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2. Overall Objectives
2.1. Overall Objectives

Keywords: aeronautics, change detection, civil engineering, diagnostics, monitoring, on-line identification
and detection algorithms, optimal sensors placement, sensors fusion, statistical hypotheses testing, subspace-
based algorithms, system identification, vibration-based structural analysis and damage detection and local-
ization.

2.1.1. Context.
Structural Health Monitoring (SHM) is the whole process of the design, development and implementation

of techniques for the detection, localization and estimation of damages, for monitoring the integrity of
structures and machines within the aerospace, civil and mechanical engineering infrastructures [37], [52]. In
addition to these key driving application areas, SHM is now spreading over most transportation infrastructures
and vehicles, within the naval, railway and automobile domains. Examples of structures or machines to be
monitored include aircrafts, space crafts, buildings, bridges, dams, ships, offshore platforms, on-shore and
off-shore wind farms (wind energy systems), turbo-alternators and other heavy machinery,....

The emergence of stronger safety and environmental norms, the need for early decision mechanisms,
together with the widespread diffusion of sensors of all kinds, result in a thorough renewal of sensor
information processing problems. This calls for new research investigations within the sensor data (signal and
image) information processing community. In particular, efficient and robust methods for structural analysis,
non destructive evaluation, integrity monitoring, damage diagnostics and localization, are necessary for fatigue
and aging prevention, and for condition-based maintenance. Moreover, multidisciplinary research, mixing
information science, engineering science and scientific computing, is mandatory. However, most of the SHM
research investigations are conducted within mechanical, civil and aeronautical engineering departments, with
little involvement of advanced data information processing specialists.

2.1.2. Objectives.
In this context, and based on our background and results on model-based statistical identification, change

detection and vibration monitoring, our objectives are :
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• Importing knowledge from engineering communities within our model-based information process-
ing methods;

• Mixing statistical inference tools (identification, detection, rejection) with simplified models of
aerodynamical effects, thermo-dynamical or other environmental effects;

• Involving nonlinearities in the models, algorithms and proofs of performances;

• Exporting our data processing algorithms within the SHM community, based on specific training
actions, on a dedicated free Scilab toolbox, and an industrial software.

2.1.3. Industrial and academic relations.

• Multi–partners projects: at European level on exploitation of flight test data under natural excitation
conditions (FliTE2 - Eurêka), on structural assessment, monitoring and control (SAMCO - FP5
Growth),

• Academic research: national project on monitoring civil engineering structures (CONSTRUCTIF
- ACI S&I), European network on system identification (FP5 TMR), FWO research network on
identification and control.

3. Scientific Foundations
3.1. Introduction

In this section, the main features for the key monitoring issues, namely identification, detection, and
diagnostics, are provided, and a particular instantiation relevant for vibration monitoring is described.

It should be stressed that the foundations for identification, detection, and diagnostics, are fairly general, if
not generic. Handling high order linear dynamical systems, in connection with finite elements models, which
call for using subspace-based methods, is specific to vibration-based SHM. Actually, one particular feature of
model-based sensor information data processing as exercised in SISTHEM, is the combined use of black-box
or semi-physical models together with physical ones. Black-box and semi-physical models are, for example,
eigenstructure parameterizations of linear MIMO systems, of interest for modal analysis and vibration-based
SHM. Such models are intended to be identifiable. However, due to the large model orders that need to be
considered, the issue of model order selection is really a challenge. Traditional advanced techniques from
statistics such as the various forms of Akaïke criteria (AIC, BIC, MDL, ...) do not work at all. This gives raise
to new research activities specific to handling high order models.

Our approach to monitoring assumes that a model of the monitored system is available. This is a reasonable
assumption, especially within the SHM areas. The main feature of our monitoring method is its intrinsic ability
to the early warning of small deviations of a system with respect to a reference (safe) behavior under usual
operating conditions, namely without any artificial excitation or other external action. Such a normal behavior
is summarized in a reference parameter vectorθ0, for example a collection of modes and mode-shapes.

3.2. Identification
Keywords: adaptive estimation, estimating function, recursive estimation.

See module6.1.
The behavior of the monitored continuous system is assumed to be described by a parametric model

{Pθ , θ ∈ Θ}, where the distribution of the observations (Z0, ..., ZN ) is characterized by the parameter
vectorθ ∈ Θ. An estimating function, for example of the form :

KN (θ) = 1/N
N∑

k=0

K(θ,Zk)
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is such thatEθ[KN (θ)] = 0 for all θ ∈ Θ. In many situations,K is the gradient of a function to be minimized :
squared prediction error, log-likelihood (up to a sign), .... For performing model identification on the basis of
observations(Z0, ..., ZN ), an estimate of the unknown parameter is then [40] :

θ̂N = arg{θ ∈ Θ : KN (θ) = 0}

Assuming thatθ∗ is the true parameter value, and thatEθ∗ [KN (θ)] = 0 if and only if θ = θ∗ with θ∗ fixed
(identifiability condition), then̂θN converges towardsθ∗. >From the central limit theorem, the vectorKN (θ∗)
is asymptotically Gaussian with zero mean, with covariance matrixΣ which can be either computed or
estimated. If, additionally, the matrixJN = −Eθ∗ [K′

N (θ∗)] is invertible, then using a Taylor expansion and
the constraintKN (θ̂N ) = 0, the asymptotic normality of the estimate is obtained :

√
N (θ̂N − θ∗) ≈J−1

N

√
N KN (θ∗)

In many applications, such an approach must be improved in the following directions :

• Recursive estimation:the ability to computêθN+1 simply from θ̂N ;

• Adaptive estimation:the ability totrack the true parameterθ∗ when it is time-varying.

3.3. Detection
Keywords: local approach, residual evaluation, residual generation.

See module6.4.
Our approach to on-board detection is based on the so-called asymptotic statistical local approach, which

we have extended and adapted [6], [5], [2]. It is worth noticing that these investigations of ours have been
initially motivated by a vibration monitoring application example. It should also be stressed that, as opposite
to many monitoring approaches, our method does not require repeated identification for each newly collected
data sample.

For achieving the early detection of small deviations with respect to the normal behavior, our approach
generates, on the basis of the reference parameter vectorθ0 and a new data record, indicators which
automatically perform :

• The early detection of a slight mismatch between the model and the data;

• A preliminary diagnostics and localization of the deviation(s);

• The tradeoff between the magnitude of the detected changes and the uncertainty resulting from the
estimation error in the reference model and the measurement noise level.

These indicators are computationally cheap, and thus can be embedded. This is of particular interest in some
applications, such as flutter monitoring, as explained in module4.4.

As in most fault detection approaches, the key issue is to design aresidual, which is ideally close to zero
under normal operation, and has low sensitivity to noises and other nuisance perturbations, but high sensitivity
to small deviations, before they develop into events to be avoided (damages, faults, ...). The originality of our
approach is to :

• Designthe residual basically as aparameter estimating function,

• Evaluatethe residual thanks to a kind of central limit theorem, stating that the residual is asymptot-
ically Gaussian and reflects the presence of a deviation in the parameter vector through a change in
its own mean vector, which switches from zero in the reference situation to a non-zero value.
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This is actually a strong result, which transforms any detection problem concerning a parameterized
stochasticprocessinto the problem of monitoring the mean of a Gaussianvector.

The behavior of the monitored system is again assumed to be described by a parametric model
{Pθ , θ ∈ Θ}, and the safe behavior of the process is assumed to correspond to the parameter valueθ0. This
parameter often results from a preliminary identification based on reference data, as in module3.2.

