broker. A specific set of applications is
considered: hybrid methods, where components have to be launched simultaneously.

A Hybrid GMRES-LS-Arnoldi method to accelerate the parallel solution of linear systems[17]
We present a parallel hybrid asynchronous method to solve large sparse linear systems by the use of a large

parallel machine. This method combines a parallel GMRES (m) algorithm with the Least Squares method
that needs some eigenvalues obtained from a parallel Arnoldi’s algorithm. All of the algorithms run on the
different processors of an IBM SP3 or IBM SP4 computer simultaneously. This implementation of this hybrid
method allows to take advantage of the parallelism available and to accelerate the convergence by decreasing
considerably the number of iterations.

Multiple Explicitly Restarted Arnoldi Method for Solving Large Eigenproblems [15]
We propose a new approach for calculating some eigenpairs of large sparse non-Hermitian matrices. This

method, called Multiple Explicitly Restarted Arnoldi (MERAM), is well suited for environments that combine



18 Activity Report INRIA 2005

different parallel programming paradigms. This technique is based on a multiple use of the Explicitly Restarted
Arnoldi method (ERAM) and improves its convergence.

This technique is implemented and tested on a distributed environment consisting of two interconnected
parallel machines. The MERAM technique is compared with ERAM, and one can notice that the convergence
is improved. In some cases, more than a twofold improvement can be seen in MERAM results. We also
implemented MERAM on a cluster of workstations. According to our experiments, MERAM converges better
than the Explicitly Restarted Block Arnoldi method and, for some matrices, more quickly than the PARPACK
package, which implements the Implicitly Restarted Arnoldi method.

6.3. Volatility and Reliability Processing
Fault-Injection and Dependability Benchmarking for Grid Computing Middleware [48], [29], [47],

[42] In a network consisting of several thousands computers, the occurrence of faults is unavoidable. Being
able to test the behavior of a distributed program in an environment where we can control the faults (such as
the crash of a process) is an important feature that matters in the deployment of reliable programs.

We developped FAIL-FCI [29] (for Fault Injection Language, and FAIL Cluster Implementation, respec-
tively), a software tool that permits to elaborate complex fault scenarios in a simple way, while relieving the
user from writing low level code. In particular, we show that not only we are able to fault-load existing dis-
tributed applications (as used in most current papers that address fault-tolerance issues), we are also able to
inject qualitative faults, i.e. inject special faults at very special moments in the program code of the applica-
tion under test. Finally, and although this was not the primary purpose of the tool, we are also able to inject
special patterns of workload, in order to stress test the application under test. Interestingly enough, the whole
process is driven by a simple unified description language, that is totally independent from the language of the
application, so that no code changes or recompilation are needed on the application side. We also investigated
the possibility of injecting software faults in distributed java applications. Our scheme is by extending the
FAIL-FCI software [47], and does not require any modification of the source code of the application under
test, while retaining the possibility to write high level fault scenarios. As a proof of concept, we use our tool
to test FreePastry, an existing java implementation of a Distributed Hash Table (DHT), against node failures.

In the context of the Coregrid Network of Excellence, we presented in [42] an overview of the state of the
art, followed by a presentation of the FAIL-FCI system from INRIA that provides a tool for fault-injection
in large distributed systems. Then we presented DBGS, a dependable Benchmark for Grid Services and we
present some experimental results.

Self-stabilization[46], [22], [14]
We generalized in [46] the classic dining philosophers problem to allow critical section entry conflicts

between non-neighbor processes. We described a deterministic self-stabilizing solution to the new problem.
We extended our solution to handle a similarly generalized drinking philosophers problem. As another
extension, we described the variant that has finite failure locality. This extension allows our algorithm to
tolerate process crashes.

We presented in [22] a generic distributed algorithm for solving silents tasks such as shortest path calculus,
depth-first-search tree construction, best reliable transmitters, in directed networks where communication may
be only unidirectional. Our solution is written for the asynchronous message passing communication model,
and tolerates multiple kinds of failures (transient and intermittent). First, our algorithm is self-stabilizing, so
that it recovers correct behavior after finite time starting from an arbitrary global state caused by a transient
fault. Second, it tolerates fair message loss, finite message duplication, and arbitrary message reordering,
during both the stabilizing phase and the stabilized phase. This second property is most interesting since, in
the context of unidirectional networks, there exists no self-stabilizing reliable data-link protocol. A formal
proof establishes its correctness for the considered problem, and subsumes previous proofs for solutions in the
simpler reliable shared memory communication model.

We reported in [14] the first self-stabilizing Border Gateway Protocol (BGP). BGP is the standard inter-
domain routing protocol in the Internet. Self-stabilization is a technique to tolerate arbitrary transient faults.



Project-Team grand-large 19

The routing instability in the Internet can occur due to errors in configuring the routing data structures, the
routing policies, transient physical and data link problems, software bugs, and memory corruption. This
instability can increase the network latency, slow down the convergence of the routing data structures, and
can also cause the partitioning of networks. Most of the previous studies concentrated on routing policies
to achieve the convergence of BGP while the oscillations due to transient faults were ignored. The purpose
of self-stabilizing BGP is to solve the routing instability problem when this instability results from transient
failures. The self-stabilizing BGP presented here provides a way to detect and automatically recover from this
type of faults. Our protocol is combined with an existing protocol to make it resilient to policy conflicts as
well.

Byzantine Tolerance[52], [32] We presented in [52] Byzantine-robust solutions to the topology discovery
problem. Our programs allow each process to learn the complete topology of the network (up to the
neighborhoods of the faulty nodes). The program tolerates up to a fixed number of faults. The network topology
is arbitrary. The processes donot know either the diameter or the size of the network. The execution model is
asynchronous. The processes do not use cryptographic cryptographic primitives such as digital signatures.

Self-stabilizing protocols can tolerate any type and any number of transient faults. However, in general,
self-stabilizing protocols provide no guarantee about their behavior against permanent faults. We propose in
[32] a self-stabilizing link-coloring protocol resilient to (permanent) Byzantine faults in arbitrary networks.
The protocol assumes the central daemon, and uses2∆− 1 colors where∆ is the maximum degree in the
network. This protocol guarantees that any link(u, v) between nonfaulty processesu andv is assigned a color
within 2∆ + 2 rounds and its color remains unchanged thereafter.Our protocol is Byzantine insensitive in the
sense that the subsystem of correct processes remains operating properly in spite of unbounded Byzantine
faults.

Sensor Networks[33], [51] In large scale multihop wireless networks, flat architectures are not scalable. In
order to overcome this major drawback, clusterization is introduced to support self-organization and to enable
hierarchical routing. When dealing with multihop wireless networks, the robustness is a main issue due to the
dynamicity of such networks. Several algorithms have been designed for the clusterization process. As far as
we know, very few studies check the robustness feature of their clusterization protocols. In [33], we show that
a clusterization algorithm, that seems to present good properties of robustness, is self-stabilizing. We propose
several enhancements to reduce the stabilization time and to improve stability. The use of a Directed Acyclic
Graph ensures that the self-stabilizing properties always hold regardless of the underlying topology. These
extra criterion are tested by simulations.

We presented complexity analysis for a family of self-stabilizing vertex coloring algorithms in the context of
sensor networks. First, we derived theoretical results on the stabilization time when the system is synchronous.
Then, we provided simulations for various schedulings and topologies. We considered both the uniform case
(where all nodes are indistinguishable and execute the same code) and the non-uniform case (where nodes
make use of a globally unique identifier). Overall, our results show that the actual stabilization time is much
smaller than the upper bound provided by previous studies. Similarly, the height of the induced DAG is much
lower than the linear dependency to the size of the color domain (that was previously announced). Finally,
it appears that symmetry breaking tricks traditionally used to expedite stabilization are in fact harmful when
used in networks that are not tightly synchronized.

