
c t i v i t y

te p o r

2005

THEME SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Team salsa

Solvers for ALgebraic Systems and
Applications

Rocquencourt

http://www.inria.fr/recherche/equipes/listes/theme_SYM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/salsa.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-rocq.en.html




Table of contents

1. Team 1
2. Overall Objectives 1

2.1. Overall Objectives 1
3. Scientific Foundations 2

3.1. Introduction 2
3.2. Gröbner basis and triangular sets 3
3.3. Zero-dimensional systems 6
3.4. Positive-dimensional and parametric systems 7

3.4.1. Critical point methods 7
3.4.2. Parametric systems 9

4. Application Domains 11
4.1. Panorama 11
4.2. Cryptography 11
4.3. Parallel robots 12
4.4. Serial robots 14
4.5. Signal Processing 15

5. Software 15
5.1. GC 15
5.2. UDX 16
5.3. MPFI 16
5.4. MPAI 16
5.5. Interfaces 16
5.6. Gb 16
5.7. FGb Servers 17
5.8. RS 17
5.9. Triangular Decompositions 17
5.10. RAGlib 17
5.11. TCI 18
5.12. TSPR 18
5.13. NetTask 18

6. New Results 19
6.1. Interval Arithmetic 19
6.2. Univariate polynomials 19
6.3. Generalized Normal Forms 19
6.4. Zero dimensional systems 19
6.5. Parametric Polynomial Systems 20
6.6. Complexity of Gröbner bases 20
6.7. Bi-homogeneous Bézout bounds applied to quantitative real algebraic geometry 21
6.8. Computing sampling points in singular hypersurfaces 21
6.9. Computing roadmaps in smooth real algebraic sets 21
6.10. Geometric Modeling 22
6.11. Topology of Ridges 22
6.12. Robotics 22
6.13. Cryptography 23

7. Contracts and Grants with Industry 23
7.1. WMI (Maple) 23
7.2. CELAR (DGA) 23



2 Activity Report INRIA 2005

7.3. Thales 24
7.4. International Actions 24

7.4.1. INRIA Associate Team "Chinese SALSA" 24
7.5. National Actions 24

7.5.1. INRIA Grant (ARC) "SILA" 24
7.6. European Actions 24

7.6.1. European Network RAAG 24
8. Dissemination 24

8.1. Scientific Animation 24
8.1.1. Programm Committees 24
8.1.2. Invited lectures 25
8.1.3. Edition 25

9. Bibliography 25



1. Team
Head of project-team

Fabrice Rouillier [research scientist - INRIA]

Vice-head of project team
Jean-Charles Faugère [research scientist CNRS]

administrative assistant
Laurence Bourcier [INRIA, part time]

Staff member Université Pierre et Marie Curie
Philippe Aubry [assistant professor]
Daniel Lazard [professor]
Mohab Safey El Din [assistant professor]
Philippe Trébuchet [assistant professor]

Ph. D. student
Gwenolé Ars [DGA, defended in June 2005 - J.C. Faugère]
Magali Bardet [teaching assistant, defended 2004/12/08 - J.C. Faugère]
Solen Corvez [BDI CNRS, defended in May 2005 - F. Rouillier]
Amir Hashemi [Sfere grant, defense planned in 2006 - D. Lazard]
Sylvain Lacharte [CIFRE grant with Thalès, defense planned in 2006 - J.C. Faugère]
Guillaume Moroz [AMN - defense planned in 2007 - F. Rouillier]

External members
Magali Bardet [assistant professor]

2. Overall Objectives
2.1. Overall Objectives

The main objective of the SALSA project is to solve systems of polynomial equations and inequations. We
emphasize on algebraic methods which are more robust and frequently more efficient than purely numerical
tools.
Polynomial systems have many applications in various scientific - academic as well as industrial - domains.
However much work is yet needed in order to define specifications for the output of the algorithms which are
well adapted to the problems.
The variety of these applications implies that our software needs to be robust. In fact, almost all problems
we are dealing with are highly numerically unstable, and therefore, the correctness of the result needs to be
guaranteed.
Thus, a key target is to provide software which are competitive in terms of efficiency but preserve certified
outputs. Therefore, we restrict ourselves to algorithms which verify the assumptions made on the input, check
the correctness of possible random choices done during a computation without sacrificing the efficiency.
Theoretical complexity for our algorithms is only a preliminary step of our work which culminates with
efficient implementations which are designed to solve significant applications.
A consequence of our way of working is that many of our contributions are related to applicative topics such
as cryptography, error correcting codes, robotics and signal theory. We have to emphasize that these applied
contributions rely on a long-term and global management of the project with clear and constant objectives
leading to theoretical and deep advances.
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3. Scientific Foundations
3.1. Introduction

For polynomial system solving, the mathematical specification of the result of a computation, in particular
when the number of solutions is infinite, is itself a difficult problem [42], [43], [71], [70]. Sorting the most
frequently asked questions appearing in the applications, one distinguishes several classes of problems which
are different either by their mathematical structure or by the significance that one can give to the word
"solving".

Some of the following questions have a different meaning in the real case or in the complex case, others are
posed only in the real case :

• zero-dimensional systems (with a finite number of complex solutions - which include the particular
case of univariate polynomials); The questions in general are well defined (numerical approximation,
number of solutions, etc) and the handled mathematical objects are relatively simple and well-
known;

• parametric systems; They are generally zero-dimensional for almost all the parameters’ values.
The goal is characterize the solutions of the system (number of real solutions, existence of a
parameterization, etc.) with respect to parameters’ values.

• positive dimensional systems; For a direct application, the first question is the existence of zeros of a
particular type (for example real, real positive, in a finite field). The resolution of such systems can be
considered as a black box for the study of more general problems (semi-algebraic sets for example)
and information to be extracted is generally the computation of a point per connected component in
the real case.

• constructible and semi-algebraic sets; As opposed to what occurs numerically, the addition of
constraints or inequalities complicates the problem. Even if semi-algebraic sets represent the basic
object of the real geometry, their automatic "and effective study" remains a major challenge. To date,
the state of the art is poor since only two classes of methods are existing :

– the Cylindrical Algebraic Decomposition which basically computes a partition of the
ambient space in cells where the signs of a given set of polynomials are constant;

– deformations based methods that turn the problem into solving algebraic varieties.

The first solution is limited in terms of performances (maximum 3 or 4 variables) because of a
recursive treatment variable by variable, the second also because of the use of a sophisticated
arithmetic (formal infinitesimals).

• quantified formulas; deciding efficiently if a first order formula is valid or not is certainly one of the
greatest challenges in "effective" real algebraic geometry. However this problem is relatively well
encircled since it can always be rewritten as the conjunction of (supposed to be) simpler problems
like the computation of a point per connected component of a semi-algebraic set.

As explained in some parts of this document, the iniquity of the studied mathematical objects does not imply
the uncut of the related algorithms.

The pressure is relatively strong on zero-dimensional systems since we enter directly in competition
with numerical methods (Newton, homotopy, etc), semi-numerical methods (interval analysis, eigenvalues
computations, etc.) and formal methods (geometrical resolution, resultant based strategies, XL algorithm
in cryptography, etc.). The pressure is much less on the other subjects: except the groups working on the
Cylindrical Algebraic Decomposition, very few studies with practical vocation are to be counted and even less
software achievements.



Team salsa 3

The priorities we put on our algorithmic work are generally dictated by the applications. Thus, one finds the
cutting stated above in the identified research topics of our project for the algorithmic part. For each of these
goals, our work is to design the most efficient possible algorithms: there is thus a strong correlation between
implementations and applications, but a significant part of work is dedicated to the identification of black-box
allowing a modular approach of the problems. For example, the resolution of the zero-dimensional systems is
a prerequisite for the algorithms treating of parametric or positive dimensional systems.

An essential class of black-box developed in the project does not appear directly in the absolute objectives
counted above : the "algebraic or complex" resolutions. They are mostly reformulations, more algorithmically
usable, of the studied systems. One distinguishes two categories of complementary objects :

• ideals representations; From a computational point of view these are the structures which are used
in the first steps;

• varieties representations; The algebraic variety, or more generally the constructible or semi-algebraic
set is the studied object.

To give a simple example, inC2 the variety{(0, 0)} can be seen like the zeros set of more or less complicated
ideals (for example, ideal(X, Y ), ideal(X2, Y ), ideal(X2, X, Y, Y 3), etc). The entry which is given to us is a
system of equations, i.e. an ideal. It is essential, in many cases, to understand the structure of this object to
be able to correctly treat the degenerated cases. A striking example is certainly the study of the singularities.
To take again the preceding example, the variety is not singular, but this cannot be detected by the blind
application of the Jacobian criterion (one could wrongfully think that all the points are singular, contradicting,
for example, Sard’s lemma).

The basic tools that we develop and use to understand in an automatic way the algebraic and geometrical
structures are on the one hand Gröbner bases (most known object used to represent an ideal without loss of
information) and on the other hand triangular sets (effective way to represent the varieties).

On these two points, the pressure is strong since many teams work on these two objects. To date, our project
however has a consequent advance in the computation of Gröbner bases (algorithmsF5 andF7 of Faugère for
Gröbner bases) and is a main contributor in the homogenization and comprehension of the triangular structures
[43].

