
c t i v i t y

te p o r

2005

THEME SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team SPACES

Solving Problems through Algebraic
Computation and Efficient Software

Lorraine

http://www.inria.fr/recherche/equipes/listes/theme_SYM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/spaces.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-lor.en.html

Table of contents

1. Team 1
2. Overall Objectives 1

2.1. Overall Objectives 1
3. Scientific Foundations 2

3.1. Introduction 2
3.1.1. Algebraic Curves 2

3.1.1.1. Curves and Cryptology 2
3.1.1.2. Jacobian 3
3.1.1.3. Curves over Finite Fields 3
3.1.1.4. Discrete Logarithm 3
3.1.1.5. State of the art 4

3.1.1.5.1. Arithmetic in the Jacobian 4
3.1.1.5.2. Computing the Cardinality 4
3.1.1.5.3. Discrete Logarithm 5

3.2. Linear Algebra 5
3.2.1. Huge Linear Systems 5
3.2.2. Lattices 5
3.2.3. State of the art 5

3.2.3.1. Large Linear Systems 5
3.2.3.2. Lanczós’ method 5
3.2.3.3. Wiedemann’s method 6
3.2.3.4. Parallel and distributed algorithms 6
3.2.3.5. Algorithms for Lattices 6

3.3. Arithmetics 7
3.3.1. Integers 7
3.3.2. Integers Modulo n and Finite Fields 7
3.3.3. p-adic Numbers 8
3.3.4. Floating-point Numbers and the IEEE-754 Standard 8

3.3.4.1. Formats. 8
3.3.4.2. Rounding. 9

3.3.5. The Table Maker’s Dilemma 9
3.3.6. State of the art 9

3.3.6.1. Integers 9
3.3.6.2. Floating-point numbers 9
3.3.6.3. Integers modulo n. 10
3.3.6.4. p-adic numbers. 10
3.3.6.5. The Table Maker’s dilemma. 10

4. Application Domains 10
4.1. Cryptology 10
4.2. Computational Number Theory Systems 11

4.2.1. Magma 11
4.2.2. Pari/GP 11

4.3. Arithmetics 12
5. Software 12

5.1. Introduction 12
5.2. MPFR 12
5.3. MPC 12

2 Activity Report INRIA 2005

5.4. GMP-ECM 13
5.5. Exhaustive Tests of the Mathematical Functions 13

6. New Results 13
6.1. Integer and Polynomial Arithmetic 13
6.2. Floating-Point Arithmetic 14
6.3. Cryptology 15
6.4. Lattices 15

7. Contracts and Grants with Industry 15
7.1. MPQS 15
7.2. European Initiatives 15

7.2.1. PAI with Berlin 15
8. Dissemination 16

8.1. Scientific Animation 16
8.1.1. RNC’7 Conference 16

8.2. Leadership within Scientific Community 16
8.3. Committees memberships 16
8.4. Vulgarization 16
8.5. Teaching 16

9. Bibliography 16

1. Team
Team Leader

Paul Zimmermann [research director, INRIA]

Administrative Assistant
Céline Simon [INRIA]

Staff member (CNRS or INRIA)
Pierrick Gaudry [research scientist, CNRS, from Sep. 1st]
Guillaume Hanrot [research scientist, INRIA]
Vincent Lefèvre [research scientist, INRIA]
Emmanuel Thomé [research scientist, INRIA]

Technical staff
Patrick Pélissier [junior technical staff, INRIA, until Aug. 31st]

Ph. D. student
Jean-Paul Cerri [IUFM Lorraine, defense on Nov. 18th, 2005]
Laurent Fousse [MESR grant, UHP, defense planned in 2006]
Thomas Houtmann [DGA grant, DGA, from Sep. 1st, defense planned in 2007]
Damien Stehlé [MESR grant, UHP, defense on Dec. 2nd, 2005]

Student intern
Jean-Yves Degos [until July 8th]

2. Overall Objectives
2.1. Overall Objectives

Until the beginning of 2004, the Spaces project-team was a joint project-team of INRIA Lorraine and INRIA
Rocquencourt. The main objective of this team was to solve systems of polynomial equations and inequations.
The focus was on algebraic methods which are more robust and frequently more efficient than purely numerical
tools. The Paris part was mostly working on the algebraic aspects, whereas the task of the Nancy part of the
team was to devise arithmetic tools which could enhance the efficiency of the formal method (mainly real
arithmetic, but also more exotic ones, like modular orp-adics).

Since the beginning of 2004, the Paris part has decided to create their own project team. In the same time,
due to several arrivals in the project-team, the main interest of the Nancy part has somewhat shifted towards
arithmetics, algorithmic number theory and their application in cryptology. A new project-team which will
be named CACAO is under creation, but for various reasons has still no concrete existence at the time being.
However, since from the beginning of 2004, all work done in the Nancy part of the SPACES project should be
thought of as being related to the goals of the CACAO project team, we chose to present the objectives of the
latter project, and results obtained with respect to them.

The objectives of Spaces for year 2005 were thus along the following lines:

• Studying the arithmetic of curves of small genus> 1, having in mind applications to cryptology,

• Improving the efficiency and the reliability of arithmetics in a very broad sense (i.e., the arithmetics
of a wide variety of objects).

These two objectives strongly interplay. Arithmetics are, of course, at the core of optimizing algorithms on
curves, starting evidently with the arithmetic of curves themselves. On the other hand, curves can sometimes
be a tool for some arithmetical problems like integer factorization.

To reach those objectives, we have isolated three key axes of work:

2 Activity Report INRIA 2005

• Algebraic Curves: the main issue here is to investigate curves of small genus> 1 over finite fields
(base fieldFpn , for variousp andn), i.e., mainly: to compute in the Jacobian of a given curve, to
be able to check that this variety is suitable for cryptography (cardinality, smoothness test) and to
solve problems in those structures (discrete logarithm). Applications go from number theory (integer
factorization) to cryptography (an alternative to RSA).

• Arithmetics : we consider here algorithms working on multiple-precision integers, floating-points
numbers,p-adic numbers and finite fields. For such basic data structures, we do not expect new
algorithms with better asymptotic behavior to be discovered; however, since those are first-class
objects in all our computations, every speedup is most welcome, even by a factor of 2

• Linear Algebra and Lattices: Solving large linear systems is a key point of factoring and discrete
logarithm algorithms, which we need to investigate if curves are to be applied in cryptology. And
lattices are central points of the new ideas that have emerged over the very last years for several
problems in computer arithmetic or discrete logarithms algorithms.

