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2. Overall Objectives
2.1. Overall Objectives

The research team RAP (Networks, Algorithms and Communication Networks) created in 2004 is issued
from a long standing collaboration between engineers at France Telecom R&D in Lannion and researchers
from INRIA-Rocquencourt. The initial objective was to formalize and expand this fruitful collaboration.

At France-Telecom R&D in Lannion, the members of the team are experts in the analytical modeling of
communication networks as well as on some of the operational aspects of networks management concerning
traffic measurements on ADSL networks for example.

At INRIA-Rocquencourt, the members of RAP have a recognized expertise in modeling methodologies
applied to stochastic models of communication networks.

From the very beginning, it has been decided that the efforts of RAP project will focus on few dedicated
domains of application over a period of three or four years. The general goal of the collaboration is to develop,
analyze and optimize algorithms for communication networks. For the moment, the current projects are :

1. Mathematical Models of Traffic Measurements of ADSL traffic.

2. Design of Algorithms to Sample TCP flows.

The RAP project also aims at developing new fundamental tools to investigateprobabilistic models of
complex communication networks. We believe that mathematical models of complex communication networks
require a deep understanding of general results on stochastic processes. It could be argued that, since stochastic
networks are « applied », general results concerning Markov processes (for example) are not of a real
use in practice and therefore that ad-hoc results are more helpful. Recent developments in the study of
communication networks have shown that this point of view is flawed. Technical tools such as scaling methods,
large deviations and rare events, requiring a good understanding of some fundamental results concerning
stochastic processes, are now used in the analysis of these stochastic models. Two domains are currently
investigated
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1. Design and Analysis of Algorithms for Communication Networks. See Section3.2.

2. Analysis of scaling methods for Markov processes : fluid limits and functional limit theorems. See
Section3.3.

3. Scientific Foundations
3.1. Measurements and Mathematical Modeling

Keywords: Passive measurements, TCP traces.

3.1.1. Traffic Modeling
Characterization of Internet traffic has become over the past few years one of the major challenging issues

in telecommunications networks. As a matter of fact, understanding the composition and the dynamics of
Internet traffic is essential for network operators in order to offer quality of service and to supervise their
networks. Since the celebrated paper by Lelandet al on the self-similar nature of Ethernet traffic in local area
networks, a huge amount of work has been devoted to the characterization of Internet traffic. In particular,
different hypotheses and assumptions have been explored to explain the reasons why and how Internet traffic
should be self-similar.

A common approach to describing traffic in a backbone network consists of observing the bit rate process
evaluated over fixed length intervals, say a few hundreds of milliseconds. Long range dependence as well as
self-similarity are two basic properties of the bit rate process, which have been observed through measurements
in many different situations. Different characterizations of the fractal nature of traffic have been proposed in
the literature (see for instance Norros on the monofractal characterization of traffic). An exhaustive account
to fractal characterization of Internet traffic can be found in the book by Park and Willinger. Even though
long range dependence and self similarity properties are very intriguing from a theoretical point of view, their
significance in network design has recently been questioned.

While self-similar models introduced so far in the literature aims at describing the global traffic on a link,
it is now usual to distinguish short transfers (referred to as mice) and long transfers (referred to as elephants)
[24]. This dichotomy was not totally clear up to a recent past (see for instance network measurements from
the MCI backbone network). Yet, the distinction between mice and elephants become more and more evident
with the emergence of peer-to-peer (p2p) applications, which give rise to a large amount of traffic on a small
number of TCP connections. The above observation leads us to analyze ADSL traffic by adopting a flow based
approach and more precisely the mice/elephants dichotomy. The intuitive definition of a mouse is that such
a flow comprises a small number of packets so that it does not leave or leaves slightly the slow start regime.
Thus, a mouse is not very sensitive to the bandwidth sharing imposed by TCP. On the contrary, elephants are
sufficiently large so that one can expect that they share the bandwidth of a bottleneck according to the flow
control mechanism of TCP. As a consequence, mice and elephants have a totally different behavior from a
modeling point of view.