3.2. Gröbner basis and triangular sets
Participants: G. Ars, P. Aubry, M. Bardet, J.C. Faugère, S. Lacharte, D. Lazard, M. Safey El Din.

Let us denote byK[X1, ..., Xn] the ring of polynomials with coefficients in a fieldK and indetermi-
natesX1, ..., Xn and S = {P1, ..., Ps} any subset ofK[X1, ..., Xn]. A point x ∈ Cn is a zero ofS if
Pi(x) = 0 i ∈ [1...s].

The idealI = 〈P1, ..., Ps〉 generated byP1, ..., Ps is the set of polynomials inK[X1, ..., Xn] constituted by

all the combinations
R∑

k=1

PkUk with Uk∈ Q[X1, ..., Xn]. Since every element ofI vanishes at each zero ofS,

we denote byVC(S) = VC(I) = {x ∈ Cn | p(x) = 0 ∀p ∈ I} (resp.VR(S) = VR(I) = VC(I)
⋂

Rn), the set
of complex (resp. real) zeros ofS, whereR is a real closed field containingK andC its algebraic closure.

One Gröbner basis’ main property is to provide an algorithmic method for deciding if a polynomial belongs
or not to an ideal through a reduction function denoted "Reduce" from now.

If G is a Gröbner basis of an idealI ⊂ Q[X1, ..., Xn] for any monomial ordering<.

(i) a polynomialp ∈ Q[X1, ..., Xn] belongs toI if and only if Reduce(p, G,<) = 0,

(ii) Reduce(p,G,<) does not depend on the order of the polynomials in the listG, thus, this is a canonical
reduced expression modulusI, and the Reduce function can be used as asimplificationfunction.
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Gröbner bases are computable objects. The most popular method for computing them is Buchberger’s
algorithm ([53], [52]). It has several variants and it is implemented in most of general computer algebra
systems like Maple or Mathematica. The computation of Gröbner bases using Buchberger’s original strategies
has to face to two kind of problems :

• (A) arbitrary choices : the order in which are done the computations has a dramatic influence on the
computation time;

• (B) useless computations : the original algorithm spends most of its time in computing 0.

For problem (A), J.C. Faugère proposed ([59] - algorithm F4) a new generation of powerful algorithms
([59]) based on the intensive use of linear algebra technics. In short, the arbitrary choices are left to
computational strategies related to classical linear algebra problems (matrix inversions, linear systems, etc.).

For problem (B), J.C. Faugère proposed ([58]) a new criterion for detecting useless computations. Under
some regularity conditions on the system, it is now proved that the algorithm do never perform useless
computations.

A new algorithm namedF5 was built using these two key results. Even if it still computes a Gröbner basis,
the gap with existing other strategies is consequent. In particular, due to the range of examples that become
computable, Gröbner basis can be considered as a reasonable computable object in large applications.

We pay a particular attention to Gröbner bases computed for elimination orderings since they provide a
way of "simplifying" the system (a equivalent system with a structured shape). For example, a lexicographic
Gröbner basis has always the following shape :

f(X1) = 0
f2(X1, X2) = 0
...
fk2(X1, X2) = 0
fk2+1(X1, X2, X3) = 0
...
fkn−1+1(X1, ..., Xn) = 0
...
fkn

(X1, ..., Xn) = 0

.

(some of the polynomials may be identically null). A well known property is that the zeros of the first non null
polynomial define the Zariski closure (classical closure in the case of complex coefficients) of the projection
on the coordinate’s space associated with the smallest variables.

A triangular set is a system with the following shape :
t1(X1) = 0
t2(X1, X2) = 0
...
tn(X1, ..., Xn) = 0

(some polynomials may be identically null).
Such kinds of systems are algorithmically easy to use, for computing numerical approximations of the

solutions in the zero-dimensional case or for the study of the singularities of the associated variety (triangular
minors in the Jacobian matrices). Except if they are linear, algebraic systems cannot, in general, be rewritten
as a single triangular set, one speaks then of decomposition of the systems in several triangular sets.

Triangular sets appear under various names in the field of algebraic systems. In 1932 J.F. Ritt ([81])
introduced them as characteristic sets for prime ideals in the context of differential algebra. His constructive



Team salsa 5

algebraic tools were adapted by W.T. Wu in the late seventies for geometric applications. Wu presented an
algorithm for computing characteristic sets of finite polynomial sets which do not generate necessarily prime
ideals ([106], [107]). With Wu, several authors such S.C. Chou, X.S. Gao, G. Gallo, B. Mishra, D. Wang then
developed this approach to make it more efficient.

In 1991, Lazard [72] and Kalkbrener [69] presented triangular decomposition algorithms with nicer
properties for their outputs, based on additional requirements for the triangular sets and a generalization of
the gcd of univariate polynomials over a product of fields.

The concept of regular chain introduced in [69] and [108] is adapted for recursive computations in a
univariate way and provides a membership test and a zero-divisor test for the strongly unmixed dimensional
ideal it defines. Kalkbrenner defined regular triangular sets and showed how to decompose algebraic varieties
as a union of Zariski closures of zeros of regular triangular sets. Gallo showed that the principal component of a
triangular decomposition can be computed inO(dO(n2)) (n= number of variables,d=degree in the variables).
During the 90s, implementations of various strategies of decompositions multiply, but they drain relatively
heterogeneous specifications.

Following Kalkbrener’s work, Aubry presented an algorithm for decomposing the radical of an ideal into
separable regular chains that define radical strongly unmixed dimensional ideals ([42]).

P. Aubry and D. Lazard contributed to the homogenization of the work completed in this field by proposing
a series of specifications and definitions gathering the whole of former work [43]. Two essential concepts for
the use of these sets (regularity, separability) at the same time allow from now on to establish a simple link
with the studied varieties and to specify the computed objects precisely.

For p ∈ K[X1, ..., Xn] r Q, we denote bymvar(p) (and we callmain variableof p) the greatest variable
appearing inp w.r.t. a fixed lexicographic ordering.

• hi the leading coefficient ofti (whenti 6= 0 it is seen as a univariate polynomial in its main variable),
andh = Πn

i=1,ti 6=0hi.

• si = ∂ti

∂Xi
the separant ofti (whenti 6= 0) s = Πn

i=1,ti 6=0si.

• sat(T ) =< T >: h∞= {p ∈ K[X1, ..., Xn] | ∃m ∈ N, hmp ∈ 〈T 〉}; the variety ofT isV(sat(T ))
and we haveV(T ) r V(h) = V(sat(T )) (elementary property of localization).

A triangular setT = (t1, ..., tn) ⊂ K[X1, ..., Xn] is said to be regular (resp. separable) if∀i ∈ {1, ..., n}
such thatti 6= 0, the normalization of its initialhi (resp. of its separantsi) is a non zero polynomial.

One can always decompose a variety as the union of the varieties of regular and separable triangular sets
([42], [43]) :

VC =
⋃
i

V(sat(Ti)). (1)

A remarkable and fundamental property in the use we have of the triangular sets is that the idealssat(Ti),
for regular and separable triangular sets, are radical and equidimensional. These properties are essential
for some of our algorithms. For example, having radical and equidimensional ideals allows us to compute
straightforwardly the singular locus of a variety by canceling minors of good dimension in the Jacobian matrix
of the system. This is naturally a basic tool for some algorithms in real algebraic geometry [44], [90], [91].

Triangular sets based technics are efficient for specific problems like computing Galois ideals [45], but the
implementations of direct decompositions into triangular sets do not currently reach the level of efficiency
of Gröbner bases in terms of computable classes of examples. Anyway, our team benefits from the progress
carried out in this last field since we currently perform decompositions into regular and separable triangular
sets through lexicographical Gröbner bases computations (the process provides in the meantime Gröbner bases
of the idealssat(Ti)).
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3.3. Zero-dimensional systems
Participants: P. Aubry, J.C. Faugère, A. Hashemi, D. Lazard, F. Rouillier, P. Trébuchet.

A system is zero-dimensional if the set of the solutions in an algebraically closed field is finite. In this case,
the set of solutions does not depend on the chosen algebraically closed field.

Such a situation can easily be detected on a Gröbner basis for any admissible monomial ordering.
These systems are mathematically particular since one can systematically bring back to solve linear algebra

problems. More precisely, the algebraK[X1, ..., Xn]/I is in fact aK - vector space of dimension equal to
the number of complex roots of the system (counted with multiplicities). We chose to exploit this structure.
Accordingly, computing a base ofK[X1, ..., Xn]/I is essential. A Gröbner basis gives a canonical projection
from K[X1, ..., Xn] to K[X1, ..., Xn]/I, and thus provides a base of the quotient algebra and many other
informations more or less straightforwardly (number of complex roots for example).

The use of this vector-space structure is well known and at the origin of the one of the most known
algorithms of the field ([60]) : it allows to deduce, starting from a Gröbner basis for any ordering, a Gröbner
base for any other ordering (in practice, a lexicographic basis, which are very difficult to calculate directly). It
is also common to certain semi-numerical methods since it allows to obtain quite simply (by a computation of
eigenvalues for example) the numerical approximation of the solutions (this type of algorithms is developed,
for example, in the INRIA Galaad project).