3. Scientific Foundations
3.1. Introduction
3.1.1. Algebraic Curves

Though we are interested in curves by themselves, the applications to cryptology remain a motivation to
our research. Therefore, we start by introducing these applications, since they may serve as a guideline to the
reader in this sometimes technical section.

3.1.1.1. Curves and Cryptology
The RSA cryptosystem — thede factostandard in public-key cryptography — requires large keys, at least

1024 bits currently. Algebraic curves offer a better level of security for a smaller key size, say 160 bits currently
for elliptic curves. They are not specifically used as curves. In practice, a very general construction due to El
Gamal associates to any group a cryptosystem, this cryptosystem being secure as soon as the so-calledDiffie-
Hellmanproblem (or its decision variant) is difficult:

Giveng ∈ G, ga andgb for some integersa andb, computegab.
Currently, the only way to attack this problem is to tackle the more difficultdiscrete logarithm problem:

Giveng ∈ G andga, find a,
which, in the case of the El Gamal system, is equivalent to the so-called attack on the key (given the public

part of the key, recover the secret part). We shall only discuss the discrete logarithm problem in this document,
since it is widely believed that the two problems are in fact equivalent.

This problem is easy when the underlying group isZ or (Z/NZ,+). Classically, multiplicative groups of
finite fields are used; however, they can be attacked by algorithms very similar to those existing for factoring,
and thus require the same key-size to ensure security.

A trend initiated by Koblitz and Miller and followed by many others is to use as “cryptographic groups” the
group (“Jacobian”) associated by classical arithmetical geometry to a given algebraic curve.

To use such a group for cryptographic applications, the key algorithmic points are the following:

• have an explicit description of the group and the group operation, as efficient as possible (the speed
of ciphering and deciphering being directly linked to the efficiency of the group operation);

• undertake an as thorough as possible study of the security offered by those groups.

Project-Team SPACES 3

The second point should again be split in two steps: study of the behavior of the group under “generic
attacks” (avoiding small cardinality, avoiding cardinalities with no large prime factor), and trying to devise
“ad hoc” attacks. The first step amounts more or less to being able to compute the cardinality of the group; the
second one to try as hard as possible to find a way to compute discrete logarithms in this group.

This section now proceeds as follows; we introduce the basic objects (curves and Jacobians) and their
properties relevant to the following problems: group structure and arithmetic, cardinality, discrete logarithm.

Finally, and in a somewhat independent way, curves and their Jacobians can be used for integer factorization;
we shall also review that point.

3.1.1.2. Jacobian
A central role is played by a certain algebraic variety of higher dimension associated to a given curveC,

its JacobianJ(C), which comes with a natural group structure. We shall not define it, but rather state its most
important properties:

1. C embeds as a sub-variety ofJ(C),

2. J(C) is an abelian variety, i.e., has an (abelian) group structure such that group operations (addition,
inversion) can be written as rational functions of the coordinates.

3. if C has genusg, J(C) is a variety of dimensiong (note that in full generality one only knows how
to embed it in a space of dimension22g, i.e. to give many equations in22g variables rather than, for
instance, one equation ing + 1 variables).

The most important feature of the Jacobian is the fact that it comes with a natural group structure, which is
the key point for its uses in applications to primality, factorization, and cryptology.

3.1.1.3. Curves over Finite Fields
We intend to focus on the caseK = Fq and its extensions, with subsidiarily a study of the cases whereK

is a number field or a completion of a number field, since those happen to be related to the previous one by
reduction/lifting techniques.

In this setting, the situation is rather rigid; the cardinality of the curve over anyg extension fields of the base
field determines the cardinality over all extensions, and the cardinality of the Jacobian. We also have sharp
estimates for the cardinality, namely|]C(Fk

q)− (qk + 1)| ≤ 2g
√

qk and(
√

q − 1)g≤]J(Fq) ≤ (
√

q + 1)g

(the so-called Weil bounds).
The cardinalities have several interpretations, which usually yield different strategies for computing them.

We shall review them in an informal way in section3.1.1.5.

3.1.1.4. Discrete Logarithm
In this part, we generalize slightly the setting, since we shall also discuss later some aspects on discrete

logarithms over finite fields. We shall hence assume thatG is an abelian group, where we want to solve the
equation

gx = h

whereg, h are given elements fromG, and the unknownx is an integer. This is known as thediscrete logarithm
problem (DL for short). A first remark, due to Nechaev [59], is that if one uses only operations in the group, one
needs at least(]G)1/2 operations to compute a discrete logarithm. One of the quests of cryptology is finding
a so-called “Nechaev group”, for which there are provably no algorithms for computing discrete logarithms
faster than(]G)1/2; it currently appears that elliptic curves are the best candidates to be Nechaev groups,
hence the interest in cryptology.

On the other hand, two classical algorithms (Pollard’sρ method and Shanks’ baby-step giant-step) allow
one to compute a discrete logarithm in any groupG in time O(]G1/2). The complexity of the “general
discrete logarithm” is thus completely known. However, for a family of groups or even a specific group,
faster algorithms might exist. We shall discuss some of those algorithms in the sequel.

4 Activity Report INRIA 2005

3.1.1.5. State of the art

3.1.1.5.1. Arithmetic in the Jacobian
As a group, the Jacobian is defined as a quotient of the free group generated by points; as any definition

based on a quotient, it is not very tractable for explicit computations. It is necessary to devise a specific
representation of elements and specific algorithms to deal with computations in the Jacobian. Though general
methods exist [49], the most interesting methods usually take advantage of the specific curve one is dealing
with, or even of the specific model of the curve to get a more efficient algorithm.

In the case of elliptic curves, the problem is quite easy; the classical chord-and-tangent rule yields by simple
calculations easy-to-implement formulas. One can still improve somewhat upon those formulas. The situation
however is quite different as soon as higher genus curves are involved.

In the case of hyperelliptic curves, a now classical algorithm due to Cantor [37] explains how to implement
efficiently arithmetic in their Jacobian; numerous improvements have been obtained since, including explicit
formulas [53], [60] which are more efficient in practice than Cantor’s algorithm.