In our approach, we think that describing statistical properties of the Internet traffic at the packet level is
not appropriate, mainly because of the strong dependence properties noticed above. It seems to us that, at this
time scale, only signal processing techniques (wavelets, fractal analysis, ...) can lead to a better understanding
of Internet traffic. It is widely believed that at the level of users, independence properties (like for telephone
networks) can be assumed, just because users behave quite independently. Unfortunately, there is not, for the
moment, a stochastic model of a typical user activity. Some models have been proposed, but their number of
parameters is too large and most of them cannot be easily inferred from real measurements. We have chose to
look at the traffic of elephants and mice which is an intermediate time scale. Some independence properties
seem to hold at that level and therefore the possibility of Markovian analysis. Note that despite they are
sometimes criticized, Markovian techniques are, basically, theonly tools that can give a sufficiently precise
description of the evolution of various stochastic models (average behavior, distribution of the time to overflow
buffers,...).
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3.1.2. Sampling the Internet Traffic
Traffic measurement is an issue of prime interest for network operators and networking researchers in order

to know the nature and the characteristics of traffic supported by IP networks. The exhaustive capture of traffic
traces on high speed backbone links, with rates larger than 1 Gigabit/s, however, leads to the storage and the
analysis of huge amounts of data, typically several TeraBytes per day. A method of overcoming this problem
is to reduce the volume of data by sampling traffic. Several sampling techniques have been proposed in the
literature (see for instance [20], [23] and references therein). In this paper, we consider the deterministic1/N
sampling, which consists of capturing one packet every otherN packets. This sampling method has notably
been implemented in CISCO routers under the name of NetFlow which is widely deployed nowadays in
commercial IP networks.

The major issue with1/N sampling is that the correlation structure of flows is severely degraded and then
any digital signal processing technique turns out very delicate to apply in order to recover the characteristics
of original flows [23]. An alternative approach consists of performing a statistical analysis of flow as in [20],
[21]. The accuracy of such an analysis, however, greatly depends on the number of samples for each type of
flows, and may lead to quite inaccurate results. In fact, this approach proves efficient only in the derivation of
mean values of some characteristics of interest, for instance the mean number of packets or bytes in a flow.

3.1.3. Algorithms of Sampling
Deriving the general characteristics of the TCP traffic circulating at some edge router has potential

applications at the level of an ISP. It can be to charge customers propotionaly to their use of the network
for example. It can be also to detect what is now called « heavy users ».

Another important application is to detect the propagation of worms, attacks by denial of service (DoS).
And, once the attack is detected, to counter it with an appropriate algorithmic approach. Due to the natural
variation of the Internet traffic, such a detection (through sampling !) is not obvious. Robust algorithms have
to be designed to achieve such an ambitious goal. An ultimate (and ambitious !) goal would be of having an
automatic procedure to counter this kind of attacks.

3.1.4. Goals

— Propose a fairlysimple and accurateestimation of the traffic circulating in an ADSL network. A
limited number of parameters should characterize the traffic at the first order. Note that ADSL traffic
is significantly different from the usual academic traffic analyzed up to now (more than 80% of the
ADSL traffic is from Peer to Peer networks).

— Infer through sampling the parameters of the model proposed to describe the ADSL traffic.

— Design and analyze algorithmsto detect in sampled traffic attacks by worms or DoS and more
generally unusual events.

3.2. Design and Analysis of Algorithms
Keywords: Data Structures, Stochastic Algorithms.

The stochastic models of a class of generic algorithms with an underlying tree structure, the splitting algo-
rithms, have a wide range of applications. To classify the massive data sets generated by traffic measurements,
these algorithms turn out to be fundamental. Hashing mechanisms such as Bloom filters are currently investi-
gated at the light of these new applications. These algorithms have also been used for now more than 30 years
in various areas, among which

— Data structures. Fundamental algorithms on data structures are used to sort and search. They are
sometimes referred to as divide and conquer algorithms.