Contrary to what is written in a certain literature, the computation of Gröbner bases is not "doubly
exponential" for all the classes of problems. In the case of the zero-dimensional systems, it is even shown
that it is simply exponential in the number of variables, for a degree ordering and for the systems without
zeros at infinity. Thus, an effective strategy consists in computing a Gröbner basis for a favorable ordering and
then to deduce, by linear algebra technics, a Gröbner base for a lexicographic ordering [60].

The case of the zero-dimensional systems is also specific for triangular sets. Indeed, in this particular case,
we have designed algorithms that allow to compute them efficiently [73] starting from a lexicographic Gröbner
basis. Note that, in the case of zero-dimensional systems, regular triangular sets are Gröbner bases for a
lexicographical order.

Many teams work on Gröbner bases and some use triangular sets in the case of the zero-dimensional
systems, but up to our knowledge, very few continue the work until a numerical resolution and even less
tackle the specific problem of computing the real roots. It is illusory, in practice, to hope to obtain numerically
and in a reliable way a numerical approximation of the solutions straightforwardly from a lexicographical
basis and even from a triangular set. This is mainly due to the size of the coefficients in the result (rational
number).

Our specificity is to carry out the computations until their term thanks to two types of results :

• the computation of the Rational Univariate Representation [86] : we shown that any zero-
dimensional system, depending on variablesX1, ...Xn, can systematically be rewritten, without loss
of information (multiplicities, real roots), in the formf(T ) = 0, Xi = gi(T )/g(T ), i = 1...n where
the polynomialsf, g, g1, ...gn have coefficients in the same ground field as those of the system and
whereT is a new variable (independent fromX1, ...Xn).

• efficient algorithms for solving (real roots isolation and counting) univariate polynomials [89], [78].

Thus, the use of innovative algorithms for Gröbner bases computations [59], [58], Rational Univariate
representations ([60] for the "shape position" case and [86] for the general case), allows to use zero-
dimensional solving as sub-task in other algorithms.
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3.4. Positive-dimensional and parametric systems
Participants: P. Aubry, J.C. Faugère, A. Hashemi, D. Lazard, G. Moroz, F. Rouillier, M. Safey El Din.

When a system ispositive dimensional(with an infinite number of complex roots), it is no more possible
to enumerate the solutions. Therefore, the solving process reduces to decomposing the set of the solutions into
subsets which have a well-defined geometry. One may perform such a decomposition from an algebraic point
of view or from a geometrical one, the latter meaning not taking the multiplicities into account (structure of
primary components of the ideal is lost).

Although there exist algorithms for both approaches, the algebraic point of view is presently out of the
possibilities of practical computations, and we restrict ourselves to geometrical decompositions.

When one studies the solutions in an algebraically closed field, the decompositions which are useful
are the equidimensional decomposition (which consists in considering separately the isolated solutions, the
curves, the surfaces, ...) and the prime decomposition (decomposes the variety into irreducible components).
In practice, our team works on algorithms for decomposing the system intoregular separable triangular sets,
which corresponds to a decomposition into equidimensional but not necessarily irreducible components. These
irreducible components may be obtained eventually by using polynomial factorization.

However, in many situations one is looking only for real solutions satisfying some inequalities (Pi > 0
or Pi ≥ 0)1. In this case, there are various kinds of decompositions besides the above ones: connected
components, cellular or simplicial decompositions, ...

There are general algorithms for such tasks, which rely on Tarski’s quantifier elimination. Unfortunately,
these problems have a very high complexity, usually doubly exponential in the number of variables or the
number of blocks of quantifiers, and these general algorithms are intractable. It follows that the output of a
solver should be restricted to a partial description of the topology or of the geometry of the set of solutions,
and our research consists in looking for more specific problems, which are interesting for the applications, and
which may be solved with a reasonable complexity.

We focus on 2 main problems :

• computing one point on each connected components of a semi-algebraic set;

• solving systems of equalities and inequalities depending on parameters.

3.4.1. Critical point methods
The most widespread algorithm computing sampling points in a semi-algebraic set is the Cylindrical

Algebraic Decomposition Algorithm due to Collins [55]. With slight modifications, this algorithm also solves
the problem of Quantifier Elimination. It is based on the recursive elimination of variables one after an other
ensuring nice properties between the components of the studied semi-algebraic set and the components of
semi-algebraic sets defined by polynomial families obtained by the elimination of variables. It is doubly
exponential in the number of variables and its best implementations are limited to problems in 3 or 4 variables.

Since the end of the eighties, alternative strategies (see [66], [67], [68], [49], [50]) with a single exponential
complexity in the number of variables have been developed. They are based on the progressive construction
of the following subroutines:

(a) solving zero-dimensional systems: this can be performed by computing a Rational Univariate
Representation (see [86]);

(b) computing sampling points in a real hypersurface: after some infinitesimal deformations, this is
reduced to problem (a) by computing the critical locus of a polynomial mapping reaching its extrema
on each connected component of the real hypersurface;

1In the zero-dimensional case, inequations and inequalities are usually taken into account only at the end of the computation, to
eliminate irrelevant solutions.
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(c) computing sampling points in a real algebraic variety defined by a polynomial system: this is reduced
to problem (b) by considering the sum of squares of the polynomials;

(d) computing sampling points in a semi-algebraic set: this is reduced to problem (c) by applying an
infinitesimal deformation.

On the one hand, the relevance of this approach is based on the fact that its complexity is asymptotically
optimal. On the other hand, some important algorithmic developments have been necessary to obtain efficient
implementations of subroutines (b) and (c).

During the last years, we focused on providing efficient algorithms solving the problems (b) and (c). The
used method rely on finding a polynomial mapping reaching its extrema on each connected component of
the studied variety such that its critical locus is zero-dimensional. For example, in the case of a smooth
hypersurface whose real counterpart is compact choosing a projection on a line is sufficient. This method
is called in the sequel the critical point method. We started by studying problem (b) [87].

Even if we showed that our solution may solve new classes of problems ([88]), we have chosen to skip the
reduction to problem (b), which is now considered as a particular case of problem (c), in order to avoid an
artificial growth of degree and the introduction of singularities and infinitesimals.

Putting the critical point method into practice in the general case requires to drop some hypotheses. First, the
compactness assumption, which is in fact intimately related to an implicit properness assumption, has to be
dropped. Second, algebraic characterizations of critical loci are based on assumptions of non-degeneracy on
the rank of the Jacobian matrix associated to the studied polynomial system. These hypotheses are not satisfied
as soon as this system defines a non-radical ideal and/or a non equidimensional variety, and/or a non-smooth
variety. Our contributions consist in overcoming efficiently these obstacles ([95], [82]) and several strategies
have been developed [44], [90], [91].

The properness assumption can be dropped by considering the square of a distance function to a generic point
instead of a projection function: indeed each connected component contains at least a point minimizing locally
this function. Performing a radical and equidimensional decomposition of the ideal generated by the studied
polynomial system allows to avoid some degeneracies of its associated Jacobian matrix. At last, the recursive
study of overlapped singular loci allows to deal with the case of non-smooth varieties. These algorithmic issues
allow to obtain a first algorithm [44] with reasonable practical performances.

Since projection functions are linear while the distance function is quadratic, computing their critical points
is easier. Thus, we have also investigated their use. A first approach [90] consists in studying recursively the
critical locus of projection functions on overlapped affine subspaces containing coordinate axes combined
with the study of their set of non-properness. A more efficient one [91], avoiding the study of sets of non-
properness is obtained by considering iteratively projections ongenericaffine subspaces restricted to the
studied variety and fibers on arbitrary points of these subspaces intersected with the critical locus of the
corresponding projection. The underlying algorithm is the most efficient we obtained.

The algorithms of [44], [90] are provided in the Maple Library RAGLib. It is built upon the softwares Gb
and RS. It contains functionalities for computing sample points in real algebraic varieties, semi-algebraic
sets defined by non-strict inequalities, and the radical and equidimensional decomposition of an ideal. The
experimental version of the algorithm provided in [93] will be included in the next release which is in
preparation.

In terms of complexity, we have proved in [94] that when the studied polynomial system generates a radical
ideal and defines a smooth algebraic variety, the output of our algorithms is smaller than what could be
expected by applying the classical Bézout bound and than the output of the previous algorithms. This has
also given new upper bounds on the number of connected components of a smooth real algebraic variety
which improve the classical Thom-Milnor bound. The technique we used, also allows to prove that the degree
of the critical locus of a projection function is inferior or equal to the degree of the critical locus of a distance
function. Finally, it shows how to drop the assumption of equidimensionality required in the aforementioned
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algorithms. This technique is based on the study of the Lagrange’s system associated to a polynomial family,
the study of its bi-homogeneous structure, and a strong bi-homogeneous Bézout theorem we proved which
allows to bound the sum of the degrees of all the isolated primary components of an ideal generated by a
bi-homogeneous system.

3.4.2. Parametric systems
Most of the applications we recently solved (celestial mechanics, cuspidal robots, statistics, etc.) require

the study of semi-algebraic systems depending on parameters. Although we covered these subjects in an
independent way, some general algorithms for the resolution of this type of systems can be proposed from
these experiments.

The general philosophy consists in studying the generic solutions independently from algebraic subvarieties
(which we call from now on discriminant varieties) of dimension lower than the semi-algebraic set considered.
The study of the varieties thus excluded can be done separately to obtain a complete answer to the problem,
or is simply neglected if one is interested only in the generic solutions, which is the case in some applications.