Space lower bounds for graph exploration[25] We consider the task of exploring graphs with anonymous
nodes by a team of non-cooperative robots modeled as finite automata. These robots have noa priori
knowledge of the topology of the graph, or of its size. Each edge has to be traversed by at least one robot.
We first show that, for any set ofq non-cooperativeK-state robots, there exists a graph of sizeO(qK) that
no robot of this set can explore. This improves theO(KO(q)) bound by Rollik (1980). Our main result is an
application of this improvement. It concerns exploration with stop, in which one robot has to explore and stop
after completing exploration. For this task, the robot is provided with a pebble, that it can use to mark nodes.
We prove that exploration with stop requiresΩ(log n) bits for the family of graphs with at mostn nodes. On
the other hand, we prove that there exists an exploration with stop algorithm using a robot withO(D log ∆)
bits of memory to explore all graphs of diameter at mostD and degree at most∆.



20 Activity Report INRIA 2005

6.4. Peer-to-peer systems conception
[26], [24], [41], [16]
Combining the use of clustering and scale-free nature of user exchanges into a simple and efficient

P2P system[26], [24]
It was recently observed that the user interests in P2P systems possessclusteringproperties that can be used

to reduce the amount of traffic of flooding-based search strategies. Another observation shows thatscale-free
properties that can be used for the design of routing-based search strategies. In these papers, we show that the
combination of these two properties enables the design of an efficient and simple fully decentralized search
strategy. This search strategy is simple because it does not require maintaining any structured overlay network
topology connecting the peers. It is efficient because that simulations processed onreal-world traces show that
the expected number of steps of the lookups is logarithmic in function of the size of the network.

Rechercher parmi ses pairs ou quand le hasard ne fait pas si bien les choses, tutoriel[41]
This tutorial focus on data-search in large-scale distributed systems. We present the peer-to-peer systems

and the search algorithms they use. These systems have several common properties with interaction networks,
which are studied in a lot of disciplines. We show that these properties are linked to the application. We then
see how to use them to design efficient peer-to-peer systems.

D2B: a de Bruijn Based Content-Addressable Network[16]
D2B is a peer-to-peer system based on a Distributed Hash Table (DHT). DHTs allow to design large-scale

distributed systems for which properties like degree and diameter can be proved. D2B uses theDe Bruijn
topology to route in a logarithmic number of steps in function of the number of users in the peer-to-peer
system. The degree of D2B is constant in average and it is logarithmic with high probability.

6.5. Nation Wide Experimental Platforms (testbed)
Grid’5000 The Grid is envisioned to become a main infrastructure to provide seamless and transparent

access to computing, storage, communications and service facilities to Internet users. After a first experimen-
tation phase, generally with a low number of resources, new projects are unveiled with the objective to build
large scale Grids combining hundreds of computers around the world for thousands of users. The European
EGEE project is one example in Europe.

However, Grids are very complex objects because they are fundamentally distributed systems gathering
complex and potentially volatile nodes, featuring a deep software stack and connected by possibility asyn-
chronous (best effort) networks. These systems are so complex that it is not known if one can model their
behaviour with enough accuracy to predict their properties (performance, fault tolerance, security, QoS) with-
out realizing actual experimentations. Thus observations of real Grid, experimentations with real conditions,
phenomena isolation and behaviours understanding are certainly important steps towards accurate models. In
that perspective, experimental testbed are fundamental methodological tools, allowing experimentation and
observation of large scale phenomena in Grid and their applications. Those aspects have been surveyed in
[11], [12].

The Grid 5000 project aims at building and developing a nation wide highly reconfigurable experimental
testbed allowing a large variety of experiments on all the different layers of the software stack between the
users and the hardware. Grid 5000 seeks to ease and support experimentations and to provide rigorous control
and measurement mechanisms.

In its current state, this instrument for Grid researchers is built gathering the resources of 8 computers
centres (Grid 5000 sites), connected by RENATER (the French national network for research and education),
offering to the users thousands of CPUs. Each sites host a PC clusters providing from 256 to 1000 nodes
(CPUs). The Grid 5000 control and provisioning environment allows to configure and install a full software
stack on each Grid 5000 cluster nodes. This will give the users the unique capability to setup the exact software
environment required for his experiment. Thus, the user may specify the OS, network protocols, middleware,
runtimes, application and more generally all components of the software stack needed for his experiment.
In addition to this configuration capabilities, Grid 5000 will offer a set of tools controlling the experimental



Project-Team grand-large 21

conditions during the execution of the experiment. Basically, the user will be able to start and stop every Grid
5000 nodes, on demand.

Grid 5000 is a multi-institutions project, gathering funding from the French Ministry of research, INRIA,
CNRS, University and several regional councils. The direction of the project is ensured by a Steering
Committee (SC) involving the director of the ACI Grid, Thierry Priol, The director of the ACI Grid scientific
committee, Brigitte Plateau, the director of RENATER, Dany Vandromme and all leaders of Grid 5000 sites.
The project is implemented by a team of engineers belonging to the technical committee (TC). More than
hundred researchers (permanents and Ph. D. students) will use this instrument involving about 50 engineers
(10 at full time).

Regarding the INRIA, Grid’5000 is a collaborative effort of several INRIA projects (by alphabetical order):
Apache, Caiman, Grand-Large, Oasis, Paris, Remap, Reso, Runtime, Scalaplix. Thus several Research Units
are involved (by alphabetical order): Futurs, Rennes, Rhone Alpes and Sophia. An overview of the Grid5000
project has been published in [20]

The role of Grand-Large in Grid 5000 is first the direction of the project, providing a vision, chairing the
Steering Committee, preparing roadmaps and decisions to be discussed by the SC, preparing the SC meetings,
etc. Second, Grand-Large, chairs the Technical Committee in charge of implementing the decisions of the SC
and giving information to the SC to help the decision process. By being a central member in the SC and TC,
Grand-Large plays a major role in Grid 5000.

One Expert Engineer funded by the INRIA is associated with this project at Orsay for its every day
configuration and maintenance. Several Engineers from IDRIS and LRI have participated to the original design
of Grid 5000 and help the Expert Engineer.

Grid eXplorer Large scale distributed systems like P2P systems, Sensor Networks and Desktop Grids
exhibit complex behaviours, difficult to understand because they fundamentally gather a large set of volatile
nodes connected by an asynchronous network. Most of the well known techniques in distributed systems for
fault tolerance do not work at this scale because their complexity is too high, they do not accept fault during
some stabilisation phase or because the system is evolving in size too rapidly and too strongly. Like for the
Grid, large scale distributed systems are complex to model and require prior experimentations and observations

To offer a respond to this challenge, the Grid eXplorer project aims at providing a large scale distributed
system emulator. It consists first in building the emulator gathering hardware and software components and
developing the unavailable software. In term of hardware, the project seeks to install a 1000 CPUs cluster
using a non blocking Ethernet network as well as a non blocking high speed network for a subset of the
cluster. As software, the emulation environment will allow users to configure all layers of the software stack
for every experiment. In addition to this feature, shared with Grid 5000, Grid eXplorer will provide network
emulators, virtualization mechanisms as well as fault injectors. The second part of the project is to address a
variety of large scale distributed system issues by experimenting actual applications, distributed systems, OS
and network protocols and testing new ones.

Grid eXplorer complements Grid 5000 by providing an experimental environment where the user has the
capacity to control the network experimental conditions.

This project is supported by several funding sources: the ministry of research through the ACIMasses de
données(Data Grid Explorer), INRIA, CNRS and theIle de Franceregional council. The total budget of this
project is about 2 Millions Euros.

Regarding the INRIA, Grid eXplorer is a collaborative effort of several INRIA projects (by alphabetical
order): Apache, Grand-Large, Regal and Reso. Thus several Research Units are involved (by alphabetical
order): Futurs, Rhone Alpes and Rocquencourt.

Grand-Large co-initiated this project, leads the ACIMasse de donnéesproject and managed the initial
procurement as well as the hosting of the cluster, actually installed in the IDRIS laboratory at Orsay. One
engineer is associated with this project at Orsay for its every day configuration and maintenance. This engineer
is funded by the ACIMasse de données. Several Engineers from IDRIS and LRI have participated to the
original design of Grid Explorer and help the Expert Engineer.