Another family of curves has received interest from the cryptology community in recent years, namely the
Cab family. In that case, algorithms have been obtained by Arita [32] using Gröbner bases computations, then
for a sub-family, a more efficient method was devised by Galbraith, Paulus and Smart [41] and a common
setting was then found by Harasawa and Suzuki [48]. Since then, more efficient algorithms were obtained by
using suitable orderings for the Gröbner basis computation in Arita’s method, and explicit formulas derived in
some cases [35]. However, recent work by Diem and Thomé almost completely dismisses non-hyperelliptic
Cab curves, as far as cryptology is concerned.

3.1.1.5.2. Computing the Cardinality
The question of point counting over finite fields is of central importance for applications to cryptography,

see Section4.1. Recall that we are given an algebraic curveC of genusg, over a finite fieldFq, and we would
like to count the number of points of the Jacobian of this curve.

First, for the sake of completeness, we should mention two classical ways to somewhat reverse the problem,
i.e., to construct the curve and its number of points at the same time: usingKoblitz curvesand complex
multiplication.

Those two methods are extremely efficient, especially the first one, but the main drawback is that they
introduce some unnecessary structure in the curves they construct; in particular, Koblitz’s method yields curves
with a large ring of automorphisms. This can be used to speed up discrete logarithm computations, and should
thus be considered as a weakness from the cryptographic point of view.

Let us now turn to actual point counting algorithms. Hasse-Weil’s theorem states that computing a certain
polynomialP (t) is enough to obtain the cardinality (in particular, the cardinality of the jacobian over the
base field is exactlyP (1)). There are several interpretations for the polynomialP (t), which yield different
strategies for computing it:

• `-adic characterization: Schoof’s algorithm [65] and its improvements and extensions, is especially
suitable in large characteristic. It is well understood for elliptic curves; the hyperelliptic case, though
already studied [44], [43], would still benefit from significant improvement.

• p-adic characterization: Lift the curve to an extension ofQp, and computeP (t) over this extension.
This is the core of Satoh’s method and its AGM variants. This method is the most efficient in small
characteristic.

• Monsky-Washnitzer characterization and Kedlaya’s algorithm. Again, this is suitable for small or
medium primes. This method is interesting by its generality.

Project-Team SPACES 5

3.1.1.5.3. Discrete Logarithm

In the case of Jacobians of curves, at the time being, no other general algorithm is known. This is the key
interest of curves for cryptology, and the reason for which rather small key give the same level of security that
much larger keys in the case of RSA.

However, many ad hoc methods, which exploit (or demonstrate) the weakness of certain families of curves,
exist. Let us quote Pohlig-Hellman method (if the cardinality of the group is smooth, hence the interest in
computing the cardinality!), Index calculus (for discrete logarithms over finite fields, leading to subexponential
complexities), and some weaker instances of curves (trace 0, supersingular, Weil descent, small extension
fields). For curves, higher genus have been showed to be weaker than generic groups forg ≥ 5 by Gaudry [42]
and then by further work forg ≥ 3, see Section6.3.

3.2. Linear Algebra
3.2.1. Huge Linear Systems

Huge linear systems are frequently encountered as last steps of “index-calculus” based algorithms. Those
systems correspond to a particular presentation of the underlying group by generators and relations; they are
thus always defined on a base ring which isZ modulo the exponent of the group, typicallyZ/2Z in the case
of factorization,Z/(qn−1)Z when trying to solve a discrete logarithm problem overF∗qn .

Those systems are often extremely sparse, meaning that they have a very small number of non-zero
coefficients.

The classical, naive elimination algorithm of Gauss yields a complexity ofO(n3), when the matrix
considered has sizen× n. However, if we assume that we can perform a matrix multiplication in timeO(nω),
algorithms exist which lower this complexity toO(nω). Furthermore, if we make assumptions on our matrix
(mainly that it is sparse, meaning that a matrix-vector product can be computed in timeO(nθ) for someθ < 2),
then specialized algorithms (Lanczós, Wiedemann [70]) relying only on evaluation of matrix-vector products
yield a complexity ofO(n1+θ), typically O(n2) for the very sparse matrices (θ = 1) that we often encounter.

3.2.2. Lattices
Many problems described in the other sections, but also numerous problems in computer algebra or

algorithmic number theory, involve at some step the solution of a linear problem or the search for a short
linear combination of vectors lying in a finite-dimensional Euclidean space. As examples of this, we could cite
factoring and discrete logarithms methods for the former, finding worst cases for the Table Maker’s Dilemma
in computer arithmetic for the latter (see Section3.3.5).

The important problem in that setting is, given a “bad” basis of a lattice, to find a “good” one. By good, we
mean that it consists of short, almost orthogonal vectors. This is a difficult problem in general, since finding
the shortest nonzero vector is already NP-hard, under probabilistic reductions.

In 1982, Lenstra, Lenstra, and Lovász [56] defined the notion of a LLL-reduced basis and described an
algorithm to compute such a basis in polynomial time, namelyO(n2log M) linear algebra steps (of type
matrix-vector multiplication), orO(n4log M) operations [66] on coefficients at mostO(n log M), therefore
giving aO(n6 log3 M) bit complexity if the underlying arithmetic is naive.

3.2.3. State of the art
3.2.3.1. Large Linear Systems

Recall that the systems we are dealing with are usually systems with coefficients in a finite ring, which can
be either small (F2), or quite a large ring.

3.2.3.2. Lanczós’ method
Given a symmetric matrixA and a vectorx, Lanczós’ method computes, using Gram-Schmidt process,

an orthogonal basis(w1, · · · , wn) of the subspace generated by{x, Ax, · · · , Anx} for the scalar product
[x, y] = (x|Ay). As soon as one finds an isotropic vectorwi, i.e., [wi, wi] = 0, one haswt

iAwi = 0. In our

6 Activity Report INRIA 2005

situation, we takeA = BtB, where we want to find a vector in the kernel ofB; we thus have(wiB)tBwi = 0.
Over a finite field this does not always implyBwi = 0, but this remains true with probability close to 1 over
a finite ring of large characteristic. This approach works overF2 as well, but with some caution.

3.2.3.3. Wiedemann’s method
Given a matrixA (not necessarily symmetric) and a vectorx, Wiedemann’s algorithm looks for a trivial

linear combination of the vectorsAix, i ≥ 1. Such a relation can be written as
∑n

i=1 aiA
ix = 0. Now, if

u =
∑n

i=1 Ai−1x is a nonzero vector, we haveAu = 0, andu is a vector of the kernel ofA. The linear
combination, in turn, is searched by choosing a random vectory and computing the elementsαi = yAix.
If a relation of the type we are looking for exists, thenαi is a linear recurring sequence of ordern. Given
2n elements of the sequence, Berlekamp-Massey’s algorithm allows one to compute the coefficients of the
recurrence. Thus, withO(n) matrix-vectors andO(n) vector-vector products, one hopes to recover a vector
of the kernel. The overall complexity is thus, on average,O(n1+θ), as announced.

