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2. Overall Objectives
2.1. Overall Objectives

The teammiSTIS aims at developing statistical methods for dealing with complex problems or data. Our
applications consist mainly of image processing and spatial data problems with some applications in biology
and medicine. Our approach is based on the statement that complexity can be handled by working up from
simple local assumptions in a coherent way, defining a structured model, and that is the key to modelling,
computation, inference and interpretation. The methods we focus on involve mixture models, Markov models,
and more generally hidden structure models identified by stochastic algorithms on one hand, and semi and
non-parametric methods on the other hand.

Hidden structure models are useful for taking into account heterogeneity in data. They concern many areas
of statistical methodology (finite mixture analysis, hidden Markov models, random effect models, ...). Due
to their missing data structure, they induce specific difficulties for both estimating the model parameters and
assessing performance. The team focuses on research regarding both aspects. We design specific algorithms for
estimating the parameters of missing structure models and we propose and study specific criteria for choosing
the most relevant missing structure models in several contexts.

Semi and non-parametric methods are relevant and useful when no appropriate parametric model exists for
the data under study either because of data complexity, or because information is missing. The focus is on
functions describing curves or surfaces or more generally manifolds rather than real valued parameters. This
can be interesting in image processing for instance where it can be difficult to introduce parametric models
that are general enough (e.qg. for contours).

3. Scientific Foundations

3.1. Mixture models

Keywords: EM algorithm clustering conditional independengeamissing data mixture of distributions
statistical pattern recognitiorunsupervised and partially supervised learning
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Participants: Juliette Blanchet, Charles Bouveyron, Florence Forbes, Gersende Fort, Paulo Gongalves,
Matthieu Vignes.

In a first approach, we consider statistical parametric modelseing the parameter possibly multi-
dimensional usually unknown and to be estimated. We consider cases where the data naturally divide into
observed data = y4, ..., ¥, and unobserved or missing data- z4, ..., z,,. The missing data; represents for
instance the memberships to one of a sekdlternative categories. The distribution of an obsenyecthn be
written as a finite mixture of distributions,

Fyil 0) =S Plzi =k | 0)f(y; | 2:,0) . )

These models are interesting in that they may point out an hidden variable responsible for most of the
observed variability and so that the observed variables@rditionallyindependent. Their estimation is often
difficult due to the missing data. The Expectation-Maximization (EM) algorithm is a general and now standard
approach to maximization of the likelihood in missing data problems. It provides parameters estimation but
also values for missing data.

Mixture models correspond to independens. They are more and more used in statistical pattern
recognition. They allow a formal (model-based) approach to (unsupervised) clustering.

3.2. Markov models

Keywords: Bayesian inferengeEM algorithm Markov properties clustering conditional independence
graphical modelshidden Markov fieldhidden Markov treesmage analysismissing datamixture of dis-
tributions selection and combination of modedsatistical pattern recognitigrstatistical learning stochastic
algorithms

Participants: Juliette Blanchet, Florence Forbes, Gersende Fort, Paulo Gongalves, Matthieu Vignes.

Graphical modelling provides a diagrammatic representation of the logical structure of a joint probability
distribution, in the form of a network or graph depicting the local relations among variables. The graph
can have directed or undirected links or edges between the nodes, which represent the individual variables.
Associated with the graph are various Markov properties that specify how the graph encodes conditional
independence assumptions.

It is the conditional independence assumptions that give the graphical models their fundamental modular
structure, enabling computation of globally interesting quantities from local specifications. In this way
graphical models form an essential basis for our methodologies based on structures.