22 Activity Report INRIA 2005

7. Other Grants and Activities
7.1. Regional, National and International Actions

• ACI Data Mass Grid eXplorer, 3 years, head: F. Cappello, chair: Serge Petiton

• Specific Action of CNRS enabling Grid5000, 1 year, F. Cappello

• Global Computing: Augernome XtremWeb, Multi-Disciplinary Project (University of Paris XI), 4
years, sub-projet chair: Franck Cappello

• ACI GRID CGP2P: Global Peer to Peer Computing, 3 years, head: F. Cappello

• ACI GRID 2. head: Jean Louis Pazat, sub-topic chair: F. Cappello, Serge Petiton

• ACI DataGraal. head: Pierre Sens, sub-topic chair: F. Cappello

• Specific Action of CNRS "Analyse Structurelle and Algorithmique des Reseaux Dynamiques"
(DYNAMO), 1 year, head: P. Fraigniaud, Serge Petiton

• INRIA Associated Team "F-J Grid" with University of Tsukuba, 1 year, head: Franck Cappello

• ACI "GRID’5000", 3 years, head: Franck Cappello.

• CIFRE EADS, 3 years, (still in discussion), head: Franck Cappello.

• INRIA funding, MPI-V, collaboration with UTK, LALN and ANL, head: Franck Cappello

• Sakura program with University of Tsukuba, 1 year, head: Gilles Fedak

• Regional Council "Grid eXplorer", 1 year, co-chair: Franck Cappello

• Mobicoop (Agents mobiles cooperatifs pour la recherche dinformations dans des reseaux non
fiables) CNRS JemSTIC action, 2 years, head: S. Tixeuil.

• STAR (Stabilisation des reseaux fondes sur la technologie Internet), CNRS JemSTIC action, 2 years,
head: S. Tixeuil.

• ACI Sécurité FRAGILE, 3 years, head : S. Tixeuil, P. Fraigniaud

• ACI Sécurité SR2I, 3 years, subproject chair: S. Tixeuil

• P2P Project of ACI “Masse de Donnees” : P. Fraigniaud

• ANR Jeunes chercheurs XtremLab : G. Fedak

• European CoreGrid Network of Excellence

7.2. Industrial Contacts

• GIE EADS, Thesis founding (CIFRE) for Mathieu Caragnelli, from November 2004, 3 years. Title:
Grid Services for semantics.

8. Dissemination
8.1. Services to the Scientific Community
8.1.1. Book/Journal edition

• Ted Herman and Sébastien Tixeuil, editors. Self-stabilizing Systems, volume 3764 of Lecture Notes
in Computer Science, Barcelona, Spain, October 2005. Springer Verlag.

• P. Fraigniaud, "Distributed Computing", LNCS 3724, 2005.

• Serge Petiton, « Informatique Parallèle et répartie » chez hermes



Project-Team grand-large 23

8.1.2. Conférence Organisation

• Franck Cappello, HPDC’2006, "High Performance Distributed Computing", Paris, June 19-23, 2006

• Franck Cappello, GP2PC’2005, "Global and Peer to Peer Computing", in association with CC-
GRID’2005, Cardiff, 9 May 2005.

• Gilles Fedak , GP2PC’2006, "Global and Peer to Peer Computing", in association with CC-
GRID’2006, Singapore, 16-19 May 2006.

• Serge Petiton, IMACS’2005, "World Congress Scientific Computation, Applied Mathematics and
Simulation" Paris, France July 11 - 15, 2005

8.1.3. Editorial Committee membership

• Franck Cappello, Journal of Grid Computing, Springer Netherlands

• Franck Cappello, Journal of Grid and utility computing, Inderscience

• Franck Cappello, Scientific Programming Journal Special Issue on Grids and Worldwide Computing,
IOS Press, Winter 2005

• Franck Cappello, "Technique et Science Informatiques", 2001-2005

• Sébastien Tixeuil, "Technique et Science Informatiques", 2005-

• P. Fraigniaud, Theory of Computing Systems (TOCS), Springer,

• P. Fraigniaud, Journal of Interconnection Networks (JOIN), World Scientific,

8.1.4. Steering Committee membership

• Franck Cappello, IEEE/ACM HPDC

• Franck Cappello, IEEE/ACM CCGRID

• P. Fraigniaud, International Symposium on Theoretical Aspects of Computer Science (STACS).

• P. Fraigniaud, ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).

• P. Fraigniaud, International symposium on Distributed Computing (DISC).



24 Activity Report INRIA 2005

8.1.5. Program Committee membership

• Franck Cappello, HCW 2005 – 14th Heterogeneous Computing Workshop, Denver, Colorado, USA,
April 4, 2005

• Franck Cappello, RenPar’2005, 16ème édition des Rencontres Francophones du Parallélisme,
Croisic, France, 5-8 April 2005

• Franck Cappello, IMACS’2005, 17th IMACS World Congress Scientific Computation, Applied
Mathematics and Simulation, Paris, France July 11 - 15, 2005

• Franck Cappello, 1st WSEAS International Symposium on GRID COMPUTING, Corfu Island,
Greece, August 17-19, 2005.

• Sébastien Tixeuil, SSS 2005 – 7th Symposium on Self-stabilizing Systems, Barcelona, Spain,
Octobre 27-28, 2005

• Franck Cappello, Grid’2005 – 6th IEEE/ACM International Workshop on Grid Computing, Novem-
ber 14, 2005, Seattle, Washington, USA

• Franck Cappello, CDUR’2005 – Journées Francophones sur la Cohérence des Données en Univers
Réparti, November 2 2005, Paris, France

• Franck Cappello, HIPC’2005 – 12th Annual IEEE International Conference on High Performance
Computing, Goa, India, December 18-21, 2005.

• Joffroy Beauquier, OPODIS’2005, Pisa, Italy, December 12–14, 2005.

• Franck Cappello, IPDPS’2006 – 20th Annual IEEE International Parallel and Distributed Processing
Symposium, Rhodes, Grece, April 3-6, 2006.

• Franck Cappello, HCW 2006 – 14th Heterogeneous Computing Workshop, Rodes Island, Greece,
April 25-29, 2006

• Franck Cappello, VECPAR’2006 –7th International Meeting High Performance Computing for
Computational Science, Rio de Janeiro, Brazil, July 10-12, 2006

• Sébastien Tixeuil, ICDCS’2006 – 26th IEEE International Conference on Distributed Computing
Systems, Lisboa, Portugal, July 4-7, 2006

• Franck Cappello, HotP2P’06, Hot Topic in P2P System, Greece – 2006

• Sébastien Tixeuil, Algotel 2006 – 2006

• Sébastien Tixeuil, DISC 2006, Stockholm Sweden, September 18-20 – 2006.

• Franck Cappello, GP2PC’06, Singapor, April 2006

• Franck Cappello, ECG’2006, European Grid Conference, June 7-8, 2006.

• Franck Cappello, ICCP’2006, THE 2006 INTERNATIONAL CONFERENCE ON PARALLEL
PROCESSING, Columbus, Ohio, USA, August 14-18, 2006.

