%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team mimosa

Migration et Mobilité: Sémantique et
Applications

Sophia Antipolis

P THEME COM P

ctivit

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/mimosa.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-sop.en.html

=

Table of contents

Team

Overall Objectives

2.1. Overall Objectives

Scientific Foundations

3.1. Semantics of mobility and security
3.2. Reactive and Functional programming
Application Domains

4.1. Simulation

4.2. Embedded systems

4.3. Scripting
4.4. \Web servers and Web proxies
Software

5.1. Mimosa Softwares
5.2. Reactive Programming
5.2.1. Reactive-C
5.2.2. FairThreads in Java and C
5.2.3. LURC
5.3. Functional programming
5.3.1. The Bigloo compiler

5.3.2. Bugloo
5.3.3. Skribe
5.3.4. ULM
5.4. Old softwares
5.4.1. Icobjs
5.4.2. Typl
5.4.3. MLObj
54.4. Trust
New Results
6.1. Semantics of mobility
6.2. Security

6.2.1. Controlling information flow
6.2.2. Controlling the complexity of code
6.3. Reactive programming
6.3.1. The reactive model
6.3.2. Safe Concurrent Programming
6.3.3. Reactive Programming: LURC
6.4. Functional programming
6.4.1. Types and recursion
6.4.2. Bigloo
6.4.2.1. Stack Virtualisation for Source Level Debugging
6.4.3. Skribe
6.4.4. Bimap
6.4.5. Jsigloo
Contracts and Grants with Industry
7.1. JSM
Other Grants and Activities
8.1. National initiatives

Cooooo~N~N~N~N~N~N~N~N~NOOOODGTOT OO oI OB WOWWNNNERPRERPRE

2 Activity Report INRIA 2005

8.1.1. ACI Sécurité Informatique ALIDECS 13
8.1.2. ACI Sécurité Informatique CRISS 13
8.1.3. ACI Nouvelles Interfaces des Mathématiques GEOCAL 13
8.1.4. ACI Sécurité Informatique ROSSIGNOL 13
8.1.5. ARA Sécurité, Systemes embarqués et Intelligence Ambiante, Cops 13
8.1.6. ACI Masses de données TraLalLA 13
8.2. European initiatives 13
8.2.1. IST-FET Global Computing project MIKADO 13
8.2.2. IST-FET Global Computing project PROFUNDIS 13

9. Dissemination 13
9.1. Seminars and conferences 13
9.2. Animation 14
9.3. Teaching 15

10. Bibliography 16

1. Team

MIMOSA is a joint project of INRIA, the Centre for Applied Mathematics (CMA) of the Ecole des Mines
de Paris, and the Laboratoire d’Informatique Fondamentale of CNRS and the Universities of Provence and
Méditerranée.

Head of project-team
Gérard Boudol [Research Director, Inria]

Vice-head of project team
llaria Castellani [Research Scientist, Inria]

Administrative assistant
Sophie Honnorat [Inria]

Staff members Inria
Manuel Serrano [Research Director, Inria]

Staff members CMA and CMI
Roberto Amadio [Professor, University of Provence]
Frédéric Boussinot [Research Director, CMA]
Silvano Dal-Zilio [Research Scientist, CNRS]
Visiting scientist
Erick Gallesio [Visiting Scientist, University of Nice Sophia-Antipolis]
Maria-Grazia Vigliotti [Visiting Scientist, from October 1]

Ph. D. students
Lucia Acciai [MENRT]
Damien Ciabrini [MENRT]
Frederic Dabrowski [MENRT]
Daoudou Maoulida [Inria, from October 1]
Stéphane Epardaud [MENRT]
Florian Loitsch [MENRT, from October 1]
Ana Matos [Portuguese Gov.]
Charles Meyssonnier [ENS Lyon]

Internship
Florian Loitsch [Master University of Nice, till October 1]
Daoudou Maoulida [Summer internship, from July 15]
Celio Trois [Master University of Nice, till October 1]

2. Overall Objectives
2.1. Overall Objectives

The MiIMOSA project is a joint project with the Centre for Applied Mathematics of Buele Nationale
Supérieure des Mines de Parand the Laboratoire d’Informatigue Fondamentale of CNRS and the University
of Provence and Méditerranée. The overall objective of the project is to design and study models of distributed
and mobile programming, to derive programming primitives from these models, and to develop methods
and techniques for formal reasoning and verification, focusing on issues raised by the mobile code. More
specifically, we develop a reactive approach, where concurrent components of a system react to broadcast
events. We have implemented this approach in various programming languages, and we aim at integrating
migration primitives in this reactive approach. Our main research areas are the following:

¢ Models of mobility. Here we study constructs for the migration of processes, especially in models
based on the&-calculus and its distributed variants, and on the calculus of Mobile Ambients.

2 Activity Report INRIA 2005

e Security. We develop methods and tools for the verification of cryptographic protocols, and we in-
vestigate some security issues related to the migration of code (static verification of non-interference
of code with security policies, static restriction of the computational complexity of code).

e Models and languages for reactive programming. We develop several implementations of the reactive
approach, in various languages. We have designed, and still develop, an alternative to standard thread
systems, called ARTHREADS. We intend to integrate constructs for mobile code in the model of
reactive programming.

e Functional languages. We develop several implementations of functional languages, mainly based on
the SCHEME programming language. Our studies focus on designing and implementing a platform
for adistributed environmenihe FAIRTHREADS, which have been added to® 00, our SCHEME
implementation, are at the heart of our client/server architectureaBg, a functional language for
authoring documents, is designed to be used by servers to satisfy client requests.

3. Scientific Foundations

3.1. Semantics of mobility and security

Mobility has become an important feature of computing systems and networks, and particularly of distributed
systems. Our project is more specifically concerned with the notion of a mobile code, a logical rather than
physical notion of mobility. An important task in this area has been to understand the various constructs that
have been proposed to support this style of programming, and to design a corresponding programming model
with a precise (that is, formal) semantics.

The models that we have investigated in the past are mainly-ttadculus of Milner and the Mobile Ambients
calculus of Cardelli and Gordon. The first one is similar to Xbealculus, which is recognized as a canonical
model for sequential and functional computations. Thealculus is a model for concurrent activity, and also,

to some extent, a model of mobility-calculus processes exchange names of communication channels, thus
allowing the communication topology to evolve dynamically. Thealculus contains, up to continuation
passing style transforms, thecalculus, and this fact establishes its universal computing power. The Mobile
Ambient model focusses on the migration concept. It is based on a very general notion of a domain —
an Ambient —, in which computations take place. Domains are hierarchically organized, but the nesting
of domains inside each other evolves dynamically. Indeed, the computational primitives consist in moving
domains inside or outside other domains, and in dissolving domain boundaries. Although this model may
look, from a computational point of view, quite simple and limited, it has been shown to be Turing complete.

In the past we have studied type systems and reasoning techniques for these models. We have, in particular,
used models derived from thecalculus for the formalization and verification of cryptographic protocols.