Given a newN -size sample of sensors data, the following question is addressed :Does the new sample
still correspond to the nominal modelPθ0 ? One manner to address this generally difficult question is the
following. The asymptotic local approach consists in deciding between the nominal hypothesis and aclose
alternative hypothesis, namely :

(Safe)H0 : θ = θ0 and (Damaged)H1 : θ = θ0 + η/
√

N (1)

whereη is an unknown but fixed change vector. A residual is generated under the form :

ζN = 1/
√

N
N∑

k=0

K(θ0, Zk) =
√

N KN (θ0) . (2)

If the matrixJN = −Eθ0 [K
′
N (θ0)] converges towards a limitJ, then the central limit theorem shows [35] that

the residual is asymptotically Gaussian :

ζN
N →∞

→


N(0,Σ) under Pθ0 ,

N(J η, Σ) under Pθ0+η/
√

N ,

where the asymptotic covariance matrixΣ can be estimated, and manifests the deviation in the parameter
vector by a change in its own mean value. Then, deciding betweenη = 0 andη 6= 0 amounts to compute the
following χ2-test, provided thatJ is full rank andΣ is invertible :

χ2 = ζ
T

F−1 ζ ≷ λ . (3)

where

ζ
∆= JT Σ−1 ζN and F ∆= JT Σ−1 J (4)

With this approach, it is possible to decide, with a quantifiable error level, if a residual value is significantly
different from zero, for assessing whether a fault/damage has occurred. It should be stressed that the residual
and the sensitivity and covariance matricesJ andΣ can be evaluated (or estimated) for the nominal model.
In particular, it isnot necessary to re-identify the model, and the sensitivity and covariance matrices can be
pre-computed off-line.
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3.4. Diagnostics
Keywords: diagnostics, isolation.

See modules6.5and6.4.
A further monitoring step, often calledfault isolation, consists in determining which (subsets of) compo-

nents of the parameter vectorθ have been affected by the change. Solutions for that are now described. How
this relates to diagnostics is addressed afterwards.

3.4.1. Isolation.
The question:which (subsets of) components ofθ have changed ?, can be addressed using either nuisance

parameters elimination methods or a multiple hypotheses testing approach [32]. Here we only sketch two
intuitively simple statistical nuisance elimination techniques, which proceed by projection and rejection,
respectively.

The fault vectorη is partitioned into an informative part and a nuisance part, and the sensitivity matrix
J, the Fisher information matrixF = JT Σ−1 J and the normalized residualζ = JT Σ−1 ζN are partitioned
accordingly

η =
(

ηa

ηb

)
, J =

(
Ja Jb

)
, F =

(
Faa Fab

Fba Fbb

)
, ζ =

(
ζa

ζb

)
.

A rather intuitive statistical solution to the isolation problem, which can be calledsensitivityapproach, consists
in projecting the deviations inη onto the subspace generated by the componentsηa to be isolated, and deciding
betweenηa = ηb = 0 andηa 6= 0, ηb = 0. This results in the following test statistics :

ta = ζ
T

a F−1
aa ζa , (5)

whereζa is the partial residual (score). Ifta ≥ tb, the component responsible for the fault is considered to be
a rather thanb.

Another statistical solution to the problem of isolatingηa consists in viewing parameterηb as a nuisance,
and using an existing method for inferring part of the parameters while ignoring and being robust to the
complementary part. This method is calledmin-max approach. It consists in replacing the nuisance parameter
componentηb by its least favorable value, for deciding betweenηa = 0 andηa 6= 0, with ηb unknown. This
results in the following test statistics :

t∗a = ζ
∗ T

a F∗−1
a ζ

∗
a , (6)

where ζ
∗
a

∆= ζa − Fab F−1
bb ζb is the effective residual (score) resulting from the regression of the

informative partial scoreζa over the nuisance partial scoreζb, and where the Schur complement
F∗

a = Faa − Fab F−1
bb Fba is the associated Fisher information matrix. Ift∗a ≥ t∗b , the component re-

sponsible for the fault is considered to bea rather thanb.
The properties and relationships of these two types of tests are investigated in [30].

3.4.2. Diagnostics.
In most SHM applications, a complex physical system, characterized by a generally non identifiable

parameter vectorΦ has to be monitored using a simple (black-box) model characterized by an identifiable
parameter vectorθ. A typical example is the vibration monitoring problem in module4.2, for which complex
finite elements models are often available but not identifiable, whereas the small number of existing sensors
calls for identifying only simplified input-output (black-box) representations. In such a situation, two different
diagnosis problems may arise, namely diagnosis in terms of the black-box parameterθ and diagnosis in terms
of the parameter vectorΦ of the underlying physical model.

The isolation methods sketched above are possible solutions to the former. Our approach to the latter
diagnosis problem is basically a detection approach again, and not a (generally ill-posed) inverse problem
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estimation approach [4]. The basic idea is to note that the physical sensitivity matrix writesJ JΦθ, whereJΦθ

is the Jacobian matrix atΦ0 of the applicationΦ 7→ θ(Φ), and to use the sensitivity test (5) for the components
of the parameter vectorΦ. Typically this results in the following type of directional test :

χ2
Φ = ζT Σ−1 J JΦθ (JT

Φθ JT Σ−1 J JΦθ)−1 JT
Φθ JT Σ−1 ζ ≷ λ . (7)

It should be clear that the selection of a particular parameterizationΦ for the physical model may have a non
negligible influence on such type of tests, according to the numerical conditioning of the Jacobian matrices
JΦθ.

As a summary, the machinery in modules3.2, 3.3 and 3.4 provides us with a generic framework for
designing monitoring algorithms for continuous structures, machines and processes. This approach assumes
that a model of the monitored system is available. This is a reasonable assumption within the field of
applications described in module4.2, since most mechanical processes rely on physical principles which
write in terms of equations, providing us with models. These importantmodelingandparameterizationissues
are among the questions we intend to investigate within our research program.

The key issue to be addressed within each parametric model class is the residual generation, or equivalently
the choice of theparameter estimating function.

3.5. Subspace-based identification and detection
Keywords: Hankel matrix factorization, covariance-driven subspace-based algorithms.

See module6.4.
For reasons closely related to the vibrations monitoring applications described in module4.2, we have been

investigating subspace-based methods, for both the identification and the monitoring of the eigenstructure
(λ,ϕλ) of the state transition matrixF of a linear dynamical state-space system :{

Xk+1 = F Xk + Vk+1

Yk = H Xk
, (8)

namely the(λ,φλ) defined by :

det (F − λ I) = 0, (F − λ I) ϕλ = 0, φλ
∆= H ϕλ (9)

The (canonical) parameter vector in that case is :

θ
∆=

(
Λ

vecΦ

)
(10)

whereΛ is the vector whose elements are the eigenvaluesλ, Φ is the matrix whose columns are theφλ’s, and
vec is the column stacking operator.

Subspace-based methods is the generic name for linear systems identification algorithms based on either
time domain measurements or output covariance matrices, in which different subspaces of Gaussian random
vectors play a key role [51]. A contribution of ours, minor but extremely fruitful, has been to write the output-
only covariance-driven subspace identification method under a form which involves a parameter estimating
function, from which we define aresidual adapted to vibration monitoring[1]. This is explained next.

3.5.1. Covariance-driven subspace identification.
Let Ri

∆= E
(
Yk Y T

k−i

)
and:
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Hp+1,q
∆=


R0 R1

... Rq−1

R1 R2

... Rq

...
...

...
...

Rp Rp+1

... Rp+q−1


∆= Hank (Ri) (11)

be the output covariance and Hankel matrices, respectively; and:G
∆= E

(
XkY T

k

)
Direct computations of

theRi’s from the equations (8) lead to the well known key factorizations :

Ri = HF iG
Hp+1,q = Op+1(H,F ) Cq(F,G) (12)

where:

Op+1(H,F ) ∆=


H
HF
...
HF p

 and Cq(F,G) ∆=(G FG · · · F q−1G)

are the observability and controllability matrices, respectively. The observation matrixH is then found in the
first block-row of the observability matrixO. The state-transition matrixF is obtained from the shift invariance
property ofO. The eigenstructure(λ,ϕλ) then results from (9).

Since the actual model order is generally not known, this procedure is run with increasing model orders.

