%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Team Phoenix

Programming Language Technology For
Communication Services

Futurs

P THEME COM P

ctivit

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/phoenix.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-futurs.en.html

Table of contents

1. Team
2. Overall Objectives
2.1. Context

2.2. Overview
3. Scientific Foundations
3.1. Introduction
3.2. Adaptation Methodologies
3.2.1. Domain-Specific languages
3.2.2. Declaring adaptation
3.2.3. Declaring specialization
3.2.4. Specializing design patterns
3.2.5. Specializing software architectures
3.3. Adaptation in Systems Software
3.3.1. DSLsin Operating Systems
3.3.2. Devil - a DSL for device drivers
3.3.3. Plan-P - a DSL for programmable routers
3.4. Adaptation Tools and Techniques
4. Application Domains
4.1. Telephony Services
4.2. Multimedia Streaming Services
5. Software
5.1. Tempo - A Partial Evaluator for C
5.2. SPL - A Domain-Specific Language for Robust Session Processing Services
5.3. Stingy - A Domain-Specific Compiler for High-performance Network Servers
6. New Results
6.1. A Generative Programming Approach To Developing DSL Compilers
6.2. Clearwater: Extensible, Flexible, Modular Code Generation
7. Contracts and Grants with Industry
7.1. ACI Security COrSS

O NNNOOOOOOUNOUITUITRAEDRWWWWWWNNNNNRERRRPRE

7.2. Ambient Intelligence For The Networked Home Environment (IP6 Amigo) 8
7.3. A Platform for the Development of Robust Multimedia Applications in Mobile Terminals — Région
Aquitaine 8

7.4. Service Oriented Architecture for Embedded Systems — Industrial Fellowship (CIFRE / TBales)
7.5. Capability-based DSLs — Région Aquitaine Fellowship 9
8. Other Grants and Activities 9
8.1. International Collaborations 9
8.2. \Visits and Invited Researchers 9
9. Dissemination 9

9.1. Scientific Community Participation 9
9.2. Teaching 10
9.3. Presentations and Invitations 10
9.4. Phoenix in the News 10

10. Bibliography 11

1. Team

The Phoenix group is located in Bordeaux. Phoenix is a joint research group with LaBRI (Laboratoire
Bordelais de Recherche en Informatique) — the computer science department at the University of Bordeaux |
— CNRS (Centre National de la Recherche Scientifique) — a French national scientific research center — and
ENSEIRB (Ecole Nationale Supérieure en Electronique, Informatique et Radiocommunications de Bordeaux)
— an electronics, computer science, and telecommunications engineering school at Bordeaux. The group is
physically located at ENSEIRB.

Team Leader
Charles Consel [Professor, ENSEIRB]

ENSEIRB personnel
Laurent Réveillére [Associate Professor, ENSEIRB]

External collaborator
Julia Lawall [Associate Professor at the University of Copenhagen]

Ph.D. students
Laurent Burgy [From October 1, 2004, regional scholarship]
Fabien Latry [From October 1, 2004, Inria scholarship]
Nicolas Palix [From October 1, 2004, Inria scholarship]
Sapan Bhatia [From January 1, 2003, Inria and regional scholarship]
Mathieu Minard [Thomson Multimedia (industrial Ph.D. student)]
Wilfried Jouve [From October 3, 2005, Phoenix scholarship]
Julien Lancia [From November 14, 2005, Thales (industrial Ph.D. student)]

2. Overall Objectives
2.1. Context

Keywords: Operating systemglient-server modelcommunication servicesompilation domain analysis
and engineeringlanguage desighnetworking program analysis and transformatipspecialization tele-
phony

The frantic nature of technological advances in the area of multimedia communications, compounded with
the effective convergence between telecommunication and computer networks, is opening up a host of new
functionalities, placing service creation as a fundamental vehicle to bring these changes to end-users.

This situation has three main consequences: (1) service creation is increasingly becosoiitgase
intensive area(2) because communication services are often heavily relied on, intensive service creation must
preservaobustness(3) the growing multimedia nature of communication services impbiggsperformance
requirement®n services and underlying layers.

2.2. Overview

Keywords: Operating systemglient-server modelcommunication servicesompilation domain analysis
and engineeringlanguage designnetworking program analysis and transformatipspecialization tele-
phony

The phoenix group aims to develop principles, techniques and tools for the developroentrofinication
services To address the requirements of this domain, the scope of our research comprises the key elements
underlying communication services: the infrastructure that enables communication to bessgtsigialling
platform, transport protocols, and session description); the software architecture underlying seryigas (
client-server model, programming interfaces, and the notion of service logic); and, communication terminals
(e.g.,terminal features and embedded systems).

2 Activity Report INRIA 2005

Our approach covers three key aspects of the area of communication services: (1) definition of new Domain-
Specific Languages (DSLs), using programming language technology to enable the specification of robust
services; (2) study of the layers underlying communication services to improve flexibility and performance;
(3) application to concrete areas to validate our approach.

3. Scientific Foundations

3.1. Introduction

Our proposed project builds upon results that have been obtained by the Compose research group whose
aim was to study new approaches to developing adaptable software components in the domain of systems and
networking. In this section, we review the accomplishments of Compose, only considering the ones achieved
by the current project members, to demonstrate our expertise in the key areas underlying our project, namely

e Programming language technology: language design and implementation, domain-specific lan-
guages, program analysis and program transformation.

e Operating Systems and Networking: design, implementation and optimization.
e Software engineering: software architecture, methodologies, techniques and tools.