• Franck Cappello, Grid’2006, Barcelona, Spain, September 2006

• P. Fraigniaud, 4th International Workshop on Efficient and Experimental Algorithms (WEA), San-
torini Island, Greece, May 10-13, 2005.http://ru1.cti.gr/wea05/

• P. Fraigniaud, 31st International Workshop on Graph-Theoretic Concepts in Computer Science
(WG), Metz, Franc, 23-25 juin 2005.http://lita.sciences.univ-metz.fr/~wg2005/

• P. Fraigniaud, 19th International Symposium on Distributed Computing (DISC), (Program Chair),
Cracow, Poland, September 26-29, 2005.http://www.mimuw.edu.pl/~disc2005/

• P. Fraigniaud, 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Rhodes Island, Greece, 25-29 April, 2006.http://www.ipdps.org/

http://ru1.cti.gr/wea05/ 
http://lita.sciences.univ-metz.fr/~wg2005/
http://www.mimuw.edu.pl/~disc2005/
http://www.ipdps.org/


Project-Team grand-large 25

• P. Fraigniaud, 26th International Conference on Distributed Computing Systems (ICDCS), Lisboa,
Portugal, July 4-7, 2006.http://icdcs2006.di.fc.ul.pt/

• P. Fraigniaud, 12th European Conference on Parallel Computing (Euro-Par), Dresden, Germany,
Aug. 29 - Sept. 1, 2006.http://www.europar2006.de/

• P. Fraigniaud, 24th IASTED Conference on Parallel and Distributed Computing and Networks
(PDCN), Innsbruck, Austria, February 14-16, 2006.http://www.iasted.org/conferences/2006/Innsbruck/pdcn.htm

• P. Fraigniaud, 13th Colloquium on Structural Information and Communication Complexity
(SIROCCO), Chester, UK, July 3-5, 2006.http://sirocco06.csc.liv.ac.uk/

• Derrick Kondo GP2PC’2006, "Global and Peer to Peer Computing", in association with CC-
GRID’2006, Singapore, 16-19 May 2006.

• Serge Petiton GP2PC’2006, "Global and Peer to Peer Computing", in association with CC-
GRID’2006, Singapore, 16-19 May 2006.

• Serge Petiton IMACS 2005

• Serge Petiton Hetepoar’2005

8.1.6. School and Workshop organization

• Sébastien Tixeuil Ecotel 2006 (Ecole d’hiver des télécommunications), program comittee co-chair

• Sébastien Tixeuil, Second Coregrid Workshop on Grid and P2P System Architecture, Paris, 16-17
january 2006.

8.1.7. Session Chairing

• Franck Cappello, Session 2: ENABLING SYSTEMS, HCW 2005–14th Heterogeneous Computing
Workshop, Denver, Colorado, USA, April 4, 2005

• Franck Cappello, Session 14: Scheduling for Heterogeneous, Internet, and Grid Computing, IPDPS
2005, Denver, Colorado, USA, April 6, 2005

• Sébastien Tixeuil, Session 1: Scheduling and MAC layer, WWAN 2005, Colombus, Ohio, USA,
June 10, 2005

• Sébastien Tixeuil, Session 3: Self-organization and Routing, WWAN 2005, Colombus, Ohio, USA,
June 10, 2005

• Sébastien Tixeuil, Session 1, SSS 2005, Barcelona, Spain, October 26-27, 2005

• Serge Petiton IMACS’2005

• Serge Petiton International Conference on Large Scale Scientific Computation en Bulgarie, 2005.

http://icdcs2006.di.fc.ul.pt/
http://www.europar2006.de/
http://www.iasted.org/conferences/2006/Innsbruck/pdcn.htm
http://sirocco06.csc.liv.ac.uk/


26 Activity Report INRIA 2005

8.2. Participation to Workshops, Seminars and Miscellaneous Invitations
8.2.1. Invited International Conference

• Franck Cappello, "Grid projects in France and Europe", Colloquium on "25 years of collaboration
between Instituto de Informatica de l’UFRGS and France", Porto Alegre, November 2005.

• Sébastien Tixeuil, "Self-stabilization with Byzantine containment", Colloquium on Dynamic Sys-
tems, Rennes, september 19th, 2005.

• Franck Cappello, "Grid’5000", Workshop Grid@large, in conjuction with Europar 2005, Lisboa,
August 2005.

• Franck Cappello, "Dependability in Grids", Workshop of the IFIP WG10.4 ON DEPENDABLE
COMPUTING AND FAULT TOLERANCE, Yokoama, July, 2005.

• Franck Cappello, "Grid research tools and Grid’5000", workshop on P2P : concept, outils et
applications ; Geneve, Mai 2005

• Franck Cappello, "Dependability in Grids", panel "Dependability Challenges and Education Per-
spectives", Fifth European Dependable Computing Conference, Budapest, April 2005.

• Franck Cappello, "Desktop Grid, Global Computing and P2P Distributed Systems", wokshop on
Advanced Grid Technologies, Systems & Services, Session: Grid Foundations for Business &
Industry , IST Call 5, Brussels, February 2005.

8.2.2. Invited National Conference

• Franck Cappello", "P2P ...", Ouverture de la conférence JRES, Marseille, Décembre 2005.

• Franck Cappello, "Grid’5000", Une Grille BioInformatique en France, Expériences et Perspectives,
IBCP, Lyon, 16 juin 2005.

• Franck Cappello, "Grid 5000", Journée thématique Grilles et Clusters, Strasbourg, le 7 Juin 2005.

• Franck Cappello, "Grid’5000", Centre de calcul de IN2P3, Grenoble, le 27 Mai 2005.

• Gilles Fedak, “Le projet XtremWeb” SMAI 2005 Congrés de la Société de Mathématiques Ap-
pliquées, Evian 25-28 juin 2005



Project-Team grand-large 27

8.2.3. Schools, Workshops

• Franck Cappello, "P2P et Desktop Grids", JRES’2005, 6ème Journées Réseaux, Marseilles, 5-9
December 2005.

• Franck Cappello, "Grid’5000", Workshop LCG-France: 1ère rencontre IN2P3/STIC dans le cadre
de la grille de calcul du LHC, Grenoble, 25 Février 2005.

• Franck Cappello, "Recherche en Grille dans les STIC", Workshop LCG-France: 1ère rencontre
IN2P3/STIC dans le cadre de la grille de calcul du LHC, Grenoble, 25 Février 2005.

• Franck Cappello, "Grid’5000 : une plate-forme de grille expérimentale d’échelle nationale",
Journée de veille scientifique et technologique sur les grilles, 4 février 2005 - Irisa - Cam-
pus de Beaulieu, Rennes Audio (http://www.irisa.fr/videos/irisatech/lesgrilles/cappello/st-
son01.rm) Vidéo (http://www.irisa.fr/videos/irisatech/lesgrilles/cappello/st-video01.rm) pdf
(http://www.irisa.fr/videos/irisatech/lesgrilles/cappello/F-Cappello.pdf)

• Franck Cappello, "Grid5000: une plate-forme de grille experimentale d’echelle nationale", Grappes
et grilles d’ordinateurs: etat de l’art, INRI ARhone-Alpes, Montbonnot, 3 Février 2005 pdf
(http://rev.inrialpes.fr/intechslides/2005-02-03/desprez.pdf)

• Franck Cappello, "Une introduction aux Grilles", Iliatech, Journée de veille Scientifique et Tech-
nologique , INRIA Rocquencourt, Mardi 18 janvier 2005

• Franck Cappello, "Présentation du projet national Grid’5000", Iliatech, Journée de veille Scientifique
et Technologique , INRIA Rocquencourt, Mardi 18 janvier 2005

• P. Fraigniaud, "Routing and Lookup in Peer-to-Peer Systems", 3rd Complex Systems Summer
School, Valparaíso, Chili, 10-21 janvier, 2005.

• P. Fraigniaud, "Navigation dans les réseaux sociaux", Ecole thématique sur les Grands Réseaux
d’Interactions, Paris, 25-29 avril, 2005.

• P. Fraigniaud, "Greedy routing in tree-decomposed graphs", Workshop of the COST Action 295 DY-
NAMO on Dynamic Communication Networks: Foundations and Algorithms, Cracovie, Pologne,
29-30 sept., 2005.

• P. Fraigniaud, "Greedy routing in tree-decomposed graphs", Workshop on Graph Classes, Width
Parameters and Optimization, Prague, October 17 - 19, 2005.

• P. Fraigniaud, "Routage glouton dans les décompositions arborescentes", 7èmes Journées Graphes
et Algorithmes, Bordeaux, 3-4 novembre, 2005.

• P. Fraigniaud, "Le graphe de de Bruijn, ou le Vilain Petit Canard deviendra-t-il Cygne ?", Colloque
en l’honneur de Jean-Claude Bermond, Sophia-Antipolis, 8-9 décembre 2005.