3.5.2. Model parameter characterization.
Choosing the eigenvectors of matrixF as a basis for the state space of model (8) yields the following

representation of the observability matrix:

Op+1(θ) =


Φ
Φ∆
...
Φ∆p

 (13)

where∆ ∆= diag(Λ), andΛ andΦ are as in (10). Whether a nominal parameterθ0 fits a given output covariance
sequence(Rj)j is characterized by [1]:

Op+1(θ0) and Hp+1,q have the same left kernel space. (14)

This property can be checked as follows. From the nominalθ0, computeOp+1(θ0) using (13), and perform
e.g. a singular value decomposition (SVD) ofOp+1(θ0) for extracting a matrixU such that:

UT U = Is and UT Op+1(θ0) = 0 (15)

Matrix U is not unique (two such matrices relate through a post-multiplication with an orthonormal matrix),
but can be regarded as a function ofθ0. Then the characterization writes:

U(θ0)T Hp+1,q = 0 (16)

3.5.3. Residual associated with subspace identification.
Assume now thata referenceθ0 and a new sampleY1, · · · , YN are available.For checking whether the data

agree withθ0, the idea is to compute the empirical Hankel matrixĤp+1,q:



8 Activity Report INRIA 2005

Ĥp+1,q
∆= Hank

(
R̂i

)
, R̂i

∆= 1/(N − i)
N∑

k=i+1

Yk Y T
k−i (17)

and to define the residual vector:

ζN (θ0)
∆=
√

N vec
(
U(θ0)T Ĥp+1,q

)
(18)

Let θ be the actual parameter value for the system which generated the new data sample, andEθ be the
expectation when the actual system parameter isθ. From (16), we know thatζN (θ0) has zero mean when no
change occurs inθ, and nonzero mean if a change occurs. ThusζN (θ0) plays the role of a residual.

It is our experience that this residual has highly interesting properties, both for damage detection [1] and
localization [4], and for flutter monitoring [10].

3.5.4. Other uses of the key factorizations.
Factorization (3.5.1) is the key for a characterization of the canonical parameter vectorθ in (10), and for

deriving the residual. Factorization (12) is also the key for :

• Proving consistency and robustness results [28];

• Designing an extension of covariance-driven subspace identification algorithm adapted to the pres-
ence and fusion of non-simultaneously recorded multiple sensors setups [7];

• Proving the consistency and robustness of this extension [8];

• Designing various forms ofinput-output covariance-driven subspace identification algorithms
adapted to the presence of both known inputs and unknown excitations [11].

4. Application Domains
4.1. Introduction

In this section, the problems we are faced with vibration-based monitoring and within our two major
application domains are briefly described.

4.2. Vibrations-based monitoring
Keywords: mechanical structure, modal analysis, subspace–based method, vibrations.

See modules3.5, 6., 7.1and8.1.
Detecting and localizing damages for monitoring the integrity of structural and mechanical systems is a topic

of growing interest, due to the aging of many engineering constructions and machines and to increased safety
norms. Many current approaches still rely on visual inspections orlocal non destructive evaluations performed
manually. This includes acoustic, ultrasonic, radiographic or eddy-current methods; magnet or thermal field
techniques,.... These experimental approaches assume ana priori knowledge and the accessibility of a
neighborhood of the damage location. Automaticglobal vibration-based monitoring techniques have been
recognized to be useful alternatives to those local evaluations [37]. However this has led to actual damage
monitoring systems only in the field of rotating machines.

A common feature of the structures to be monitored (e.g. civil engineering structures subject to hurricanes
or earthquakes, but also swell, wind and rain; aircrafts subject to strength and turbulences,...) is the following.
These systems are subject to both fast and unmeasured variations in their environment and small slow
variations in their vibrating characteristics. The available data (measurements from e.g. strain gauges or
accelerometers) do not separate the effects of the external forces from the effect of the structure. The external
forces vary more rapidly than the structure itself (fortunately !), damages or fatigues on the structure are of
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interest, while any change in the excitation is meaningless. Expert systems based on a human-like exploitation
of recorded spectra can hardly work in such a case : the changes of interest (1% in eigenfrequencies) are
visible neither on the signals nor on their spectra. A global health monitoring method must rather rely on a
model which will help in discriminating between the two mixed causes of the changes that are contained in
the measurements.

Classical modal analysis and vibration monitoring methods basically process data registered either on test
beds or under specific excitation or rotation speed conditions. However there is a need for vibration monitoring
algorithms devoted to the processing of data recorded in-operation, namely during the actual functioning of
the considered structure or machine, without artificial excitation, speeding down or stopping.

Health monitoring techniques based on processing vibration measurements basically handle two types of
characteristics: thestructural parameters(mass, stiffness, flexibility, damping) and themodal parameters
(modal frequencies, and associated damping values and mode-shapes); see [48] and references therein. A
central question for monitoring is to computechangesin those characteristics and to assess theirsignificance.
For the frequencies, crucial issues are then: how to compute the changes, to assess that the changes are
significant, to handlecorrelationsamong individual changes. A related issue is how to compare the changes
in the frequencies obtained from experimental data with the sensitivity of modal parameters obtained from
an analytical model. Furthermore, it has been widely acknowledged that, whereas changes in frequencies
bear useful information for damagedetection, information on changes in (the curvature of) mode-shapes
is mandatory for performing damagelocalization. Then, similar issues arise for the computation and the
significance of the changes. In particular, assessing the significance of (usually small) changes in the mode-
shapes, and handling the (usually high) correlations among individual mode-shape changes are still considered
as opened questions [48], [37].

Controlling the computational complexity of the processing of the collected data is another standard
monitoring requirement, which includes a limited use of an analytical model of the structure. Moreover, the
reduction from the analytical model to the experimental model (truncated modal space) is known to play a key
role in the success of model-based damage detection and localization.

The approach which we have been developing, based on the foundations in modules3.2–3.5, aims at
addressing all the issues and overcoming the limitations above.

4.3. Civil engineering
See modules3.5, 6.1, 6.5and8.1.
Civil engineering is a currently renewing scientific research area, which can no longer be restricted to

the single mechanical domain, with numerical codes as its central focus. Recent and significant advances
in physics and physical chemistry have improved the understanding of the detailed mechanisms of the
constitution and the behavior of various materials (see e.g. the multi-disciplinary general agreement CNRS-
Lafarge). Moreover, because of major economical and societal issues, such as durability and safety of
infrastructures, buildings and networks, civil engineering is evolving towards a multi-disciplinary field,
involving in particular information sciences and technologies and environmental sciences.

These last ten years, monitoring the integrity of the civil infrastructure has been an active research topic,
including in connected areas such as automatic control, for mastering either the aging of the bridges, as in
America (US, Canada) and Great Britain, or the resistance to seismic events and the protection of the cultural
heritage, as in Italy and Greece. The research effort in France seems to be more recent, maybe because a
tendency of long term design without fatigue oriented inspections, as opposite to less severe design with
planned mid-term inspections. One of the current thematic priorities of the Réseau de Génie Civil et Urbain
(RGCU) is devoted to constructions monitoring and diagnostics. The picture in Asia (Japan, and also China) is
somewhat different, in that the demand for automatic data processing for global SHM systems is much higher,
because recent or currently built bridges are equipped with hundreds if not thousands of sensors, in particular
the Hong Kong-Shenzen Western Corridor and Stonecutter Bridge projects.
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Among the challenges for vibration-based bridges health monitoring, two major issues are the different
kinds of (non measured) excitation sources and the environmental effects [49]. Typically the traffic onand
under the bridge, the wind and also the rain, contribute to excite the structure, and influence the measured
dynamics. Moreover, the temperature is also known to affect the eigenfrequencies and mode-shapes, to an
extent which is significant w.r.t. the deviations to be monitored. This is addressed in module6.5.

4.4. Aeronautics
See modules3.5, 6.1, 6.4and7.1.
The aging of aerospace structures is a major current concern of civilian and military aircraft operators.

Another key driving factor for SHM is to increase the operation and support efficiency of an air vehicle fleet.
A SHM system is viewed as a component of a global integrated vehicle health management (IVHM) system.
An overview of the users needs can be found in [33].

Improved safety and performance and reduced aircraft development and operating costs are other major
concerns. One of the critical design objectives is to clear the aircraft from unstable aero-elastic vibrations
(flutter) in all flight conditions. This requires a careful exploration of the dynamical behavior of the structure
subject to vibration and aero-servo-elastic forces. This is achieved via a combination of ground vibration tests
and in-flight tests. For both types of tests, various sensors data are recorded, and modal analyses are performed.
Important challenges of the in-flight modal analyses are the limited choices for measured excitation inputs, and
the presence of unmeasured natural excitation input (turbulence). A better exploitation of flight test data can
be achieved by using output-only system identification methods, which exploits data recorded under natural
excitation conditions (e.g., turbulent), without resorting to artificial control surface excitation and other types
of excitation inputs [11].