— Access Protocols. These algorithms are used to give a distributed access to a common communica-
tion channel.
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— Distributed systems. Recently, algorithms to select a subset of a group of identical communicating
components like ad hoc networks, sensor networks and more generally mobile networks are using a
related approach.

This class of algorithms is fundamental, their range of applications is very large and, moreover, they have
a nice underlying mathematical structure. Trees are the main mathematical objects to describe them. The
associated stochastic processes can be seen as a discrete version of fragmentation processes which have been
recently thoroughly investigated by Bertoin, Pitman and others. They are also related to random recursive
decompositions of intervals introduced by Mauldin and Williams and their developments in fractal geometry
by Falconer, Lapidus, etc...

A very large subset of the literature has been devoted to the static case analysis, mainly because of
its applications in theoretical computer science. In the dynamic case, i.e. when the shape of the tree
changes according to some random events, little work has been done for this class of algorithms. Their
analysis has been, for the moment, mainly achieved by using analytical methods with functional transforms,
complex analysis techniques and inversions theorems. Curiously, despite of the intuitive underlying stochastic
structures, probabilistic analyses of these algorithms are quite scarce (see Devroye for example).

3.2.1. Goals

— Static case. Generalize and simplify the results currently proved by using analytic tools. Prove limit
theorems fordistributionsinstead of averages as it is currently the case.

— Dynamic case. Study renormalization techniques to analyze tree algorithms under heavy traffic. The
understanding of the fundamental features of these algorithms with a traffic of requests is a major
issue in this domain. Because of the quite complex technical framework, the partial results obtained
up to now with analytical tools hide, in some way, the general phenomena.

3.3. Scaling of Markov Processes
Keywords: Fluid Limits, Functional Limit Theorems, Statistical Physics.

As the complexity of communication networks increases (and, consequently, the algorithms regulating
them), the classical mathematical methods used to estimate the stationary behavior, the transient behavior
show more and more their limitations. For a one/two-dimensional Markov process describing the evolution of
some network, it is sometimes possible to write down the equilibrium equations and to solve them. When the
number of nodes is more than 3, this kind of approach is not, in general, possible. The key idea to overcome
these difficulties is to consider limiting procedures for the system :

— by considering the asymptotic behavior of the probability of some events like it is done for
large deviations at a logarithmic scale or for heavy tailed distributions, or looking at Poisson
approximations to describe a sequence of events associated to them.

— by taking some parameterη of the model and look at the behavior of the system when it approaches
some critical valueηc. In some cases, even if the model is complicated, its behavior simplifies as
η → ηc : some of the nodes grow according to some classical limit theorem and the rest of the nodes
reach some equilibrium which can be described.

— by changing the time scale and the space scale with a common normalizing factorN and letN goes
to infinity. This leads to functional limit theorems, see below.

The list of possible renormalization procedures is, of course, not exhaustive. But for the last ten years, this
methodology has become more and more developed. Its advantages lies in its flexibility to various situations
and also to the interesting theoretical problems it has raised since then.
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3.3.1. An Example of Scaling Methods : TCP
In our past work, the Congestion Avoidance Algorithm of the TCP protocol has been analyzed by using such

a technique. The equilibrium of theone-dimensional Markov chain associated to this algorithm is not known
for the moment. A large number of papers have been written on this famous AIMD Algorithm. But either it
was, in some way, idealized or approximations were used without justifications. In a series of papers, Dumas
et al. [2], Guillemin et al. [4], a conveniently rescaled (time and space) Markov process has been analyzed in
the limit when the loss rate of packets of some long connection was converging to 0. It provided arigorous
analysis to the scaling properties of this important algorithm of TCP.

3.3.2. Fluid Limits
A fluid limit scaling is a particular important way of scaling a Markov process. It is related to the first order

behavior of the process, roughly speaking, it amounts to a functional law of large numbers for the system
considered.