The graphs can be either directed, e.g. Bayesian Networks, or undirected, e.g. Markov Random Fields. The
specificity of Markovian models is that the dependencies between the nodes are limited to the nearest neighbor
nodes. The neighborhood definition can vary and be adapted to the problem of interest. When parts of the
variables (nodes) are not observed or missing, we refer to these models as Hidden Markov Models (HMM).
Hidden Markov chains or hidden Markov fields correspond to cases wherg'shim (1) are distributed
according to a Markov chain or a Markov field. They are natural extension of mixture models. They are widely
used in signal processing (speech recognition, genome sequence analysis) and in image processing (remote
sensing, MR, etc.). Such models are very flexible in practice and can naturally account for the phenomena to
be studied.

They are very useful in modelling spatial dependencies but these dependencies and the possible existence of
hidden variables are also responsible for a typically large amount of computation. It follows that the statistical
analysis may not be straightforward. Typical issues are related to the neighborhood structure to be chosen
when not dictated by the context and the possible high dimensionality of the observations. This also requires
a good understanding of the role of each parameter and methods to tune them depending on the goal in mind.
As regards, estimation algorithms, they correspond to an energy minimization problem which is NP-hard and
usually performed through approximation. We focus on a certain type of methods based on the mean field
principle and propose effective algorithms which show good performance in practice and for which we also
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study theoretical properties. We also propose some tools for model selection. Eventually we investigate ways
to extend the standard Hidden Markov Field model to increase its modelling power.

3.3. Functional Inference, semi and non parametric methods

Keywords: boundary estimatigrextremesmultiresolution analysision parametrigscaling lawssingularity
spectra wavelets

Participants: Laurent Gardes, Stéphane Girard, Paulo Gongalves.

We also consider methods which do not assume a parametric model. The approaches are non-parametric in
the sense that they do not require the assumption of a prior model on the unknown quantities. This property
is important since, for image applications for instance, it is very difficult to introduce sufficiently general
parametric models because of the wide variety of image contents. As an illustration, the grey-levels surface
in an image cannot usually be described through a simple mathematical equation. Projection methods are
then a way to decompose the unknown signal or image on a set of functignegvelets). Kernel methods
which rely on smoothing the data using a set of kernels (usually probability distributions), are other examples.
Relationships exist between these methods and learning techniques using Support Vector Machine (SVM) as
this appears in the context bbundary estimatioandimage segmentatiohese techniques are also of great
use for dimension reduction since they allow to avoid assumptions on the observations distribution. Regarding
our use of wavelets, our goal is to perform image fusion between high spatial resolution satellite images
and lower resolution image time series sensored at short time periods. Our approach relies on the inherent
multiresolution analysis structure of orthogonal wavelets, combined with a hidden Markov tree model to assess
the inter-scale statistical dependencies.

4. Application Domains

4.1. Image Analysis
Participants: Juliette Blanchet, Charles Bouveyron, Hugo Carrédo, Florence Forbes, Stéphane Girard, Paulo
Gongalves.

As regards applications, several areas of image analysis can be covered using the tools developed in the
team. More specifically, we address in collaboration with Team Lear, Inria Rhone-Alpes, issues about object
and class recognition and about the extraction of visual information from large image data bases.

Other applications in medical imaging are natural. We work more specifically on MRI data.

We also consider other statistical 2D fields coming from other domains such as teledetection, remote
sensing, or Time-Frequency representations of 1-D signals.

4.2. Biology and Medicine
Participants: Florence Forbes, Matthieu Vignes.

A second domain of applications concerns biomedical statistics and molecular biology. We consider the
use of missing data models in epidemiology. We also investigate statistical tools for the analysis of bacterial
genomes beyond gene detection.

4.3. Reliability
Participants: Henri Bertholon, Julien Jacques.

Reliability and industrial lifetime analysis are applications developed essentially through collaborations
with the EDF research department and the LCFR laboratory of CEA / Cadarache.
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5. Software

5.1. The Extremes freeware
Participant: Stéphane Girard.

Joint work with Jean Diebolt (CNRS), Myriam Garrido (INRA Clermont-Ferrand) and Jérdme Ecarnot.