A crucial issue is to ensure that the newly designed airplane is stable throughout its operating range.
A critical instability phenomenon, known under the name of“aero-elastic flutter, involves the unfavorable
interaction of aerodynamic, elastic, and inertia forces on structures to produce an unstable oscillation that
often results in structural failure”[41]. For preventing from this phenomenon, the airplane is submitted to a
flight flutter testing procedure, with incrementally increasing altitude and airspeed. The problem of predicting
the speed at which flutter can occur is usually addressed with the aid of identification methods achieving
modal analysis from the in-flight data recorded during these tests. The rationale is that the damping coefficient
reflects the rate of increase or decrease in energy in the aero-servo-elastic system, and thus is a relevant
measure of stability. Therefore, while frequencies and mode-shapes are usually the most important parameters
in structural analysis, the most critical ones in flutter analysis are the damping factors, for some critical modes.
The mode-shapes are usually not estimated for flutter testing.

Until the late nineties, most approaches to flutter clearance have led todata-basedmethods, processing
different types of data. Acombined data-based and model-basedmethod has been introduced recently under
the name of flutterometer. Based on an aero-elastic state-space model and on frequency-domain transfer
functions extracted from sensor data under controlled excitation, the flutterometer computes on-line a robust
flutter margin using theµ-method for analyzing the worst case effects of model uncertainty. In recent
comparative evaluations using simulated and real data [36], [42], several data-based methods are shown to
fail in accurately predicting flutter when using data from low speed tests, whereas the flutterometer turns out
not to converge to the true flutter speed during envelope expansion, due to inherent conservative predictions.

Algorithms achieving theon-line in-flightexploitation of flight test data are expected to allow a more direct
exploration of the flight domain, with improved confidence and reduced costs. Among other challenges, one
important issue to be addressed on-line is the flight flutter monitoring problem, stated as the problem of
monitoring some specific damping coefficients. On the other hand, it is known, e.g. from Cramer-Rao bounds,
that damping factors are difficult to estimate accurately. For improving the estimation of damping factors, and
moreover for achieving this in real-time during flight tests, one possible although unexpected route is to rely
on detection algorithms able to decide whether some damping factor decreases below some critical value or



Team sisthem 11

not. The rationale is that detection algorithms usually have a much shorter response time than identification
algorithms. This is addressed in module6.4.

5. Software
5.1. COSMAD: Modal analysis and health monitoring Scilab toolbox

Keywords: Scilab, damage detection, damage localization, identification, input-output identification, modal
diagnosis, optimal sensor positioning, output-only identification, sensor fusion, subspace-based identification,
vibration monitoring.

Participants: Laurent Mevel [corresponding person], Maurice Goursat, Auguste Sam.

With the help of Yann Veillard and Auguste Sam, engineers, Laurent Mevel and Maurice Goursat have
developed a Scilab toolbox devoted to modal analysis and vibration monitoring of structures or machines
subjected to known or ambient (unknown) excitation [45], [44].

This software (COSMAD 3.1.1) has been registered at the APP under the number
IDDN.FR.001.210011.000.S.A.2003.000.20700

and can be down-loaded fromhttp://www.irisa.fr/sisthem/cosmad/. This toolbox performs the following
tasks :

• Output-only (O/O) subspace-based identification, working batch-wise, see modules3.5, 6.1and7.1.
The problem is to identify the eigenstructure (eigenvalues and observed components of the associated
eigenvectors) of the state transition matrix of a linear dynamical system, using only the observation
of some measured outputs summarized into a sequence of covariance matrices corresponding to
successive time shifts. An overview of this method can be found in [3].

• Input-output (I/O) subspace-based identification, working batch-wise, see modules3.5, 6.1and7.1.
The problem is again to identify the eigenstructure, but now using the observation of some measured
inputs and outputs summarized into a sequence of cross-covariance matrices. This method is
described in [11].

• Automatic subspace-based modal analysis, a pre-tuned version of the O/O and I/O identification
methods above. This is described in [45].

• Automated on-line identification package, see modules3.2, 3.5 and 6.1. The main question is to
react to non stationarities and fluctuations in the evolution of the modes, especially the damping.
The developed package allows the extraction of such modes using a graphical interface allowing
to follow the evolution of all frequencies and damping over time and to analyze their stabilization
diagram (from which they were extracted). Automated modal extraction is performed based on the
automated analysis and classification of the stabilization diagram. For this method, see [46], [47]
and [19], [20], [21], [24].

• Automatic recursive subspace-based modal analysis, a sample point-wise version of the O/O and
I/O identification algorithms above. For this method, see [39].

• Subspace-based identification through moving sensors data fusion, see modules3.2 and3.5. The
problem is to identify the eigenstructure based on a joint processing of signals recorded at different
time periods, under different excitations, and with different sensors pools. The key principles are
described in [7] and a consistency result can be found in [8].

• Damage detection, working batch-wise, see modules3.3, 3.5, and4.2. Based on vibrations measure-
ments processing, the problem is to perform early detection of small deviations of the structure w.r.t.
a reference behavior considered as normal. Such an early detection of small deviations is manda-
tory for fatigue prevention. The algorithm confronts a new data record, summarized by covariance
matrices, to a reference modal signature. The method is described in [1], [4].

http://www.irisa.fr/sisthem/cosmad/
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• Damage monitoring, a sample point-wise version of the damage detection algorithm above. This is
described in [43].

• On-line flutter onset detection, see modules3.3, 3.5, 4.2 and6.4. This algorithm detects that one
damping coefficient crosses a critical value from above. For this method see [10], [22]. An extension
to detect if some subset of the whole modal parameter vector varies with respect to a threshold value,
applies directly to monitoring the evolution of a set of frequencies or a set of damping coefficients
with respect to their reference values [22], [23].

• Modal diagnosis, working batch-wise, see modules3.4, 3.5, and4.2. This algorithm finds the modes
the most affected by the detected deviation. For this method, see [4].

• Damage localization, see modules3.4, 3.5and4.2. The problem is to find the part of the structure,
and the associated structural parameters (e.g. masses, stiffness coefficients), which have been
affected by the damage. We state and solve this problem as a detection problem, and not an (ill-
posed) inverse estimation problem. This is explained in [4].

• Optimal sensor positioning for monitoring. At the design stage of the monitoring system, a criterion
is computed, which quantifies the relevance of a given sensor number and positioning for the purpose
of structural health monitoring. For this criterion, see the articles [31], [29].

The modules have been tested by different partners, especially the French industrial partners, EADS,
Dassault and Sopemea, within the FliTE project, see module7.1, and bilateral contracts. Based on intensive
internal evaluation of the toolbox, on both simulated and real data sets, EADS Launch Vehicles and CNES are
currently investigating how to use the toolbox for the exploitation of the next Ariane 5 flight data sets.

This Scilab toolbox continues to play the role of a programming and development environment for all our
newly designed algorithms. Moreover, offering amaintainedScilab platform turns out to be a crucial factor in
convincing industrial partners to undergo joint investigations with us.

6. New Results
6.1. Eigenstructure identification

Keywords: automated identification, input-output identification, modal analysis, output-only identification,
subspace–based method.

Participants: Michèle Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel, Nimish Sharma.

See modules3.2, 3.5, 4.2. 7.1.

6.1.1. Input/output versus output-only subspace identification.
Output-only and input/output covariance-driven subspace identification methods have been investigated

from both theoretical and experimental points of view. Robustness to nonstationary excitation and convergence
of input/output covariance subspace methods have been analyzed [11]. The merits of input/output and output-
only approaches have been evaluated from different case studies. It has been shown that the performance of
output-only methods approaches input/output methods efficiency when the sample size increases and/or when
the extraction of modes from stabilization diagrams is performed with care [19], [20], [11].

6.1.2. Consistency of subspace identification methods.
This is the major theoretical result of the team this year.
Theoretical work has been performed to prove consistency of the most well known subspace approaches un-

der non stationary excitation. It has been proved that subspace approaches, either output-only or input/output,
should they be covariance, data or frequency driven, can be expressed and studied in a general framework.
General consistency theorems encompassing this framework have been proved. This work has been submitted
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for publication in an international journal [28]. A reduced version, focussed on output-only methods, has been
accepted for presentation at CDC-ECC 2005, Seville [16].

6.1.3. Automated modal analysis.
Different case studies have been performed to test the capacity and robustness of the on-line monitoring

method implemented in the COSMAD toolbox, see module5.1. In particular, a four hours long dataset from
the Bradford Stadium, an international benchmark, has been processed [19]. The results of this analysis will
be submitted to a special issue of an international journal. Other data from a music concert scenario have been
processed, and the results will presented at IMAC’06 [21].