We recently proposed a new framework for studying basic constructible (resp. semi-algebraic) sets defined
as systems of equations and inequations (resp. inequalities) depending on parameters. Let’s consider the basic
semi-algebraic set

S = {x ∈ Rn , p1(x) = 0, ..., ps(x) = 0, f1(x) > 0, ...fs(x) > 0}

and the basic constructible set

C = {x ∈ Cn , p1(x) = 0, ..., ps(x) = 0, f1(x) 6= 0, ...fs(x) 6= 0}

wherepi, fj are polynomials with rational coefficients.

• [U,X] = [U1, ...Ud, Xd+1, ...Xn] is the set ofindeterminatesor variables, whileU = [U1, ...Ud] is
the set ofparametersandX = [Xd+1, ...Xn] the set ofunknowns;

• E = {p1, ...ps} is the set of polynomials defining the equations;

• F = {f1, ...fl} is the set of polynomials defining the inequations in the complex case (resp. the
inequalities in the real case);

• For anyu ∈ Cd let ϕu be the specializationU −→ u;

• ΠU : Cn −→ Cd denotes the canonical projection on the parameter’s space(u1, · · · , ud, xd+1, ..., xn) −→ (u1, · · · , ud);

• Given any idealI we denote byV(I) ⊂Cn the associated (algebraic) variety. If a variety is defined
as the zero set of polynomials with coefficients inQ we call it aQ-algebraic variety; we extend
naturally this notation in order to talk aboutQ-irreducible components,Q-Zariski closure, etc.

• for any setV ⊂ Cn, V will denote itsC-Zariski closure inCn.

In most applications,V(<ϕu(E) >)) as well asϕu(C) = Π−1
U (u)

⋂
C are finite and not empty for almost all

parameter’su. Most algorithms that studyC or S (number of real roots w.r.t. the parameters, parameterizations
of the solutions, etc.) compute in any case aQ-Zariski closed setW ⊂ Cd such that for anyu ∈ Cd r W ,
there exists a neighborhoodU of u with the following properties :

• (Π−1
U (U)

⋂
C,ΠU ) is an analytic covering ofU; this implies that the elements ofF do not vanish

(and so have constant sign in the real case) on the connected components ofΠ−1
U (U)

⋂
C;
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We recently show that the parameters’ set such that there doesn’t exist any neighborhoodU with the above
analytic covering property is aQ-Zariski closed set which can exactly be computed. We name it theminimal
discriminant variety ofC with respect toΠU and propose also a definition in the case of non generically
zero-dimensional systems.

Being able to compute the minimal discriminant variety allows to simplify the problem depending on
n variables to a similar problem depending ond variables (the parameters) : it is sufficient to describe its
complementary in the parameters’ space (or in the closure of the projection of the variety in the general case)
to get the full information about the generic solutions (here generic means for parameters’ values outside the
discriminant variety).

Then being able to describe the connected components of the complementary of the discriminant variety
in Rd becomes a main challenge which is strongly linked to the work done on positive dimensional systems.
Moreover, rewriting the systems involved and solving zero-dimensional systems are major components of the
algorithms we plan to build up.

We currently propose several computational strategies. An a priori decomposition into equidimensional
components as zeros of radical ideals simplifies the computation and the use of the discriminant varieties. This
preliminary computation is however sometimes expensive, so we are developing adaptive solutions where such
decompositions are called by need. The main progress is that the resulting methods are fast on easy problems
(generic) and slower on the problems with strong geometrical contents.

We also defined (large)discriminant varieties ofC with respect toΠU as being anyQ-Zariski closed setW
containing the minimal discriminant variety ofC with respect toΠU (the minimal discriminant variety is the
smallest discriminant variety and it is uniquely defined).

The existing implementations of algorithms able to "solve" (to get some information about the roots)
parametric systems do all compute (directly or indirectly) discriminant varieties but none computes optimal
objects (strict discriminant variety). The consequence is that the output (case distinctions w.r.t. parameters’
values) are huge compared with the results we can provide.

The Cylindrical Algebraic Decomposition adapted toE
⋃

F [55] computes explicitly a discriminant variety
of C as soon as the recursive projection steps w.r.t.Xd+1, ..., Xn are done first. A discriminant variety will then
be defined by the union of the varieties associated with the polynomials obtained after then− d-th projection
step. It is far from being optimal with respect to the number of elements in the induced partition; in fact it
contains at least, a discriminant variety for any system of equalities and inequalities that can be constructed
with the polynomials ofE

⋃
F. The same remark applies for recursive methods based on univariate resultant.

Algorithms based on "Comprehensive Gröbner bases" [101], [102], [100], compute also (implicitly or
explicitly) discriminant varieties. In the case of parametric systems, such a discriminant variety contains the
parameters’ values for which a Gröbner basis do not specialize properly. Again, it is far from being optimal
since it contains the parameter’s values where the staircase varies, which depend on the strategy used (for
example the choice of a monomial ordering).

Methods that compute parameterizations of the solutions (see [97] for example) compute also discriminant
varieties. Again, these are not optimal since they depend on the strategy used. Precisely, the result depends on
an arbitrary chosen "separating element"t ∈ Q[Xd+1, ..., Xn] which is a polynomial (often a linear form) that
induces, for almost all the parameters, an injective map fromV(< E >) to Cd. If p is the minimal polynomial
of t viewed as an element ofQ(U1, ..., Ud)[Xd+1, ..., Xn]/

√
< E >, the induced discriminant variety contains

all the parameters’ values such that the leading coefficient ofp or its discriminant vanishes; this includes, in
particular, the parameter’s values such thatt does not separate the zeros of the corresponding specialization of√

< E >.
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4. Application Domains
4.1. Panorama

Applications are fundamental for our research for several reasons.
The first one is that they are the only source of fair tests for the algorithms. In fact, the complexity of the

solving process depends very irregularly of the problem itself. Therefore, random tests do not give a right
idea of the practical behavior of a program, and the complexity analysis, when possible, does not necessarily
provide realistic information.

A second reason is that, as quoted above, we need real world problems to determine which specifications of
algorithms are really useful. Conversely, it is frequently by solving specific problems through ad hoc methods
that we found new algorithms with general impact.

Finally, obtaining successes with problems which are intractable by the other known approaches is the best
proof for the quality of our work.

On the other hand, there is a specific difficulty. The problems which may be solved with our methods may
be formulated in many different ways, and their usual formulation is rarely well suited for polynomial system
solving or for exact computations. Frequently, it is not even clear that the problem is purely algebraic, because
researchers and engineers are used to formulate them in a differential way or to linearize them.

Therefore, our software may not be used as black boxes, and we have to understand the origin of the problem
in order to translate it in a form which is well suited for our solvers.

It follows that many of our results, published or in preparation, are classified in scientific domains which
are different from ours, like cryptography, error correcting codes, robotics, signal processing, statistics or
biophysics.

4.2. Cryptography
The idea of using multivariate (quadratic) equations as a basis for building public key cryptosystems

appeared with the Matsumoto-Imai cryptosystem. This system was first broken by Patarin and, shortly after,
Patarin proposed to repair it and thus devised the hidden field equation (HFE) cryptosystem.

The basic idea of HFE is simple: build the secret key as a univariate polynomialS(x) over some (big)
finite field (often GF(2n)). Clearly, such a polynomial can be easily evaluated; moreover, under reasonable
hypotheses, it can also be “inverted” quite efficiently. By inverting, we mean finding any solution to the
equationS(x) = y, when such a solution exists. The secret transformations (decryption and/or signature)
are based on this efficient inversion. Of course, in order to build a cryptosystem, the polynomialS must be
presented as a public transformation which hides the original structure and prevents inversion. This is done by
viewing the finite field GF(2n) as a vector space over GF(2) and by choosing two linear transformations of
this vector spaceL1 andL2. Then the public transformation is the composition ofL1, S andL2. Moreover,
if all the terms in the polynomialS(x) have Hamming weight 2, then it is obvious that all the (multivariate)
polynomials of the public key are of degree two.

By using fast algorithms for computing Gröbner bases, it was possible to break the first HFE challenge
[61] (real cryptographic size 80 bits and a symbolic prize of 500 US$) in only two days of CPU time. More
precisely we have used theF5/2 version of the fastF5 algorithm for computing Gröbner bases (implemented
in C). The algorithms available up to now (Buchberger) were extremely slow and could not have been used
to break the code (they should have needed at least a few centuries of computation). The new algorithm
is thousands of times faster than previous algorithms. Several matrices have to be reduced (Echelon Form)
during the computation: the biggest one has no less than 1.6 million columns, and requires 8 gigabytes of
memory. Implementing the algorithm thus required significant programming work and especially efficient
memory management.

A new result is that the weakness of the systems of equations coming from HFE instances can beexplained
by the algebraic properties of the secret key (work presented at Crypto 2003 in collaboration with A. Joux).
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From this study we are able to predict the maximal degree occurring in the Gröbner basis computation, so that
we can establish precisely the complexity of the Gröbner attack and compare it with the theoretical bounds.