• P. Fraigniaud, "Graph exploration and graph searching", Descrete Mathematics Summer School,
Valparaíso, Chili, 9-13 Jan, 2006.

• P. Fraigniaud, "Aspects fondamentaux des réseaux décentralisés", Ecole de printemps GRID et P2P,
Crans-Montana, Suisse, 6-10 mars 2006.

• Gilles Fedak, “Scheduling Independent Tasks Sharing Large Data Distributed with BitTor-
rent”NSF/INRIA Workshop: Scheduling for Large-Scale Distributed Platforms, La Jolla, California
– November 12- 14, 2005

http://www.irisa.fr/videos/irisatech/lesgrilles/cappello/st-son01.rm
http://www.irisa.fr/videos/irisatech/lesgrilles/cappello/st-son01.rm
http://www.irisa.fr/videos/irisatech/lesgrilles/cappello/st-video01.rm
http://www.irisa.fr/videos/irisatech/lesgrilles/cappello/F-Cappello.pdf
http://rev.inrialpes.fr/intechslides/2005-02-03/desprez.pdf


28 Activity Report INRIA 2005

8.2.4. Seminaries

• Franck Cappello, "Grid’5000", Meeting of the ACI "Masse de Données" Art3D project, Le Louvre,
Paris, 23 Mars 2005.

• Sébastien Tixeuil, "Beyond Self-stabilization", Meeting of the ACI "Sécurité et Informatique" SR2I
project, Alcatel marcoussis, 7 march 2005

• Sébastien Tixeuil, "On Self-stabilization and Sensor Networks", Kent State University invited
seminar, USA, 6 april 2005

• Franck Cappello, "When Parallel Computing takes risks", Department of computer science, Parallel
Programming Laboratory, University of Illinois at Urbana Champaign, 13 April 2005

• Franck Cappello, "Grid’5000 status", MatsuLab, TITECH, Japan, September 2005

• Sébastien Tixeuil, "Self-stabilization with Byzantine Containment", LAMI invited seminar, Univer-
sité d’Evry, France, 17 november 2005

• Sébastien Tixeuil, "Introduction to Self-stabilization", Universidade Federal de Bahia (UFBA),
Brésil, 16 décembre 2005

• Sébastien Tixeuil, "Self-stabilization and Sensor Networks", Universidade Federal de Bahia
(UFBA), Brésil, 19 décembre 2005

• Philippe Gauron, "Exploiter les lois de puissance et les petits mondes pour le pair-à-pair", journées
TAROT, Université d’Évry, France, 18 mars 2005

• Gilles Fedak "Scheduling Independent Tasks Sharing Large Data Distributed with BitTorrent",
NSF/INRIA Workshop Scheduling for Large-Scale Distributed Platforms, La Jolla, California
November 13, 2005

• Serge Petiton, "Peer to Peer Linear Algebra Computing", University College of Dublin, Irlande, 18
février 2005

• Serge Petiton, "Matrix Global and Grid Computing", AIST, Tsukuba, Japon, 22 avril 2005

• Serge Petiton, "A Survey on Peer to Peer Parallel Scientific Global Computing", NEC, Tokyo, Japon,
27 avril 2005

• Serge Petiton, "Vers le calcul scientifique global pair à pair", Journées calcul du CEA, La baule, 7
juin 2005

• Serge Petiton, "Large Scale Matrix Global Computing", Institut de Physique, Teheran, Iran, 23 juillet
2005

• Serge Petiton, "Very Large Global Computing on Heterogeneous Platforms", Google, Seattle, USA
, 18 novembre 2005



Project-Team grand-large 29

9. Bibliography
Major publications by the team in recent years

[1] G. BOSILCA, A. BOUTEILLER, F. CAPPELLO, S. DJILALI , G. FEDAK , C. GERMAIN , T. HERAULT, P.
LEMARINIER, O. LODYGENSKY, F. MAGNIETTE, V. NERI, A. SELHIKOV. MPICH-V: Toward a Scalable
Fault Tolerant MPI for Volatile Nodes, in "proceedings of ACM/IEEE International Conference on Supercom-
puting", 2002.

[2] A. B OUTEILLER, G. KRAWEZIK , P. LEMARINIER, F. CAPPELLO. MPICH-V3: A hierarchical fault tolerant
MPI for Multi-Cluster Grids, IEEE/ACM SC 2003, Phoenix USA, November 2003.

[3] A. B OUTEILLER, P. LEMARINIER, G. KRAWEZIK , F. CAPPELLO. Coordinated Checkpoint versus Message
Log for fault tolerant MPI, in "IEEE Cluster 2003, Hong Kong", December 2003.

[4] F. CAPPELLO, S. DJILALI , G. FEDAK , T. HERAULT, F. MAGNIETTE, V. NERI, O. LODYGENSKY. Computing
on Large Scale Distributed Systems: XtremWeb Architecture, Programming Models, Security, Tests and
Convergence with Grid, in "FGCS Future Generation Computer Science", 2004.

[5] C. JOHNEN, L. O. ALIMA , A. K. DATTA , S. TIXEUIL . Optimal Snap-stabilizing Neighborhood Synchronizer
in Tree Networks, in "Parallel Processing Letters", vol. 12, no 3 & 4, 2002, p. 327–340.

[6] O. LODYGENSKY, G. FEDAK , F. CAPPELLO, V. NERI, M. L IVNY, D. THAIN . XtremWeb and Condor :
sharing resources between Internet connected Condor pools, in "GP2PC 2003 Workshop, Tokyo, Japan",
IEEE/ACM CCGRID2003, May 12-15 2003.

Books and Monographs

[7] T. HERMAN, S. TIXEUIL (editors).Self-stabilizing Systems, Lecture Notes in Computer Science, vol. 3764,
Springer Verlag, Barcelona, Spain, October 2005,http://www.springeronline.com/3-540-29814-2.

Articles in refereed journals and book chapters

[8] J. BEAUQUIER, L. PILARD , B. ROZOY. Observing locally self-stabilization, in "Journal of High Speed
networks", vol. 14, no 1, 2005, p. 3-19.

[9] A. B OUTEILLER, H.-L. BOUZIANE, T. HERAULT, P. LEMARINIER, F. CAPPELLO. Hybrid Preemptive
Scheduling of MPI Applications on the Grids, in "International Journal of High Performance Computing and
Networking", to appear, 2005.

[10] A. BOUTEILLER, T. HERAULT, G. KRAWEZIK , P. LEMARINIER, F. CAPPELLO. MPICH-V Project: a
Multiprotocol Automatic Fault Tolerant MPI, in "International Journal of High Performance Computing
Applications", to appear, 2005.

[11] F. CAPPELLO. Les enjeux de l’informatique de demain, chap. Les Grilles : les défis de la globalisation des
ressources informatiques et des données (Luis Farinas del Cerro editor), Lavoisier, 2005.

http://www.springeronline.com/3-540-29814-2


30 Activity Report INRIA 2005

[12] F. CAPPELLO, G. FEDAK , T. MORLIER, O. LODYGENSKY. Encyclopédie Vuibert, chap. Des systèmes client-
serveur aux systèmes pair a pair, Vuibert, 2005.

[13] F. CAPPELLO, P. FRAIGNIAUD , B. MANS, A. ROSENBERG. An algorithmic model for heterogeneous
clusters: rationale and experience, in "oundations of Computer Science", vol. 16, 2005, p. 195–216.

[14] Y. CHEN, A. K. DATTA , S. TIXEUIL . Stabilizing Inter-domain Routing in the Internet, in "Journal of High
Speed Networks", vol. 14, no 1, 2005, p. 21-37.

[15] N. EMAD , S. PETITON, G. EDJLALI . Multiple Explicitly Restarted Arnoldi Method for Solving Large
Eigenproblems, in "SIAM Journal on Scientific Computing", vol. Volume 27, no Number 1, 2005, p. pp.
253-277.

[16] P. FRAIGNIAUD , P. GAURON.. D2B: a de Bruijn Based Content-Addressable Network, 2005, To appear.