The COSMAD toolbox has been extended to frequency-based methods. Both forward and backward
frequency domain subspace methods [34] and Polymax algorithms [50] have been implemented in both
interactive and on-line forms.

Automated extraction of modes and mode-shapes from stabilization diagrams in both interactive or online
form have been addressed. The previous approach was considered to be too exhaustive and computationally
expensive. The extraction of alignments has been refined to avoid poles redundancy. As a result, the automated
modes extraction time is now negligible with respect to the estimation time, whereas previously it was of
comparable order of magnitude.

These last two achievements are due to Fabien Raugi, ENSEEIHT student.

6.1.4. Recursive Kalman and particle filtering estimation.
Likelihood-based recursive algorithms [39] have been shown to be able to adapt to parameter changes at

a sample-wise level. The objective of the current work is to extend these results to high order models from
realistic civil aeronautic structures. This is a joint work between Laurent Mevel and Fabien Campillo from the
ASPI project–team.

It has been shown that Kalman based recursive estimation algorithms can be computed effectively using
particular filtering techniques. The algorithm for both the Kalman and particular approaches have been exposed
in a paper to be presented at CDC-ECC’05 [17]. The main idea for both approaches is to write the recursive
score (derivative of the likelihood function) based on the recursive computation of the prediction filter and
its derivative. Expressions have been obtained in the linear case for the Kalman filters and their associated
particular filtering filters.

The implementation and simulations studies have been handled by Nimish Sharma during his internship.
The work has focused on evaluating which is the best parameterization among the complex poles and the fre-
quency/damping coefficients. It has been shown by Monte Carlo studies that, although both parameterizations
are in one-to-one correspondence, estimating the poles is a much simpler task that finding good estimates for
the dampings. Monte Carlo studies have shown that the confidence intervals on dampings can be quite high,
even when the corresponding poles are well estimated [17].

6.1.5. Time series simulation.
Being able to generate large time series is critical for many of our applications. Extensions and variants of

our time series simulator (see 2004 activity report) have been built and tested, from the crudest linear recursion
white noise simulator up to a FRF driven time series simulator. This simulator has been a key tool for many
application cases this year, including flutter case generation [22], time series simulation from FRF at specific
temperatures [27], and time series simulation for model validation [24], [25]. A time series simulator has been
programmed and will be included in the Scilab toolbox when the GUI is completed.

6.2. Change/damage detection, isolation, and diagnostics
Keywords: CUSUM algorithms, change detection, nuisance parameters.

Participants: Michèle Basseville, Maurice Goursat, Laurent Mevel, Houssein Nasser.

See modules3.3, 3.4and6.4.
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6.2.1. Null space computation for subspace-based detection.
The subspace-based residual has been initially introduced as in (18), namely with a parametric left kernel

U(θ0) computed as displayed in (15). It turns out that it some cases it may be of interest to compute an
empirical left kernel, based only on a reference dataset, and not on a reference signature. Performing a SVD
of the empirical Hankel matrix built on the reference dataset provides us with such an empirical kernel. Such
an approach is used e.g. in [38], [53].

When multiple reference datasets are available, as e.g. when handling the temperature effect, see module6.5,
a global empirical Hankel matrix is computed by averaging the empirical Hankel matrices corresponding to
each reference dataset, and a global empirical left kernel can then be computed as above.

6.2.2. FRF driven subspace-based detection.
The damage detection test has been adapted to the (common) case where the available inputs are frequency

response functions (FRF), and not time series data. Recall that the test relies on a residual (18), in which the
Hankel matrix is filled with delayed covariances matrices. When the available measurements are FRF, it is
possible to compute correlation matrices from the impulse response functions (IRF), which result from the
inverse Fourier transform of the FRF. This new version of the test has been used for monitoring changes in the
parameters due to temperature changes in an engine oil pan made of plastic composite material [27].

6.2.3. Change detection.
For the sake of better diffusion of our approach within the SHM community, some lessons have been

outlined from the theory and practice of the statistical model-based change detection methodology, when
investigating real fault and/or damage detection problems [13]. An emphasis has been put on the CUSUM
algorithm, the introduction of a minimum change magnitude, and the cautious selection of a monitoring
function (residual).

6.2.4. Adaptation in CUSUM algorithms.
Michèle Basseville has been invited to discuss a paper on the use of sequential change-point methods for

detecting intrusions and other denial of services attacks in information systems. The discussion mainly ad-
dresses three issues: introducing a minimum change magnitude, adaptation and tuning of CUSUM algorithms,
and processing binary quantized data [9].

6.2.5. Handling nuisance parameters.
Pursuing the work in [32], an investigation has focused on the handling of nuisance parameters in systems

monitoring [15]. Classical tools have been reviewed, three statistical approaches discussed: invariant tests,
GLR tests and minimax tests, and how to use these approaches for hypotheses testing and on-line change
detection addressed. This is a joint work between Michèle Basseville and Igor Nikiforov from U. Techn.
Troyes.

6.3. Model validation
Keywords: modal analysis, model validation, subspace–based method.

Participants: Michèle Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel.

See modules3.3, 3.5, 4.2.
The main problem for identification techniques in general is to obtain confidence intervals, and more

generally to assess information about some previous identification techniques output. This problem is also
known as the model validation problem. It can be seen as a first step before doing any damage detection test,
because damage detection techniques, should they be identification driven or (better) model driven, need to
be fed with a reference signature, which must be as close as possible to the reference data. So, obtaining the
best identified signature is required both as the output of the identification procedure and as the input of any
damage detection procedure.
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This year, two different techniques have been investigated to assess the quality of an identified modal
signature. Both methods are based on the damage detection test, see module3.5. Whereas for damage detection
the subspace-based residual (18) is computed for a fixed parameterized kernelU(θ) corresponding to a given
signature, in the present case of model validation the residual is computed for a modified parameterized
kernel U(θ) corresponding to a collection of modified signatures to be validated on a fixed data set. The
modification of the kernel around its nominal value and its impact on the test do assess the quality of the
identified modal signature.

The first method is based on the simulation of a dataset associated with the reference model in order to
compute the Jacobian and covariance matrices of the test (3)-(4) under the null hypothesis.

The second method computes the Jacobian and covariance matrices from the test dataset. This method is
also candidate for performing damage detection for highly non stationary datasets, this will be the work of
further research.

Both methods compute exactly the same residual. The only difference is in the computation of the Jacobian
and covariance matrices. The resulting difference in the test behavior still points out that the most difficult part
of the test computation is the estimation of the those two matrices, and not the computation of the residual
itself.

Both methods have been accepted for presentation [24], [25]. A tutorial on model validation is also accepted
for presentation at IMAC’06 [14].

6.4. Flutter monitoring and onset detection
Keywords: CUSUM test, aeronautical structure, flutter, modal analysis, subspace-based residual.

Participants: Michèle Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel, Rafik Zouari.

See modules3.3, 3.5, 4.4and7.1.
In a previous study, we have investigated the flutter monitoring problem see modules4.4 and7.1, stated

as a statistical hypotheses testing problem regarding a specified damping coefficient which crosses a critical
value from above. In [10], we have advocated for an on–line test built on a sample-wise temporal data-driven
computation for the subspace–based residual (18), a non-local approximation for that residual (different from
the local approximation in module3.4), and the cumulative sum (CUSUM) test [5], see also module6.2.

Whereas in [10] the test is experimented on a real dataset, further numerical investigations on simulated data
are reported in [22]. The on–line flutter monitoring algorithm has been shown to work for any modal parameter
(frequency or damping). It has also been extended to simultaneous multiple modes monitoring. The effects of
the modes cross-correlation and of the tuning parameters on the test performances have been investigated.

Work is ongoing to understand what is the best parameterization for flutter monitoring during flight tests.
Since damping values may be highly influenced by frequency fluctuations, a parameterization in terms of
frequencies and damping coefficients is not the best one. The more realistic problem of monitoring two pairs of
eigenfrequencies and damping coefficients subject to specific time variations is currently investigated. >From
the physics of the flutter phenomenon, it may be assumed indeed that two modes evolve until super-imposition
at an unknown time instant. Both individual tests, monitoring separately either each of those four parameters or
some convenient re-parameterizations, and joint tests, monitoring either each of the four possible pairs or each
of the re-parameterized pairs, are being experimented. Actually, because of the super-imposition, monitoring
the difference in the two frequencies is relevant as well. This work has been submitted for presentation at
SYSID’06 in an invited session organized by M. Basseville, see module9.2.