It is in general quite difficult to have a satisfactory description of an ergodic Markov process describing
a stochastic network. When the dimension of the state spaced is greater than 1, the geometry complicates
a lot any investigation : Analytical tools such as Wiener-Hopf techniques for dimension 1 cannot be easily
generalized to higher dimensions. It is possible nevertheless to get some insight on the behavior of these
processes through some limit theorems. The limiting procedure investigated consists in speeding up time
and scaling appropriately the process itself with some parameter. The behavior of such rescaled stochastic
processes is analyzed when the scaling parameter goes to infinity. In the limit, one gets a sort of caricature of
the initial stochastic process which is defined as afluid limit.

A fluid limit keeps the main characteristics of the initial stochastic process while some stochastic fluctua-
tions of second order vanish with this procedure. In « good cases », a fluid limit is a deterministic function,
solution of some ordinary differential equation. As it can be expected, the general situation is somewhat more
complicated. These ideas of rescaling stochastic processes have emerged recently in the analysis of stochas-
tic networks, to study their ergodicity properties in particular. See Rybko and Stolyar [25] for example. In
statistical physics, these methods are quite classical, see Comets [19].

Multi-Class Networks. The state space of the Markov processes encountered up to now were embedded into
some finite dimensional vector space. ForJ ∈ N, J ≥ 2 andj = 1,...J , λj andµj are positive real numbers.
It is assumed thatJ Poissonnian arrivals flows arrive at a single server queue with rateλj for j = 1,...,J and
customers from thejth flow require an exponentially distributed service with parameterµj . All the arrival
flows are assumed to be independent. The service discipline is FIFO.

A natural way to describe this process is to take the state space of the finite strings with values in the set
{1, ..., J}, i.e.S = ∪n≥0{1, ..., J}n, with the convention that{1, ..., J}0 is the set of the null string. Ifn ≥ 1
andx = (x1, ..., xn) ∈ S is the state of the queue at some moment, the customer at thekth position of the
queue comes from the flow with indexxk, for k = 1, ..., n. The length of a stringx ∈ S is defined by‖x‖.
Note that‖ · ‖ is not, strictly speaking, a norm. Forn ≥ 1, there areJn vectors of lengthn ; the state space
has therefore an exponential growth with respect to that function. Hence, if the string valued Markov process
(X(t)) describing the queue is transient then certainly the length‖X(t)‖ converges to infinity ast gets large.
Because of the large number of strings with a fixed length, the process(X(t)) itself has, a priori, infinitely
many ways to go to infinity. Bramson [18] has shown that complicated phenomena could indeed occur. It turns
out that the « classical » fluid limits methods of the finite dimensional case cannot be used in such a setting.
This is probably one of the most challenging question in the domain to be able to propose new methods to
tackle the problems due to the infinite dimension of the state space. Dantzer and Robert [1] derives results in
this direction. See also the corresponding chapter of Robert [5].

3.3.3. Goals
The general goals are, in some way, contained in the previous sections. They will consist in developing

scaling techniques in the various cases encountered in sampling problems or tree algorithms where the traffic
will be supposed to be close to saturation. The following fundamental questions will be analyzed :
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— Study the impact of randomness in fluid limit processes. This has been already partially investigated
in Dantzer and Robert [1].

— Develop techniques to investigate metastability phenomena observed in some models of networks in
the scaling limit due to mean field approach. See Kelly [22].

4. New Results
4.1. Mathematical Models of Traffic Measurements

Participants: Nelson Antunes, Youssef Azzana, Christine Fricker, Fabrice Guillemin, Stéphanie Moteau,
Philippe Robert.

4.1.1. Sampling ADSL traffic
The exhaustive capture of traces on high speed backbone link leads to the storage and the analysis of huge

amount of data. In order to limit the consumption of memory in routers, passive traffic measurements employ
sampling at the packet level. Indeed, sampling techniques are implemented on CISCO routers (under the name
of NetFlow). Flow statistics are formed by routers from the sampled substream of packets. Sampling entails
a loss of information. The first question is whether sampling succeed in estimating the characteristics of the
original traffic.