By combining expertise in these areas, the research work of the Compose group contributed to demonstrat-
ing the usefulness of adaptation methodologies, such as domain-specific languages, and the effectiveness of
adaptation tools, such as program specializers. Our work aimed to show how adaptation methodologies and
tools can be integrated into the development process of real-size software components. This contribution re-
lied on advances in methodologies to develop adaptable programs, and techniques and tools to adapt these
programs to specific usage contexts.

3.2. Adaptation Methodologies

Although industry has long recognized the need to develop adaptable programs, methodologies to develop
them are still at the research stage. We have presented preliminary results in this area with a detailed study of
the applicability of program specialization to various software architectardsQur latest contributions in
this area span from a revolutionary approach based on the definition of programming languages, dedicated to
a specific problem family, to a direct exploitation of specialization opportunities generated by a conventional
programming methodology.

3.2.1. Domain-Specific languages

DSLs represent a promising approach to modeling a problem family. Yet, this approach currently suffers
from the lack of methodology to design and implement DSLs. To address this basic need, we have introduced
the Sprint methodology for DSL developme20]. This methodology bridges the gap between semantics-
based approaches to developing general-purpose languages and software engineering. Sprint is a complete
software development process starting from the identification of the need for a DSL to its efficient implemen-
tation. It uses the denotational framework to formalize the basic components of a DSL. The semantic definition
is structured so as to stage design decisions and to smoothly integrate implementation concerns.

3.2.2. Declaring adaptation

A less drastic strategy to developing efficient adaptable programs consists of making specific issues of
adaptation explicit via a declarative approach. To do so, we enrich Java classes with declarations, named
adaptation classesimed to express adaptive behavidt§][As such, this approach allows the programmer
to separate the concerns between the basic features of the application and its adaptation aspects. A dedicated
compiler automatically generates Java code that implements the adaptive features.

Team Phoenix 3

3.2.3. Declaring specialization

When developing components, programmers often hesitate to make them highly generic and configurable.
Indeed, genericity and configurability systematically introduce overheads in the resulting component. How-
ever, the causes of these overheads are usually well-known by the programmers and their removal could often
be automated, if only they could be declared to guide an optimizing tool. The Compose group has worked
towards solving this problem.

We introduced a declaration language which enables a component developer to express the configurability
of a component. The declarations consist of a collection of specialization scenarios that precisely identify
what program constructs are of interest for specialization. The scenarios of a component do not clutter the
component code; they are defined aside $pecialization modulg?], [23)], [21], [24].

This work was done in the context of C and declarations were intended to drive our C specializer.

3.2.4. Specializing design patterns
A natural approach to systematically applying program specialization is to exploit opportunities offered

by a programming methodology. We have studied a development methodology for object-oriented languages,
called design patterns. Design patterns encapsulate knowledge about the design and implementation of highly
adaptable software. However, adaptability is obtained at the expense of overheads introduced in the finished
program. These overheads can be identified for each design pattern. Our work consisted in using knowledge
derived from design patterns to eliminate these overheads in a systematic way. To do so, we analyzed the
specialization opportunities provided by specific uses of design patterns, and determined how to eliminate
these overheads using program specialization. These opportunities were documented in declarations, called
specialization patterns, and were associated with specific design paiétridie specialization of a program
composed of design patterns was then driven by the corresponding declarations. This work was presented in
the context of Java and uses our Java specialgzgr [

3.2.5. Specializing software architectures
The source of inefficiency in software architectures can be identified in the data and control integration of
components, because flexibility is present not only at the design level but also in the implementation. We pro-
posed the use of program specialization in software engineering as a systematic way to improve performance
and, in some cases, to reduce program size. We studied several representative, flexible mechanisms found
in software architectures: selective broadcast, pattern matching, interpreters, layers and generic libraries. We
showed how program specialization can systematically be applied to optimize those mecR&hia7]

3.3. Adaptation in Systems Software

3.3.1. DSLs in Operating Systems
Integrating our adaptation methodologies and tools into the development process of real-size software
systems was achieved by proposing a new development process. Specifically, we proposed a new approach
to designing and structuring operating systems (OS&8) This approach was based on DSLs and enables
rapid development of robust OSes. Such approach is critically needed in application domain, like appliances,
where new products appear at a rapid pace and needs are unpredictable.

3.3.2. Devil - a DSL for device drivers

Our approach to developing systems software applied to the domain of device drivers. Indeed, peripheral
devices come out at a frantic pace, and the development of drivers is very intricate and error prone. The
Compose group developed a DSL, named Devil (DEvice Interface Language), to solve these problems; it
was dedicated to the basic communication with a device. Devil allowed the programmer to easily map device
documentation into a formal device description that can be verified and compiled into executable code.

From a software engineering viewpoint, Devil captures domain expertise and systematizes re-use because
it offers suitable built-in abstraction8]]. A Devil description formally specifies the access mechanisms, the

4 Activity Report INRIA 2005

type and layout of data, as well as behavioral properties involved in operating the device. Once compiled, a
Devil description implements an interface to an idealized device and abstracts the hardware intricacies.

From an operating systems viewpoint, Devil can be seen asterface definition languagtr hardware
functionalities. To validate the approach, Devil was put to pracicg [ts expressiveness was demonstrated
by the wide variety of devices that have been specified in Devil. No loss in performance was found for the
compiled Devil description compared to an equivalent C code.