3.2.3.4. Parallel and distributed algorithms
Algorithms for solving large sparse linear systems have been designed with implementation, and parallelism

or distribution in mind, or both. The Lanczós and Wiedemann algorithms have “block” versions [57], [39],
which one can use in order to take advantage of an advanced computing facility, like a massively parallel
computer, or a much cheaper resource like a computer cluster, which can be turned into an effective task
force. A key problem is therefore the identification of the computational tasks which either can, or cannot
be effectively spanned across many processors or machines. In the case of a computer cluster, evaluating
the cost of communications between nodes taking part to the computation is of course very important. To
this regard, the different algorithms (block or non-block versions, Lanczós or Wiedemann) do not compare
equally. A variety of running times can be obtained depending on the exact characteristics of the input system
(size, density, definition field), the number of computing nodes, and on the choice of certain parameters of the
algorithms (for the block versions).

The block Wiedemann algorithm has been used by Thomé [67], [68] in the course of solving a
500, 000× 500, 000 linear system defined overFp, wherep is a prime of 183 decimal digits. This compu-
tation was made feasible using an algorithm based on the Fast Fourier Transform (FFT), which permitted
broader distribution of the computation [69].

Today, block versions of the Lanczós and Wiedemann algorithms are a necessity for who wants to solve
linear systems encountered in record-size factoring problems, discrete logarithm problems, or in some other
cases. Yet, a precise account on the positive and negative sides of both block algorithms, and a formulation of
their preferred setting, seems to be missing.

3.2.3.5. Algorithms for Lattices
Many fundamental problems concerning the LLL algorithm remain open. The most stringent of those

is the use of intermediate floating-point computations. The problem is the following: the LLL algorithm
starts by computing aQR decomposition of its input, and mostly works on the upper triangular matrixR.
In most applications, the input has coefficients inZ, so that the matrixR has huge rational coefficients,
which means huge arithmetical cost. However, replacing rationals by floating-point approximations is at best
a difficult matter since the basic operation (size-reduction) can be written asrij ←− rij − brije which is
numerically highly unstable. The main idea is then [61] to detect huge precision loss and recompute exactly
the corresponding coefficients, doing this the least possible number of times. Various papers also deal with
this problem, but mostly suggesting heuristics [33], or sometimes (subtly) flawed solutions [51].

We describe in more detail an application of LLL that has important relevance for our objectives
but also has become an important tool in cryptanalysis over the last years, namely Coppersmith’s
method [38]. Let P (x1, · · · , xn) be a polynomial defined overZ, and let N be an integer. Given
bounds (U1, · · · , Un) and M , we would like to find all n-uples (u1, · · · , un) with |ui| ≤Ui and
P (u1, · · · , un) = 0 mod N . Coppersmith answers this question in polynomial time under some restriction on
(U1, · · · , Un, N); to do this, he constructs a sublattice of the idealI` = (NZ[x1, · · · , xn] + PZ[x1, · · · , xn])`,
and looks for short vectors in this lattice. If we obtainn′ ≥ n vectors Qj small enough so as

Project-Team SPACES 7

to guarantee thatQj(x1, · · · , xn) <N ` for all j and all n-uples xi with |xi| ≤Ui, we then have
P (x1, · · · , xn) = 0 mod N ⇒Qj(x1, · · · , xn) = 0 mod N ` ⇒ Qj(x1, · · · , xn) = 0.

Thus we get a (hopefully) zero-dimensional polynomial system overQ which can be reduced to a univariate
equation overQ by one’s favorite elimination technique. A useful variant deals with the problem where
P (x1, · · · , xn) is no longer0 mod N but instead has a large common factor withN .

The LLL algorithm is involved in the search forn small vectors in a lattice. We know that it is guaranteed
to yield at least one, hopefullyn short vectors smaller than (up to small factors)det(L)1/ dim(L). This implies
in particular that the choice of the sublattice should be especially careful, so as to yield a smallest possible
determinant for the dimension. This choice has been made completely explicit in the univariate case (n = 1);
even the bivariate case still needs some fine hand-tuning very specific to the underlying polynomial, not
speaking of the higher dimensional case.

3.3. Arithmetics
We consider here the following arithmetics: integers, rational numbers, integers modulo a fixed modulusn,

finite fields, floating-point numbers andp-adic numbers. We can divide those numbers in two classes:exact
numbers(integers, rationals, modular computations or finite fields), andinexact numbers(floating-point and
p-adic numbers).

Algorithms on integers (respectively floating-point numbers) are very similar to those on polynomials
(respectively Taylor or Laurent series). The main objective in that domain is to find new algorithms that make
operations on those numbers more efficient. These new algorithms may use an alternate number representation.

3.3.1. Integers
The integral types of the current processors have a widthw of either 32 or 64 bits. This means that, using

hardware instructions, one is only able to compute modulo232 or 264. An arbitrary precision integer is then
usually represented under the formn =

∑l
i=0 ni2iw, with ni a machine integer. In algorithmic terms, it means

that a multiprecision integer is an array of machine integers. Naive operations can then be defined by using
the classical “schoolbook methods” in base2w, with linear complexity in the case of addition and subtraction,
and quadratic complexity in the case of division and multiplication.

3.3.2. Integers Modulo n and Finite Fields
Integers modulon are usually represented by the representative of their class in the interval[0, n− 1] or

sometimes]−n/2, n/2].
Addition, subtraction and multiplication are obtained from the corresponding operation over the integers,

after reduction modulon. This means that after each operation, a reduction modulon must be performed.
This is not very costly in the case of addition and subtraction (where it implies a single test and half the time
another addition of subtraction), but implies a division in the case of multiplication.

The modular division is a completely different operation, and amounts to compute a so-called extended gcd
of x andn, i.e., a paira, b with ax + bn = 1. This is classically performed by the Euclidean algorithm or
one of its variants, and is thus, in practice, by far the most costly operation. Many improvements in low-level
algorithms are obtained by choosing suitable representations of objects which avoid divisions modulon.

Finite fields can be separated in two types. Prime fields correspond to the integers modulon for prime
n. Extension fields are algebraic extensions of those prime fields, i.e.,Z/pZ[X] modulo an irreducible
polynomialP (X). Elements of a non-prime finite field are thus often represented as polynomials of elements
of a prime field. This means that ideas from polynomial arithmetic can, and should be used.