Since it is easy to transform many cryptographic problems into polynomial equations, our group is in a
position to apply this general method to other cryptosystems. Thus we have a new general cryptanalysis
approach, called algebraic cryptanalysis. The team is currently testing the robustness of cryptosystems based
on nonlinear filter generators (with G. Ars, J.-C. Faugère) and in collaboration with the Codes team and DGA
(Celar).

Another relevant tool in the study of cryptographic problems is the LLL algorithm which is able to compute
in polynomial time a “good” approximation for the shortest vector problem. Since a Gröbner basis can be
seen as the set of smallest polynomials in an ideal with respect to the divisibility of leading terms, it is natural
to compare both algorithms: an interesting link between LLL (polynomial version) and Gröbner bases was
suggested by a member of our group.

A standard algorithm for implementing the arithmetic of Jacobian groups of curves is LLL. By replacing
LLL by the FGLM algorithm we establish a new structure theorem for Gröbner bases; consequently, on a
generic input we were able to establish explicit and optimized formulas for basic arithmetic operations in the
Jacobian groups ofC34 curves [46].

As an application of the LLL algorithm we have presented [47], an algorithm for converting a Gröbner basis
of an ideal with respect to any given ordering into a Gröbner basis with respect to any other ordering. This
algorithm is based on a modified version of the LLL algorithm. In the worst case, the theoretical complexity
of this algorithm is not necessarily better than the complexity of the FGLM algorithm; but when the output
(the final Gröbner basis) is small this algorithm is experimentally more efficient.

4.3. Parallel robots

Figure 1. An Hexapod

The (parallel) manipulators we study are general parallel robots: the hexapods are complex mechanisms
made up of six (often identical) kinematic chains, of a base (fixed rigid body including six joints or
articulations) and of a platform (mobile rigid body containing six other joints).
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The design and the study of parallel robots require the resolution of direct geometrical models (computation
of the absolute coordinates of the joints of the platform knowing the position and the geometry of the base, the
geometry of the platform as well as the distances between the joints of the kinematic chains at the base and
the platform) and inverse geometrical models (distances between the joints of the kinematic chains at the base
and the platform knowing the absolute positions of the base and the platform).

Since the inverse geometrical models can be easily solved, we focus on the resolution of the direct
geometrical models.

The study of the direct geometrical model is a recurrent activity for several members of the project. One can
say that the progress carried out in this field illustrates perfectly the evolution of the methods for the resolution
of algebraic systems. The interest carried on this subject is old. The first work in which the members of
the project took part in primarily concerned the study of the number of (complex) solutions of the problem
[75], [74]. The results were often illustrated by Gröbner bases done with Gb software. One of the remarkable
points of this study is certainly the classification suggested in [65]. The next efforts were related to the real
roots and the effective computation of the solutions [84]. The studies then continued following the various
algorithmic progresses, until the developed tools made possible to solve non-academic problems. In 1999, the
various efforts were concretized by an industrial contract with the SME CMW (Constructions Mécaniques des
Vosges-Marioni) for studying a robot dedicated to machine tools.

Figure 2. The CMW300

We conceived, in collaboration with the COPRIN project, a prototype of simulator for validating a fixed
trajectory, i.e. :

• check that the trajectory is nonsingular for a series of functions modelizing the length of the legs : let
us recall that for given values of the legs’ length, there exists up to 40 possible positions. To check
that the trajectory is nonsingular, one must ensure, for example, that 2 possible trajectories do not
intersect (in which case the robot cannot be controlled);

• measure without ambiguity the difference between two trajectories corresponding to different legs’
length functions (this is a tool for checking "numerical" singularities).

This tool is single in the world : concurrent solutions exist but can treat only particular robots (plan,
symmetrical, less joints, etc). It is necessary to know to how to solve the general case because a small
modification of the design parameters’ (unavoidable in practice) has serious consequences on the behavior
of the robot. For example, the theoretical robot we use (based on the left-hand parallel manipulator due to



14 Activity Report INRIA 2005

J.-P. Merlet) for our study admits at most 36 solutions for the direct geometrical model (either up to 36
possible trajectories for fixed length legs’ functions), whereas the presently built robot (with small errors on
the positions of the joints) has up to 40 possible positions.

The main algorithmic tool present in this simulator (partially presented in [83]) is a hybrid method (mixing
computer algebra, numerical computation and interval analysis) for the resolution of the direct geometrical
model.

A part of the work was to develop a semi-numerical method (based on Newton’s method), powerful in terms
of computation time (4000 computations per minute) and certified, i.e. always returning a correct result: the
answer is either a set of numerical values with a certified precision or a failure message. The strategy used
combines interval arithmetics and convergence results. The failure remains exceptional (less than 10 percent
of the practical problems) and, when it occurs, the result is obtained using a special version of theF4 algorithm
for Gröbner bases computation and an optimized version (adapted to that particular case of systems) of the
Rational Univariate Representation algorithm.

Our simulator has been used to diagnose the problems related to the solutions currently employed (CAD,
look-ahead, algorithms for interpolating the trajectories, etc).

4.4. Serial robots

Figure 3. A serial robot with 3 D.O.F.

Industrial robotic (serial) manipulators with 3 degrees of freedom are currently designed with very simple
geometric rules on the designed parameters, the ratios between them are always of the same kind. In order to
enlarge the possibilities of such manipulators, it may be interesting to relax some constraints on the parameters.

However, the diversity of the tasks to be done carries out to the study of other types of robots whose
parameters of design differ from what is usual and which may have new properties, like stability or existence
of new kinds of trajectories.

An important difficulty slows down the industrial use of such new robots : recent studies ([103], [105],
[104] and [80]) showed that they may have a behavior which is qualitatively different from those of the
robots currently used in industry and allows new changes of posture. These robots, called cuspidal, cannot
be controlled like the others. The majority of the robots are in fact cuspidal: the industrial robots currently on
the market form a very restricted subclass of all the possible robots.
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A full characterization of all the cuspidal robots is of a great interest for the designer and the user. Such
a project forms part of a current tendency in robotics which consists in designing a robot in order that its
performances are optimal for a given application while preserving the possibility of using it for another task,
that is to say to specialize it to the maximum for an application in order to reduce its cost and to increase its
operational safety.

The study of the behavior at a change of posture is identical, from the computer algebra point of view, to
solving a system of equalities and inequalities depending on three or four parameters which correspond to the
design parameters of this kind of robots. The method we basically used was "ad hoc", and no known automatic
computer algebra methods were able to solve completely the problem before the work done in collaboration
with COPRIN (INRIA Sophia), IRMAR (University of Rennes I) and IRRCyN (CNRS - Nantes) teams.

From a robotic point of view, the result obtained is a full classification of a class of serial robots with three
degrees of freedom according to their cuspidal character. Since then, toward the end of the Maths-Stic project
"Robots Cuspidaux", these results were simplified and analyzed to allow a better description of the workspace
of such mechanisms.

The computations done for this application were critical also for the development of the general and
systematic methods for solving parametric systems. We have shown that these general methods can now be
used in place of ad hoc computations to calculate the same classification and a recent experiment even shows
that they allow to relax one more parameter and thus to solve a more general problem.

4.5. Signal Processing
Some problems in signal theory are naturally formulated in terms of algebraic systems. In [64], we had

studied the Kovacevic-Vetterli ’s family of filters banks. To be used for image compression, a wavelet
transformation must be defined by a function having a maximum of partial derivative that vanishes at the
corners of the image. These conditions can be translated to polynomial systems that can be solved with our
methods. We showed that to get physically acceptable solutions, it was necessary to choose the number of
conditions so that the solutions’ space is of dimension 0, 2 or 4 (according to the size of the filter). This result
(parametric family of filters) is subject to a patent [57]. To exploit these filters in practice, it remains to choose
the best transformation, according to non-algebraic criteria, which is easily done with traditional tools for
optimization (with a reduced number of variables).

As for most of applications on which we work, it took more than three years to obtain concrete results
bringing real practical progress (the results mentioned in [85] are partial), and still a few years more to be
able to disseminate information towards our community [63]. Our software tools are now used to solve nearby
problems [77].

Our activity in signal processing started again a few months ago through a collaboration with the APICS
project (collaboration with F. Seyfert) on the synthesis and identification of hyperfrequency filters made of
coupled resonant cavities. It is now part of our research goals.

5. Software
5.1. GC

Participants: J.C. Faugère [contact], F. Rouillier.

One specificity in computer algebra is to manipulate huge objects with a size that varies along the algorithm.
Having a specific memory manager, adapted to the objects handled in the various implementations is thus
essential. Based on one concept suggested by J-C. Faugère in his PhD thesis, several versions implemented
in C are used in different software packages of the project (GB, FGB, RS) as well as in implementations
due to collaborators (F. Boulier - LIFL). The various suggested implementations are very simple and it seems
preferable to precisely describe the process and its use in some key situations than to propose a standardized
implementation as a library.
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5.2. UDX
Participants: F. Rouillier [contact], J.C. Faugère.

Seehttp://fgbrs.lip6.fr/salsa/. The result of a Gröbner basis computation may be huge and is the main input
of our high-level algorithms. The time needed for transferring such an object using ascii files or pipes may be
greater than the computation time.