None of these approaches uses any model of the underlying physical phenomenon. The aim of the doctoral
thesis of Rafik Zouari is to investigate the use of (reduced) aero-servo-elastic models for the design of flutter
detection tests, and calibrate the trade-off between complexity, efficiency and robustness of the resulting
algorithm. This is done within the framework of FliTE2, in particular in collaboration with J. Cooper, U.
Manchester, see module7.1.
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6.5. Analyzing and handling the temperature effect
Keywords: civil engineering structures, modal analysis, temperature effect.

Participants: Michèle Basseville, Maurice Goursat, Laurent Mevel, Houssein Nasser.

See modules3.4, 3.5, 4.3and8.1.

6.5.1. Analyzing the temperature effect.
Two investigations have been performed.
The first one has been jointly done with LMS Intl. It consisted in monitoring a structure (a composite

material engine oil pan) from both an identification and a detection points of view while the structure evolves
due to temperature changes. It has been shown that modal frequencies decrease with the temperature increase,
that the frequency shifts are larger for system poles at higher frequency, whereas mode-shapes remain stable
during most of the experiment. The FRF-based damage detection test above has shown efficient in detecting
changes in the temperature [27]. A further investigation of the identification problem for this structure is
reported in [18].

The second investigation has been done on a beam in a laboratory experiment provided by F. Treyssede
(LCPC), within the framework of the CONSTRUCTIF project, see module8.1. It has been shown that modal
changes due to temperature variations can be higher than modal changes due to a structural damage. It may
even happen that temperature induced modal changes counterbalance damage induced modal changes.

6.5.2. Handling the temperature effect.
This work is done within the framework of CONSTRUCTIF. The Ph.D. thesis of Houssein Nasser addresses

the problem of rejecting the temperature effect when performing damage detection tests on civil structures.
Because of the temperature effects described above, the test may not react to some damages, and conversely
may be too sensitive to some ambient temperature changes.

Three different methods have been proposed for overcoming these drawbacks. The first one [26] uses
the simplified temperature model relating the modal parameter of interest with the ambient temperature
developed last year. The method consists in computing the Jacobian of the modal parameters with respect to
the ambient temperature, and considering the temperature as a nuisance parameter. Thus, the damage detection
test monitors the structural damage under the hypothesis that the temperature is a nuisance parameter.

The second method involves the computation of a finite elements model (FEM) and assumes that the
temperature (or any equivalent measure of the ambient state) is measured. Then, knowing the ambient state and
a reference signature at some reference ambient state, and modifying the stiffness according to the temperature
model embedded in the FEM, we got the values of the computed modes at the ambient state. Then, the damage
detection test can be performed with respect to this temperature dependent safe hypothesis.

The third approach is based on the collection of varying reference temperature datasets, and on the
computation of the Hankel matrix and its kernel associated to all the datasets. This provides us with a reference
kernel averaging all the temperature scenarii. Method 2 and Method 3 have been tested successfully on a bridge
deck simulation case provided by E. Balmes (MSSMat, ECP). Validation on the laboratory beam at LCPC is
also in progress.

7. Contracts and Grants with Industry
7.1. Eurêka project FliTE2

Participants: Michèle Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel, Rafik Zouari.

See modules4.2, 4.4, 5.1, 6.1and6.4.
Contract INRIA — September 2005/August 2008.
We have been strongly contributing to the establishment of a follow-up of a major cooperation within

the Eurêka framework. The Eurêka project no 3341 FliTE2 («Flight Test Easy Extension») is devoted to
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improving the exploitation of flight test data, under natural excitation conditions (e.g. turbulence), enabling
more direct exploration of the flight domain, with improved confidence and at reduced cost. It is coordinated by
the industrial test laboratory Sopemea. As in FliTE the partners are Dassault–Aviation and EADS (AeroMatra
Airbus) (France), LMS and KU Leuven (Belgium), Cracow University and the company PZL–Mielic (Poland),
and INRIA. The partnership is extended to ONERA/CERT, to Lambert Aircraft Engineering, an SME building
light aircrafts, and to the Dynamics and Aeroelasticity Group of Manchester University. Albert Benveniste
helps Sopemea in the scientific coordination of the project.

In FliTE, the basis for novel techniques for in-flight test data structural analysis was developed, involving
both controlled and uncontrolled (natural) excitations. The main objective of FliTE2 is the effective transfer
of the results of FliTE to aircraft manufacturers. This main effort will be combined with the continuation of
research on improving the methods, algorithms, and software, in particular regarding fast detection algorithms
for the flutter monitoring problem. The lengthy process of Eureka submission with DPAC funding is under
progress and should be completed fall 2005.

7.2. FP5 Growth thematic network SAMCO
Participant: Michèle Basseville.

See modules4.2, 4.3and5.1.
Contract CNRS 500232 — February 2002/September 2005.
The thematic network SAMCO has been launched in October 2001 within the framework of the Growth

program. It aims at becoming a focal point of reference in the field of assessment, monitoring and control of
civil and industrial structures, in particular the transportation infrastructure (bridges, etc.). Several partners of
the network have proposed our participation, and we became a participating member, involved especially in
the thematic group «Monitoring and Assessment». This turns out to be a useful complement to the diffusion
of our knowledge and expertise in vibration monitoring.

Within this framework, we have offered Scilab as an open platform for the integration of the modules for
algorithms and methods covering the objectives of automatic modal analysis, automatic modal and statistical
damage detection methods. We have also offered the Scilab modal analysis modules, see module5.1.

This year, we have been involved in the workshop for preparing a research agenda [12].

8. Other Grants and Activities
8.1. Ministry grant CONSTRUCTIF

Participants: Michèle Basseville, Maurice Goursat, Laurent Mevel, Houssein Nasser, Wensong Zhou.

See modules4.2, 4.3, 5.1, 6.2and6.5.
Contract INRIA 1 03 C 1559 — 16 July 2003/15 July 2006.
This project, within the framework of the ACI Sécurité & Informatique, is coordinated by Laurent

Mevel. Our partners are MSSMat (Laboratoire de Mécanique des Sols, Structures et Matériaux, École
Centrale de Paris and CNRS), LCPC/SMI (Laboratoire Central des Ponts et Chaussées, Service Métrologie et
Instrumentation), and the INRIA project-team MACS (Rocquencourt).

The objectives of the project are, on the one hand, the intrinsic coupling of statistical models of sensor data
with fine models of the physical phenomena governing the instrumented structures, and, on the other hand,
the mixing of statistical inference, data assimilation, finite element model updating and optimization methods
for structural dynamics. The investigation of potential mutual benefits of criteria used for different purposes
by various methods designed in different scientific communities, is the central axis of the project. The main
object of the study is the intrinsic involvement of the temperature effect, which is a generic issue for vibration
monitoring of civil engineering structures.

Expanding on the joint paper with Dominique Chapelle (MACS) [26], we have proposed three methods to
handle the temperature effect in damage detection. Those methods are presented in module6.5. Collaboration
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has been enforced between CONSTRUCTIF partners. Étienne Balmès (MSSMat) has provided us with a sim-
ulated bridge deck FEM with embedded temperature variation. Fabien Treyssede (LCPC/SMI) has progressed
on a laboratory beam experiment to test the proposed techniques and has also developed some temperature
models for structural structures and especially beam structures. The case studies and the temperature models
are currently considered by Houssein Nasser and will be part of his Ph.D. thesis, as part of either his methods
or the validation datasets.

Our damage localization method sketched in module3.4 builds on the computation and clustering of the
sensitivitiesJΦθ in (7). This method suffers from some limitations: some finite elements may be impossible
to separate from a statistical point of view. Two approaches to macro-classes generation will be investigated
by Wensong Zhou during his post-doctoral sojourn. The first one is an update of the classification approach
to model reduction proposed in [31]. The second aims at exploiting sub-structuring methods of common use
within the FEM community.

8.2. FWO Research Network ICCoS
Participants: Michèle Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel.

We have been invited to participate to the Scientific Research Network «Identification and Control of
Complex Systems» (ICCoS) launched by the the Research Foundation of Flanders (FWO). This network is
dedicated to national and international cooperation at postdoctoral level for the development of identification
and control design methodologies.