From a dependable system viewpoint, Devil improves safety by enabling descriptions to be statically
checked for consistency and generating stubs including additional run-time cl3ggkM{itation analysis
were used to evaluate the improvement in driver robustness offered by Devil. Based on our experiments, Devil
specifications were found up to 6 times less prone to errors than writing C code.

Devil was the continuation of a study of graphic display adaptors for a X11 server. We developed a DSL,
called GAL (Graphics Adaptor Language), aimed to specify device drivers in this coBt@gxtAlthough
covering a very restricted domain, this language was a very successful proof of concept.

3.3.3. Plan-P - a DSL for programmable routers

Besides device drivers, the Compose group also explored the area of networking in the context of DSLs.
More specifically, we developed a language, named Plan-P, that enables the network to be programmable
and thus to offer extensibility3[7]. As such, Plan-P enables protocols to be defined for specific applications.
Plan-P extends a language, named Plan, developed by the University of Pennsylvania and devoted to network
diagnostics. Plan-P enables routers to be programmed in a safe and secure way without any loss in bandwidth.
To achieve safety and security, the language is restricted, and programs are downloaded into the routers as DSL
source code to enable thorough verifications. For efficiency, a light Just-In-Time compiler is generated from
the Plan-P interpreter via program specialization. This compiler is installed on routers to compile uploaded
Plan-P source code.

3.4. Adaptation Tools and Techniques

To further the applicability of our approach, we have strengthened and extended adaptation tools and
techniques. We have produced a detailed description of the key program analysis for imperative specialization,
namely binding-time analysisL]. This analysis is at the heart of our program specializer for C, named
Tempo [L9]. We have examined the importance of the accuracy of these analyses to successfully specialize
existing programs. This study was conducted in the context of systems sofé@are [

Tempo is the only specializer which enables programs to be specialized both at compile time and run time.
Yet, specialization is always performed in one stage. As a consequence, this process cannot be factorized
even if specialization values become available at multiple stages. We present a realistic and flexible approach
to achieving efficient incremental run-time specializati@®][Rather than developing new techniques,
our strategy for incremental run-time specialization reuses existing technology by iterating a specialization
process. Our approach has been implemented in Tempo.

While program specialization encodes the result of early computations into a new prdgtarspecializa-
tion encodes the result of early computations into data structures. Although aiming at the same goal, namely
processing early computations, these two forms of specialization have always been studied separately. The
Compose group has proposed an extension of Tempo to perform both program and data speciélization [
We showed how these two strategies can be integrated in a single specializer. Most notably, having both strate-
gies enabled us to assess their benefits, limitations and their combination on a variety of programs.

Interpreters and run-time compilers are increasingly used to cope with heterogeneous architectures, evolving
programming languages, and dynamically-loaded code. Although solving the same problem, these two
strategies are very different. Interpreters are simple to implement but yield poor performance. Run-time
compilation yields better performance, but is costly to implement. One approach to reconciling these two
strategies is to develop interpreters for simplicity but to use specialization to achieve efficiency. Additionally,

a specializer like Tempo can remove the interpretation overhead at compile time as well as at run time.
We have conducted experiments to assess the benefits of applying specialization to inteffiet€rege

Team Phoenix 5

experiments have involved bytecode and structured-language interpreters. Our experimental data showed that
specialization of structured-language interpreters can yield performance comparable to that of the compiled
code of an optimizing compiler.

Besides targeting C, we developed the first program specializer for an object-oriented language. This
specializer, named JSpec, processes Java progréshsJBpec is constructed from existing tools. Java
programs are translated into C using our Java compiler, named Harissa. Then, the resulting C programs are
specialized using Tempo. The specialized C program is executed in the Harissa environment. JSpec has been
used for various applications and has shown to produce significant spe&éLps [

4. Application Domains
4.1. Telephony Services

Keywords: SIP, adaptation multimedia telecommunications

IP telephony materializes the convergence between telecommunications and computer networks. This con-
vergence is dramatically changing the face of the telecommunications domain moving from proprietary, closed
platforms to distributed systems based on network protocols. In particular, a telephony platform is based on a
client-server model and consists o$ignalling serverthat implements a particular signalling protoceld.,
the Session Initiation Protocaol§]). A signalling server is able to perform telephony-related operations that
include resources accessible from the computer network, such as Web resources, databases...This evolution
brings a host of new functionalities to the domain of telecommunications. Such a wide spectrum of func-
tionalities enables Telephony to be customized with respect to preferences, trends and expectations of ever
demanding users. These customizations critically rely on a proliferation of telephony services. In fact, intro-
ducing new telephony services is facilitated by the open nature of signalling servers, as shown by all kinds
of servers in distributed systems. However, in the context of telecommunications, such evolution should lead
service programming to be done by non-expert programmers, as opposed to developers certified by telephony
manufacturers. To make this evolution worse, the existing techniques to program server extergiaeng-
mon Gateway Interface fl]) are rather low level, involves crosscutting expertiseg.(networking, distributed
systems, and operating systems) and requires tedious session management. These shortcomings make the pro-
gramming of telephony services an error-prone process, jeopardizing the robustness of a platform.

We are developing a DSL, named SPRe§sion Processing Langudgaimed to ease the development of
telephony services without sacrificing robustness.