We are now studying how to integrate the model of reactive programming, described below, into a "global
computing"” perspective. This model looks indeed appropriate for a global computing context, since it provides
a notion of time-out and reaction, allowing a program to deal with the various kinds of failures (delays,
disconnections, etc.) that arise in a global network. We have started the design and implementation of a
core programming language that integrates reactive programming and mobile code, in the context of classical
functional and imperative programming. In this setting, we use standard techniques to address security issues:
for instance, we use type and effect systems to statically ensure the properties of integrity and confidentiality
of data manipulated by concurrent programs. We also use static analysis techniques to ensure that the mobile
code does not use computational resources beyond fixed limits.

3.2. Reactive and Functional programming

Reactive programming deals with systems of concurrent processes sharing a notion of time, or more precisely
a notion of instant. At a given instant, the components of a reactive system have a consistent view of the
events that have been, or have not been emitted at this instant. Reactive programming, which evolves from

Project-Team mimosa 3

synchronous programming a IssEEREL, provides means to react — for instance by launching or aborting
some computation — to the presence or absence of events. This style of programming has a mathematical
semantics, which provides a guide-line for the implementation, and allows one to clearly understand and
reason about programs.

We have developed several implementations of reactive programming, integrating it into various programming
languages. The first instance of these implementations was Reactive-C, which was the basis for several
developments (networks of reactive processes, reactive objects), described in the] bblodt] we developed

the SUGARCUBES, which allow one to program with a reactive style ikvd, see fl]. Reactive programming

offers an alternative to standard thread programming, as (partly) offeredbyfdr instance. Classical thread
programming suffers from many drawbacks, which are largely due to a complicated semantics, which is most
often implementation-dependent. We have designed, following the reactive approach, an alternative style for
thread programming, calledAiRTHREADS, which relies on a cooperative semantics. AgaiiRH HREADS

has been integrated in various languages, and most notably aMeng= via the BGLoo compiler that we
develop. One of our major objectives is to integrate the reactive programming style in functional languages,
and more specifically &HEME, and to further extend the resulting language to support migration primitives.
This is a natural choice, since functional languages have a mathematical semantics, which is well suited to
support formal technical developments (static analysis, type systems, formal reasoning).

We also designed a tool to graphically program in the reactive style, calteuls Programming in this case

means to graphically combine predefined behaviours, represented by icons and to implement reactive code.
Potential applications are in simulation, human-machine interfaces and games.

4. Application Domains

4.1. Simulation

Simulation of physical entities is used in many distinct areas, ranging from surgery training to games. The
standard approach consists in discretization of time, followed by the integration using a stepwise method (e.g.
Runge-Kutta algorithms). The use of threads to simulate separate and independent objects of the real world
appears quite natural when the focus is put on object behaviours and interactions between them. However,
using threads in this context is not so easy: for example, complex interactions between objects may demand
complex thread synchronizations, and the number of components to simulate may exceed the number of
available threads. Our approach based amRFHREADS, or on the use of reactive instructions, can be helpful

in several aspects:

e Simulation of large numbers of components is possible using automata. Automata do not need thread
stacks, and the consumption of memory can thus stay low.

e Interactions are expressed by means of broadcast events, and can thus be dealt with in a highly
modular way.

e Instants provide a common discrete time that can be used by the simulation.

e Interacting components can be naturally grouped into synchronized areas. This can be exploited in a
multiprocessing context.

4 Activity Report INRIA 2005

4.2. Embedded systems

Embedded systems with limited resources are a domain in which reactive programming can be useful. Indeed,
reactive programming makes concurrent programming available in this context, even in the absence of a library

of threads (as for example thehreads). One objective is to build embedded systems from basic software
components implementing the minimal functionalities of an operating system. In such an approach, the
processor and the scheduler are considered as special resources. An essential component is a new specialized
scheduler that should provide reactive engines with the functionalities they need.

This approach is useful for mobile telecom infrastructures. It could also be used in more applicative domains,

as the one of gaming consoles. PDAs are also a target in which the proposed approach could be used. In this
context, graphical approaches @oBJscould be considered to allow end-users to build some part of their
applications.

4.3. Scripting

Because functional languages offer a high level of abstraction, they generally enable compact implementations.
So, they enable fast prototyping and fast implementing. In consequence, they are generally convenient when
used as scripting languages. For this reason, many famous end-user applications (such as Emacs, Gimp, Auto-
Cad, ...) embed interpreters of functional languages. The compilation of functional languages, at least for the
representatives that use strict evaluation order, is now well understood. Hence, programming in a functional
language does not forbid to produce fast applications that do not clutter the computers they run on. With
some of the modern implementations, it is possible to blend compiled code, for fast execution, and interpreted
code, for scripting. The combination of both execution modes brings expressieeriesficiency. Few other
languages offer this capability. Exploiting this specificity we have conceived an email synchronizer that is
implemented in Scheme and that also uses this language for supporting user scripting.

4.4. Web servers and Web proxies

Since a couple of years programming the Web is a hot topic. It involves network, distributed, and concurrent
programming. In addition, it also requires scripting facilities. Naturally , the techniques conceived and the
languages designed in the Mimosa project could naturally be applied to this programming area. In particular,
we are considering applying theeIRTHREADS to the design and implementation ofiser-land proxyThis

proxy should be uncluttering and lean, spawned by users. It should be easy to start, easy to stop, and highly
customizable andcriptable This Web proxy could be used to access all kinds of local textual information.

For instance, standardifux distributions contain numerous documentations written in different formats
(Docbook, man pages, ascii documentations, HTML, PDF, etc.). It is always puzzling to try to remember
where these files are stored and how to visualize them conveniently. This user-land proxy could help with that
task. It could be configured by users to extend the special syntax used by the Web browser to serve the local
requests. For instance, the proxy could be configured so that HTTP requests startihngtpitii/doc: are
intercepted and handled locally by a program exploring the locations known to contain documentations. When
the requested document is found, the same program could select the appropriate translator or plug-in in order
to visualize it in the browser. Each user could use a different configuration of the proxy.

5. Software

5.1. Mimosa Softwares

Most MiIMOSA softwares, even the older stable ones that are not described in the following sections (such as
the SugarCubes and Rejo-Ros) are freely available on the Web. In particular, some are available directly from
the INRIA Web site:http://www.inria.fr/valorisation/logiciels/langages.fr.htrMost other softwares can be
downloaded from the M1osA Web site:http://www-sop.inria.fr/mimosa

http://www.inria.fr/valorisation/logiciels/langages.fr.html
http://www-sop.inria.fr/mimosa

Project-Team mimosa 5

5.2. Reactive Programming
Participants: Frédéric Boussinot, Stéphane Epardaud.

5.2.1. Reactive-C

The basic idea of Reactive-C is to propose a programming style close to C, in which program behaviours
are defined in terms of reactions to activations. Reactive-C programs can react differently when activated for
the first time, for the second time, and so on. Thus a new dimension appears for the programmer: the logical
time induced by the sequence of activations, each pair of activation/reaction defining one instant. Actually,
Reactive-C rapidly turned out to be a kind refactive assembly languagkeat could be used to implement
higher level formalisms based on the notion of instant.