[17] H. HE, G. BERGÈRE, S. G. PETITON. A Hybrid GMRES-LS-Arnoldi method to accelerate the parallel
solution of linear systems, in "An International Journal: Computer and Mathematics with Applications", 2005.

Publications in Conferences and Workshops

[18] L. M. AOUAD, S. G. PETITON, M. SATO. Cluster and Grid Matrix Computation with Persistent Storage and
Out-of-core Programming, in "Cluster’05, Boston, Massachusetts, USA", September 26 - 30 2005.

[19] J. BEAUQUIER, L. PILARD , B. ROZOY. Observing self-stabilization in a probabilistic way, in "Proceedings
of DISC’2005, Kracow, Poland", P. FRAIGNIAUD (editor). , Lecture Notes in Computer Science, Springer-
Verlag, October 2005, p. 399-413.

[20] F. CAPPELLO, F. DESPREZ, M. DAYDE , E. JEANNOT, Y. JEGOU, S. LANTERI, N. MELAB , R. NAMYST,
P. PRIMET, O. RICHARD, E. CARON, J. LEDUC, G. MORNET. Grid’5000: A Large Scale, Reconfigurable,
Controlable and Monitorable Grid Platform, in "6th IEEE/ACM International Workshop on Grid Computing,
Seattle, USA", 2005.

[21] L. CHOY, S. G. PETITON. Toward global and grid computing for large scale linear algebra problems, in
"Heteropar’05, Boston, Massachusetts, USA", September 27 - 30 2005.

[22] S. DELAËT, B. DUCOURTHIAL, S. TIXEUIL . Self-stabilization with r-operators revisited, in "Proceedings of
the Seventh Symposium on Self-stabilizing Systems (SSS’05), Barcelona, Spain", Lecture Notes in Computer
Science, to appear, vol. 3764, no 3764, Springer Verlag, October 2005.

[23] M. DUFLOT, L. FRIBOURG, T. HERAULT, R. LASSAIGNE, F. MAGNIETTE, S. MESSIKA, S. PEYRONNET,
C. PICARONNY. Probabilistic Model Checking of the CSMA/CD Protocol Using PRISM and APCM, in
"Proceedings of the 4th International Workshop on Automated Verification of Critical Systems (AVoCS’04),
London, UK", M. R. A. HUTH (editor). , Electronic Notes in Theoretical Computer Science, vol. 128, no 6,
Elsevier Science Publishers, May 2005, p. 195-214,http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DFH-
avocs2004.pdf.

[24] P. FRAIGNIAUD , P. GAURON, M. LATAPY. Combining the use of clustering and scale-free nature of

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DFH-avocs2004.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DFH-avocs2004.pdf


Project-Team grand-large 31

user exchanges into a simple and efficient P2P system, in "Proceedings of the 12th European Conference
on Parallel Computing (Euro-Par), Lisbon, Portugal", Lecture Notes in Computer Science, Springer-Verlag
GmbH, August 2005, p. 1163-1172.

[25] P. FRAIGNIAUD , D. ILCINKAS , S. RAJSBAUM, S. TIXEUIL . Space lower bounds for graph exploration via
reduced automata, in "Structural Information and Communication Complexity, 12th International Colloquium,
SIROCCO 2005, Mont Saint-Michel, France, May 24-26, 2005, Proceedings", A. PELC, M. RAYNAL

(editors). , Lecture Notes in Computer Science, vol. 3499, Springer Verlag, May 2005, p. 140-154.

[26] P. GAURON. Expoiter les agrégats et les lois de puissance pour le pair-à-pair, in "Actes des 7 èmes
Rencontres Francophones sur les aspects Algorithmiques des Télécommunications (AlgoTel), Presqu’île de
Giens, France", INRIA, May 2005, p. 85-88.

[27] G. GUIRADO, T. HERAULT, R. LASSAIGNE, S. PEYRONNET. Distribution, approximation and probabilistic
model checking, in "Proceedings of the 4th International Workshop on Parallel and Distributed Methods in
verifiCation (PDMC’05), Lisbon, Portugal", July 2005.

[28] H. HE, G. BERGÈRE, S. G. PETITON. GMRES Method on Lightweight GRID System, in "4th International
Symposium on Parallel and Distributed Computing, Lille, France", 2005.

[29] W. HOARAU, S. TIXEUIL . A language-driven tool for fault injection in distributed applications, in "Proceed-
ings of the IEEE/ACM Workshop GRID 2005, Seattle, USA", November 2005, to appear.

[30] P. LEMARINIER, A. BOUTEILLER, T. HERAULT, G. KRAWEZIK , F. CAPPELLO. Impact of Event Logger on
Causal Message Logging Protocols for Fault Tolerant MPI, in "Proceedings of the Int Parallel and Distributed
Processing Symposium (IPDPS 05), Denver, USA April 2005, Denver, USA", April 2005.

[31] P. MANNEBACK , G. BERGÈRE, N. EMAD , R. GRUBER, V. KELLER, P. KUONEN, T. A. NGUYEN, S.
NOËL, S. PETITON. Towards a scheduling policy for hybrid methods on computational grids, Pisa, november
2005.

[32] T. MASUZAWA , S. TIXEUIL . A Self-stabilizing Link Coloring Algorithm Resilient to Unbounded Byzantine
Faults in Arbitrary Networks, in "Proceedings of OPODIS 2005, Pisa, Italy", Lecture Notes in Computer
Science, Springer-Verlag, December 2005, to appear.

[33] N. M ITTON, E. FLEURY, I. GUÉRIN-LASSOUS, S. TIXEUIL . Auto-stabilisation dans les réseaux ad hoc, in
"Proceedings of Algotel 2005", May 2005, p. 45-48.

[34] N. M ITTON, E. FLEURY, I. GUÉRIN-LASSOUS, S. TIXEUIL . Self-stabilization in Self-organized Wireless
Multihop Networks, in "Proceedings of the 25th IEEE International Conference on Distributed Computing
Systems Workshops (WWAN’05), Columbus, Ohio, USA", IEEE Press, June 2005, p. 909-915.

[35] S. G. PETITON, L. M. AOUAD, L. CHOY. Matrix Peer-to-Peer Computing With Very Large Heterogeneous
Plateforms, in "IMACS’2005, the 17th IMACS World Congress on Scientific Computation, Applied Mathe-
matics and Simulation, Paris, France", 11–15 July 2005.

[36] S. G. PETITON, L. M. AOUAD, L. CHOY. Peer to Peer Large Scale Linear Algebra, programming and ex-



32 Activity Report INRIA 2005

perimentations, in "LSSC’05, 5th International Conference on Large-Scale Scientific Computations, Sozopol,
Bulgaria", June 6-10 2005.

[37] S. G. PETITON, L. AOUAD. Distributed Out-of-Core Parallel Linear Algebre on Grid5000 Heterogeneous
Platform, San Francisoc, USA, february 21-24 2006.

[38] S. G. PETITON, H. HE, G. BERGÈRE. Large Scale Linear System Global Computing, in "IMACS’2005,
the 17th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, Paris,
France", 11–15 July 2005.

[39] B. QUÉTIER, F. CAPPELLO. A survey of Grid research tools: simulators, emulators and real life platforms, in
"17th IMACS World Congress (IMACS 2005), Paris, France", 2005.

[40] B. QUÉTIER, V. NERI. V-Meter: Microbenchmark pour évaluer les utilitaires de virtualisation dans la
perspective de systèmes d’émulation à grande échelle, in "16ème Rencontres Francophones du Parallélisme
(RenPar’16), Le Croisic, France", April 2005.

[41] E. RIVIÈRE, P. GAURON. Rechercher parmi ses pairs ou quand le hasard ne fait pas si bien les choses, tuto-
riel., in "Actes de la troisième MAnifestation francophones des Jeunes Chercheurs en STIC (MajecSTIC’05),
Rennes, France", HAL-Inria, édité par Sylvie Saget et Alexandre Vautier, École doctorale Matisse, Université
de Rennes 1, November 2005, To appear,http://hal.inria.fr/inria-00000672.