The EXTREMES software is a toolbox dedicated to the modelling of extremal events offering extreme
guantile estimation procedures and model selection methods. This software results from a collaboration with
EDF R&D. It is also a consequence of the PhD thesis work of Myriam Garrido. The software is written in
C++ with a Matlab graphical interface. It is now available both on Windows and Linux environments. It can
be downloaded at the following URDbitp://mistis.inrialpes.fr/software/EXTREME3Recently, this software
has been used to propose a new goodness-of-fit test to the distributidré}ail |

5.2. The Semms package
Participants: Juliette Blanchet, Florence Forbes.
This is joint work with Nathalie Peyrard (INRA Avignon).
The SEMMS (Spatial EM for Markovian Segmentation) program proposes a variety of algorithms for

image segmentation using Markov Random Fields. It is mainly based on mean field approximations. The
main functionalities of the package include:

e Model based unsupervised image segmentation, including the following models: Hidden Markov
Random Field and mixture model;

e Model selection for the Hidden Markov Random Field model;

e Simulation of commonly used Hidden Markov Random Field models (Potts models).

e Simulation of an independent Gaussian noise for the simulation of noisy images.

The package is publicly available &ttp://mistis.inrialpes.fr/software/SEMMS.html

A new package with new functionalities has been written in C++ with the help of Lemine Abdalah, when

he was part of our technical staff during summer 2005. This package will be made available in 2006 and will
complememt the current SEMMS package.

6. New Results

6.1. Mixture models

6.1.1. Taking into account the curse of dimensionality.

Participants: Charles Bouveyron, Stéphane Girard.
Joint work with Serge lovleff (Université Lille 3) and Cordelia Schmid (Lear, Inria).

In high dimensional spaces, learning methods suffer from the curse of dimensionality: even for large datasets,
large parts of the spaces are left empty. In the PhD work of Charles Bouveyron (co-advised by Cordelia
Schmid from the INRIA team LEAR, in the ACI Movistar in the “Masse de données” program), we propose
new Gaussian models of high dimensional data for classification purptdepg]. We assume that the data
live in several groups located in subspaces of lower dimensions. Two different strategies arise:

e the introduction in the model of a dimension reduction constraint for each group,

e the use of parsimonious models obtained by imposing to different groups to share the same values
of some parameters.


http://mistis.inrialpes.fr/software/EXTREMES/
http://mistis.inrialpes.fr/software/SEMMS.html
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This modelling yields new supervised classification methods called HDDA for High Dimensional Discrim-
inant Analysis. Some versions of this method have been tested on the supervised classification of objects in
images. We have developped an adaptation of this approach, named HDDC for High Dimensional Data Clus-
tering, to the unsupervised classification framework. We already, in the context of Juliette Blanchet PhD work
(also co-advised with C. Schmid), combined the method to our Markov-model based approach of learning
and classification and obtained significant improvement in applications such as texture recognition where the
observations are high-dimensional. We also foresee to apply this dimensionality reduction strategy in a remote
sensing context, when dealing with multi-temporal and hyper-spectral satellite images (Ph.D. work of Hugo
Carréo co-advised by Paulo Goncalves, see the following section).

We are then also willing to get rid of the Gaussian assumption. To this end, non linear models and semi
parametric methods are necessary. Our main project is to adapt the non linear Principal Component Analysis
(PCA) method proposed i2f] to the classification problem. This method (first introduced in Stéphane
Girard’s PhD thesis) relies on the approximation of datasets by manifolds, generalizing the PCA linear
subspaces. This approach reveals good performances when data are ifhages [

6.1.2. Land cover classification using multi-temporal, hyper-spectral satellite images
Participants: Paulo Gongalves, Hugo Carréo.

This is joint work with Méario Caetano (IGP, Portugal).