5.2.2. FairThreads in Java and C

FAIRTHREADSIs implemented inAvA and usable through an API. The implementation is based on standard
Java threads, but it is independent of the actual JVM and OS, and is thus fully portable. There exists a
way to embed non-cooperative code inRTHREADS through the notion of a fair processalRTHREADS

in C introduces the notion of unlinked threads, which are executed in a preemptive way by the OS. The
implementation in C is based on the pthreads library. Several fair schedulers, executed by distinct pthreads,
can be used simultaneously in the same program. Using several schedulers and unlinked threads, programmers
can take advantage of multiprocessor machines (basically, SMP architectures).

5.2.3. LURC

LURC is a Reactive threading library in C. It is based on the reactive model of UMIéngage pour

la mobilit§) and the desynchronization feature ofIRTHREADS in C. It provides several types of thread
models, each with different performance tradeoffs at run-time, under a single deterministic semantics. Its
main features as taken from ULM are preemption, suspension, cooperation and signal emission and waiting.
On top of that, threads can switch from asynchronous to synchronous at will. Event-loop programming has
been integrated in a reactive style under the form of a Reactive Event Loop. The main difference with the
syntax of LOFT, another threads library developed in the team, is that LURC is a pure C library, on top of
which a pseudo-language layer can be added in the form of C macros in order to make reactive primitives
look and behave like language primitives. LURC is available on the INRIA website at the following URL:
http://www-sop.inria.fr/mimosa/Stephane.Epardaud/lurc

5.3. Functional programming

Participants: Damien Ciabrini, Stéphane Epardaud, Erick Gallesio, Bernard Serpette [Project Oasis], Manuel
Serrano.

5.3.1. The Bigloo compiler

The programming environment for the Bigloo compilé®j] s available on the INRIA Web site at the
following URL.: http://www-sop.inria.fr/mimosa/fp/Bigladlhe distribution contains an optimizing compiler

that delivers native code, JVM bytecode, and .NET CLR bytecode. It contains a debugger, a profiler,
and various Bigloo development tools. The distribution also contains several user libraries that enable the
implementation of realistic applications.

BiGLOO was initially designed for implementing compact stand-alone applications under Unix. Nowadays, it
runs harmoniously under Linux and MacOSX. The effort initiated in 2002 for porting to Microsoft Windows is
pursued by external contributors. In addition to the native back-ends, theoB® JVM back-end has enabled

a new set of applications: Web services, Web browser plug-ins, cross platform development, etc. The new
BiGLoO .NET CLR back-end that is fully operational since release 2.6e enables a smooth integration of
Bigloo programs under the Microsoft .NET environment.

The main effort of 2005 has been to re-implement the runtime system for supporting preemptive concurrent
programming. That is, the new Bigloo library is now thread-safe and its standard distribution comes with

http://www-sop.inria.fr/mimosa/Stephane.Epardaud/lurc
http://www-sop.inria.fr/mimosa/fp/Bigloo

6 Activity Report INRIA 2005

two multi-threading library. A library for programming with Fair Threads and a library for programming
with Posix-like threads. The first library offers security because it makes explicit locking and explicit mutual
exclusion useless. The second library offers performance because it takes benefit from parallel architectures.
We have distributed one major releases of Bigloo during 2005, the version 2.7a.

5.3.2. Bugloo

Every programmer is frequently faced with the problem of debugging programs. Paradoxically, debuggers are
hardly used in practice and have not evolved that much in the last decades. We believe these tools can be
made more attractive by following some rules. Debuggers must be easily accessible from the programming
environment. When using them, the performance slowndown must keep reasonable. At last, they have to match
the specificities of the language of debugged programs.

These ideas have driven the design and implementationuafLBo, a source level debugger for Scheme
programs compiled into JVM bytecode. It focuses on providing debugging support for the Scheme language
specificities, such as the automatic memory management, high order functions, multi-threading, or the runtime
code interpreter. The JVM is an appealing platform because it provides facilities to make debuggers, and helps
us to meet the requirements previously exposed.

5.3.3. Skribe

SKRIBE is a functional programming language designed for authoring documents, such as Web pages or
technical reports. It is built on top of thecBEME programming language. Its concrete syntax is simple and
looks familiar to anyone used to markup languages. Authoring a document WitIBSis as simple as with

HTML or LaTeX. It is even possible to use it without noticing that it is a programming language because of
the conciseness of its original syntax: the ratiarkup/texis smaller than with the other markup systems we

have tested.

Executing a 8RIBE program with a RIBE evaluator produces a target document. It can be HTML files

for Web browsers, a LaTeX file for high-quality printed documents, or a sehfof pages for on-line
documentation.

Building purely static texts, that is texts avoiding any kind of computation, is generally not sufficient for
elaborated documents. Frequently one needs to automatically produce parts of the text. This ranges from very
simple operations such as inserting the date of the document’s last update or the number of its last revision, to
operations that work on the document itself. For instance, one may wish to embed inside a text some statistics
about the document, such as the number of words, paragraphs or sections it corRRIBE.iShighly suitable

for these computations. A program is madestatic textgthat is,constantsn the programming jargon) and
various functions that dynamically compute (when th&k®E program runs) new texts. These functions are
defined in the SHEME programming language. The<8BIBE syntax enables a smooth harmony between the
static and dynamic components of a program.

SKRIBE is the continuation of the project formerly known a€r8BE. SKRIBE can be downloaded at
http://www-sop.inria.fr/mimosa/fp/Skribe

SKRIBE is used by the MOSA project for authoring its Web page and... this document. Hence, we do not
depend on any external tools for providing a LaTeX and a XML version of our activity report.

5.3.4. ULM

The ULM Scheme implementation is an embedding of the ULM primitives in the Scheme language.
This implementation provides a compiler and a virtual machine to execute ULM/Scheme programs.
The current version has preliminary support for a mixin object model, reactive event loops, and
native procedure calls with virtual machine reentry. The current version is availabletpat/\www-
sop.inria.fr/mimosa/Stephane.Epardaud/ulm

http://www-sop.inria.fr/mimosa/fp/Skribe
http://www-sop.inria.fr/mimosa/Stephane.Epardaud/ulm
http://www-sop.inria.fr/mimosa/Stephane.Epardaud/ulm

Project-Team mimosa 7

5.4. Old softwares

5.4.1. Icobjs
IcoBJsprogramming is a simple and fully graphical programming method, using powerful means to combine
behaviours. This style of programming is based on the notion igfdmwhich has a behavioural aspect (object
part), and a graphical aspect (icon part), and which can be animated on the scregns programming
evolves from the reactive approach and provides parallelism, broadcast event communication and migration
through the network. The Java version afdBJsunifies icobjs and workspaces in which icobjs are created,
and uses a specialized reactive engine. Simulations in physics and the mobile Ambient calculus have been
ported to this new system.