4.2. Multimedia Streaming Services
Keywords: adaptation multimedia streaming telecommunications

Mobility and wireless networks pose a major challenge to media delivery: how does one mass-deliver
media while at the same time personalizating it to account for diverse needs such as multiple heterogeneous
rendering terminals, user requirements, network bandwettt Such personalization involves transcoding
and transforming multimedia resources along the image chain.

To do so, various treatments, commonly supported by hardware, are gradually being shifted to software, to
face unpredictable needs. On the one hand, this shift helps to keep pace with the rapidly evolving domain of
media delivery. On the other hand, it imposes very high-performance requirements for treatments that were
earlier hardware supported. As a consequence, developing a streaming application often involves low-level
programming, critical memory management, and finely tuned scheduling of processing steps.

To address these problems, we have designed and implemented a DSL, &pidkedfor specifying
streaming applicationd B]. Our approach consists in

e Identifying (and possibly modifying) a protoca.g.,RTSP) for multimedia streaming.

6 Activity Report INRIA 2005

e Making a streaming server, based on the previously identified protocol, programmable using Spidle.
This work will permit streaming adaptations to the client needs and preferences.

e Defining realistic adaptation scenarios to validate our approach. This work may lead us to extend
Spidle to cope with the target scenarios.

e Assessing our approach by conducting a thorough experimental study.

5. Software
5.1. Tempo - A Partial Evaluator for C

Keywords: C languagepartial evaluation run-time specialization
Participants: Charles Consel [correspondent], Julia Lawall.

Tempo is a partial evaluator for C programs. It is an off-line specializer; it is divided into two phases:
analysis and specialization.

The input to the analysis phase consists of a program and a description of which inputs will be known during
specialization and which will be unknown. Based on this knowledge, dependency analyses propagate infor-
mation about known and unknown values throughout the code and produce an annotated program, indicating
how each program construct should be transformed during specialization. Because C is an imperative language
including pointers, the analysis phase performs alias and side-effect analyses in addition to binding-time anal-
yses. The accuracy of these analyses is targeted towards keeping track of known values across procedures, data
structures, and pointers. Following the analysis phase, the specialization phase generates a specialized program
based on the annotated program and the values of the known inputs. Tempo can specialize programs at compile
time (i.e., source-to-source transformation) as well as run time (i.e., run-time binary code generation).

The Tempo specializer has been applied in various domains such as operating systems and networking,
computer graphics, scientific computation, software engineering and domain specific languages. It has been
made publicly available since April 1998. Its documentation is available on line, as well as tutorial slides.

5.2. SPL - A Domain-Specific Language for Robust Session Processing Services
Keywords: SIP, adaptation servicessessiongtelephony
Participants: Charles Consel, Laurent Réveillére [correspondent], Laurent Burgy, Fabien Latry, Nicolas Palix.

SPL is a high-level domain-specific language for specifying robust Internet telephony services.

SPL reconciles programmability and reliability of telephony services, and offers high-level constructs that
abstract over intricacies of the underlying protocols and software layers. SPL makes it possible for owners of
telephony platforms to deploy third-party services without compromising safety and security. This openness is
essential to have a community of service developers that addresses such a wide spectrum of new functionalities.
The SPL compiler is nearing completion.

5.3. Stingy - A Domain-Specific Compiler for High-performance Network
Servers
Keywords: Cache Optimizationdomain-specific optimizationgvent-driven Programs
Participants: Sapan Bhatia [correspondent], Charles Consel, Julia Lawall.

Event-driven programming has emerged as a standard to implement high-performance servers due to its
flexibility and low OS overhead. Still, memory access remains a bottleneck. Generic optimization techniques
yield only small improvements in the memory access behavior of event-driven servers, as such techniques do
not exploit their specific structure and behavior.

Team Phoenix 7

The Stingy compiler implementes an optimization framework dedicated to event-driven servers, based on
a strategy to eliminate data-cache misses. Our approach exploits the flexible scheduling and deterministic
execution of event-driven servers. It is based on a novel memory manager combined with a tailored scheduling
strategy to restrict the working data set of the program to a memory region mapped directly into the data cache.

In practice, the Stingy compiler accepts as input an event-driven server written in C and annotated to expose
a specific memory management and scheduling interface. As output, it generates C code for an optimized
version of the server. The Stingy compiler has been tested on the following servers: The TUX, thttpd, Flash,
boa, mathopd. It has also been applied to the Cactus QoS framework and the Squid proxy server. The highest
speedup observed under heavy loads is on the TUX server (in the range of 40%). For the remaining servers,
gains are in the region of 10-15%.

6. New Results
6.1. A Generative Programming Approach To Developing DSL Compilers

Participants: Charles Consel, Fabien Latry, Laurent Réveillére.

Domain-Specific Languages (DSLs) represent a proven approach to raising the abstraction level of program-
ming. They offer highlevel constructs and notations dedicated to a domain, structuring program design, easing
program writing, masking the intricacies of underlying software layers, and guaranteeing critical properties.

On the one hand, DSLs facilitate a straightforward mapping between a conceptual model and a solution
expressed in a specific programming language. On the other hand, DSLs complicate the compilation process
because of the gap in the abstraction level between the source and target language. The nature of DSLs make
their compilation very different from the compilation of common General-Purpose Languages (GPLS). In fact,

a DSL compiler generally produces code written in a GPL; low-level compilation is left to the compiler of the
target GPL. In essence, a DSL compiler defines some mapping of the high-level information and features of a
DSL into the target GPL and underlying layers (e.g., middleware, protocols, objects, . . .).