UDX is a software for binary data exchange. It was initially developed to show the power of a new protocol,
object of a patent by INRIA and UPMC [62]. The resulting code, written in ANSI C (9500 lines), is very
portable and very efficient, even when the patented protocol is not used. UDX is composed of five independent
modules:

• base: optimized system of buffers and synchronization of the input and output channels;

• supports: read/write operations on various supports (sockets, files, shared memory, etc.);

• protocols: various exchange protocols (patented protocol, XDR, etc.);

• exchange of composite types: floating-point numbers (simple and double precision), multiprecision
integers, rational numbers;

• interfaces: user interfaces implementing high level callings to the four other modules.

5.3. MPFI
Participants: F. Rouillier [contact], N. Revol [ARENAIRE Project].

MPFI is a library for multiprecision interval arithmetic, written in C (approximately 1000 lines), based on
MPFR. It is developed in collaboration with N. Revol (ARENAIRE project). Initially, MPFI was developed
for the needs of a new hybrid algorithm for the isolation of real roots of polynomials with rational coefficients.
MPFI contains the same number of operations and functions as MPFR, the code is available and documented.

5.4. MPAI
Participants: P. Trébuchet [contact], F. Rouillier.

MPAI is a library for computing with algebraic infinitesimals. The infinitesimals are represented as
truncated series. The library provides all the arithmetic functions needed to perform computations with
infinitesimals. The interface is both GMP and RS compliant. It is implemented in the C language and
represents approximatively 1000 lines of code. The algorithms proposed in MPAI include Karatsuba’s product
and the short product, ...The code is available.

5.5. Interfaces
Participants: J.C. Faugère [contact], F. Rouillier.

In order to ease the use of the various software developed in the project, some conventions for the exchange
of ASCII and binary files were developed and allow a flexible use of the servers GB , FGB or RS .

To make transparent the use of our servers from general computer algebra systems such as Maple or
MuPAD we currently propose a common distribution for GB , FGB and RS including the servers as well
as the interfaces for Maple and MuPAD. The instructions are illustrated by concrete examples and a simple
installation process.

5.6. Gb
Participant: J.C. Faugère [contact].

Gb is one of the most powerful software for computing Gröbner bases currently diffused. Implemented in
C/C++ (approximately 100000 lines), it is distributed since 1994 in the form of specific servers (direct compu-
tations, changes of orders, Hilbert’s function, etc.). The initial interface (interactive system of commands) was

http://fgbrs.lip6.fr/salsa/
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abandoned for lighter solutions (ASCII interface,UDX protocol) which are more powerful but for the moment
more rudimentary. With the new algorithms proposed by J-C. Faugère (Fn, n > 1), GB is always maintained
but is not developed any more. Indeed, data structures as well as basic algorithms necessary to implementations
of these new methods being radically different from precedents, the GB servers will be gradually replaced by
FGB servers. The existing prototypes of interfaces (ASCII, Maple, MuPAD, RS) were homogenized in order
to provide a framework, initially based on GB, but evolutionary (towards FGB) in a transparent way. They
will be kept. The future evolutions will follow then algorithmic progress.

5.7. FGb Servers
Participant: J.C. Faugère [contact].

As mentioned above, current implementations of theF5 algorithm depend on many options. For efficiency
reasons, it is currently preferable to compile specific servers, setting algorithms parameters like matrices sizes,
linear algebra strategies for sparse matrices by hand. This has already successfully been done for path planning
problems (parallel robots), and however helps to understand the main constraints in order to provide, in the
future, software solutions that are independent from the type of system to be solved.

5.8. RS
Participant: F. Rouillier [contact].

RS is a software dedicated to the study of real roots of algebraic systems. It is entirely developed in C
(100000 lines approximately) and succeeds to REALSOLVING developed during the European projects PoSSo
and FRISCO. RS mainly contains functions for counting and isolating of real zeros of zero-dimensional
systems. The user interfaces of RS are entirely compatible with those of GB/FGB (ASCII, MuPAD, Maple).
RS is used in the project since several years and several development versions have been installed by numerous
other teams. The following evolutions will depend on algorithmic progress and the users’ needs (many internal
functions are exported on demand).

5.9. Triangular Decompositions
Participant: P. Aubry [contact].

Triangular Decomposition is a library devoted to the decomposition of systems of polynomial equations
and inequations and provides some tools for working with triangular sets. It decomposes the radical of the
ideal generated by a family of polynomials into regular triangular sets that represents radical equidimensional
ideals. It also performs the computation of polynomial gcd over an extension field or a product of such fields
given by a triangular set.

A first version of this library is implemented in the Axiom computer algebra system. It is now developed in
Magma.

5.10. RAGlib
Participant: M. Safey El Din [contact].

The RAGLib (Real AlgebraicGeometryLib rary) is a Maple library of symbolic algorithms devoted to
some problems of Effective Real Algebraic Geometry, and more particularly, to the study of real solutions of
polynomial systems of equations and inequalities. It contains algorithms performing:

• theequidimensional decompositionof an ideal generated by a polynomial family.
• theemptiness testof a real algebraic variety defined by a polynomial system of equations.
• thecomputation of at least one point in each connected componentof a real algebraic variety defined

by a polynomial system of equations.
• theemptiness testof a semi-algebraic set defined by a polynomial system of equations and non strict

inequalities.
• thecomputation of at least one point in each connected componentof a semi-algebraic set defined

by a polynomial system of equations and non strict inequalities.
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5.11. TCI
Participants: F. Rouillier [contact], J.C. Faugère.

As soon as they come from real applications, the polynomials resulting from processes of elimination
(Gröbner bases, triangular sets) are very often too large to be studied by general computer algebra systems.

In the case of polynomials in two variables, a certified layout is enough in much cases to solve the studied
problem (it was the case in particular for some applications in celestial mechanics). This type of layout is now
possible thanks to the various tools developed in the project.

Two components are currently under development: the routine of computation (taking as input the polyno-
mial function and returning a set of points) is stable (about 2000 lines in the C language, using the internal
libraries of RS ) and can be used as a black box in stand-alone mode or through Maple; the routine of layout
is under study.

5.12. TSPR
Participants: F. Rouillier [contact], J.C. Faugère.

The purpose of project TSPR (Trajectory Simulator for Parallel Robots) is to homogenize and export the
tools developed within the framework of our applications in parallel robotics. The software components of
TSPR (about 1500 lines) are primarily written in C following the standards of RS and FGB and algorithms
implemented in Maple using the prototypes of interfaces for FGB and RS . The encapsulation of all these
components in a single distribution is available but not downloadable.

Prototypes of components for real-time resolution of certain types of systems now use also the ALIAS
library developed in the INRIA project COPRIN.

5.13. NetTask
Participants: F. Rouillier [contact], J.C. Faugère.

We benefited during nearly one year of the assistance of Étienne Petitjean (SEDRE-LORIA) for this
development.

The developed tool (about 11,000 lines in C++) makes possible the use of software installed on a network
which then becomes usable even if it is not ready to be distributed and thus allows the experimental validation
of algorithms proposed in articles or allows an external user to have a more precise idea of the possibilities
offered by recent algorithmic progress. It will be useful in our project to export some of our prototypes.

NetTask is very flexible since it doesn’t need any change in the software to be demonstrated. It is compatible
with the current safety requirements and contains some powerful tools:

• allocation of the tasks launched by the users according to the availability of the software but also the
load of the nodes on a given network of machines;

• system of queue for the tasks;

• complete control of the launched tasks by the user himself;

• many options of configuration such as for example the declaration of the machines and tasks
available on a given network, the maximum number of tasks per user.
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6. New Results
6.1. Interval Arithmetic

In [13], we justify why an arbitrary precision interval arithmetic is needed. To provide accurate results,
interval computations require small input intervals; this explains why bisection is so often employed in
interval algorithms. The MPFI library has been built in order to fulfill this need. Indeed, no existing library
met the required specifications. The main features of this library are briefly given and a comparison with a
fixed-precision interval arithmetic, on a specific problem, is presented. It shows that the overhead due to the
multiple precision is completely acceptable. Eventually, some applications based on MPFI are given: robotics,
isolation of polynomial real roots (by an algorithm combining symbolic and numerical computations) and
approximation of real roots with arbitrary accuracy.

6.2. Univariate polynomials
In [12], we explain how Bernstein’s basis, widely used in Computer Aided Geometric Design, provides an

efficient method for real root isolation, using De Casteljau’s algorithm. We explain also the link between this
approach and more classical methods for real root isolation [99]. Most of the content of the paper can be found
in [79], [48]. However, we present a new improved method for isolating real roots in Bernstein’s basis inspired
by [89].

6.3. Generalized Normal Forms
Let k[x] = k[x1, ..., xn] be the ring ofn-variate polynomials over the fieldk, and I an ideal ofk[x].

The problem tackled here is : Finding an effective representation of the quotient algebrak[x]/I. This is the
cornerstone of many studies of the variety defined byI. Efficient ways to reach this goal already exist, and
the most used is to first compute a Gröbner basis, and next to derive an exact parameterization of the solution
set. Though the work of Faugère made the Gröbner step rather efficient, the computation of Gröbner bases
still suffer from very unstable behavior : the time and space needed for computing a Gröbner basis can vary
greatly from a system to one another. Generalized Normal Forms can be thought of as an extension of the
Gröbner bases computations where numerical issues can be paid attention to. Up to now, the computation
of Generalized Normal Form shall rely on choice functions refining the usual degree of polynomials. This
assumption forbid the computation of elimination ideals with Generalized Normal Forms. In [24] the authors
show how to drop this assumption.