The objective of the present work is to produce a semi-automated land cover classification from multi-
spectral and multi-temporal MODIS satellite images acquired at a 500m nominal resolution. Our goal is to
achieve an automated pixel level classification using a Support Vector Machine (SVM) learning approach.
More specifically, we use the time evolution of reflectances measured in several spectral bands from weekly
composited images acquired during a complete year period. As temporal profiles are relevant fingerprints of
local phenologies, we believe time series offer great potential to improve discrimination among the different
land cover types. However, they result in very high dimensional data that we propose to handle considering
two approaches: the first one consists in identifying a parsimonious set of fitting parameters that adequately
model the time series. A second approach is based on dimensionality reduction techniques such as principal
component analysis and factorial discriminant analysis (see Section above).

Eventually, our model parameters are used as inputs of a supervised SVM classifier. Performance is then
exhaustively compared to that obtained when the same classifier is directly applied to a single date multi-
spectral reflectance data. First results are reportetPin [45].

6.2. Markov models

6.2.1. Markov models for the spatial organization of image descriptors.
Participants: Florence Forbes, Juliette Blanchet.

In more and more high-level image analysis, such as feature-based object recognition or object tracking, im-
ages are described by local affine-invariant descriptors and by spatial relationships between these descriptors.
A graph is associated to an image with the nodes representing feature vectors describing image regions and
the edges joining spatially related regions. For tractability, most approaches to recognition assume indepen-
dence between the features which is an obvious oversimplification. Incorporating information about the spatial
organization of the descriptors leads to better recognition results. Current approaches consist in augmenting
the data with information coming from the spatial relationships, for instance by using co-occurrence statistics,
but without modelling explicitly the dependencies between neighboring descriptors. In such approaches the
underlying model is one where the descriptors are statistically independent variables. Our claim is that recog-
nition results can be further improved by considering that descriptors are statistically dependent. We propose
to introduce the use of statistical parametric models of the dependence between descriptors. In this work, we
chose Hidden Markov Models (HMM) which are both well statistically-based and appropriate models for such
a task. They provide parametric models where the parameters have a natural interpretation and can be adjusted
to incorporate a priori knowledge with respect to strength of interaction for instance. Their use requires non
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trivial parameter estimation. We propose to use recent estimation procedures based on the mean field prin-
ciple of statistical physics and to investigate how to make them accurate and computationally efficient. The
particularities of the applications we aim at is the high-dimensionality of the feature vectors (typically 100
dimensional) and the irregularity of the sites at which they are observed. Very few practical optimization tech-
nigues are available for such tasks. Such algorithms are usually very sensitive to initialization and may require
tuning which may be problematic. By combining an MRF estimation procedure and a dimension reduction
technique we show that recognition rates could be improved and that promising results could be obtained us-
ing a general statistical formalism. We focused in particular on texture recognition but further work includes
other contexts such as object recognition and tracking.

As regards texture recognition (joint work with Cordelia Schmid, LEAR, INRIA Rhéne-Alpes), images are
described by local affine-invariant descriptors and by spatial relationships between these descriptors. Using
sample images, textures are then learned as HMM'’s and a set of estimated parameters is associated to each
texture. At recognition time, another HMM is used to compute, for each feature vector, the membership
probabilities to the different texture classes. Preliminary experiments show promising raspilts [

6.2.2. Integrated Markov models
Participants: Juliette Blanchet, Florence Forbes, Matthieu Vignes.

By integrated Markov model, we mean specific instance and usage of Markov models that we propose to
develop to combine various sources of interactions and information. The models are flexible in that various
pairwise relationship information and features of individual data can be easily incorporated. Two features
distinguish the integrated approach from other available methods. One is that the integrate approach uses all
available sources of information with possibly different weights for different sources of data. The second
feature is that as a probabilistic model it provides confidence measures such as posterior probabilities that an
object is assigned to a class when used for a classification task.

The novelty we propose is to take into account simultaneously data from individual objects, ie data that
make sense and exist for each objects, and data from pairs of objects reflecting for instance some similarity
measure defined on the objects. In practice such data can be missing and EM offers a good framework to deal
with this case (see[)).