A difficult case is the case whenpdeg P (the cardinality of the field) is large whereas neitherp nor deg P
really are. The case wherep is large is indeed a classical case where we have to deal with arithmetic with large
integers, and fast algorithms exist in that case. The case wherep is small anddeg P large corresponds to the
realm of fast polynomial arithmetic. However, in the “middle range”, neitherp nordeg P are large enough to
justify the use of fast techniques. This is also at the core of some technical theoretical difficulties.

8 Activity Report INRIA 2005

3.3.3. p-adic Numbers
A p-adic number is defined as the formal limit of a sequence(xn) of integers such thatxi = xi+1 mod pi.

One could think of it as a formal series
∑

n≥0 anpn, with an ∈ {0, · · · , p− 1}, though alternative representa-
tions are sometimes more efficient for some computations. In particular, ap-adic number given to the precision
n is simply an element ofZ/pnZ.

The p-adic numbers offer the capability of lifting information known in a finite field to a field of
characteristic zero, keeping some structure information at the same time. They are extensively used by many
algorithms in computer algebra and algorithms related to algebraic curves, together with their extensions.

When we are trying to lift information from a nonprime finite field, sayFq for q = pn, we are led to
introduce algebraic extensions ofZp; algebraic extensions of thep-adics can be of two types,unramified
extensionsandramified extensions; roughly speaking, ramified extensions contain fractional powers ofp.

In practice, we are mostly interested in the case of smallp and unramified extensions. Of lesser importance
arep-adic integers for largep, and extensions of these, because the algorithms we have in mind are generally
not practical for largep. Yet, this is not necessarily the case for any possiblep-adic algorithm, hence this point
of view may change. At present, our application realms do not call forp-adic arithmetic requiring computations
in ramified extensions, but this may change in the future as well.

3.3.4. Floating-point Numbers and the IEEE-754 Standard
When discussing inexact types, one stumbles very quickly on two critical difficulties:

• since approximation is inherent to the manipulation of inexact types, how should approximation
be performed? This amounts to defining the (necessarily) finite set of numbers that can be exactly
represented (format),

• even if the two operands of an operation can be exactly represented, in general the result cannot
be. How should one define the result of an operation (rounding)? This is the key for a precise and
portable semantics of floating-point computations.

From now on, we shall focus on the floating-point numbers, which are the main inexact data type, at least
from the practical point of view.

3.3.4.1. Formats.
A floating-point format is a quadruple(β, n,Emin, Emax); a floating-point number in that format is of the

form

±(b0.b1...bn−1)·βe,

whereβ is thebase— usually 2 or 10 —,n is thesignificand width, e ∈ [Emin, Emax] is theexponent, and
the bi are thedigits, 0 ≤ bi < β. The IEEE-754 standard defines four binary floating-point formats (single
precision, single-extended, double precision, double-extended), the single-extended format being obsolete:

format total width β significand width Emin Emax

single 32 2 24 −126 +127
double 64 2 53 −1022 +1023

double-extended ≥ 79 2 ≥ 64 ≤ −16382 ≥ +16383

The on-going revision (754r) forgets about the single-extended and double-extended formats, and defines a
new quadruple precision format (binary128). It also defines new decimal formats:

format total width β significand width Emin Emax

binary128 128 2 113 −16382 +16383
decimal32 32 10 7 −95 +96
decimal64 64 10 16 −383 +384

Project-Team SPACES 9

decimal128 128 10 34 −6143 +6144

3.3.4.2. Rounding.
The IEEE-754 standard defines four rounding modes: rounding to zero, to+∞, to−∞, and to nearest-even.

It requires that any of the four basic arithmetic operations (+,−,×,÷), and the square root, must becorrectly
rounded, i.e., the rounded value ofa � b for � ∈ {+,−,×,÷} must be the closest one to the exact value
(assuming that the inputs are exact) — as if one were using infinite precision — according to the rounding
direction. (In case of an exact result lying exactly in the middle of two consecutive machine numbers, the
nearest-even mode chooses that with an even mantissa, i.e., ending withbn−1 = 0 in binary.)

3.3.5. The Table Maker’s Dilemma
Let f be a mathematical function (for example the exponential, the logarithm, or a trigonometric function),

and a given floating-point format(β, n,Emin, Emax). Assumeβ = 2, i.e., a binary format for simplicity.
Given a floating-point numberx in that format, we want to determine the floating-point numbery in that
format — or in another output format — that is closest tof(x) for a given rounding mode. In that case, we say
thaty ←− f(x) is correctly rounded. The problem here is that we cannot compute an infinite number of bits
of f(x). All we can do is to compute an approximationz to f(x) on m > n bits, with an error bounded by
oneulp (unit in last place). Consider for example the arc-tangent function, with the double-precision number
x = 4621447055448553 · 2−11, and rounding to nearest. We have in binary:

arctanx = 1.1001001000011111101101010100010001000010010101001100
1000111011...,

where the first line contains 53 significant bits, and the second one has 45 consecutive zeros. Ifm ≤ 99,
we’ll get as approximationz = 1.100...100︸ ︷︷ ︸53

1000...000, which is exactly the middle of two double-precision

numbers, and therefore we will not be able to determine the correct rounding ofarctanx. We say thatx is
a worst casefor thearctan function and rounding to nearest. Since a given format contains a finite number
of numbers — at most264 for double-precision —, the maximal working precisionm required for anyx
in that format is finite. The Table Maker’s Dilemma (TMD for short) consists in determining that maximal
working precisionmmax needed, which depends onf , the format and the rounding mode, and possibly the
corresponding worst casesx. Once we knowmmax, we can design an efficient routine to correctly roundf as
follows: (i) compute ammax-bit approximationz to f(x), with an error of at most one ulp, (ii) roundz.

3.3.6. State of the art
3.3.6.1. Integers

Most basic algorithms for integers are believed to be optimal, up to constant factors. The main goal here is
thus to save on those constant factors. For the multiplication, one challenge is to find the best algorithm for
each input size; since the thresholds between the different algorithms (naive, Karatsuba, Toom-Cook, FFT) are
machine-dependent, there is no theoretical answer to that question. The same holds for the problem of finding
which kind of FFT (Mersenne, Fermat, complex, Discrete Weighted Transform or DWT) is the fastest one for
a given application or input size.