First we define the notion of a refining graduation, and from this we state the definition of a choice function
refining a reducing graduation. Next we give an algorithm to compute the normal form of any monomial
moduloI. We prove that, given a monomialm and if we use a choice function refining a reducing graduation,
then there exists a moment in the algorithm when we can compute the normal form ofm. As far asI is zero
dimensional, only the existence of such a moment need to be proved to insure termination and correctness of
the whole method. The paper [24] has received the distinguished paper award at the conference ISSAC2005.

6.4. Zero dimensional systems
In [39] (an extended version has been submitted to Journal Of Symbolic Computation), we propose some

new results about the computation and use of the Rational Univariate Representation. The first result is an
algorithm that computes a RUR-candidate (no guarantee for the choice of a separating element), taking as
inputT, a multiplication table ofQ[X1, ..., Xn]/I and performingO(]TD3/2 + nD2) operations inQ,which
is slightly better than [51]. The proposed algorithm is mainly the same as in [51] (based on the baby-step/giant-
step algorithm [98]) but computes differently the so called ”transposed product” (main operation). In addition,
the output preserves the multiplicities. Basically, [51] generalizes the formulas from [86]: the coefficients of
the RUR-candidate can directly be expressed with respect tol(Xjt

i) wherel is a “sufficiently generic” linear
form. Taking forl the trace map (trace of the multiplication inQ[X1, ..., Xn]/I), one recovers the formulas
from [86].
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The second result shows that one can check that the obtained RUR-candidate is a RUR performing
O(n]TD3/2) arithmetic operations, so that it produces the same output as [86] with the same computing
time as the probabilistic computation of the RUR-candidate from [51]. We also propose an algorithm that
computes all the sign conditions realized by a set of polynomials at the zeros of a zero-dimensional system.
Its computing time complexity isD times less than the one of algorithm 11.18 p. 375 in [48] for the same
input (T). Given any polynomialf , the formulas from [86] or [51] can be used to compute a rational function
gt,f/gt which takes the same values asf at the zeroes ofI. According to the above results, given a set of
polynomialsF = {f1, ..., fs}, one can compute a RUR and the rational functionsgt,fi

in O(t1 + sD2) if t1 is
the computing time of the RUR. Thus, computing the sign conditions realized by thefi leads to computing the
sign conditions realized by thegt,fi at the roots offt. We can then substitute the “Sturm query” algorithm based
on Hermite’s quadratic form in [48] (computing time inO(D3)) by its equivalent for univariate polynomials
(computing time inO(D2) for the naive version).

6.5. Parametric Polynomial Systems
In [26] and [25] ([76] for a preliminary extended version, submitted to Journal Of Symbolic Computa-

tion - the article is currently under revision), we present a new algorithm for solving basic parametric con-
structible or semi-algebraic systems likeC = {x ∈ Cn, p1(x) = 0, ..., ps(x) = 0, f1(x) 6= 0, ...,fl(x) 6= 0} or
S = {x ∈ Rn, p1(x) = 0, ..., ps(x) = 0, f1(x) > 0, ...,fl(x) > 0}, wherepi, fi∈ Q[U,X], U = [U1, ..., Ud]
is the set of parameters andX = [Xd+1, ..., Xn] the set of unknowns.

If ΠU denotes the canonical projection on the parameter’s space, solvingC leads to compute sub-manifolds
U ⊂ ΠU (C) such that(Π−1

U (U) ∩ C,ΠU ) is an analytic covering ofU (we say thatU has the(ΠU ,C)-covering
property). This guarantees that the cardinal ofΠ−1

U (U) ∩ C is locally constant onU and thatΠ−1
U (U) ∩ C is a

finite collection of sheets which are all locally homeomorphic toU. In the case whereΠU (C) is dense inCd,
known algorithms for solvingC or S ([56], [96], [102]) compute implicitly or explicitly a Zariski closed subset
W such that any sub-manifold ofΠU (C) r W has the (ΠU ,C)-covering property.

We introduce thediscriminant varieties ofC with respect toΠU which are algebraic sets with the above
property. We then show that the set of points ofΠU (C) which do not have any neighborhood with the (ΠU ,C)-
covering property is a Zariski closed set and thus define theminimal discriminant variety ofC with respect to
ΠU , and we propose an algorithm to compute it efficiently. Thus, solvingC (resp.S) is reduced to describing
ΠU (C) r WD (resp.(ΠU (C) r WD)∩Rd) which can be done using critical point methods such as in [48] or
partial CAD based strategies [56].

A preliminary implementation of the MAPLE package DV has been presented at ISSAC by G. Moroz [23]
and first results about the theoretical complexity of computing Discriminant Varieties (simply exponential
algorithm) can be founded in [38].

6.6. Complexity of Gröbner bases
The knowledge on the complexity of Gröbner basis computation has been improved in two direction. Firstly,

in the few known bounds of complexity, the size of the input is measured bydn whered is the maximal degree
of the input polynomials andn the number of variables. The maximal degree has been replaced by the mean
value of the degree [35]. Secondly, a bit complexity polynomial indn (mean value of the degrees to the number
of variables) has been obtained for zero-dimensional systems of equations [34].

For subclasses of polynomial systems, the complexity may be much smaller. Of particular importance is the
class of regular sequences of polynomials.

It is well known that (after a generic linear change of variables) the complexity of the computation for the
degree-reverse-lexicographic order is simply exponential in the number of variables. Moreover, the maximal
degree occurring in the computation of such a Gröbner basis is bounded by the Macaulay bound (the sum of
the total degree of the equations minus the number of equations) In [17] we give similar complexity bounds
for overdeterminedsystems, for a class of systems that we callsemi-regular.
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The interest in overdetermined systems is not purely academic: there are a number of applications, such
as error correcting codes (decoding of cyclic codes), robotics, calibration, cryptography,.... In [17] we have
computed the asymptotic expansion of the degree of regularity for semi-regular sequences of algebraic
equations. This degree implies complexity bounds of Gröbner bases algorithms, in particular the F5 algorithm
or algorithms like XL more well known in cryptographic community.

A byproduct of this study is to give a classification of the complexity of computing Gröbner bases of
“generic” systems depending on the rationumber of equationsdivided by thenumber of unknowns. For
instance a Gröbner basis ofn log(n) algebraic independent polynomials inn variables can be computed in
sub exponential time (in this context independent means semi-regular).

6.7. Bi-homogeneous Bézout bounds applied to quantitative real algebraic
geometry

In [90], we had designed an efficient algorithm computing at least one point in each connected component
of the real counterpart of a smooth equidimensional algebraic variety defined by a radical ideal. This has
been obtained by considering critical points of some generic projection functions. These critical points are
defined by the vanishing of some minors of the Jacobian matrix of the input polynomial system and leads to
solve overdetermined zero-dimensional polynomial systems for which classical Bézout bounds are naturally
pessimistic. In [41], we have :

• generalized the algorithm of [90] to the non equidimensional case;

• proved that the set of computed critical points has cardinality which is bounded by the bi-
homogeneous Bézout bound.

• proved a strong bi-homogeneous Bézout theorem in the case of a radical ideal, which corrects some
mistakes in [94].

The complexity of our algorithm is polynomial in the bi-homogeneous Bézout bound. This work is
submitted to Journal of Complexity.

6.8. Computing sampling points in singular hypersurfaces
This work follows the ones of [90] and [41]. We consider here the case of singular hypersurfaces and

provide an algorithm which computes at least one point in each connected component of the real counterpart
of the hypersurface under consideration. This is based on a generalization of [90] and [87], i.e. theefficientuse
of deformation techniques without introducing explicitly an infinitesimal and the computation of the critical
points of some generic projections. We prove that the classical Bézout bounds are never reached in the singular
case. We also relate the decrease of degree to the degree of the set generalized critical values (see [92]). The
complexity of our algorithm is polynomial in the Bézout bound. In practice, this algorithm is more efficient
than the strategy proposed in [44] and [87]. An implementation which is based on SALSA softwaresFGb
(written by J.-C. Faugère) andRS (written by F. Rouillier) is available in theRAGLib and a Magma package
based on theKronecker Magma package (written by G. Lecerf) has been developed.

This work has been accepted for presentation at the MEGA conference [27] and is submitted to Journal of
Symbolic Computation [40].

6.9. Computing roadmaps in smooth real algebraic sets
We consider here the problem of computing roadmaps in a smooth real algebraic setV. A roadmap is

an algebraic variety contained inV which has a non-empty and connected intersection with each connected
component ofV. The computation of such objects has applications in robotics (mainly in robot motion
planning) and are used to count the number of connected components of a real algebraic set or provide a
semi-algebraic description of the connected components of the considered real algebraic sets.
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Such an object can be extracted from a cylindrical algebraic decomposition but the complexity of such a
strategy is doubly exponential in the number of variables. More recent algorithms (see [48]) which follow the
geometric strategy of [54] based on the computation of some critical loci, have a complexity withinDO(n2)

arithmetic operations whereD bounds the degree of the input polynomials andn is the number of variables.
In [37], we restrict our study to the case of smooth real algebraic sets. We take advantage of the smoothness

to slightly modify the strategy proposed by Canny to avoid the introduction of some infinitesimals. Our
algorithm has a complexity withinhdDO(n) whered denotes the dimension of the algebraic set under study,
andh is an intrinsic quantity depending on the real geometry of the studied variety. In worst cases, the intrinsic
quantityh can reachDn.