The aim of the study is to estimate the parameters of the real ADSL traffic from the sampled traffic. We
use an a priori knowledge of the traffic, through the model developed in our previous work from the analysis
of ADSL traces. Here the model is simplified a lot because mice are not seen by sampling and p2p traffic
is predominant. Roughly speaking, traffic is mainly composed by p2p elephants. More precisely, the flows
are chunks of elephants, due to the p2p algorithms. The analysis of traces leads to model the traffic by a
M/G/∞ queue where the customers are flows and their duration has a Weibull distribution. Sampling consists
in choosing a customer at random every time step∆. The traffic is characterized by a few parameters which
have to be estimated : The arrival rate and the two parameters of the Weibull distribution of the flow duration.

A first approach gives that, in case of heavy traffic i.e. if the arrival rateλ tends to infinity and if the
sampling step∆ tends to 0 while∆/λ tends to a constantc, then the sampling times of a permanent flow are
the instants of a Poisson process with intensity1/c. This property is used to determine the arrival rateλ. If the
duration of the flow is Weibull then the duration of the sampled flow, given that it is sampled more than twice,
is also Weibull. It gives a way to estimate the parameters of the Weibull distribution. In practice, this is not
satisfactory since the estimation of the tail distribution is not easy when the sampling step is large (one packet
every thousand).

An alternative approach is to use quantities whose mean can be obtained as a function of the key parameters,
typically the numberWk of flows sampled less (resp. more) thank times in a given time interval. There exists
a scaling of∆ such that this mean tends to a constant. In this case,Chen-Stein methodis used to prove the
convergence in distribution ofWk to a Poisson distribution when the total number of flows is large. This
method is powerful enough to give precise estimates of the distance of the distributions. When the mean tends
to infinity, a normal approximation can be also obtained as a consequence. The system is reduced to dynamical
urn model because the flows are not permanent in the time interval.

In practice, the ratio∆λ is assumed to be a constant and the elephants can, in this case, be considered as
permanent. It has been proved that a normal approximation holds for the number of flows sampled more than
k ≥ 1 times, when the ratio of the number of flows to the number of sampling times is small. Comparing
experimental values obtained on traces and theoretical ones, we obtained a discrepancy which is probably
be due to the bursty nature of the data elephants or the presence of mice. This point is currently under
investigation.

4.1.2. On Line Algorithms For Traffic Measurements
We are interested here in detecting and estimating the number of flows traversing a router in the network.

The characterization of the flow statistics is of interest for the detection of attacks or anomalies, it can be also
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used to charge the clients in function of the traffic generated, also in traffic engineering. Moreover, Internet
providers can infer the clients application (Peer-to-Peer, voice over IP, web, ftp...) without looking at the
packets contents.

We focus on big flows (those who exceed a certain number of packetsT or occupy more than certain
percentage of the total available bandwidth). Indeed, it is known that big flows represent the majority of the
traffic volume, for example, we know that less than 9% of the flows exchanged between AS represent up to
70% of the total number of bytes exchanged between all the AS pairs. Also, for a lot of applications, the
knowledge of those big flows is sufficient to characterize the traffic.

To answer this question, we proposed an algorithm based on the use ofT parallel Bloom filters, each filter
i has a counterCi. Initially, all the T filters are empty and the different counters also initialized to 0. Upon
the reception of a flowF , we look for the first parallel filter (determined by a hashing function) where flow
F does not exist yet, then we increase the value of the counter of this filter by 1 and we fill the different
bits corresponding toF by 1. When the size of the filters is well parametrized, all the flows of size bigger
thani reach the filteri with a negligible proportion of flows of size smaller thani. Consequently, we use the
value of the counterCi as an estimator of the total number of flows of size larger thani. Since this algorithm
must run in real time without interruption, all the filters become saturated after a while especially because of
the contribution of mice and the estimation error becomes unacceptable. To deal with this problem, we have
proposed an adaptive mechanism which cleans out the filters regularly and maintains the filling of the filters
under a certain threshold (50% in our case). Indeed, as soon as this threshold is reached, we remove some
packets by reinitializing the first parallel filters and moving them to the end of theT filters.