A wide range of clustering algorithms have been proposed to analyze such data. Approaches fall mainly in
two categories. Some focus on individual data and as a consequence assume that they are independent. Others
use information on pairs in the form of networks or graphs but do not directly use individual data associated
to objects in the networks. Sequential procedures clustering first individual data alone and incorporating
additional information only after the clusters are determined are necessarily suboptimal. Our aim is to take
into account both type of information in a single procedure. We propose a hidden Markov random field
model in which parametric probability distributions will account for the distribution of individual data for
each object. Data on pairs will then be included through a graph where the nodes represent the objects and
the edges weighted according to pair data, for instance in order to reflect distance or similarity measures
between objects. There exist many ways to do that and it is not clear whether they are equivalent in terms
of the amount of information taken into account and in terms of clustering results. We applied this approach
to genetic data analysis (see below). One of the difficulties is to choose how the various information can be
incorporated in the model depending on the goal in mind. This requires a good understanding of the role of
each parameter in a Hidden Markov Random Field model. With this in min&gjnyve investigated the role
of singleton potentialsvhich are parameters usually ignored in standard Markov model-based segmentation.
In [47] we used these potentials to take into account cooperatively two sources of information so that two
segmentation processes could refine mutually and lead to better segmentation results (see application to MRI
analysis below).

Note that as in the previous section most of this work concerns Markov models on irregular graphs.
Choosing the neighborhood structure can then be an additional issue.
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Integrated Markov models on irregular grids for clustering gene expression dataBecause of the
increasingly large amounts of genetic data generated by researchers, there is a great need to develop
methodology to analyse and to use the information contained in this data. In this framework, clustering of
genes into groups sharing common characteristics becomes a useful exploratory technique.

As an example, one of the most popular tools for exploratory analysis of gene expression data is clustering of
genes and/or experiments. Furthermore, clustering is also frequently used as the basis for further computational
analysis. For example, the function of a gene can be predicted according to known functions of other genes
from the same cluster. More generally, a major challenge in bioinformatics is to reveal interactions between
living entities and discover the corresponding biological networks responsible for their biological complexity.

Our aim is to classify biological objects sharing common characteristics so that the resulting clusters could
be interpreted. More specifically, we focus on the clustering of genes. A wide range of clustering algorithms
have been proposed to analyze gene expression data. As mentionned, we propose a hidden Markov random
field model in which parametric probability distributions will account for the distribution of individual data
for each gene. Data on pairs, resulting from information in the form of biological networks, will then be
included through a graph where the nodes represent the objects and the edges weighted according to pair data,
for instance in order to reflect distance or similarity measures between genes. Preliminary investigations are
reported in B7].

Distributed and Cooperative Markovian segmentation of both tissues and structures in brain MRI.
This is joint work with Benoit Scherrer, Michel Dojat and Christine Garbay from TIMC and INSERM.
Accurate tissues and structures segmentation of MRI brain scan is critical for several applications. Markov
random fields are commonly used for such a task and require the estimation of the model parameters (Potts
model). Some refinements can be introduced into estimation algorithms, but are not sufficient for structure
segmentation. We proposé7] to inject anatomical a priori knowledge expressed as fuzzy spatial relations.
Knowledge obtained from structure segmentation is also injected in turn into the Markov process of tissues
segmentation. Structure and tissue segmentations are thus dynamic and cooperative processes. They are
implemented into a multi-agent system, where autonomous entities distributed into the image estimate local
Markov fields. We show, using phantoms and real images (acquired on a 3T scanner), that a distributed
and cooperative Markov modelling using anatomical knowledge is a powerful approach for MRI brain scan
segmentation.

6.2.3. Convergence properties of EM-like algorithms for inference in Hidden Markov Random
Fields
Participants: Florence Forbes, Gersende Fort.