5.4.2. Typl
Typl is a type inference interpreter for the intersection types discipline. It implementgnyn Ghe algorithm
designed and proved correct by Boudol and Zimmer. A reference manual (in french) can be found on the web
page of the project, and is a chapter of Zimmer’s thesis .

5.4.3. MLODbj

MIODbj is an interpreter for a prototype language composed of a functional core, objects, mixins and degree
types, written in @QML . It implements Boudol's theory of objects as recursive records. A reference manual (in
french) can be found on the web page of the project, and is a chapter of Zimmer’s thesis.

5.4.4. Trust
The TRUST tool, designed for the verification of cryptographic protocols, is an optimizedv@ imple-
mentation of the algorithm designed and proved by Amadio, Lugiez and Vanackere. It is available via the url
http://www.cmi.univ-mrs.fr/~vvanacke/trust.html

6. New Results

6.1. Semantics of mobility
Participant: Gérard Boudol.
The work on a “membrane calculus” done in thekMDO project has been publishetld].

6.2. Security

Participants: Roberto Amadio, Gérard Boudol, llaria Castellani, Frédéric Dabrowski, Silvano Dal Zilio, Ana
Matos.

6.2.1. Controlling information flow
Non-interference is a property of programs asserting that a piece of code does not implement a flow of
information from classified or secret data to public results. In the past we have followed Volpano and Smith
approach, using type systems, to statically check this property for concurrent programs. The motivation is
that one should find formal techniques that could be applied to mobile code, in order to ensure that migrating
agents do not corrupt protected data, and that the behaviour of such agents does not actually depend on the
value of secret information.
The non-interference property is very often questioned, on the basis that it cannot be used in practice because
it rules out, by its very definition, programs that intentionally declassify information from a confidential
level to a public one, like a password checking procedure for instance. We have addressed this problem,
of how to combine declassification with a security analysis of programs, like typing the information flow. Our
standpoint is that there are two different issues to be considered, natmaiynformation is released artbw
information is declassified. To address this second question, we have introduced, in a Core ML-like language
with concurrent threads, a declassification mechanism that takes the form of a local flow policy declaration.

http://www.cmi.univ-mrs.fr/~vvanacke/trust.html

8 Activity Report INRIA 2005

The computation in the scope of such a declaration is allowed to implement information flow according to
the local policy. This dynamic view of information flow policies is supported by a concrete presentation of
the security lattice, where the confidentiality levels are sets of principals, similar to access control lists. To
take into account declassification, and more generally dynamic flow policies, we introduce a generalization
of non-interference, that we call the non-disclosure policy, and we design a type and effect system for our
language that enforces this policy. Our workshop papéf thas been selected for publication in the Journal

of Computer Security.

In the paper 19], we further investigate the issue of typing confidentiality in a language-based information-
flow security approach, aiming at improving some previously proposed type systems, especially for higher-
order languages with mutable state a la ML. We show that the typing of terminations leaks can be largely
improved, by particularizing the case where the alternatives in a conditional branching both terminate.
Moreover, we also provide a quite precise way of approximating the confidentiality level of an expression,
that ignores the level of values used for side-effects only.

Ana Matos has studied irlf] new forms of security leaks, called migration leaks, that are introduced in a
mobile code scenario. The language used @i extended with a notion of domain and a migration primitive.
Then the non-interference property is generalized to networks of domains, and a type and effect system for
enforcing it is presented and proved correct.

The full version of a paper of last year on non-interference for reactive programs has been submitted for
publication in a journalZ3].

6.2.2. Controlling the complexity of code

The objective of this research activity is to design, study and implement static analysis techniques by which
one can ensure that the computational complexity of a piece of code is restricted to some known classes.
The motivation is primarily in the mobile code, to ensure that migrating agents are not using local resources
beyond some fixed limits, but this could also apply to embedded systems, where a program can only use
limited resources.

In the paper 17], we propose a compositional static analysis for a language of cooperative threads which
guarantees that the size of the values computed by a program is bounded by the size of the parameters of the
system at the beginning of the computation. This improves previous results by Amadio and Dal Zilio (see
below) where bounds were functions of the parameters of the system at the beginning of each instant. The
existence of bounds for arbitrary many instants relied on the assumption of a dynamic check of the size of the
parameters of the system at the beginning of each instant which is now useless. In the same paper, termination
of the instants is revisited using a more general criterion. As before, simplification orders (a kind of well-found
orders used for proving termination of rewriting systems) are used but bounds provided by the static analysis
are used instead of the embedding relation to prove the existence of a reduction order. These two results lead
to the termination of the instants in time polynomial in the size of the parameters at the beginning of the
computation.

In [20] we define a method to statically bound the size of values computed during the execution of a program
as a function of the size of its parameters. More precisely, we consider bytecode programs that are to be
executed on a simple stack machine with support for algebraic data types, pattern-matching and tail recursion.
Our size verification method is expressed as a static analysis performed at the level of the bytecode, that
relies on machine-checkable certificates. We follow here the usual assumption that code and certificates may
be forged and should be checked before execution. Our approach extends a system of static analysis based
on the notion of quasi-interpretations that has already been used to enforce resources bounds on first-order
functional programs. This paper makes two additional contributions. First, we are able to check optimized
programs, containing instructions for unconditional jumps and tail recursive calls, and remove restrictions on
the structure of the bytecode that were imposed in previous works. Second, we propose a direct algorithm that
depends on solving a set of arithmetical constraints.

The work by Roberto Amadio on quasi-interpretations which was presented in a 2003 report has been
published [LO]. The full version of the paper oResource control for synchronous cooperative threlags

Project-Team mimosa 9

Roberto Amadio and Silvano Dal Zilio has been accepted for publication in the journal Theoretical Computer
Science.

6.3. Reactive programming
Participants: Gérard Boudol, Frédéric Boussinot, Frédéric Dabrowski, Stéphane Epardaud.

6.3.1. The reactive model
In the note P5] we revisit the so-calledeactive programming style, which evolves from the synchronous
programming model of the € ERELlanguage by weakening the assumption that the absence of an event can
be detected instantaneously. We review some research directions that have been explored since the emergence
of the reactive model ten years ago. We also outline some questions that remain to be investigated.
In [24] we revisit the SL synchronous programming model introduced by Boussinot and De Sjiaé&ite
Trans. on Soft. Eng., 1996Ve discuss an alternative design of the model includimgad spawningnd
recursive definitionand we explore some basic properties of the revised model: determinism, reactivity,
CPS translation to a tail recursive form, computational expressivity, and a compositional notion of program
equivalence.