[42] S. TIXEUIL , L. M. SILVA , W. HOARAU, G. JESUS, J. BENTO, F. TELLES. Fault-Injection and Depend-
ability Benchmarking for Grid Computing Middleware, in "Proceedings of CoreGrid Integration Workshop",
November 2005, to appear.

[43] B. WEI, G. FEDAK , F. CAPPELLO. Collaborative Data Distribution with BitTorrent for Computational
Desktop Grids, in "ISPDC’05, Lille, France", 2005.

[44] B. WEI, G. FEDAK , F. CAPPELLO. Scheduling Independent Tasks Sharing Large Data Distributed with
BitTorrent, in "6th IEEE/ACM International Workshop on Grid Computing, Seattle, USA", 2005.

Internal Reports

[45] J. BEAUQUIER, S. DELAËT, S. HADDAD . 1-adaptativity, Rapport de recherche, no 1405, CNRS - Université
Paris Sud, 2005.

[46] P. DANTURI , M. NESTERENKO, S. TIXEUIL . Self-stabilizing Philosophers with Generic Conflicts, Technical
report, no TR-KSU-CS-2005-05, Kent State University, August 2005.

[47] W. HOARAU, S. TIXEUIL . A language-driven tool for fault injection in distributed systems, Technical report,
no 1399, Laboratoire de Recherche en Informatique, February 2005.

[48] W. HOARAU, S. TIXEUIL , F. VAUCHELLES. Easy Fault Injection and Stress Testing with FAIL-FCI, Technical
report, no 1421, Laboratoire de Recherche en Informatique, Université Paris Sud, October 2005.

http://hal.inria.fr/inria-00000672


Project-Team grand-large 33

[49] W. HOARAU, S. TIXEUIL , F. VAUCHELLES. Fault Injection in Distributed Java Applications, Technical
report, no 1420, Laboratoire de Recherche en Informatique, Université Paris Sud, October 2005.

[50] T. MASUZAWA , S. TIXEUIL . A Self-Stabilizing Link-Coloring Protocol Resilient to Unbounded Byzantine
Faults in Arbitrary Networks, Technical report, no 1396, Laboratoire de Recherche en Informatique, January
2005.

[51] N. M ITTON, E. FLEURY, I. GUÉRIN-LASSOUS, B. SÉRICOLA, S. TIXEUIL . On Fast Randomized Colorings
in Sensor Networks, Technical report, no 1416, Laboratoire de Recherche en Informatique, Université Paris
Sud, June 2005.

[52] M. NESTERENKO, S. TIXEUIL . Discovering Network Topology in the Presence of Byzantine Nodes, Technical
report, no TR-KSU-CS-2005-1, Kent State University, May 2005.

Bibliography in notes

[53] K. A IDA , A. TAKEFUSA, H. NAKADA , S. MATSUOKA, S. SEKIGUCHI, U. NAGASHIMA . Performance
evaluation model for scheduling in a global computing system, vol. 14, No. 3, 2000.

[54] A. D. ALEXANDROV, M. IBEL, K. E. SCHAUSER, C. J. SCHEIMAN . SuperWeb: Research Issues in
JavaBased Global Computing, in "Concurrency: Practice and Experience", vol. 9, no 6, June 1997, p. 535–553.

[55] L. A LVISI , K. MARZULLO . Message Logging: Pessimistic, Optimistic and Causal, 2001, Proc. 15th Int’l
Conf. on Distributed Computing.

[56] D. ANDERSON. Berkeley Open Infrastructure for Network Computing (BOINC), http://boinc.berkeley.edu/.

[57] A. BARAK , O. LA’ ADAN . The MOSIX multicomputer operating system for high performance cluster
computing, in "Future Generation Computer Systems", vol. 13, no 4–5, 1998, p. 361–372.

[58] A. BARATLOO, M. KARAUL , Z. M. KEDEM, P. WYCKOFF. Charlotte: Metacomputing on the Web, in
"Proceedings of the 9th International Conference on Parallel and Distributed Computing Systems (PDCS-
96)", 1996.

[59] J. BEAUQUIER, C. GENOLINI , S. KUTTEN. Optimal reactive k-stabilization: the case of mutual exclusion. In
Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing, may 1999.

[60] J. BEAUQUIER, T. HERAULT. Fault-Local Stabilization: the Shortest Path Tree. Proceedings of the 21th
Symposium of Reliable Distributed Systems, october 2002.

[61] G. BOSILCA, A. BOUTEILLER, F. CAPPELLO, S. DJILALI , G. FEDAK , C. GERMAIN , T. HERAULT, P.
LEMARINIER, O. LODYGENSKY, F. MAGNIETTE, V. NERI, A. SELIKHOV. MPICH-V: Toward a Scalable
Fault Tolerant MPI for Volatile Nodes, in IEEE/ACM SC 2002.

[62] A. BOUTEILLER, F. CAPPELLO, T. HERAULT, G. KRAWEZIK , P. LEMARINIER, F. MAGNIETTE. MPICH-
V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic Sender Based Message Logging, November

http://boinc.berkeley.edu/


34 Activity Report INRIA 2005

2003, in IEEE/ACM SC 2003.

[63] A. BOUTEILLER, P. LEMARINIER, G. KRAWEZIK , F. CAPPELLO. Coordinated Checkpoint versus Message
Log for fault tolerant MPI, December 2003, in IEEE Cluster.

[64] T. BRECHT, H. SANDHU , M. SHAN , J. TALBOT. ParaWeb: Towards World-Wide Supercomputing, in "Pro-
ceedings of the Seventh ACM SIGOPS European Workshop on System Support for Worldwide Applications",
1996.

[65] R. BUYYA , M. MURSHED. GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing, Wiley Press, May 2002.

[66] COSM.Mithral Communications & Design Inc., http://www.mithral.com/.

[67] N. CAMIEL , S. LONDON, N. NISAN, O. REGEV. The POPCORN Project: Distributed Computation over the
Internet in Java, in "Proceedings of the 6th International World Wide Web Conference", April 1997.

[68] J. CAO, S. A. JARVIS, S. SAINI , G. R. NUDD. GridFlow: Workflow Management for Grid Computing, in
"Proceedings of the Third IEEE/ACM Internation Symposium on Cluster Computing and the Grid", May
2003.

[69] H. CASANOVA . Simgrid: A Toolkit for the Simulation of Application Scheduling. In Proceedings of the IEEE
International Symposium on Cluster Computing and the Grid (CCGrid ’01), May 2001.

[70] H. CASANOVA , A. LEGRAND, D. ZAGORODNOV, F. BERMAN. Heuristics for Scheduling Parameter Sweep
Applications in Grid Environments, in "Proceedings of the Ninth Heterogeneous Computing Workshop",
IEEE COMPUTERSOCIETY PRESS(editor). , 2000, p. 349-363.

[71] K. M. CHANDY, L. LAMPORT. Distributed Snapshots: Determining Global States of Distr. systems. ACM
Trans. on Comp. Systems, 3(1):63–75, 1985.

[72] Y. CHEN, J. EDLER, A. GOLDBERG, A. GOTTLIEB, S. SOBTI, P. YIANILOS . A prototype implementation
of archival intermemory. In Proceedings of ACM Digital Libraries. ACM, August 1999..

[73] A. CHIEN, B. CALDER, S. ELBERT, K. BHATIA . Entropia: Architecture and Performance of an Enterprise
Desktop Grid System, in "Journal of Parallel and Distributed Computing", vol. 63, no 5, 2003, p. 597–610.

[74] B. O. CHRISTIANSEN, P. CAPPELLO, M. F. IONESCU, M. O. NEARY, K. E. SCHAUSER, D. WU. Javelin:
Internet-Based Parallel Computing Using Java, in "Concurrency: Practice and Experience", vol. 9, no 11,
November 1997, p. 1139–1160.

[75] S. DOLEV. Self-stabilization, M.I.T. Press 2000.