For the standard EM algorithm, parameter estimates yield increasing likelihood over the observed data and
the convergence behavior of this process is well understood. However, since it is often the case that there are
no other feasible choices rather than to resort to the mean field approximation in practical situations, it appears
frequently that the mean field approximation is being used to practical problems with little consideration of
important issues such as accuracy of the approximation, convergence of the algorithms and so on. As a matter
of fact, in the context of Markovian segmentation, theoretical results as regards convergence properties are
still missing. Convergence properties of related EM variants (GAM for Generalized Alternating Minimization)
have been studied b¥T] and [61] but these variants cannot be applied in the MRF segmentation framework
and further approximations are required. We are investigatiifyd new algorithm that we proposed, the
so-called MCVEM algorithm, which is tractable in practice and for which we prove convergence results. Our
algorithm has the advantage on the GAM procedures studi€al/]rijat it can be applied to perform image
segmentation tasks and so on the basis of theoretical convergence results. The basis of our work is the paper
[9] which focuses on the convergence properties of the MCEM algorithm. Using similar tools, our key idea
is to view the MCVEM algorithm as a stochastic perturbation of a deterministic algorithm, so called VEM,
easier to studyq7]. Experiments on synthetic and real images show that the algorithm performance is very
close and sometimes better to that 8f. [Additional good properties due to its stochastic nature need to be
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further investigated. This first effective step opens the way to a better understanding of the behavior of a lot of
Markov based algorithm.

6.3. Semi and non parametric methods

6.3.1. Boundary estimation
Participants: Stéphane Girard, Laurent Gardes.

Joint work with Anatoli louditski (Univ. Joseph Fourier, Grenoble), Guillaume Bouchard (Xerox) Pierre
Jacob, Ludovic Menneteau (Univ. Montpellier) and Alexandre Nazin (IPU, Moscow, Russia).
Boundary estimation, or more generally, level sets estimation is a recurrent problem in statistics which is linked
to outlier detection. In biology, one is interested in estimating reference curves, that is to say curves which
bound90% (for example) of the population. Points outside this bound are considered as outliers compared to
the reference population. In image analysis, the boundary estimation problem arises in image segmentation as
well as in supervised learning. Two different and complementary approaches are developped.

6.3.1.1. Extreme quantiles approach.
Here, the boundary bounding the set of points is viewed as the larger level set of the points distribution. This
is then an extreme quantile curve estimation problem. We have proposed estimators based on projection as
well as on kernel regression methods applied on the extreme valu&ss¢Rf], for particular set of points.
In this specific framework, we have obtained the asymptotic distribution of the estimators. In his PhD work,
co-directed by Pierre Jacob and Stéphane Girard, Laurent Gai¢dsmp adapted these methods to estimate
extreme level sets of hon-bounded points distributions.
Our future work will be to define similar methods based on wavelets expansions in order to estimate non-
smooth boundaries. Besides, we are also working on the extension of our results to more general sets of
points.

6.3.1.2. Linear programming approach.
Here, the boundary of a set of points is defined has a closed curve bounding all the points and with smallest
associate surface. It is thus natural to reformulate the boundary estimation method as a linear programming
problem [L2]. The resulting estimate is parsimonious, it only relies on a small number of points. This
method belongs to the Support Vector Machines (SVM) techniques. Their finite sample performances are
very impressive but their asymptotic properties are not very well known. We have established the speed of
convergence and shown that it is optimal for a particular family of bound&tigs [

6.3.2. Modelling extremal events
Participants: Stéphane Girard, Laurent Gardes.

Joint work with Mhamed EI Aroui (ISG, Tunis), Armelle Guillou (Université Paris 6) Myriam Garrido
(INRA Clermont-Ferrand), Jean Diebolt (CNRS).
The first part of our work is to propose new estimates of the extremal index. This parameter is important in
practice since it drives the behaviour of the distribution tail. The second part is then to deduce estimates for
extreme quantiles.

In[19], we investigate the asymptotical behaviour of two new estimates based on double threshold methods.