6.3.2. Safe Concurrent Programming

We have made an experiment to add concurrency to the Cyclone programming language, in order to get
a safe concurrent language. The basic model considered is that of FairThreads in which synchronous and
asynchronous aspects are mixed. The language Loft implements the FairThreads model in C. The experiment
basically uses Cyclone instead of C in the implementation of Loft. Using the multi-threaded version of
Boehm's GC, one gets an extension of Cyclone to concurrency which is as safe as Cyclone for sequential
code, with some additional safety verifications for concurrent code. Several static analyses should be added in
order to get a completely safe language (for example, verification that atoms executed by linked threads indeed
terminate). The difficulty to add these verifications in Cyclone leads us to leave aside this experiment and to
explore a new way based on a novel language inspired from ML and considered in the section “Cooperative
Threads and Preemptive Computations”.

We propose 9] a small language for programming cooperative threads in which one can also define
preemptive computations, to deal with tasks that are not well-suited to a cooperative treatment but are useful
in practice (e.g. blocking 1/0s). These preemptive computations are executed in preemptive mode (in parallel
with the cooperative system). We have introduced a type and effect system which ensures that preemptive
computations do not interfere with the normal behavior of cooperative threads. This system is used to associate
to each thread a subset of the memory locations created by it, namely unsharable memory locations, which
are not shared with other threads. During a preemptive computation a thread has access only to these memory
locations. This eliminates data-races with the cooperative threads or with the other preemptive computations,
thus preserving the atomicity of the execution provided by a cooperative model. An important consequence of
this is that it allows the cooperative model to safely benefit from multi-processor architectures.

A first experimental implementation is under work. The compilation process consists in an type and effect
inference algorithm, in several verifications (in particular, absence of instantaneous loops and termination of
functions), and in a translation of FairThreads in C (via the Loft Language).

6.3.3. Reactive Programming: LURC

LURC, a lightweight reactive library based on ULM has been released this year. Originally a test project for

studying new scheduling mechanisms in an optimized C library, it has grown into a full featured reactive

multi-threading library with the addition of various thread implementations, all obeying a single semantics, a

Reactive Event Loop and language-level features for reactive programming.

In LURC, there are four types of thread implementation, all scheduled similarly, but each with performance

trade-offs at run-time. Two of them are purely cooperative and cannot become asynchronous: the first
one minimises stack allocation with the cost of more memory copying when cooperating, the second one

10 Activity Report INRIA 2005

minimises cooperation time at the cost of bigger memory usage. The last two types can switch from
cooperative/synchronous to asynchronous: one minimises cooperation type when synchronous by sharing its
executing native thread with that of purely synchronous LURC threads, at the cost of asynchonisation time,
while the second minimises asynchronisation time at the cost of native thread switching when cooperative.

In addition to mixing several models of threads, LURC uses a new reactive scheduling mechanism, based on
spreading the long lasting computations of #ral of instanphase during the instant. Each thread attempts

to schedule itself for the next instant at a new phase callecktigeof action(when cooperating in most
cases). This effectively reduces the time delay required by most reactive schedulers between each instant, while
increasing the delay of cooperation between threads, thus bringing a comparable time cost when scheduling is
done between two threads within the instant and across instants.

Although LURC is written in POSIX C as a user-level library, it can take advantage of the GCC compiler
(the most widely distributed and used C compiler) when present and offer language-level primitives for most
reactive primitives, via a complex use of GCC C language features and macros. This proves to be very portable
and integrates the reactive primitives in a program as if they were C language primitives.

6.4. Functional programming

Participants: Gérard Boudol, Damien Ciabrini, Erick Gallesio, Florian Loitsch, Bernard Serpette [Oasis
project], Manuel Serrano.

6.4.1. Types and recursion
The work by Boudol and Zimmer on type inference in the intersection type discipline has been pulli§hed [

6.4.2. Bigloo

For the year 2005, our efforts on Bigloo have mainly focused on preemptive multi-threading. We have re-
implemented many components of the runtime system for supporting re-entrance. For this we have had to
design and implement a new mechanism for handling errors. The new system uses exceptions. The importance
of this implementation effort has slowed down the production of Bigloo releases. We have not been able to
produce more than one version this year (the version 2.7a). However, the activity around Bigloo as continued as
approximatively the same pace as the previous years. The Bigloo community is still committed to its evolution.
This is demonstrated by the numerous mails that are sent to its mailing list: this year, approximatively 1000
mails have been sent.

In addition to multi-threading, we have developed new APIs for Bigloo. Even if they are not yet part of official
distribution, we have nearly completed the implementation of libraries for:

e secure networking via SSL.

e IMAP mail management.

e Web programming. This involves facilities for parsing and producing XML documents, parsing
HTTP requests, handling URLs, and decoding CGIl arguments.

¢ multimedia programming with facilities for handling MP3 and playlist files, Jpeg Exif data, sound-
card, etc.

All these libraries are meant to be integrated to the standard Bigloo distribution.

Project-Team mimosa 11

6.4.2.1. Stack Virtualisation for Source Level Debugging
The compilation of high-level languages to general-purpose execution platforms draws some concerns when it
comes to debugging. Indeed, abstractions that are not naively supported by the execution platform are emulated
with intermediate data structures and function calls. Unfortunately, the details of the emulation are visible in
the execution stack, and this unwanted information greatly reduces the effectiveness of debuggers.
We have developed a novel and language-neutral technique for construetimgahview of the stack 2§,
in order to mask intermediate function calls that were generated to emulate high-level abstractions, or even
to recover logical frame information that was lost during the compilation process. In particular, virtual views
enable the visualization of two disjoint code representations (e.g., natively compiled code and dynamically
interpreted bytecode) into a single unified stack.
We have designed a complete set of virtualization rules to hide all the details of the compilation of Bigloo
programs into JVM bytecode. We have achieved to mask every emulated language features, such as high order
functions, generic functions, exception handling, or runtime code interpretation. Other experiments have been
conducted on the Rhino and the Jython languages, in order to show that this technique can be applied on a
wide variety of languages.
The complete implementation of this work, along with examples of virtualization rules for various languages
has been integrated into the Bugloo distribution available on-line.

6.4.3. Skribe

During the year 2005, we have rewritten Skribe so that it can be embedded in a web browser. This rewriting was
necessary because at its inception Skribe implementation has been designed as a batch document processing
tool. We also took advantage of this rewriting to integrate some improvements based on our four years
experience with Skribe development and usage.

The Skribe evaluator relies on three stages. In the first stage, the source document is parsed and a tree
representing this document is built. The second stage is devoted to inter-document references resolution.
Finally, the third phase is in charge of producing the final document. With this scheme, only the last stage
should be dependent of the final document output format. However, this was not the case with the old
implementation of Skribe: in order to produce documents with layouts highly adapted to the output media,

it was possible to build a tree in the first phase which was dependent of the output format. In a batch approach,
this is not a problem, since we need one execution of the Skribe evaluator per output (i.e. to produce a HTML
version and a PDF version of the same document, the Skribe evaluator must be run twice).