The simulations we made show that the least we erase the packets the best is the estimation (it is better to
remove one packet thanT packets). Indeed, by totally cleaning out theT filters, we remove the contribution
of all the mice but we make a lot of errors in the detection and the statistics of the elephants in the contrary of
erasing only one packet. The simulations show also that the relative error of the total number of elephants is
maintained low around 3 to 4% and is stabilized over a long period of time. The first moments of the elephants
size (average, and variance) show also a satisfying concordance with real statistics of elephants.

These algorithms have been successfully tested on ADSL traces corresponding to two hours of traffic.

4.2. Algorithms to Infer Topologies
Participants: Youssef Azzana, Fabrice Guillemin, Philippe Robert.

The inference of the Internet topology is highly relevant in studying the spread of attacks and malicious
programs such as worms and DOS through the network. It helps also to change the routing in order to balance
the load and troubleshoot operational problems and also for network management. Recently, many protocols
like multicast applications, traffic matrix estimation rely on the knowledge of the network topology to optimize
the service provision and to increase the quality of service perceived by end users.

One popular approach to discover the network topology consists in using the theory of random graphs
(Erdos and Renyi graphs, small world). It permits the construction of a random graph based on some local
properties. Indeed, it has been observed that the degree distribution obeys to a power law. However, it is worth
noting that a small error for example in the estimation of the power law parameter due to incomplete data
may lead to erroneous interpretations. Another method exploits the BGP messages exchanged by different AS
(Autonomous Systems). Thus, it is possible to construct the AS graph simply by listening to BGP messages.
Then, one can refine the graph by looking for the IGP messages also. The most widely used method is the
traceroute probing. In this approach the network is considered like a black box which is gradually explored.
Traceroutes between two different hosts allows the discovery of the whole routers along the path between
them. Indeed, the source transmitting the traceroute message gradually increment the TTL field of the packets
sent to the destination (the number of hopes traversed) which make it possible to obtain the list of intermediate
routers. Practically, a certain number of machines considered as sources proceeds by executing traceroutes to
a list of destinations and the results are merged to construct the global map of the Internet.
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The results obtained last year have be extended to the case where the tree structure of the topology is not
anymore regular and deterministic but is a Galton-Watson tree. IfF is the number of leaves of a node, several
cases have been separately investigated whenE(F 2) < +∞ or whenE(F 2) = +∞ and E(F ) < +∞, or
finally whenE(F ) = +∞.

4.3. Stability Properties of Loss Networks
Participants: Nelson Antunes, Christine Fricker, Philippe Robert, Danielle Tibi.

A new class of stochastic networks has been introduced and analyzed. Their dynamics combine the key
characteristics of the two main classes of queueing networks : loss networks and Jackson type networks.

1. Each node of the network has finite capacity so that a request entering a saturated node is rejected as
in a loss network.

2. Requests visit a subset of nodes along some (possibly) random route as in Jackson or Kelly’s
networks.

This class of networks is motivated by the mathematical representation of cellular wireless networks.
Such a network is a group of base stations covering some geographical area. The area wheremobile users
communicate witha base stationis referred to asa cell. A base station is responsible for the bandwidth
management concerning mobiles in its cell. New calls are initiated in cells and calls are handed over
(transfered) to the corresponding neighboring cell when mobiles move through the network. A new or a
handoff call is accepted if there is available bandwidth in the cell, otherwise, it is rejected.

Figure 1.

The time evolution of these networks has been analyzed by considering two limiting regimes
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— Heavy traffic limits.
The arrival rates and capacities at nodes are proportional to some factorN which gets large.

— Thermodynamic limits.
The number of nodes of the network goes to infinity.