This paper presents a methodology to develop DSL compilers, centered around the use of generative
programming tools. Our approach enables the development of a DSL compiler to be structured on facets that
represent dimensions of compilation. Each facet can then be implemented in a modular way, using aspects,
annotations and specialization. Because these tools are high level, they match the needs of a DSL, facilitating
the development of the DSL compiler, and making it modular and retargetable.

We illustrate our approach with a DSL for telephony services. The structure of the DSL compiler is
presented, as well as practical uses of generative tools for some compilation facets. For more information,
see: [L1].

6.2. Clearwater: Extensible, Flexible, Modular Code Generation
Participant: Charles Consel.

Distributed applications typically interact with a number of heterogeneous and autonomous components
that evolve independently. Methodical development of such applications can benefit from approaches based on
domain-specific languages (DSLs). However, the evolution and customization of heterogeneous components
introduces significant challenges to accommodating the syntax and semantics of a DSL in addition to the
heterogeneous platforms on which they must run. In this paper, we address the challenge of implementing code
generators for two such DSLs that are flexible (resilient to changes in generators or input formats), extensible
(able to support multiple output targets and multiple input variants), and modular (generated code can be
rewritten). Our approach, Clearwater, leverages XML and XSLT standards: XML supports extensibility and
mutability for inprogress specification formats, and XSLT provides flexibility and extensibility for multiple
target languages. Modularity arises from using XML meta-tags in the code generator itself, which supports
controlled addition, subtraction, or replacement to the generated code via XML-weaving. We discuss the use
of our approach and show its advantages in two non-trivial code generators: the Infopipe Stub Generator

8 Activity Report INRIA 2005

(ISG) to support distributed flow applications, and the Automated Composable Code Translator to support
automated distributed application deployment. As an example, the ISG accepts as input an XML description
and generates output for C, C++, or Java using a number of communications platforms such as sockets and
publish-subscribe. For more information, se€?]|

7. Contracts and Grants with Industry
7.1. ACI Security COrSS

Participants: Laurent Burgy, Charles Consel, Fabien Latry, Nicolas Palix, Laurent Réveillére.

This project, entitled “Composition and refinement of Secure Systems”, is a collaboration between groups
from the systems and formal methods community.

The goal is to study methods and tools for the development of secure and safe systems services, with a
special emphasis on specification. Our contribution focuses on the development of robust telephony services
using DSLs. The collaboration with researchers in formal methods aims to usegap/héorem provers) to
formalize and check properties specific to the DSL and the domain of telephony.

7.2. Ambient Intelligence For The Networked Home Environment (IP6 Amigo)
Participants: Laurent Burgy, Charles Consel, Fabien Latry, Nicolas Palix, Laurent Réveillére.

The Amigo project will focus on the usability of a networked home system by developing open, standard-
ized, interoperable middleware. The developed middleware will guarantee automatic dynamic configuration
of the devices and services within this home system by addressing autonomy and composability aspects. The
second focus of the Amigo project will be on improving the end-user attractiveness of a networked home
system by developing interoperable intelligent user services and application prototypes. The Amigo project
will further support interoperability between equipment and services within the networked home environment
by using standard technology when possible and by making the basic middleware (components and infras-
tructure) and intelligent user services available as open source software together with architectural rules for
everyone to use.

Our work in the Amigo project is based on our DSL paradigm for protocol-based service families, presented
in Section. We aim to develop DSLs for service creation. Indeed, the area of networked home systems, targetted
by Amigo, relies on protocols for families of servicesd.,SIP, Session Announcement protocol, and Delivery
Multimedia Framework). Furthermore, the underlying software architecture in this area relies on a client-
server model. This situation should give us an opportunity to further illustrate our approach to making servers
DSL-programmable.

7.3. A Platform for the Development of Robust Multimedia Applications in

Mobile Terminals — Région Aquitaine
Participants: Laurent Burgy, Charles Consel, Fabien Latry, Nicolas Palix, Laurent Réveillére.

The world of mobile communication terminals (MCT), such as telephones, handheld computers and PCs,
has witnessed dazzling advances for the last few years. Most of the effort has been focused on improving
the hardware capabilities of the devices rather than the applications offering services to the users. However, as
wireless technologies (GPRS, UMTS, BlueTooth, WiFI) are increasingly becoming available on these devices,
it is critical to offer robust applications that make the best use of the available resources.

This project aims to develop a platform for the development of robust multimedia services on MCT.

7.4. Service Oriented Architecture for Embedded Systems — Industrial
Fellowship (CIFRE / Thales)

Participants: Charles Consel, Julien Lancia.

Team Phoenix 9

The goal of this project is to design and develop a SOA architecture for embedded systems. More especially,
it takes into account 3 levels of adaptation: (1) the component level (contracts on resources, performances...),
(2) the coupling of components level (dependence, security...), and (3) the software architecture level (resource
management, robustness...). A contract-based component approach will be considered to describe nonfunc-
tional properties, to define mechanisms for coupling of components, and to define control mechanisms when
executing elements of a component. This study will be illustrated by a concrete application. The research work
should be a step toward solving key problems such as composition of services, security, component adaptation
and performance.

7.5. Capability-based DSLs — Région Aquitaine Fellowship

Participants: Laurent Burgy, Charles Consel, Laurent Réveillere.