With our work around Web servers, we think that it is interesting to embed Skribe in the server. In this
approach, when a Skribe document is requested, it is parsed, a tree is built, the references are resolved and the
final document is sent to the client. Since the web server is aware of the capacities of the requesting client,
it can produce different documents for different browsers (with/without images, using/avoiding CSS, ...). In
order to keep good performances, the two first phases can be done only once for a given document and cached
by the server. So, when a previously served Skribe document is requested, the server only needs to produce the
client dependent HTML. The model used in our previous implementation was a real hindrance to achieve the
embedding of Skribe in a Web server. With our new implementation, a Skribe document could be represented
on the server as a output-independent tree and an environment per client. This rewriting was necessary to
evolve from the batch approach we had to an embedded one.

The new version of Skribe still needs to be polished before being officially distributed. It should be available by
mid 2006. Once we have a stable version, we will be able to effectively start experimentations with embedded
Skribe documents on the server.

6.4.4. Bimap
Low cost computers, ADSL, and wireless connections have made ubiquitous computing a reality. Because the
Internet is now available nearly everywhere on the planet, most of us are nearly permanently connected. Many
of us use various computers (maybe, one at home, one at work, and a roaming laptop). All these computers
ideally use the same synchronized data. Enforcing this synchronization is not always so easy. Hopefully, some

12 Activity Report INRIA 2005

dedicated tools such as Unison allow two replicas of a collection of files and directories to be stored on
different hosts, modified separately, and then brought up to date by propagating the changes in each replica
to the other. However, as convenient as these tools are for file and directory synchronization, they are of little
help when considering email synchronization. We address the specific problem of synchronizing email in this
study.

We have designed and developed Bim&d][a tool for synchronizing email. It enables emails to be
manipulated from different computers and localizations. A user can read, answer, and delete emails from
various computers amongst which some can be momentarily disconnected. Bimap automatically propagates
the changes to all these computers. Synchronizing email is a simple problem of synchronizing lists. Functional
languages are therefore candidates of choice for implementing such algorithms. Bimap is implemented in one
of them, namely Scheme, our favorite programming language. It benefits from the recent evolution of Bigloo.
In addition to synchronizing mail, Bigloo is also able to filter and classify email. As such, Bimap could be a
potential replacement fgrrocmail. This is highly convenient because it enables email filtering with simple
small Scheme scripts. Two such scripts have been presented: one for classifying emails that belong to mailing
lists and a second one for implementing white-listing. Each of these scripts is no more that a few lines of
Scheme code.

6.4.5. Jsigloo

Javascript is one of the most popular scripting languages available today. Interpreters are integrated into every
dominant web-browser and Javascript hence benefits from a huge installation base. Despite their apparent
syntactical differences Javascript and Scheme share many features: both are dynamically typed, they feature
closures and allow for functions as first class citizens. A Javascript compiler should hence benefit from the
research done on Scheme compilers. Instead of reimplementing a fully optimizing compiler we implemented
Jsigloo P2], a Javascript to Scheme compiler. The produced Scheme code can then be compiled by already
existing optimizing compilers like Bigloo. This approach takes advantage of the optimizations implemented

in Bigloo, and benefits from the Bigloo’s multiple backends (C, JVM and .Net).

Not all Javascript constructs can be directly mapped to Scheme expressions, and some constructs need special
attention. In particular Javascriptiéile, switch and with statements needed special attention. These
Scheme foreign constructs, and slightly different semantics for certain expressions make optimizations within
Jsigloo necessary. Jsigloo features among others a typing pass and direct-call optimizations.

Some Javascript properties make important Bigloo optimizations ineffective, and the produced code is hence
not as efficient as hand-written Scheme code. It is the goal of some of the previously mentioned optimization
passes to prepare the code for further Bigloo optimizations, but Jsigloo does not yet achieve the same
performance as hand-written Scheme code. With these optimizations Jsigloo is however able to compete with
already existing Javascript compilers. Besid&bfnoit is now one of the most efficient Javascript compilers.

7. Contracts and Grants with Industry
7.1.JSM

We have received a funding from Texas Instruments for studying efficient code generations on the JSM, a
proprietary architecture. This platform is composed of a traditional Java Virtual Machine and a classical Risc
architecture. The originality of the approach comes from the blending of the two instruction sets. In particular,
the top of stack of the JVM is mapped to dedicated registers of the Risc instruction set. Well known compilation
techniques don't apply well and generating efficient code on this platform is challenging! In a join work with
the Oasis team we have adapted the Bigloo compiler for this new architecture. We have measured the impact
of code generation optimizations embedded in Bigloo when applied to the JSM. Then, we have developed a
new optimization based on an optimistic register allocations that mixes physical registers and stack allocation.
Bernard Serpette (Oasis) and Manuel Serrano have been in charge of this contract.

Project-Team mimosa 13

8. Other Grants and Activities

8.1. National initiatives

8.1.1. ACI Sécurité Informatique ALIDECS
Frédéric Boussinot is participating in the ACI Sécurité Informatique ALIDECS whose coordinator is Marc
Pouzet. The ACI started october 2004. Paricipants are Lip6 (Paris), Verimag (Grenoble), Pop-Art (Inria Rhdne-
Alpes), Mimosa (Inria Sophia) and CMOS (LaMI Evry). The objective is to study an integrated development
environment for the construction and use of safe embedded components.

8.1.2. ACI Sécurité Informatique CRISS
This action started in July 2003. The participants are, besidesolla and theLaboratoire d'Informatique
Fondamental®f Marseilles, the LIPN from Paris (Villetaneuse) and the INRIA projeat GGRAMME from
LORIA in Nancy. Roberto Amadio is the coordinator of the CRISS action. Its main aim is to study security
issues raised by mobile code.

8.1.3. ACI Nouvelles Interfaces des Mathématiques GEOCAL
Roberto Amadio and Gérard Boudol are participating in this action. The other teams are the LMD Marseilles
Luminy (coordinator), PPS Paris, LCR Paris Nord, LSV Cachan, LIP Lyon (PLUME team), INRIA Futurs,
IMM Montpellier, and LORIA Nancy (@LLIGRAMME project).

8.1.4. ACI Sécurité Informatique ROSSIGNOL

Roberto Amadio is participating in this action (started in July 2003), the topic of which is the verification of
cryptographic protocols. The action involves the participation of INRIA Futurs, LSV Cachan, and VERIMAG
Grenoble.

8.1.5. ARA Sécurité, Systemes embarqués et Intelligence Ambiante, Cops
Silvano Dal Zilio is participating in this action that has started in September 2005. The other teams are IRIT
(coordinator), MoVe from the LIF, and the LORIA projects CASSIS and ECOO.

8.1.6. ACI Masses de données TraLaLA

Silvano Dal Zilio is participating in this action. The other teams are the LIENS ENS Paris (coordinator), LRI
Orsay, INRIA Futurs Projet GEMO, and LIFL and INRIA Futurs projet MOSTRARE.

8.2. European initiatives

8.2.1. IST-FET Global Computing project MIKADO

The patrticipants in the McADO project are INRIA (3\RDES project, Rhéne-Alpes, and MOSA), acting as

the coordinator, France Télécom R&D Grenoble, and the universities of Sussex, Lisbon, Florence and Turin.
The objectives of the MKADO project are to study programming models for distributed and mobile appli-
cations, the study of related specification and analysis formalisms, and the design of relevant programming
constructs and of corresponding prototypical virtual machines. This project ended in April 2005.