We also introduce a quasi-conjugate Bayes approach for estimating Generalized Pareto Distribution (GPD)
parameters, distribution tails and extreme quantiles within the Peaks-Over-Threshold franiéskdBlayes
credibility intervals are defined, they provide assessment of the quality of the extreme events estimates.
Posterior estimates are computed by Gibbs samplers with Hastings-Metropolis steps. Even if non-informative
priors are used in this work, the suggested approach could incorporate informative priors. It brings solutions
to the problem of estimating extreme events when data are scarce but expert opinion is available.

Finally, we introduce estimates dedicated to the important case of Weibull tail-distribufdhq %2
which includes for instance Gaussian, gamma, and Weibull distributions. Our current work includes kernel
estimators$3] and bias reduced estimatord], [50].
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6.3.3. Generalized discriminant rule for binary data when training and test populations differ
in their descriptive parameters
Participant: Julien Jacques.

This is a joint work with C. Biernacki, Prof. University of Lilles.

Standard discriminant analysis assumes that both the labelled training sample and the unlabelled test sample
which has to be classified both come from the same population. When these samples come from populations
for which descriptive parameters are different, generalized discriminant analysis enables us to adapt the
classification rule built from the training population to the test population, by estimating a link between these
two populations. This work extends existing methods available in a multi-normal context to the case of binary
data. To solve the major challenge of this work which is to define a link between the two binary populations,
we suppose that binary data come from the discretization of latent Gaussian data. An estimation method is
then defined and tests on simulated data are carried out. Also, an application to real biological data illustrates
the method44], [43].

6.3.4. Empirical Mode Decomposition
Participant: Paulo Gongalves.

This topic is the main line of our scientific collaboration with Ecole Normale Supérieure de Lyon (France). P.
Flandrin and P. Goncalves are co-advising the PhD thesis of G. Rilling (starting date, Sept. 2004) on “Empirical
Mode Decomposition” (EMD).

We now briefly describe the EMD technique. This entirely data-driven algorithm introduced by N. E.
Huang decomposes iteratively a complex signal (i.e. with several characteristic time scales coexisting) into
elementary Amplitude-Frequency Modulation type components (Intrinsic Mode Functions). The rationale
of this decomposition is to locally identify in the signal the fastest oscillations, defined as the waveform
interpolating interlacing local maxima and minima. To do so, local maxima points (respectively local minima
points) are interpolated with a cubic spline, to yield the upper (resp. lower) envelope. The mean envelope (half
sum of upper and lower envelopes) is then subtracted from the initial signal, and the same interpolation scheme
is re-iterated on the remainder. The so-calléting processtops when the mean envelope is reasonably zero
everywhere, and the resulting signal is designated as thétirstsic Mode Functior{IMF). The higher order

IMFs are iteratively extracted applying the same procedure to the signal after the previous IMFs have been
removed.

We are pursuing the qualitative study of EMD as an adaptive dyadic filter bank. Regarding applications, we
are investigating EMD as a tool to estimate the Hurst parameter estimation of fractional Brownian Motions,
and show that when compared to wavelet appro&shHMD yields more accurate estimates, specially for
very irregular signals.

6.3.5. Image fusion using Multiresolution Analysis and Markov tree models
Participants: Paulo Gongalves, Hugo Carréo.

This is joint work with Jean-Baptiste Durand (LMC, Grenoble), and Mario Caetano (IGP, Portugal).

Accurate land cover classification and land cover change estimation from remote sensing require simulta-
neously fine spatial resolution images and high acquisition time rate. However, sensors able to provide such
high quality images are rare and/or very expensive. We propose to cope with this limitation by combining the
following two type of images:

1. Images from MODIS sensor. These images have a coarse spatial pixel resolution (250m — 500m) but
are periodically acquired at short time intervals (daily or weekly images). They are freely accessible
from the NASA Web site.