9. Dissemination
9.1. Scientific animation

M. Basseville is member of the steering committee of the GDR ISIS (Information, Signal, Images). She is
member of the scientific committee of the Computer & Security program (ACI «Sécurité & Informatique»)
and of the evaluation committee of the Security, Embedded Systems and Ambient Intelligence program (ARA
«Sécurité, Systèmes embarqués et Intelligence Ambiante») launched by the French Ministry of Research.

She is co–chair of the IFAC technical committee 6.4 «Fault Detection, Supervision and Safety of Technical
Processes», within the coordinating committee 6 «Industrial Applications», and member of the technical
committees 1.1 «Modeling, Identification and Signal Processing» and 1.4 «Stochastic Systems», within the
coordinating committee 1 «Systems and Signals». She is also member of the MFPT (Machinery Failure
Prevention Technology) Society technical committee onStructural Health Management.

She is associate editor for the IFAC journal «Automatica».
A. Benveniste is associated editor at large (AEAL) for the journalIEEE Trans. on Automatic Controland

member of the editorial board of the journal and «Proceedings of theIEEE». He is member of the Strategic
Advisory Council of the Institute for Systems Research, Univ. of Maryland, College Park, USA.

9.2. Conference and workshop committees, invited conferences
9.2.1. Committees.

M. Basseville is associate editor within the IEEE Control Systems Society Conference Editorial Board,
where she has been and still is in charge of the evaluation of papers submitted to ACC’05, CDC-ECC’05, and
ACC’06. She is member of the international program committee of SYSID’06 and CIFA’06.

She has organized two invited sessions in international conferences:

• A session onStatistical Approaches to System/Process Monitoring and Change/Fault/Damage
Detection, co-organized with Igor Nikiforov (U. Techn. Troyes), has been accepted at the44th IEEE
Conference on Decision and Control and European Control Conference - CDC-ECC’05, to be held
in Seville, S., in December 2005.

• A session onSystem Identification and Detection for Flight Test Data Analysis, has been submitted
to the14th IFAC/IFORS Symposium on Identification and System Parameter Estimation - SYSID’06,
to be held in Newcastle, Australia, in March 2006.
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9.2.2. Invited submissions.
The team has been invited to submit a paper to:

• The special issue onApplications of System Identificationof theIEEE Control Systems Magazine;

• The special issue onAdvances in Subspace-Based Techniques for Signal Processing and Communi-
cationsof theJournal of Applied Signal Processing;

• A special session onValidation Approaches for Structural Health Monitoringat the24th Interna-
tional Modal Analysis Conferenceto be held in Saint Louis, MI, in January 2006 [14] (tutorial
paper);

• A special session onSpatial Distribution of Damageat the4th World Conference on Structural
Control and Monitoringto be held in San Diego, CA, in July 2006;

• A special session onFlight Flutter Testing and Analysisat theInternational Conference on Noise
and Vibration Engineeringto be held in Leuven, B., in September 2006.

Two other invitations to special sessions have been declined (lack of availability).

9.3. Visits and invitations
Amin Yan, a researcher at the laboratory of Vibrations and Structural Identification, Aerospace, Mechanical

and Materials Engineering Sciences Dept, Liège University, visited us during three days in February 2005.
Null-space approaches to damage detection and handling the temperature effect have been the subjects of

the discussions. Technical exchanges are ongoing, based on experimental data provided by Amin Yan. The
goal is the comparison of algorithms developed in both labs.

10. Bibliography
Major publications by the team in recent years

[1] M. BASSEVILLE, M. ABDELGHANI , A. BENVENISTE. Subspace–based fault detection algorithms for vibra-
tion monitoring, in "Automatica", vol. 36, no 1, January 2000, p. 101–109.

[2] M. BASSEVILLE. On–board component fault detection and isolation using the statistical local approach, in
"Automatica", vol. 34, no 11, November 1998, p. 1391–1416.

[3] M. BASSEVILLE, A. BENVENISTE, M. GOURSAT, L. HERMANS, L. MEVEL, H. VAN DER AUWERAER.
Output–only subspace–based structural identification : from theory to industrial testing practice, in "ASME
Journal of Dynamic Systems, Measurement, and Control", vol. 123, no 4, December 2001, p. 668–676.

[4] M. BASSEVILLE, L. MEVEL, M. GOURSAT. Statistical model–based damage detection and localization :
subspace–based residuals and damage–to–noise sensitivity ratios, in "Journal of Sound and Vibration", vol.
275, no 3-5, August 2004, p. 769-794.

[5] M. BASSEVILLE, I. V. N IKIFOROV. Detection of Abrupt Changes — Theory and Applications, Information and
System Sciences Series, Prentice Hall, Englewood Cliffs, 1993,http://www.irisa.fr/sisthem/kniga/.

[6] A. B ENVENISTE, M. MÉTIVIER, P. PRIOURET. Adaptive Algorithms and Stochastic Approximations, Appli-
cations of Mathematics, vol. 22, Springer Verlag, New York, 1990.

http://www.irisa.fr/sisthem/kniga/


20 Activity Report INRIA 2005

[7] L. M EVEL, M. BASSEVILLE, A. BENVENISTE, M. GOURSAT. Merging sensor data from multiple measure-
ment setups for nonstationary subspace–based modal analysis, in "Journal of Sound and Vibration", vol. 249,
no 4, January 2002, p. 719–741.

[8] L. M EVEL, A. BENVENISTE, M. BASSEVILLE, M. GOURSAT. Blind subspace–based eigenstructure identi-
fication under nonstationary excitation using moving sensors, in "IEEE Transactions on Signal Processing",
vol. SP–50, no 1, January 2002, p. 41–48.

Articles in refereed journals and book chapters

[9] M. BASSEVILLE. A Discussion on "Detection of intrusions in information systems by sequential change-
point methods" by Tartakovsky, Rozovskii, Blazek, and Kim, in "Statistical Methodology, the Journal of the
International Indian Statistical Association", to appear, 2005.

[10] L. M EVEL, M. BASSEVILLE, A. BENVENISTE. Fast in-flight detection of flutter onset: a statistical approach,
in "AIAA Journal of Guidance, Control, and Dynamics", vol. 28, no 3, May 2005, p. 431-438.

[11] L. M EVEL, A. BENVENISTE, M. BASSEVILLE, M. GOURSAT, B. PEETERS, H. VAN DER AUWERAER,
A. V ECCHIO. Input/output versus output-only data processing for structural identification - Application to
in-flight data analysis, in "Journal of Sound and Vibration", Accepted upon modification.

Publications in Conferences and Workshops

[12] M. BASSEVILLE. Advanced sensor data processing for structural health monitoring, in "10th SAMCO
Workshop, Berlin, FRG.", April 2005.

[13] M. BASSEVILLE. Lessons learned from the theory and practice of change detection, in "Proceedings of the
5th International Workshop on Structural Health Monitoring, Stanford, CA.", September 2005, p. 921-928.

[14] M. BASSEVILLE, A. BENVENISTE. Handling uncertainties in identification and model validation: a statis-
tical approach, in "Proceedings of the 24th International Modal Analysis Conference (IMAC–XVIV), Saint
Louis, MI.", SEM, Inc., January 2006.

[15] M. BASSEVILLE, I. V. N IKIFOROV. Handling nuisance parameters in systems monitoring, in "Proceedings
of the 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC’05),
Seville, Spain", IEEE & EUCA, December 2005.

[16] A. BENVENISTE, L. MEVEL. Nonstationary consistency of subspace methods, in "Proceedings of the 44th
IEEE Conference on Decision and Control and European Control Conference (CDC-ECC’05), Seville, Spain",
IEEE & EUCA, December 2005.

[17] F. CAMPILLO , L. MEVEL. Recursive maximum likelihood estimation for structural health monitoring: tangent
filter implementations, in "Proceedings of the 44th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC’05), Seville, Spain", IEEE & EUCA, December 2005.

[18] M. GOURSAT, L. MEVEL. An example of analysis of thermal effects on modal characteristics of a mechanical
structure using Scilab, in "Workshop S-OSSE05, Wuhan, China", Wuhan University, October 2005.



Team sisthem 21

[19] M. GOURSAT, L. MEVEL. On-line monitoring of Bradford stadium, in "Proceedings of the 23rd International
Modal Analysis Conference (IMAC–XXIII), Orlando, FL.", SEM, Inc., January 2005.