For the division, it is well known that it can be performed — as any algebraic operation — in a constant
times that of the corresponding multiplication: for example, an× n product corresponds to a(2n)/n division.
One main challenge is to decrease that constant factor, sayd. In the naive (quadratic) range, we haved = 1,
but already in the Karatsuba range, the best known implementation hasd = 2 [36]. (Van der Hoeven [71] gives
an algorithm withd = 1, however its implementation seems tricky, and its memory usage is superlinear.)

3.3.6.2. Floating-point numbers
Algorithms for floating-point numbers make great use from those for integers. Indeed, a binary floating-

point number may be represented as an integer significand multiplied by 2e. Multiplication of two floating-
point numbers therefore reduces to the product of their significands; this product is in fact ashort product, since
only the high part is needed (assuming all numbers have the same precision). Despite some recent theoretical

10 Activity Report INRIA 2005

advances [47] [58], no great practical speedup has been obtained so far for the computation of a short product
with respect to the corresponding plain product. The same holds for division, though extension of the ideas of
the middle-product [46] to floating-point numbers might allow one to gain somewhat on division.

3.3.6.3. Integers modulo n.
A special case of integer division is when the divisorn is constant. This happens in particular in modular or

finite field computations (discrete logarithm and factorization via ECM for instance). There are basically two
kinds of algorithms in that case: (i) Barrett’s division [34] precomputes an approximation to1/n, which is used
to get an approximation to the quotient, which after a second product yields an approximate remainder, (ii)
Montgomery’s reduction precomputes−1/n mod βk (where the inputn hask words in baseβ) which gives
in two products the value ofcβ−k mod n, for c having2k words in baseβ. Both algorithms perform two
products with operands of size equal to the size ofn. These products are in fact short products, but according
to the above remark, the global cost is close to that of two plain products. A speedup can be obtained in the
FFT range, where the second product (to obtain the remainder) produces a known high part (resp. low part) in
Barrett’s division (resp. Montgomery’s reduction); using the fact that the FFT computes that product modulo
2m ± 1, one can save a factor of two for that product, with a global gain of 25%. Together with caching the
transform of the inputn and of its approximate inverse, one approachesd = 1. These ideas still need to be
implemented in common multiple-precision software.

3.3.6.4. p-adic numbers.
Recently, a large number of new “p-adic” algorithms for solving very concrete problems have been designed,

notably for counting points on algebraic varieties defined over finite fields. The application of such algorithms
to coding theory or cryptology is immediate, as this is a considerable aid for quickly setting up elliptic curve
cryptosystems, or for finding good codes. Some of these algorithms have been listed in Section3.1.1.5.2.

In such algorithms, computations are carried out in “p-adic structures”, but this vague wording reflects a
relatively wide variety of mathematical structures (not unrelated to the underlying finite field, of course). We
are frequently led to computing in the ring of 2-adic integers, which can be regarded as the integers modulo2n

for some variable precisionn. Also, just as extensions ofF2 are very common in computer algebra in general,
the ring of integers of unramified extensions of 2-adic numbers plays an important role.

3.3.6.5. The Table Maker’s dilemma.
Some instances of the TMD are easy. For example, for an algebraic function of total degreed, we get

an upper bound ofmmax ≤ dn + O(1) [52], which is attained whend = 2. Another easy case is the base
conversion, where the TMD reduces toO(Emax − Emin) computations of continued fractions [45].

However, in general, and especially for non-algebraic functions, the TMD is a difficult problem, because
we know no rigorous upper bound form, or the corresponding upper bound is much too large. However, a
quick-and-dirty statistical analysis shows that for an-bit input format (including the exponent bits if needed),
the worst case is aboutm ≈ 2n. But to determine a rigorous bound, the only known methods are based on
exhaustive search. Basically, they compute a2n-bit approximation tof(x) for everyx in the given format,
and see how many consecutive zeros or ones appear after (or from) the round bit. This naive approach has
complexityΘ(2n). Fortunately, faster — but still exponential — methods do exist. The first one is Lefèvre’s
algorithm [55], [54], with a complexity of22n/3+ε . An improved algorithm of complexity24n/7+ε is given
in [16].

4. Application Domains
4.1. Cryptology

The main application domain of our project is cryptology. As it has been mentioned several times in this
document, curves have taken an increasing importance in cryptology over the last ten years. Various works
have shown the usability and the usefulness of elliptic curves in cryptology, standards [50] and real-world
applications.

Project-Team SPACES 11

We collaborate with the TANC project-team from INRIA Futurs and École polytechnique on the study of
the suitability of higher genus curves to cryptography (mainly hyperelliptic curves of genus two, three) This
implies some work on three concrete objectives, which are of course highly linked with our main theoretical
objectives:

1. improvement of the arithmetic of those curves, so as to guarantee fast enough ciphering-deciphering;

2. fast key generation. This rests on fast computations in the curve and in the ability to quickly compute
the cardinality. Another approach (complex multiplication) is followed by TANC.

3. study of the security of the algorithmic primitives relying on curves. This implies attempts at solving
discrete logarithms problems in Jacobians using the best known techniques, so as to determine the
right key-size.

We also have connections to cryptology through the study and development of the integer LLL algorithm,
which is one of the favourite tools to cryptanalyse public-key cryptosystems. For example, we can mention
the cryptanalysis of knapsack-based cryptosystems, the cryptanalyses of some fast variants of RSA, the
cryptanalyses of fast variants of signature schemes such as DSA or Elgamal, or the attacks against lattice based
cryptosystems like NTRU. The use of floating-point arithmetic within this algorithm dramatically speeds it up,
which renders the afore-mentioned cryptanalyses more feasible.

4.2. Computational Number Theory Systems
We have strong ties with several computational number theory systems, and code written by members of

the project-team can be found in the Magma software and in the Pari/GP software.

4.2.1. Magma
Magma (http://magma.maths.usyd.edu.au/magma/) is the leading computational number theory software.

It also has some features of computer algebra (algebraic geometry, polynomial system solving) but not all of
what is expected of a computer algebra system. It is developed by the team of John Cannon in Sydney, and
while it describes itself as a non-commercial system, it is sold to cover the development cost, porting and
maintaining.