2. Images from LandSat sensor. These images have high spatial resolution (30m), but long acquisition
time period (one year).
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The fusion of both sources of information is performed carrying out the following steps. First, the wavelet
decomposition of the high resolution LandSat images is computed and the hidden Markov tree model that
underlies it is identified according to the work ][ This results in a set of Markov transition kernels that can
then be applied to the available low resolution Modis images to infer a higher resolution image for each of the
date for which no high resolution LandSat image is available. For a given date, the available low resolution
Modis image is considered as the wavelet approximation of the non-existent high resolution image at a coarser
scale. Applying the learned Markov tree model to it yields a statistical estimate of a higher resolution image
for this date.

7. Other Grants and Activities

7.1. Regional initiatives

MISTIS participates in the weekly statistical seminar of Grenoble, F. Forbes is one of the organizers and
several lecturers have been invited in this context.

7.2. National initiatives

MISTIS got a Ministry grant (Action Concertée Incitative Masses de données) for a three-year project
involving other partners (Team Lear from INRIA, SMS from University Joseph Fourier and Heudiasyc from
UTC, Compiegne). The project called Movistar aims at investigating visual and statistical models for image
recognition and description and learning techniques for the management of large image databases.

Since July 2005, MISTIS is also involved in the IBN (Integrated Biological Networks) project coordinated
by Marie-France Sagot from INRIA team HELIX. This project is part of the Cooperative Research Initiative
(ARC) supported by INRIA. The other partners include two other INRIA teams (HELIX and SYMBIOSE,
Pasteur Institute and INRA, Jouy-en-Josas.

7.3. International initiatives

7.3.1. Europe

S. Girard is a member of the European project (Interuniversity Attraction Pole network) “Statistical
technigues and modelling for complex substantive questions with complex data”,
Web site :http://www.stat.ucl.ac.be/IAP/frameiap.html

S. Girard has also joint work with Prof. A. Nazin (Institute of Control Science, Moscow, Russia).

MISTIS is then involved in a European STREP proposal, named POP (Perception On Purpose) coordinated
by Radu Horaud from INRIA team MOVI. The three-year project starts in January 2006. Its objective is
to put forward the modelling of perception (visual and auditory) as a complex attentional mechanism that
embodies a decision taking process. The task of the latter is to find a trade-off between the reliability of
the sensorial stimuli (bottom-up attention) and the plausibility of prior knowledge (top-down attention). The
MISTIS part is to contribute to the development of theoretical and algorithmic models based on probabilistic
and statistical modelling of both the input and the processes data. Bayesian theory and hidden Markov models
in particular will be combined with efficient optimization techniques in order to confront physical inputs and
prior knowledge.

7.3.2. North Africa
S. Girard has joint work with M. El Aroui (ISG Tunis).

7.3.3. North America
F. Forbes has joint work with:
- C. Fraley (Univ. of Washington, USA)
- A. Raftery (Univ. of Washington, USA)
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P. Goncalves has joint work with:
- M. Caetano (IGP-IGESI Lisbon, Portugal)
- R. Riedi (Rice Univ., USA)
- R. Baraniuk (Rice Univ., USA)
- A. Feuerverger (Univ. of Toronto, CA).

7.4. Visiting scientists
Hugo Carréo (Ph.D. student from IGP, Lisbon Portugal) spent 3 months in the team.

8. Dissemination

8.1. Leadership within scientific community

F. Forbes is member of the group in charge of incentive initiatives (GTAI) in the Scientific and Technological
Orientation Council (COST) of INRIA.
F. Forbes was involved in the PhD commitee of C. Melo de Lima from university Lyon 1.

8.2. University Teaching

F. Forbes lectured a graduate course on the EM algorithm at Univ. J. Fourier, Grenoble and on stochastic
processes at ENSIMAG, Telecom, INPG.

L. Gardes, S. Girard are faculty members at Univ. P. Mendes France and Univ. J. Fourier in Grenoble.

H. Berthelon is faculty member at CNAM, Paris.
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