The time evolution of the network can be (roughly) described as follows. A stochastic process(XN (t))
associated with the state of the network for the parameterN is introduced :XN (t) is the vector describing
the number of requests of different classes at the nodes of the network. AsN goes to infinity, it is proved that
(XN (t)) converges to some function(x(t)), satisfying the deterministic equation

d

dt
x(t) = F (x(t)) , t ≥ 0. (1)

The equilibrium points of the limiting process are contained in the set of solutionsx of the equationF (x) = 0.
It is shown in Antuneset al.[16] that for the heavy traffic limit, there is a unique equilibrium point. The proof

uses a dual method approach to study the fixed point equations together with some convenient inequalities.
For the thermodynamic limit, it is shown in Antuneset al. [17] that there are situations whereseveral

equilibrium pointscoexist. This result has practical important implications for communication networks : It
implies that, in some cases, the network will stay a long time in a set of states where a class of calls will be
rejected and after this long time, it will switch to a set of states where this class of calls has a higher acceptance
rate and, again after a long time, it switches back to the first set of states and so on. At the mathematical level,
this is the situation where the functionF has at least two stable points and a saddle point. The proof uses an
interesting correspondence between two energy functions defined in different state spaces.

4.4. Analysis of Splitting Algorithms
Participants: Hanène Mohamed, Philippe Robert.

Algorithms with an underlying tree structure are quite common in computer science and communication
networks. Splitting algorithms are examples of such algorithms.

A splitting algorithm is a procedure that divides recursively into subgroups an initial group ofn items until
each of the subgroups obtained has a cardinality strictly less than some fixed numberD. A common problem
is, given an initial numbern of requests, to estimate the time it takes to complete the algorithm. In the language
of trees, it amounts to give an asymptotic expression of the numberRn of nodes of the corresponding tree.

4.4.1. Dynamic tree algorithm
This is a dynamic version of a class of algorithms analyzed by Mohamed and Robert [8]. The splitting

procedure is the same, but a phenomenon of immigration has to be considered : on every leaf of the associated
tree, every time unit, new messages arrive following a Poisson process of parameterλ. Contrary to the « static
case », the boundary conditions turn out to complicate a lot the resolution of the problem. A new probabilistic
tool has to be used ; an auto-regressive process whose invariant density plays an important role to determine
the asymptotic behavior of the cost of the algorithm.

4.4.2. Leader election algorithm
A related algorithm, a leader election algorithm, has been analyzed. It has been previously investigated by

Janson and Szpankowski with analytic methods. This algorithm is used in the context of a distributed system
of n stations sharing a common channel of communication that can transmit only one message by unit of time.
We assume that every station which sends a message to network can listen at the same time to the channel and
so discern one of three possible information on the state of this one ; acollisionwhen it there at least two tries
of transmission, asilencewhen none of the stations tried to send its message or asuccesswhen exactly one
station tries transmission. Question is then how these stations can, by using the same protocol, identify one of
them as aleaderto coordinate the whole system ?
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Such algorithm based on a process of random elimination has varied applications in distributed systems field
such as cell telephones and networks of wireless communications. The problem of leader election in networks
computer science is fundamental to assure communications and synchronization of the different components
of the system. This problem was also studied in the context of radio networks.

Formally, the algorithm of leader election divides an initial group ofn items into two subgroups, eliminates
one of two and continues the same process until finding oneleader. If at a given levelk all items are eliminated,
algorithm starts again from the previous levelk − 1.

Our study, based on probabilistic techniques, allows to simplify the analysis of such algorithm and especially
to eliminate the implicit dependency of its asymptotic behavior as it is the case in the expression established
by Janson and Szpankowski. Besides, an explicit representation of the associated oscillation phenomenon has
also been obtained. These results are obtained via a careful analysis of the following probabilistic functional
equation

h(x) = h(px) + h(qx) e−px + f(x) = E
(
h(Ax) e−p1{A=q}

)
+ f(x),

whereA is a random variable of distributionW = p δpq δq andf a given function. The use of a simple iterative
scheme gives an explicit expression of the average cost of the algorithmE(Hn). It is proved that the centered
average cost of the algorithmHn − b− logp (n)c is asymptotically identical to a periodical functionF , whose
explicit expression is known, of− logp (n)

E(Hn)− b− logp (n)c = F (− logp (n)) + O(1/n).