In many areas, programs originating from very specialized research works are ported into MAGMA by
their authors, who are invited to Sydney for this purpose. Several members of our project-team have already
visited Sydney; there has even been an official collaboration supported by the French embassy in Sydney
involving people from 3 groups in France (Toulouse, Palaiseau, Nancy) in 2000-2002. Gaudry, Thomé, and
Zimmermann have had the occasion to visit the MAGMA group in Sydney in 2001 in order to implement within
MAGMA some code they had written for their personal research (on computing the cardinality of Jacobians
of hyperelliptic curves, on computing discrete logarithms inF2n , and on the ECM factorization algorithm,
respectively). Zimmermann visited again the MAGMA group in April 2005 to help integratingMPFR and
LIBECM into MAGMA .

The Magma system now usesMPFR (see Section5.2) for its multiple-precision floating-point arithmetic.1.

4.2.2. Pari/GP
Pari/GP is a computational number theory system which comes with a library which can be used to access

Pari functions within a C program. It has originally been developed at the Bordeaux 1 university, and is
currently maintained (and expanded) by Karim Belabas, from Bordeaux University. It is free (GPL) software.
We sometimes use it for validation of our algorithms.

Again, some code written by members of the project has been incorporated into Pari.

1https://magma.maths.usyd.edu.au/magma/export/mpfr_gmp.shtml

http://magma.maths.usyd.edu.au/magma/
https://magma.maths.usyd.edu.au/magma/export/mpfr_gmp.shtml

12 Activity Report INRIA 2005

4.3. Arithmetics
Another indirect transfer is the usage ofMPFR in GCC (Gnu Compiler Collection) for the GFORTRAN

compiler2. MPFR is currently used at compile-time, to convert expressions likesin(3.1416) into binary double-
precision, when the rounding mode can be statically determined. Finally, we should mention another usage of
our software by the GCC team:GMP-ECM is used as efficiency test for release candidates of the gcc compiler,
up from version 3.3.

The MPFR library is also used by theCGAL software, a library for computational geometry developed
at INRIA Sophia-Antipolis. TheCGAL 3 group is currenly only using it for converting rationals to multi-
precision floating-point numbers, but plans to write its own interval arithmetic atop ofMPFR in the near future,
since double-precision interval arithmetic quickly fails for its problems (e.g. circle intersections).

5. Software
5.1. Introduction

An important part of the research done in the SPACES project is published within software.

5.2. MPFR
Keywords: IEEE 754, arbitrary precision, correct rounding, floating-point number.

Participants: Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, Paul Zimmermann
[contact].

MPFR is one of the main software developed by the SPACES team. MPFR is a library for computing with
arbitrary precision floating-point numbers, together with well-defined semantics, distributed under the LGPL
license. In particular, all arithmetic operations are performed according to a rounding mode provided by the
user, and all results are guaranteed correct to the last bit, according to the given rounding mode.

From September 2003 to August 2005, P. Pélissier joined the MPFR team, as a Junior technical staff, to
help improve the efficiency of MPFR for small precision (up to 200 bits, in particular in double, double
extended and quadruple precision). He also greatly improved the portability of the library, and added the use
of LIBTOOL to enable dynamic libraries. P. Pélissier is now working for SopraGroup — a small company near
Toulouse, subcontractor for Airbus Industry — on the validation of A380 commands.

In October 2005, the MPFR team took part in the “many digits” friendly competition organized by the group
of Henk Barendregt at the University of Nijmegen, Netherlands4. The competition consisted in 24 real values,
that had to be computed with the largest possible precision (up to one million digits) in the least possible time.
The MPFR team won that competition, where commercial software like Maple or Mathematica were also
represented.

Several software systems use MPFR, for example: the KDE calculator Abakus by Michael Pyne; CGAL
(Computational Geometry Algorithms Library) developed by the Geometrica team (INRIA Sophia-Antipolis);
Genius Math Tool and the GEL language, by Jiri Lebl; GFortran, the GNU Fortran 95 compiler, part of GCC;
Giac/Xcas, a free computer algebra system, by Bernard Parisse; the iRRAM exact arithmetic implementation
from Norbert Müller (University of Trier, Germany); the Magma computational algebra system; and the Wcalc
calculator by Kyle Wheeler.

Finally, a paper has been recently submitted [25] summarizing the objectives, architecture, and features of
MPFR.

5.3. MPC
Keywords: IEEE 754, arbitrary precision, complex floating-point number, correct rounding.

2Cf. threadRemove GMP in favor of MPFRathttp://gcc.gnu.org/ml/fortran/2004-07/msg00005.html.
3http://www.cgal.org
4http://www.cs.ru.nl/~milad/manydigits/

http://gcc.gnu.org/ml/fortran/2004-07/msg00005.html
http://www.cgal.org
http://www.cs.ru.nl/~milad/manydigits/

Project-Team SPACES 13

Participants: Andreas Enge, Paul Zimmermann [contact].

MPC is a complex floating-point library developed on top of the MPFR library, and distributed under the
LGPL license. It is co-written with Andreas Enge (TANC team, INRIA Futurs). A complex floating-point
number is represented byx + iy, wherex andy are real floating-point numbers, represented using the MPFR
library. The MPC library currently implements all basic arithmetic operations, and the exponential function,
all with correct rounding on both the real partx and the imaginary party of any result.

5.4. GMP-ECM
Participants: Laurent Fousse, Paul Zimmermann [contact].

A new major release of GMP-ECM, version 6.0.1, was made on April 1st, 2005. GMP-ECM is a program to
factor integers using the Elliptic Curve Method. Its efficiency comes both from the use of the GNU MP library,
and from the implementation of state-of-the-art algorithms. One of the main changes in ecm-6.0.1 is that it now
contains a library (LIBECM) in addition of the binary program (ECM). The binary program is distributed under
GPL, while the library is distributed under LGPL, to allow its integration into other non-GPL software. For
example, the Magma computational number theory software usesLIBECM, up from version V2.12 of Magma.

5.5. Exhaustive Tests of the Mathematical Functions
Participant: Vincent Lefèvre.

The tests of the mathematical functions (exp, log, sin, cos, etc.) have been partially rewritten. In particular,
all the low-level routines were rewritten in ISO C in order to be portable, using the MPN layer of GMP for
speed reasons. The code was also improved from the algorithmic point of view, in particular to reduce the
number of iterations from several thousands to two or three in some intervals; one third of the intervals that
were too long to test previously could now be tested very quickly. A variant of the algorithm, which is much
faster in some cases, can also be used. Some of these improvements are described in [20].

The algorithm has also been reimplemented in C and the underlying arithmetic can be chosen at compile
time: basic integers, IEEE-754 floating-point arithmetic (using the results from [27]) and the MPN layer of
GMP.