To answer the fundamental need for innovations in terms of services, existing infrastructures have become
increasingly open to external developers. Yet, this openness is done at the expense of the robustness. The aim
of this project is to integrate approaches dedicated to finely tuning access to ressources into programming
languages. This study will introduce a unique DSL to program services whose interface to resources is
configured with respect to the different roles of programmers and so their capabilities.

8. Other Grants and Activities

8.1. International Collaborations
We have been exchanging visits and publishing articles with the following collaborators.

e Julia Lawall, DIKU, University of Copenhagen (Denmark, Copenhagen).
DSLs, specialization, program analysis.

e Calton Pu, Georgia Institute of Technology (USA, Atlanta).
DSLs and specialization for operating systems.

8.2. Visits and Invited Researchers
The Phoenix group has been visited by:

e Julia L. Lawall (DIKU, University of Copenhagen, Denmark), from the 1st of January to the 30th of
April;
e Georges Necula (University of Berkeley, USA).

9. Dissemination

9.1. Scientific Community Participation
Charles Consel has been involved in the following events as:

Program committee member of thgernational Conference on Compiler Constructi@C 2005);
Program committee member @&éme Journée Francophone sur le Développement de Logiciels Par
AspectgJFDLPA 2005);
Member of the SPECIF best thesis award;
Committee member for Francisco Alberti’s thesis, May 2005, universite Paris 7;
Promotion Committee (University of Utah, University of Singapour, Oregon Graduate Institute,
GeorgiaTech);

e Member of the IFIP working group oRrogram Generation

Laurent Réveillere has been involved in the following events as:

e Program committe member of tfeurth French Conference on Operating Syst¢@BESE 2005);
e Member of the IFIP working group dArogram Generation
e Secretary of the French chapter of ACM SIGOPS.

10 Activity Report INRIA 2005

9.2. Teaching

Charles Consel and Laurent Réveillere have been teaching Master’s level courses on:

e Domain-Specific Languages and Program Analysis;
e Telephony over IP (related protocols, the SIP protocol, existing programming interfaces). Students
are also offered practical labs on various industrial-strength telephony platforms.

Charles Consel and Laurent Réveillere are also teaching other courses on Operating Systems, Web pro-
gramming and Compilation.

9.3. Presentations and Invitations
Charles Consel gave a number of invited presentations.

e Invited lecturer at the university of Freiburg, Germany;
e Invited speaker at Georgia Tech (Atlanta, 3 weeks);
e Invited speaker at Fundamental Research in Software Engineering at European Commission.

Charles Consel and Laurent Réveillére were lectures d&ctbke des jeunes Chercheurs en Programmation
(EJCP 2005).

9.4. Phoenix in the News
The work of the Phoenix group has been reported in the news.
e L. Burgy, C. Consel, F. Latry, L. Réveillere, and N. Palix. Telephony over IP: Experience and
ChallengesERCIM News63:53, October 20051;

e Publication of a press article iBud-OuestRévolution au bout du fil* by Willy Dallay (Friday,
September 23, 2005);

e TV reportinFrance 3 Aquitaine new$Thursday, September 22, 2005);

e Publication of a press article ihe monde Informatiqueaumber 1086 - page 28 "Un langage
spécifique orienté communication" by J.-L. R. (Friday, October 14, 2005).

Team Phoenix 11

10. Bibliography
Major publications by the team in recent years

[1] C. CoNnsEL Domain-Specific Program Generation; International Seminar, Dagstuhl GaStl€ ENGAUER,
D. BATORY, C. CONSEL, M. ODERSKY (editors). , Lecture Notes in Computer Science, State-of-the-Art
Survey, chap. From A Program Family To A Domain-Specific Langua®8pa6, Springer-Verlag, 2004, p.
19-29,http://phoenix.labri.fr/publications/papers/dagstuhl-consel.pdf

[2] C. CoNsEL, J. LAWALL, A.-F. LE MEUR. A Tour of Tempo: A Program Specializer for the C Langyage
"Science of Computer Programming", 2004p://phoenix.labri.fr/publications/papers/tour-tempo.ps.gz

[3] C. CoNsEL, R. MARLET. Architecturing software using a methodology for language developrivet¥ero-
ceedings of the 10th International Symposium on Programming Language Implementation and Logic Pro-
gramming, Pisa, Italy”", C. 2 AMIDESSI, H. GLASER, K. MEINKE (editors). , Lecture Notes in Computer
Science, vol. 1490, September 1998, p. 170-h84,//phoenix.labri.fr/publications/papers/plilp98.ps.gz

[4] C. CoNSEL, L. REVEILLERE. A Programmable Client-Server Model: Robust Extensibility via DSLs
in "Proceedings of the 18th IEEE International Conference on Automated Software Engineer-
ing (ASE 2003), Montréal, Canada", IEEE Computer Society Press, November 2003, p. 70-79,
http://phoenix.labri.fr/publications/papers/Consel-Reveillere_ase03.pdf

[5] C. CoNseL, L. REevelLLERE. Domain-Specific Program Generation; International Seminar,
Dagstuhl Castle C. LENGAUER, D. BATORY, C. CONSEL, M. ODERSKY (editors). , Lecture
Notes in Computer Science, State-of-the-Art Survey, chap. A DSL Paradigm for Domains of
Services: A Study of Communication Services} 8016, Springer-Verlag, 2004, p. 165 - 179,
http://phoenix.labri.fr/publications/papers/dagstuhlO4_consel_reveillere.pdf