[20] M. GOURSAT, L. MEVEL. Using subspace on a large aircraft dataset, a case study, in "Proceedings of the
23rd International Modal Analysis Conference (IMAC–XXIII), Orlando, FL.", SEM, Inc., January 2005.

[21] M. GOURSAT, L. MEVEL. Online monitoring of the crowd influence on Manchester Stadium, in "Proceedings
of the 24th International Modal Analysis Conference (IMAC–XXIV), Saint Louis, MI.", SEM, Inc., January
2006.

[22] L. M EVEL, A. BENVENISTE, M. BASSEVILLE, M. GOURSAT. Using simulations to validate a flutter testing
method, in "Proceedings of the 23rd International Modal Analysis Conference (IMAC–XXIII), Orlando, FL.",
SEM, Inc., January 2005.

[23] L. M EVEL, M. GOURSAT, A. BENVENISTE, M. BASSEVILLE. Aircraft flutter test design using identification
and simulation: a Scilab toolbox, in "IEEE Conference on Control Applications, Toronto, Canada", IEEE CSS,
August 2005.

[24] L. M EVEL, M. GOURSAT. Tuning an online identification method to improve confidence intervals, a few
comments, in "Proceedings of the Symposium on managing incertainties in noise measurement and prediction,
Le Mans, F.", INCE Europe and CIDB in collaboration with ENSIM, June 2005.

[25] L. M EVEL, M. GOURSAT. Model validation by using a damage detection test, in "Proceedings of the 24th
International Modal Analysis Conference (IMAC–XXIV), Saint Louis, MI.", SEM, Inc., January 2006.

[26] H. NASSER, L. MEVEL, D. CHAPELLE. Damage detection under the environmental constraints, in "Proceed-
ings of the 23rd International Modal Analysis Conference (IMAC–XXIII), Orlando, FL.", SEM, Inc., January
2005.

[27] A. V ECCHIO, B. PEETERS, H. VAN DER AUWERAER, M. GOURSAT, L. MEVEL, M. BASSEVILLE. Mon-
itoring thermally induced structural response modifications in a composite material oil pan, in "Proceedings
of the 5th International Workshop on Structural Health Monitoring, Stanford, CA.", September 2005.

Internal Reports

[28] A. BENVENISTE, L. MEVEL. Nonstationary consistency of subspace methods, Research Report, no 1752,
IRISA, 2005,ftp://ftp.irisa.fr/techreports/2005/PI-1752.pdf.

Bibliography in notes

[29] M. BASSEVILLE. On sensor positioning for structural health monitoring, in "Proceedings of the 2nd European
Workshop on Structural Health Monitoring, Munich, FRG", July 2004.

[30] M. BASSEVILLE. Information criteria for residual generation and fault detection and isolation, in "Automat-
ica", vol. 33, no 5, May 1997, p. 783–803.

[31] M. BASSEVILLE, A. BENVENISTE, B. GACH–DEVAUCHELLE, M. GOURSAT, D. BONNECASE, P. DOREY,

ftp://ftp.irisa.fr/techreports/2005/PI-1752.pdf


22 Activity Report INRIA 2005

M. PREVOSTO, M. OLAGNON. Damage monitoring in vibration mechanics : issues in diagnostics and
predictive maintenance, in "Mechanical Systems and Signal Processing", vol. 7, no 5, 1993, p. 401–423.

[32] M. BASSEVILLE, I. V. N IKIFOROV. Fault isolation for diagnosis : nuisance rejection and multiple hypotheses
testing, in "Annual Reviews in Control", vol. 26, no 2, December 2002, p. 189–202.

[33] C. BOLLER. Ways and options for aircraft structural health management, in "Proceedings of the European
COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain", June 2000,
p. 71–82.

[34] B. CAUBERGHE. Applied Frequency-Domain System Identification in the Field of Experimental and Opera-
tional Modal Analysis, PhD Thesis, Acoustics and Vibration Research Group, Vrije Universiteit Brussel, May
2004.

[35] B. DELYON, A. JUDITSKY, A. BENVENISTE. On the relationship between identification and local tests,
Publication Interne, no 1104, IRISA, May 1997,ftp://ftp.irisa.fr/techreports/1997/PI-1104.ps.gz.

[36] G. DIMITRIADIS , J. E. COOPER. Flutter prediction from flight flutter test data, in "Journal of Aircraft", vol.
38, no 2, 2001, p. 355–367.

[37] C. R. FARRAR, S. W. DOEBLING, D. NIX . Vibration-based structural damage identification, in "The Royal
Society, Philosophical Transactions: Mathematical, Physical and Engineering Sciences", vol. 359, no 1778,
2001, p. 323–345.

[38] C.-P. FRITZEN, G. MENGELKAMP. Detection of delaminations in composite materials using a smart
structures concept, in "Proceedings of the 1st European Workshop on Structural Health Monitoring, Cachan,
F.", July 2002.

[39] I. GOETHALS, L. MEVEL, A. BENVENISTE, B. DE MOOR. Recursive output–only subspace identifica-
tion for in–flight flutter monitoring, in "Proceedings of the 22nd International Modal Analysis Conference
(IMAC–XXII), Dearborn", SEM, Inc., January 2004.

[40] C. C. HEYDE. Quasi–Likelihood and its Applications, Springer Series in Statistics, Springer–Verlag, Berlin,
1997.

[41] M. K EHOE. A historical overview of flight flutter testing, Technical Memorandum, no NASA TM-4720, NASA
Dryden, October 1995.

[42] R. LIND . Flight test evaluation of flutter prediction methods, in "Journal of Aircraft", vol. 40, no 5, 2003, p.
964–970.

[43] L. M EVEL, M. GOURSAT, M. BASSEVILLE. Stochastic subspace–based structural identification and damage
detection and localization — Application to the Z24 bridge benchmark, in "Mechanical Systems and Signal
Processing", vol. 17, no 1 (Special issue on COST F3 Benchmarks), January 2003, p. 143–151.

[44] L. M EVEL, M. GOURSAT, M. BASSEVILLE. Detection for in–operation structures : a Scilab toolbox

ftp://ftp.irisa.fr/techreports/1997/PI-1104.ps.gz


Team sisthem 23

use of the GUI for the localization, in "Proceedings of the 22nd International Modal Analysis Conference
(IMAC–XXII), Dearborn", SEM, Inc., January 2004.

[45] L. M EVEL, M. GOURSAT. A complete Scilab toolbox for output–only identification, in "Proceedings of the
22nd International Modal Analysis Conference (IMAC–XXII), Dearborn", SEM, Inc., January 2004.

[46] L. M EVEL, M. GOURSAT, A. SAM . Automated on–line monitoring during a flight, in "Proceedings of the
22nd International Modal Analysis Conference (IMAC–XXII), Dearborn", SEM, Inc., January 2004.

[47] L. M EVEL, A. SAM , M. GOURSAT. Blind modal identification for large aircrafts — The case of a high
number of close poles, in "Proceedings of the 22nd International Modal Analysis Conference (IMAC–XXII),
Dearborn", SEM, Inc., January 2004.

[48] H. G. NATKE , C. CEMPEL. Model-Aided Diagnosis of Mechanical Systems: Fundamentals, Detection,
Localization, Assessment, Springer–Verlag, Berlin, 1997.

[49] B. PEETERS, J. MAECK, G. DE ROECK. Vibration-based damage detection in civil engineering: excitation
sources and temperature effects, in "Smart Materials and Structures", vol. 10, no 3, 2001, p. 518-527.

[50] B. PEETERS, H. VAN DER AUWERAER, P. GUILLAUME , J. LEURIDAN. The PolyMAX frequency-domain
method: a new standard for modal parameter estimation ?, in "Shock and Vibration", vol. 11, no 3-4, 2004, p.
395-409.

[51] P. VAN OVERSCHEE, B. DE MOOR. Subspace Identification for Linear Systems, Kluwer Academic Publish-
ers, Boston, 1996.

[52] H. VAN DER AUWERAER, B. PEETERS. International research projects on structural health monitoring : an
overview, in "Structural Health Monitoring", vol. 2, no 4, December 2003, p. 341–358.

[53] A.-M. YAN , J.-C. GOLINVAL . Null subspace-based damage detection of structures using vibration measure-
ments, in "Mechanical Systems and Signal Processing", to appear, vol. 19, 2005.