This work has been done during the pre-doctoral internship of M. Mezzarobba (ENS Paris). It is submitted
to the conference TC’06.

6.10. Geometric Modeling
A collaboration with the project Vegas (LORIA) has ended to a robust and efficient algorithm to compute

a (non rational) parameterization of the intersection of two quadric surfaces. For any input, this algorithm is
nearly optimal with respect to the number of square roots to extract ([30] [31] and [32]). The contribution of
SALSA lies mainly in the management of the numerous singular or decomposed cases..

A new trend consists in devising efficient geometric algorithms using Gröbner bases and other algebraic
tools as black boxes. Two results are related to this trend. The first one is the notion of discriminant variety
(already described in this document), the second one concerns parameterized curves surfaces (and more
generally varieties).

In [20], we have shown that, to compute with real parameterized varieties, it is always better to not implic-
itize and to work directly on the parametric representation, using geometric operations, well implemented by
Gröbner bases, as black boxes.

6.11. Topology of Ridges
Given a smooth surface, a blue (red) ridge is a curve along which the maximum (minimum) principal

curvature has an extremum along its curvature line. Ridges are curves of extremal curvature and therefore
encode important informations used in segmentation, registration, matching and surface analysis. State of
the art methods for ridge extraction either report red and blue ridges simultaneously or separately, in which
case need a local orientation procedure of principal directions is needed, but no method developed so far
topologically certifies the curves reported.

In [28], on the way to developing certified algorithms independent from local orientation procedures, we
make the following fundamental contribution. For any smooth parametric surface, we exhibit the implicit
equationP = 0 of a singular curve encoding all ridges of the surface (blue and red), and show how to recover
the colors from factors ofP . Exploiting P = 0, we also derive a zero dimensional system coding the so-
called turning points, from which elliptic and hyperbolic ridge sections of the two colors can be derived.
Both contributions exploit properties of the Weingarten map of the surface and require computer algebra.
Algorithms exploiting the structure ofP for algebraic surfaces are developed in [29].

6.12. Robotics
In [18] and [19], we present some efficient tools for solving some problems in robotics. The article [18] is

mostly an introduction to some modern algorithms from computer algebra but also contains recent advances
in solving the famousDirect Kinematics Problem for parallel manipulators. We show that a judicious use of
recent algorithms likeF4 or F5 mainly reduces the problem to the study of an algebraic system depending on
3 variables. One can then obtain all the real solutions in a certified way (real character as well as accuracy)
using basic algorithms from linear algebra jointly with a multi-precision interval arithmetics.

In [19] we show how to compute efficiently a classification of 3-DOF serial manipulators by computing
discriminant varieties.
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6.13. Cryptography
The security of many cryptographic primitives depends on the difficulty of system-solving. Sometimes

primitives can be cracked if one can find a solution to an associated system of algebraic equations over a
finite field. This is known as Algebraic Cryptanalysis and is currently one of the “hot” topics in cryptography.
Unfortunately Computer Algebra tools are not known in the Crypto community; for instance the main used
algorithm for solving Algebraic Equations is the XL algorithm (Shamir, Patarin, Courtois). In [16] we have
made the proof that the XL is always slower than any algorithm for computing Groebner bases; in practice it
is much slower (by several order of magnitude) than the most efficient algorithms (F4 and F5 algorithms).

Several cryptosystems (mainly stream ciphers) have been proved very weak against algebraic attacks [14]:
for instance the boolean function used as filtered function in a stream cipher must be of high algebraic degree
in order to resist to Berlekamp-Massey attack [14]; for the algebraic point of view the most important criteria
is the minimal degree of the relations induced by the boolean function: this is what is called the algebraic
immunity of a boolean function. In [15] we give theoretical upper bound of the algebraic immunity.

Another use of multivariate polynomials in cryptography is the design of new cryptosystems (HFE, SFlash,
TTM, 2R, Quartz, IP, Cstar ...). Recently we have broken two of them:

• In [36] we present an efficient attack of theC∗ cryptosystem based on fast algorithms for computing
Gröbner basis. The attack consists in computing a Gröbner basis of the public key. The efficiency
of this attack depends strongly on the choice of the algorithm for computing the Gröbner basis: it
was possible to break the crypto-challenge 11 (proposed by Hans Dobbertinhttp://www.mystery-
twister.com/) in only 3 hours and 11 minutes of CPU time (PC Pentium 2.8 Ghz Xeon) by using
the algorithmF5 implemented in C. As a result, we recommend to increase the value of the design
parameter ton ≥ 26.

• Due to its numerous applications, the Isomorphism of Polynomial (Patarin) is one of the most fun-
damental problems in multivariate cryptography. The problem consists in recovering a particular
transformation between two sets of multivariate polynomials. In [33], we address two complemen-
tary aspects of IP: its theoretical and practical difficulty. Using classical results of groups theory, we
present an upper bound on the theoretical complexity IP-like problems. Our bound is obtained by
introducing a generic description of these From a practical point of view, we employed a fast Gröb-
ner bases algorithm (F5), for solving the corresponding algebraic system. This approach is efficient
in practice and obliges to modify the current security criteria for IP. We have indeed broken several
challenges proposed in the literature. For instance, we solved a challenge proposed by Billet and
Gilbert at Asiacryt03 in less than one second.

7. Contracts and Grants with Industry
7.1. WMI (Maple)

Participants: F. Rouillier [contact], J.-C. Faugère [contact].

A contract as been signed with the Canadian companyWaterloo Maple Incin 2005. The objective is to
integrateSALSAsoftware into one of the most well known general computer algebra system (Maple).

The basic term of the contract is of four years (renewable).

7.2. CELAR (DGA)
Participants: G. Ars, J.C. Faugère [contact].

In a first contract (finished in 2005), the objective is to evaluate, on examples of realistic size, attacks of
algebraic kind (and in particular Gröbner bases) on filtered registers (stream ciphers).

A second contract was signed in June 2005 : the goal is to study the impact of algebraic cryptanalysis on
symmetric cryptosystems like AES.

http://www.mystery-twister.com/
http://www.mystery-twister.com/
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7.3. Thales
Participants: J.C. Faugère [contact], S. Lacharte.

The objective of this research is to find solutions to speed-up the core of Gröbner bases computation
(algorithm F5 and F4) which is the linear algebra part. A CIFRE grant (S. Lacharte) is related to the contract.

7.4. International Actions
7.4.1. INRIA Associate Team "Chinese SALSA"

Chineese Salsais an associate team created in January 2006. It brings together most of the members of
SALSA and researchers from Beihang university, Beijing (university and academy of science). The general
objectives ofChinese-Salsaare mainly the same as those ofSALSA.

7.5. National Actions
7.5.1. INRIA Grant (ARC) "SILA"

The projectSILA (http://www-sop.inria.fr/apics/SILA/WebPage/) has been approved by INRIA in early
2005 for two years. It is managed by Fabrien Seifert (APICS project - INRIA Sophia Antipolis) and involves
three teams (SALSA,APICS and IRCOMM from University of Limoges).

The goal of this project is to study (synthesis and identification) hyperfrequency filters made of coupled
resonant cavities.

7.6. European Actions
7.6.1. European Network RAAG

Participants: F. Rouillier [contact], M. Safey El Din.

This project started in 2002 and will end in 2006.
The SPACES project takes part in the European project RAAG (Real Algebraic and Analytic Geometry),

F. Rouillier being involved in the applications and connection with industry item.
RAAG is a Research Training Network of the "Human Potential" program of the European Commission,

sponsored for 48 months starting from March 2002. The network is managed by the University of Passau
(Germany), the coordination of the French team being ensured by the team of real geometry and computer
algebra of the University of Rennes I.

The main goal of this project is to increase the links between the various fields of research listed in the topics
of the project (real algebraic geometry, analytical geometry, complexity, formal calculation, applications, etc.)
by means of conferences, schools and exchanges of young researchers. It brings together a great number of
European teams and in particular the majority of the French teams working in the scientific fields falling under
the topics of the project.

8. Dissemination
8.1. Scientific Animation
8.1.1. Programm Committees

• J.C. Faugère : BFCA 2005 (First Workshop on Boolean Functions : Cryptography and Applications),
CASC 2005 (International Workshop on Computer Algebra in Scientific Computing), Groebner
Bases Semester in Linz;

• F. Rouillier : JNCF 2005 (Journées Nationales de Calcul Formel), Algebraic Geometric Methods in
Engineering during the IMA Semester at University of Minessota.

http://www-sop.inria.fr/apics/SILA/WebPage/
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8.1.2. Invited lectures

• J.C. Faugère : JNRR 2005 [19], JNCF 2005 (Journées Nationales de Calcul Formel);

• D. Lazard : MEGA 2005 [22], Banff [21];

• F. Rouillier : Banff [25] - Passau [26].

8.1.3. Edition

• J.-C. Faugère and F. Rouillier are guest editors of a special issue of the Journal of Symbolic
Computation.
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