[6] A.-F. LE MEUR, J. LawaLL, C. CONSEL. Specialization Scenarios: A Pragmatic Approach to Declaring
Program Specializationin "Higher-Order and Symbolic Computation”, vol. 17° @, 2004, p. 47-92,
http://phoenix.labri.fr/publications/papers/spec-scenarios-hosc2003.ps.gz

[7] D. McNAMEE, J. WALPOLE, C. Pu, C. CowaN, C. KRrRASIC, A. GOEL, P. WAGLE, C. CONSEL,
G. MULLER, R. MARLET. Specialization tools and techniques for systematic optimization of sys-
tem softwarg in "ACM Transactions on Computer Systems", vol. 19, 2y May 2001, p. 217-251,
http://phoenix.labri.fr/publications/papers/tocs01-namee.pdf

[8] F. MERILLON, L. REVEILLERE, C. CONSEL, R. MARLET, G. MULLER. Devil: An IDL for Hardware Pro-
gramming in "Proceedings of the Fourth Symposium on Operating Systems Design and Implementation, San
Diego, California”, October 2000, p. 17-3@tp://phoenix.labri.fr/publications/papers/osdi00-merillon. pdf

[9] L. REVEILLERE, G. MULLER. Improving Driver Robustness: an Evaluation of the Devil ApproachThe
International Conference on Dependable Systems and Networks, Géteborg, Sweden", IEEE Computer Society,
July 2001, p. 131-14Mttp://phoenix.labri.fr/publications/papers/Reveillere-Muller_dsn2001.pdf

[10] S. THIBAULT, C. CoNSEL, G. MULLER. Safe and Efficient Active Network Programmirig "17th
IEEE Symposium on Reliable Distributed Systems, West Lafayette, IN", October 1998, p. 135-143,

http://phoenix.labri.fr/publications/papers/dagstuhl-consel.pdf
http://phoenix.labri.fr/publications/papers/tour-tempo.ps.gz
http://phoenix.labri.fr/publications/papers/plilp98.ps.gz
http://phoenix.labri.fr/publications/papers/Consel-Reveillere_ase03.pdf
http://phoenix.labri.fr/publications/papers/dagstuhl04_consel_reveillere.pdf
http://phoenix.labri.fr/publications/papers/spec-scenarios-hosc2003.ps.gz
http://phoenix.labri.fr/publications/papers/tocs01-namee.pdf
http://phoenix.labri.fr/publications/papers/osdi00-merillon.pdf
http://phoenix.labri.fr/publications/papers/Reveillere-Muller_dsn2001.pdf

12 Activity Report INRIA 2005

http://phoenix.labri.fr/publications/papers/srds98-thibault.ps.gz
Publications in Conferences and Workshops

[11] C. CONSEL, F. LATRY, L. REVEILLERE, P. COINTE. A Generative Programming Approach to Developing
DSL Compilersin "Fourth International Conference on Generative Programming and Component Engineering
(GPCE), Tallinn, Estonia", R. Guck, M. LOwWRY (editors). , Lecture Notes in Computer Science, vol. 3676,
Springer-Verlag, September 2005, p. 29-46.

[12] G. SWINT, C. Pu, G. UNG, W. YAN, Y. KOH, Q. WU, C. CONSEL, A. SAHAI, K. MORIYAMA . Clearwater:
Extensible, Flexible, Modular Code Generatjon "Proceedings of the 20th IEEE International Conference
on Automated Software Engineering (ASE 2005), Long Beach, CA", IEEE Computer Society Press, October
2005.

Miscellaneous

[13] L. BURGY, C. CONSEL, F. LATRY, L. REVEILLERE, N. PaLIx. Telephony over IP: Experience and
Challengesvol. 63, October 2005)ttp://www.ercim.org/publication/Ercim_News/enw63/

Bibliography in notes
[14] CGIl: The Common Gateway Interfadetp://cgi-spec.golux.com/ncsa
[15] Session Initiation Protocol (SIPRequest for Comments 2543, March 2001.

[16] P. BoINOT, R. MARLET, J. NOYE, G. MULLER, C. CoNSEL. A Declarative Approach for Designing and
Developing Adaptive Componenis "Proceedings of the 15th IEEE International Conference on Automated
Software Engineering (ASE 2000), Grenoble, France", IEEE Computer Society Press, September 2000,
http://phoenix.labri.fr/publications/papers/ase00-adaptClass.ps.gz

[17] S. CHIROKOFF, C. CoNSEL, R. MARLET. Combining Program and Data Specializatian "Higher-Order
and Symbolic Computation", vol. 129d, December 1999, p. 309-335.

[18] C. CoNSEL, F. LATRY, L. REVEILLERE, P. COINTE. A Generative Programming Approach to Developing
DSL Compilersin "Fourth International Conference on Generative Programming and Component Engineering
(GPCE), Tallinn, Estonia”, R. Guck, M. LOWRY (editors). , Lecture Notes in Computer Science, vol. 3676,
Springer-Verlag, September 2005, p. 29-46.

[19] C. CoNSEL, J. LawALL, A.-F. LE MEUR. A Tour of Tempo: A Program Specializer for the C Langyage
"Science of Computer Programming", 2004.