8.2.2. IST-FET Global Computing project PROFUNDIS

In this project our partners are KTH Stockholm (coordinator), the Scientific and Technological University
of Lisbon, and the University of Pisa. Its objectives are the study of proof techniques (logics, behavioural
equivalences, type systems) for mobile systems. This project ended in April 2005.

9. Dissemination
9.1. Seminars and conferences

Roberto Amadio presented45] at the meeting on Algebraic Process Calculi in Bertinoro. He partici-
pated in the workshops of the CRISS project, giving a talkf, fand in the CONCUR Conference
and the EXPRESS workshop.

14 Activity Report INRIA 2005

Gérard Boudol in January, Gérard Boudol participated in a CRISS workshop in Marseille, where he
gave a talk on 16], and in a meeting of the MIKADO project in Torino. He participated in the
Dagstuhl Seminar on the Foundations of Global Computing in February, and gave a tal§.on [

He participated in the final review of the MIKADO project in Edinburgh, giving a talk on the
research activities in the area of models in this project. He attended the ETAPS conference held
in the same period (April). He gave a three hours course on Language-Based Security at the CIRM
School on Security (Marseille, April). He gave an invited seminar 18} &t the DSL Workshop

on Functional Programming and Verification (Nancy, May). He participated in a CRISS workshop
in Paris (June), where he gave a talk 48][He participated in the 18th IEEE Computer Security
Foundations Workshop (Aix-en-Provence, June), where the viigiknas presented by Ana Matos.

He participated in a meeting on Algebraic Process Calculi in Bertinoro (August), whgra/fis
presented by Roberto Amadio. He attended the International Colloquium on Theoretical Aspects of
Computing in Hanoi (October), where he presented the pdSgr [

llaria Castellani participated to the 18th IEEE Computer Security Foundations Workshop (Aix-en-
Provence, June 20-22, 2005) where she gave a short talk, and to the wofdghbpaic Process
Calculi: The First Twenty Five Years and Beyofiertinoro, Italy, August 1-5, 2005), where the
paper pP5] was presented by Roberto Amadio. She took part in a meeting of the ACI project CRISS
in Marseille (January 17-18, 2005). She visited the University of Aarhus (June 30, 2005) to attend
Marco Carbone’s PhD thesis defense.

Frédéric Dabrowski gave a talk on]7] at the LACL (University of Paris 12). He presented also this
paper at the EXPRESS Workshop, and attended the CONCUR Conference. He participated in the
workshops of the CRISS project.

Silvano Dal Zilio gave a talk at NWPT’05, the 17th nordic workshop on programming theéiaily ¢n a
typed process calculus for querying distributed XML documents. He gave a talk on resource control
for functional programs at CSL'04, the 18th International Conference on Computer Science Logic.
A subsequent resul2])], [27] that extend our work on resource control to the case of tail-recursive
programs was presented at APLAS'05, the 3rd Asian Symposium on Programming Languages and
Systems. Silvano Dal Zilio gave several talks on meetings of the ACI Masses de Données Tralala in
Paris, Marseille and Lille.

Manuel Serrano gave a talk orUbiquitous Mailduring the ' Scheme and Functional Programming
Workshop that took place in Tallinn.

9.2. Animation

Roberto Amadio was the leader of the MOVE team (Modélisation et Vérification) of the Laboratoire
d’'Informatique Fondamentale of Marseilles (UMR-CNRS 6166) till the end of August. He was gen-
eral Chair of the IEEE Computer Security Foundations Workshop (Aix en Provence), June 2005. He
was a member of the programme committee of the following workshops and conferences: EXPRESS
2005, GEOCAL 2006, FOSSACS 2006, ICALP 2006, CONCUR 2006. He is co-chair of the pro-
gramme committee of EXPRESS 2006. He is a member of the steering commitee of CONCUR, the
Computer Security Foundations Workshop, and the Ecole de printemps d’'Informatique Théorique.
He was a referee in the HDR (Habilitation a Diriger des Recherches) of Jean-Marc Talbot (University
of Lille 1).

Gérard Boudol acted as a referee for the PhD Theses of Daniele Gorla (University of Torino) and
Fransisco Martins (University of Lisboa). He was the chairman of the jury in the defence of the PhD
Thesis of Philippe Bidinger (University of Grenoble), and member of the jury of the PhD Thesis of
Benjamin Leperchey (Univeristy of Paris 7). He was a member of the Program Committee of the
FOSSACS’06 conference.

Project-Team mimosa 15

Frédéric Boussinot serves a reviewer of the thesis of Anne-Gwenn Bosser, PPS, University Paris 7. He
was also examinator of the thesis of Philippe Bidinger, University of Grenoble. He is a member of
the program committee for MSR’05 and SLAP’05. He is member of the editorial board of the revue
TSI.

llaria Castellani acted as a referee for the PhD theses of Mauro Gattari (Dept. of Mathematics and
Computer Science, University of Siena, January 2005) and Marco Carbone (BRICS, University of
Aarhus, July 2005).

Silvano Dal Zilio was local organizer for the 18th IEEE Computer Security Foundations Workshop
(seehttp://www.lif.univ-mrs.fr/ICSFW18/ and the 2005 Spring School on Computer Seccurity —
Marseille, April 25-29 (seenttp://www.lif.univ-mrs.fr/~secur0y/ He is local coordinator for the
ACI Masses de Donnees projet Tralala.

Manuel Serrano was a referee for the PhD thesis of Daniel Bonniot (Ecole des Mines and INRIA project
CRISTAL). He was a member of the program committee for the Ecoop European Worskhop on Lisp
and Scheme. He was a member of the ICFP’05 program committee. He is a member aftilgetS
Strategy Group” that decides on the evolutions of this programming language. He is one of seven
authors of the Revised 6 Report on the Scheme programming language. He participated to the annual
meeting that took place this year in Boston.

9.3. Teaching

Roberto Amadio was responsible of the Master Informatique Fondamentale of the University of
Provence. He is teaching on concurrency in the Master Parisien de Recherche en Informatique. In
the Master d’'Ingénierie Informatique (University of Provence), he was teaching on security, and on
logical tools, and syntactic analysis and compilation in the Licence d’Informatique.

Frédéric Boussinot gave lectures at the “Master d’Informatique” of the University of Nice. He supervised
the internship of Celio Troi (Master of the University of Nice).

Frédéric Dabrowski gave a course on “Introduction au parallélisme” at the Licence Professionnelle
Systémes Informatiques et Logiciels (LPSIL) of the university of Nice and a lecture at the “Master
d’Informatique” of the university of Nice.

Silvano Dal Zilio gave a course in the Master Professionnel Informatique of Marseille universities on
"XML: tools and documents" (sewtp://www.cmi.univ-mrs.fr/~dalzilio/Master|2A/He supervised
the internship of Yann Barsamian (ENS Lyon) on the implementation of a core functional program-
ming language for manipulating XML documents.