[76] D. W. ERWIN. UNICORE - a Grid computing environment. Concurrency and Computation: Practice and
Experience 14(13-15): 1395-1410 (2002).

http://www.mithral.com/


Project-Team grand-large 35

[77] G. FEDAK , C. GERMAIN , V. NERI, F. CAPPELLO. XtremWeb: A Generic Global Computing System, in
"CCGRID’01: Proceedings of the 1st International Symposium on Cluster Computing and the Grid", IEEE
Computer Society, 2001, 582.

[78] M. J. FISCHER, N. A. LYNCH, M. S. PATERSON. Impossibility of Distributed Consensus with one Faulty
Process, in "Journal of the ACM", vol. 32, no 2, April 1985, p. 374–382.

[79] I. FOSTER, A. IAMNITCHI . On Death, Taxes, and the Convergence of Peer-to-Peer and Grid Computing, in
"2nd International Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley, CA", February 2003.

[80] I. FOSTER, C. KESSELMAN. Globus: A metacomputing infrastructure toolkit, Internat. J. Supercomput. Appl.
11, 2 (1997), 115128.

[81] I. FOSTER, C. KESSELMAN, J. NICK , S. TUECKE. The physiology of the grid: An open grid services
architecture for distributed systems integration. Technical report, Open Grid Service Infrastructure WG,
Global Grid Forum, June 2002..

[82] V. K. GARG. Principles of distributed computing. John Wiley and Sons; ISBN: 0471036005; (May 2002)..

[83] C. GENOLINI , S. TIXEUIL . A lower bound on k-stabilization in asynchronous systems. Proceedings of the
21th Symposium of Reliable Distributed Systems, october 2002..

[84] D. P. GHORMLEY, D. PETROU, S. H. RODRIGUES, A. M. VAHDAT, T. E. ANDERSON. GLUnix: A Global
Layer Unix for a Network of Workstations, in "Software Practice and Experience", vol. 28, no 9, 1998, p.
929–961.

[85] B. HUDZIA . Use of Multicast in P2P Network thought Integration in MPICH-V2, Technical report, Master of
Science Internship, Pierre et Marie Curie University, September 2003.

[86] D. E. KEYES. A Science-based Case for Large Scale Simulation, Vol. 1, Office of Science, US Department of
Energy, Report Editor-in-Chief, July 30 2003.

[87] J. KUBIATOWICZ , D. BINDEL , Y. CHEN, P. EATON, D. GEELS, R. GUMMADI , S. RHEA, H. WEATHER-
SPOON, W. WEIMER, C. WELLS, B. ZHAO. OceanStore: An Architecture for Global-scale Persistent Storage,
in "Proceedings of ACM ASPLOS", ACM, November 2000.

[88] S. KUTTEN, B. PATT-SHAMIR . Stabilizing time-adaptive protocols. Theoretical Computer Science 220(1),
1999.

[89] S. KUTTEN, D. PELEG. Fault-local distributed mending. Journal of Algorithms 30(1), 1999.

[90] N. LEIBOWITZ, M. RIPEANU, A. WIERZBICKI . Deconstructing the Kazaa Network, in "Proceedings of the
3rd IEEE Workshop on Internet Applications WIAPP’03, Santa Clara, CA", 2003.

[91] M. L ITZKOW, M. L IVNY, M. MUTKA . Condor — A Hunter of Idle Workstations, in "Proceedings of the
Eighth Conference on Distributed Computing, San Jose", 1988.



36 Activity Report INRIA 2005

[92] N. A. LYNCH. , M. KAUFMANN (editor).Distributed Algorithms, 1996.

[93] MESSAGE PASSING INTERFACE FORUM. MPI: A message passing interface standard. Technical report,
University of Tennessee, Knoxville, June 12, 1995. 16.

[94] N. M INAR , R. MURKHART, C. LANGTON, M. ASKENAZI. The Swarm Simulation System: A Toolkit for
Building Multi-Agent Simulations, 1996,http://www.santafe.edu/projects/swarm/overview/overview.html.

[95] H. PEDROSO, L. M. SILVA , J. G. SILVA . Web-Based Metacomputing with JET, in "Proceedings of the ACM",
1997.

[96] PLAT FORM. Platform Computing - Accelerating Intelligence - Grid Computing, http://www.platform.com.

[97] S. RATNASAMY, P. FRANCIS, M. HANDLEY, R. KARP, S. SHENKER. A Scalable Content Addressable
Network, in "Proceedings of ACM SIGCOMM 2001", 2001.

[98] A. L. ROSENBERG. Guidelines for Data-Parallel Cycle-Stealing in Networks of Workstations I: On Maximiz-
ing Expected Output, in "Journal of Parallel Distributed Computing", vol. 59, no 1, 1999, p. 31-53.

[99] A. ROWSTRON, P. DRUSCHEL. Pastry: Scalable, Decentralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems, in "IFIP/ACM International Conference on Distributed Systems Platforms (Mid-
dleware)", 2001, p. 329–350.

[100] L. F. G. SARMENTA , S. HIRANO. Bayanihan: building and studying Web-based volunteer computing
systems using Java, in "Future Generation Computer Systems", vol. 15, no 5–6, 1999, p. 675–686.

[101] S. SAROIU, P. K. GUMMADI , S. D. GRIBBLE. A Measurement Study of Peer-to-Peer File Sharing Systems,
in "Proceedings of Multimedia Computing and Networking, San Jose, CA, USA", January 2002.

[102] SCIDAC. SciDAC, http://www.scidac.org.

[103] J. F. SHOCH, J. A. HUPP. The Worm Programs: Early Experiences with Distributed Systems, in "Communi-
cations of the Association for Computing Machinery", vol. 25, no 3, March 1982.

[104] O. SIEVERT, H. CASANOVA . Policies for Swapping MPI Processes. HPDC 2003: 104-113.

[105] I. STOICA, R. MORRIS, D. KARGER, F. KAASHOEK, H. BALAKRISHNAN . Chord: A Scalable Peer-To-
Peer Lookup Service for Internet Applications, in "Proceedings of the 2001 ACM SIGCOMM Conference",
2001, p. 149–160.

[106] G. TEL. Introduction to distributed algorithms. Cambridge University Press, 2000.

[107] TERAGRID. Teragrid, http://www.teragrid.org.

[108] S. TUECKE, K. CZAJKOWSKI, I. FOSTER, J. FREY, S. GRAHAM , C. KESSELMAN. Grid Service Specifi-
cation. Draft 3, Global Grid Forum, July 2002..

http://www.santafe.edu/projects/swarm/overview/overview.html
http://www.platform.com
http://www.scidac.org
http://www.teragrid.org


Project-Team grand-large 37

[109] B. UK , M. TAUFER, T. STRICKER, G. SETTANNI , A. CAVALLI . Implementation and Characterization of
Protein Folding on a Desktop Computational Grid - Is Charmm a Suitable Candidate for the United Devices
Metaprocessor, Technical report, no 385, ETH Zurich, Institute for Comutersystems, October 2002.

[110] Y.-M. WANG, W. K. FUCHS. Optimistic Message Logging for Independent Checkpointing in Message-
Passing Systems, Symposium on Reliable Distributed Systems 1992.

[111] Y. Y I , T. PARK , H. Y. YEOM. A Causal Logging Scheme for Lazy Release Consistent Distributed Shared
Memory Systems. In Proc. of the 1998 Int’l Conf. on Parallel and Distributed Systems, Dec. 1998. 1.

[112] B. Y. ZHAO, J. D. KUBIATOWICZ , A. D. JOSEPH. Tapestry: An Infrastructure for Fault-tolerant Wide-area
Location and Routing, Technical report, no UCB/CSD-01-1141, UC Berkeley, April 2001.

[113] DATASYNAPSE. Gridsystems Simplify Complexity, http://www.datasynapse.com.

[114] GRIDSYSTEMS. Gridsystems, http://www.gridsystems.com.

[115] WEBSERVICES. webservices, http://www.webservices.org/.

http://www.datasynapse.com
http://www.gridsystems.com
http://www.webservices.org/