[20] C. ConsEL, R. MARLET. Architecturing software using a methodology for language developnient
"Proceedings of the 10th International Symposium on Programming Language Implementation and Logic
Programming, Pisa, Italy", C ARAMIDESSI, H. GLASER, K. MEINKE (editors). , Lecture Notes in Computer
Science, vol. 1490, September 1998, p. 170-194.

http://phoenix.labri.fr/publications/papers/srds98-thibault.ps.gz
http://www.ercim.org/publication/Ercim_News/enw63/
http://cgi-spec.golux.com/ncsa
http://phoenix.labri.fr/publications/papers/ase00-adaptClass.ps.gz

Team Phoenix 13

[21] A.-F. LE MEUR, C. CONSEL, B. EscRriG. An Environment for Building Customizable Software Components
in "IFIP/ACM Conference on Component Deployment, Berlin, Germany", June 2002, p. 1-14.

[22] A.-F. LE MEUR, C. CoNSEL. Generic Software Component Configuration Via Partial Evaluation
"SPLC’2000 Workshop — Product Line Architecture, Denver, Colorado”, August 2000.

[23] A.-F. LE MEUR, J. LawaLL, C. CoNseL Towards Bridging the Gap Between Programming
Languages and Partial Evaluatipnin "ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, Portland, OR, USA", ACM Press, January 2002, p. 9-18,
http://phoenix.labri.fr/publications/papers/lemeur-pepm02.pdf

[24] A.-F. LE MEUR, J. LAWALL, C. CONSEL. Specialization Scenarios: A Pragmatic Approach to Declaring
Program Specializatiorin "Higher-Order and Symbolic Computation”, vol. 17,1y 2004, p. 47-92.

[25] R. MARLET, C. CoNSEL, P. BoINOT. Efficient Incremental Run-Time Specialization for Fiiee'Proceedings
of the ACM SIGPLAN’'99 Conference on Programming Language Design and Implementation (PLDI'99),
Atlanta, GA, USA", May 1999, p. 281-292.

[26] R. MARLET, S. THIBAULT, C. CONSEL. Mapping Software Architectures to Efficient Implementations via
Partial Evaluation in "Conference on Automated Software Engineering, Lake Tahoe, NV, USA", IEEE
Computer Society, November 1997, p. 183-192.

[27] R. MARLET, S. THIBAULT, C. CoONSEL. Efficient Implementations of Software Architectures via Partial
Evaluation in "Journal of Automated Software Engineering", vol. 64n October 1999, p. 411-440.

[28] D. MCNAMEE, J. WALPOLE, C. Pu, C. CowaN, C. KrAsIC, A. GOEL, P. WAGLE, C. CoNsEL, G.
MULLER, R. MARLET. Specialization tools and techniques for systematic optimization of system software
"ACM Transactions on Computer Systems", vol. 192nMay 2001, p. 217-251.

[29] G. MULLER, C. CONSEL, R. MARLET, L. BARRETO, F. MERILLON, L. REVEILLERE. Towards Robust
OSes for Appliances: A New Approach Based on Domain-Specific LanguagBsoceedings of the ACM
SIGOPS European Workshop 2000 (EW2000), Kolding, Denmark", September 2000.

[30] F. MERILLON, L. REVEILLERE, C. CONSEL, R. MARLET, G. MULLER. Devil: An IDL for Hardware
Programming in "4th Symposium on Operating Systems Design and Implementation (OSDI 2000), San
Diego, California”, October 2000, p. 17-30.

[31] L. REVEILLERE, F. MERILLON, C. CONSEL, R. MARLET, G. MULLER. A DSL Approach to Improve
Productivity and Safety in Device Drivers Developmeént"Proceedings of the 15th IEEE International
Conference on Automated Software Engineering (ASE 2000), Grenoble, France", IEEE Computer Society
Press, September 2000, p. 101-109.

[32] L. REVEILLERE, G. MULLER. Improving Driver Robustness: an Evaluation of the Devil ApprodchThe
International Conference on Dependable Systems and Networks, Géteborg, Sweden", IEEE Computer Society,
July 2001, p. 131-140.

[33] U. SCHULTZ, J. LawALL, C. CONSEL, G. MULLER. Towards Automatic Specialization of Java Prograins

http://phoenix.labri.fr/publications/papers/lemeur-pepm02.pdf

14 Activity Report INRIA 2005

"Proceedings of the European Conference on Object-oriented Programming (ECOOP’99), Lisbon, Portugal”,
Lecture Notes in Computer Science, vol. 1628, June 1999, p. 367—390.

[34] U. ScHuLTz, J. LAwALL, C. CONSEL. Specialization Patterndgn "Proceedings of the 15th IEEE Inter-
national Conference on Automated Software Engineering (ASE 2000), Grenoble, France", IEEE Computer
Society Press, September 2000, p. 197-208.

[35] U. ScHuULTZ, J. LawaLL, C. CoNSEL. Automatic Program Specialization for Javia "ACM Transactions
on Programming Languages and Systems", vol. 248, 12003, p. 452—499.

[36] S. THIBAULT, C. CONSEL, J. LAWALL , R. MARLET, G. MULLER. Static and Dynamic Program Compilation
by Interpreter Specializatignn "Higher-Order and Symbolic Computation", vol. 13,3y September 2000,
p. 161-178.

[37] S. THIBAULT, C. CoNSEL, G. MULLER. Safe and Efficient Active Network Programmiig"17th IEEE
Symposium on Reliable Distributed Systems, West Lafayette, IN", October 1998, p. 135-143.

[38] S. THIBAULT, R. MARLET, C. CoNSEL. Domain-Specific Languages: from Design to Implementation —
Application to Video Device Drivers Generatian "IEEE Transactions on Software Engineering”, vol. 25, n
3, May 1999, p. 363-377.