Manuel Serrano gave lectures at the “Master d’Informatique” of the University of Nice. He supervised
the internship of Florian Loitsch (Master of the University of Nice).

http://www.lif.univ-mrs.fr/CSFW18/
http://www.lif.univ-mrs.fr/~secur05/
http://www.cmi.univ-mrs.fr/~dalzilio/MasterI2A/

16 Activity Report INRIA 2005

10. Bibliography
Major publications by the team in recent years
[1] R. AMADIO, P.-L. QURIEN. Domains and Lambda-CalculCambridge University Press, 1998.
[2] G. BERRY, G. BouboL. The chemical abstract machinie "Theoretical Computer Science”, vol. 96, 1992.
[3] G. BouboL. Ther-calculus in direct stylgin "Higher-Order and Symbolic Computation", vol. 11, 1998.

[4] F. BoussINOT Obijets réactifs en Jay&ollection Scientifique et Technique des Telecommunications, PPUR,
2000.

[5] F. BoussiINOT. La programmation réactiveMasson, 1996.

[6] F. BoussINOT, J.-F. SysINI. Java threads and SugarCuhes "Software Practice & Experience", vol. 30,
2000.

[7] 1. CASTELLANI. Process Algebras with Localitiesn "Handbook of Process Algebra, Amsterdam®, J.
BERGSTRA A. PONSE, S. SWOLKA (editors)., North-Holland, 2001, p. 945-1045.

[8] D. SANGIORGI, D. WALKER. Ther-Calculus: a Theory of Mobile Process&sambridge University Press,
2001.

[9] M. SERRANO. Bee: an Integrated Development Environment for the Scheme Programming Language
"Journal of Functional Programming”, vol. 1, &, May 2000, p. 1-43.

Articles in refereed journals and book chapters

[10] R. AMADIO. Synthesis of max-plus quasi-interpretatipits "Fundamenta Informaticae", vol. 65, 2005, p.
29-60.

[11] G. BoubpoL, P. ZMMER. On type inference in the intersection type disciplime'Electronic Notes in Theo-
retical Computer Science", vol. 136, 2005, p. 2342p://www.inria.fr/mimosa/Gerard.Boudol/otiititd.html

[12] F. BoussINOT FairThreads: mixing cooperative and preemptive threads ,imCConcurrency and Compu-
tation: Practice Experience", September 2005.

[13] E. GALLESIO, M. SERRANO. Skribe: a Functional Authoring Languagi "Journal of Functional Program-
ming", 2005 http://www.inria.fr/mimosa/Manuel.Serrano/publi/jfpO5/article.html

Publications in Conferences and Workshops

[14] L. Acclal, M. BOREALE, S. DAL ZiLIO. A Typed Calculus for Querying Distributed XML Documetits
"NWPT 2005 — 17th Nordic Workshop on Programming Theory", Oct 2005.

http://www.inria.fr/mimosa/Gerard.Boudol/otiititd.html
http://www.inria.fr/mimosa/Manuel.Serrano/publi/jfp05/article.html

Project-Team mimosa 17

[15] A. ALMEIDA MATOS. Non-disclosure for distributed mobile cqdim "FST-TCS'05", Lecture Notes in
Computer Science, 2005.

[16] A. ALMEIDA MATOS, G. BouboL. On declassification and the non-disclosure palioy'Computer Security
Foundation Workshop", 2005, p. 226-240tp://www.inria.fr/mimosa/Gerard.Boudol/non-discl.html

[17] R. AMADIO, F. DABROWSKY. Feasible Reactivity for Synchronous Cooperative Threadsl2th workshop
Expressiveness in Concurrency, San Francisco, USA", Electronic Notes in Theoretical Computer Science, Aug
2005.

[18] G. BouDoL. A generic membrane modeh "Second Global Computing Workshop", Lecture Notes in
Computer Science, vol. 3267, 2005, p. 209-228)://www.inria.fr/mimosa/Gerard.Boudol/gmm.html

[19] G. BouboL. On typing information flow in “International Colloquium on Theoretical As-
pects of Computing”, Lecture Notes in Computer Science, vol. 3722, 2005, p. 366-380,
http://www.inria.fr/mimosa/Gerard.Boudol/otif.html

[20] S. DAL ZiLI0, R. GascoN. Resource Bound Certification for a Tail-Recursive Virtual MachinéAPLAS
2005 — 3rd Asian Symposium on Programming Languages and Systems", Lecture Notes in Computer Science,
vol. 3780, Springer-Verlag, Nov 2005, p. 247-263.

[21] E. GALLESIO, M. SERRANO. Ubiquitous Mail in "Proceedings of the Sixth Workshop on Scheme and Func-
tion Programming, Tallinn, Estonia”, Sep 2005, p. 69-ktth://www.inria.fr/mimosa/Manuel.Serrano/publi/sfp05/article.htm

[22] F. LoiTscH. Javascript Compilationin "Proceedings of the Sixth Workshop on Scheme and Function
Programming, Tallinn, Estonia”, Sep 2005, p. 101-111.

Internal Reports

[23] A. ALMEIDA MATOS, G. BouDoL, I. CASTELLANI. Typing Noninterference for Reactive Programs
Submitted for publication., Report? 8594, INRIA, 2005 http://www.inria.fr/rrrt/rr-5594.html

[24] R. AMADIO. The SL synchronous language, revisjt€dchnical report, Laboratoire PPS, Université de Paris
7,2005.

[25] R. AwmaDpIO, G. BoupoL, F. BoussINOT |. CASTELLANI. Reactive concurrent pro-
gramming revisited Technical report, © NS-05-3, BRICS Notes Series, 2005ttp://www-
sop.inria.fr/mimosa/personnel/llaria.Castellani/abbc-APC25-abstract.html

[26] F. BoussINOT Cyclone+Loft Technical report, September 2005.

[27] S. DaL ZiL10, R. GascoN. Resource Bound Certification for a Tail-Recursive Virtual Machifechnical
report, ¥ 26, LIF, Jun 2005.

Miscellaneous

[28] D. CiaBRINI . Stack virtualization for source level debuggirp05.

http://www.inria.fr/mimosa/Gerard.Boudol/non-discl.html
http://www.inria.fr/mimosa/Gerard.Boudol/gmm.html
http://www.inria.fr/mimosa/Gerard.Boudol/otif.html
http://www.inria.fr/mimosa/Manuel.Serrano/publi/sfp05/article.html
http://www.inria.fr/rrrt/rr-5594.html
http://www-sop.inria.fr/mimosa/personnel/Ilaria.Castellani/abbc-APC25-abstract.html
http://www-sop.inria.fr/mimosa/personnel/Ilaria.Castellani/abbc-APC25-abstract.html

18 Activity Report INRIA 2005

[29] F. DaBrROwsKY, F. BoussINOT Cooperative Threads and Preemptive Computatiosisbmitted to
ESOP’2006, 2005.