4.4.3. Extensions to Stationary Sequences
The results of Mohamed and Robert [8] have been extended to the case where the branching procedure are

not independent but are driven by a dynamical system. These results are known (See Vallée and its co-workers)
to hold for some dynamical systems generated by the iterations of some function on[0, 1]. Our approach gives a
further extension to general dynamical systems. It uses a general version of the renewal theorem for stationary
sequences together with a representation of the cost function as counting functional.

5. Contracts and Grants with Industry
5.1. Contracts

Participation to the CRE with France Telecom « Mathematics of Internet Measurements ». Two years
contract starting from 2005.

Participation to the RNRT project « OSCAR » on the measurements in the Internet. Three years contract
starting from 2005.

Participation to the ACI Masse de données « FLUX » on the probabilistic counting methods of large data
sets occurring in traffic measurements, biological sequences, dictionaries. Participants : INRIA (Algo project),
INRIA (Rap project) and University of Montpellier. Three years contract starting from 2004.

Participation to the ANR Projet Blanc « SADA » on the Discrete Random Structures, three year contract
starting from 2005. Participants : University of Bordeaux, University of Caen, Computer science department
of Ecole Polytechnique, INRIA Algo and Rap projects, University of Versailles.

6. Other Grants and Activities
6.1. National initiatives

Philippe Robertet Fabrice Guilleminare participating to the « Action Spécifique Métrologie ». The other
members are Pascal Abry (ENS-Lyon), Daniel Kofman (ENST), Philippe Owezarski (LAAS) and Kavé
Salamatian (Paris VI).
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6.2. European initiatives
RAP is participating to the E-next network of excellence of EC. This network involves many research

teams throughout Europe. In France, participants include LIP6, INRIA-Sophia, LAAS,...This network is a
continuation of the efforts of RAP team in the domain of traffic measurement.

6.3. Visiting scientists
RAP team has received the following people :

Nelson Antunes (University of Algarve), Nelly Litvak (University of Twente, Kavita Ramanan (Carnegie
Mellon University) and Bert Zwart (Eurandom).

7. Dissemination
7.1. Leadership within scientific community

Philippe Robertis the Chairman of the Project Committee of INRIA-Rocquencourt.
Philippe Roberthas been the referee for the PhD thesis by P. Brown from France-Telecom R&D Sophia-

Antipolis.
Philippe Robertis « Professeur Chargé de Cours » at the École Polytechnique in the department of applied

mathematics. He is in charge of lectures on mathematical modeling of networks.

7.2. Teaching
Christine Frickergives Master2 lectures « Stochastic Processes » at the University of Versailles St-Quentin.
Philippe Robertgives Master2 lectures « Stochastic Networks » in the laboratory of the Probability of

the University of Paris VI. He is also giving lectures in the « Majeure de Mathématiques Appliquées et
d’Informatique » on Networks and Algorithms at the École Polytechnique.

7.3. Conference and workshop committees, invited conferences
Philippe Robertwas invited as lecturer at the ALEA’2005 Conference at Luminy.
Christine Frickerand Philippe Robertwere at the Large Deviations Workshop from July 3rd to 5th in

Ottawa, Canada.
Christine Fricker, Hanène Mohamed, Philippe RobertandDanielle Tibigave talks at the Informs Confer-

ence from July 6th to 8th in Ottawa, Canada.
Youssef Azzanagave a talk at the ITC’18 in Beijing.
Philippe Robertgave a talk at the Dynamical Systems Workshop in Dijon from September 14 to 16 and at

the seminar of ergodic theory in Rennes, at the Algo seminar in Rocquencourt and at École Polytechnique.
Nelson Antunes, Christine FrickerandPhilippe Robertwere at Performance’05 from October 5th to 7th in

Juan-les-Pins, France.
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