The results are used:

• by us, to detect bugs in MPFR and in the GNU C library (glibc);

• by the ARENAIRE team, for their implementation of the mathematical functions with correct
rounding.

6. New Results
6.1. Integer and Polynomial Arithmetic

Participants: Jean-Paul Cerri, Guillaume Hanrot, Paul Zimmermann.

Several articles describing fundamental work done in the last years finally appeared in 2005. The article
describing the search for primitive trinomials of degree 6972593 over GF(2) appeared inMathematics of
Computation[11].

G. Hanrot has written a joint paper [26] with G. Tenenbaum and J. Wu, from the mathematics laboratory of
University Henri-Poincaré Nancy 1, about average values of multiplicative functions on smooth integers. The
main result is an asymptotic expansion of quantities of the form∑

n≤x,P+(n)≤y

f(n),

14 Activity Report INRIA 2005

where f is a multiplicative function, under natural but technical assumptions on the Dirichlet series∑
n≥1 f(n)n−s.
This is a first step toward a joint study on finer questions regarding the distribution of smooth integers, with

in mind applications to the rigorous analysis of factorization or discrete logarithms algorithms.
Building on previous work, Jean-Paul Cerri has given a general method allowing one to compute the

Euclidian minimum of a number field. As a corollary, one can decide in most cases whether the ring of
integers of a number field is Euclidean. This result has been accepted for publication [13]. During this work,
he was led to study a more general question, using techniques from topological dynamics and in particular
a deep result by Berend. This led him to the proof of a set of old conjectures, mostly made by Barnes and
Swinnerton-Dyer, in the case where the rank of the unit group is at least 2; another byproduct is the fact that
the norm-euclidianity is decidable in that case, and that the algorithm proposed always terminates under the
same assumption on the unit rank. These results will be published in another paper [12].

6.2. Floating-Point Arithmetic
Participants: Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Damien Stehlé, Paul Zimmermann.

The journal version of the article describing how to find worst-cases of mathematical functions using lattice
reduction finally appeared in 2005 inIEEE Transactions on Computers[16]. We completed in 2005 our search
for worst cases of the2x function in double-extended precision (mantissa of 64 bits). The detailed results are
available onhttp://www.loria.fr/equipes/spaces/slz.en.html. The worst-case is

21/2+ 3990454322510295554
264 = 2−64 · 15153900280214575669.000000000000000000036...

This is the first exhaustive search ever completed in double-extended precision (previous searches by Lefèvre
and Muller were in double precision, i.e., with a mantissa of 53 bits).

Following the effort towards a standardization of mathematical functions in the IEEE 754 standard [40],
we propose an extension of Gal’s “accurate table” method [22]. This paper contains two main ideas. For one
function, we use “worst-case” inputs as distinguished points, which provide the arguably best set of values for
Gal’s method. For two functions, for examplesin andcos, we present a new algorithm, using a variant of that
from [16], which finds all simultaneousn-bit worst cases inO(2n/2), instead ofO(2n) for the naive method.
Using this work, we designed a very efficient implementation of theexp2 function in double precision5. On
a 3Ghz Pentium 4, for105 random tests, our code takes 461ms, whereas thelibm function takes 890ms. On
107 random tests, our code gives only 4 incorrect roundings, whereas thelibm function gives 563 incorrect
roundings.

A study of two frequently used numerical integration schemes was conducted by Fousse. Given a smooth
function f over a finite domain[a, b], the process of computing numerically the value ofI =

∫ b

a
f(x)dx

involves a significant number of floating-point operations. Although the truncation error that comes from the
integration method itself is often well studied, the roundoff errors are mostly neglected in available numerical
software, leading to incorrect results. In [23] the Newton-Cotes family of numerical integration methods are
studied and a numerical integration algorithm is described along with a complete error analysis. A similar
work was done for the Gauss-Legendre integration scheme in [24]. The algorithms are written in the Correctly
Rounded Quadrature library (CRQ) which will be available soon. It was possible using these results to compute
the value of

∫ 1

0
sin(sin(sin(x)))dx with 1000 significant digits in5.3s on an 2.4GHz AMD Opteron.

Together with Richard Brent (Australian National University, Canberra) and Colin Percival (Simon Fraser
University, Vancouver), we analyzed the maximal roundoff error possible in complex multiplication. We
showed the classical bound of

√
8 · 2−p for a working precision ofp bits can be improved to

√
5 · 2−p. This

result holds for any baseβ. In addition, forβ = 2, we exhibit the worst-case for single-precision (p = 24) and
double-precision (p = 53), and we conjecture a general form for large enoughp, depending only on the parity
of p.

5http://www.loria.fr/~zimmerma/free/exp2-7.c

http://www.loria.fr/equipes/spaces/slz.en.html
http://www.loria.fr/~zimmerma/free/exp2-7.c

Project-Team SPACES 15

6.3. Cryptology
Participants: Pierrick Gaudry, Emmanuel Thomé.

Pierrick Gaudry and Emmanuel Thomé have continued work on a new algorithm for computing discrete
logarithms in hyperelliptic curves in genus 3 (this work was started in 2004). This algorithm improves on the
previously best known algorithms, since the complexity drops fromO(q2− 2

g+1/2) to O(q2− 2
g), for computing

discrete logarithms in hyperelliptic curves of genus 3 defined overGF(q). The important part of the present
work is the fact that a proof is given. A fair amount of time has been spent on making this proof rigorous, and
avoiding heuristic arguments. Two authors have joined us, Nicolas Thériault (University of Waterloo, Canada)
and Claus Diem (Universität Leipzig, Germany). An updated version of the paper will be submitted soon.

Emmanuel Thomé has implemented a new algorithm by Claus Diem (Universität Leipzig, Germany), in turn
based on the former work cited above. The new algorithm practically dismisses a special class of algebraic
curves known asCa,b curves for cryptographic applications, as the discrete logarithm problem, while still
exponential, has been considerably eased. The benefits of using such curves in comparison to hyperelliptic
curves of genus 2 have vanished. The implementation has shown that group sizes around2100 are definitely
attackable. A conference paper by Claus Diem and Emmanuel Thomé will report this work.

6.4. Lattices
Participant: Damien Stehlé.

Damien Stehlé and Phong Q. Nguyễn (École Normale Supérieure, Paris) [21] have designed a variant of the
LLL algorithm that uses floating-point arithmetic. This variant, called L2, improves the previous floating-point
LLL algorithms described in [64], [62], [63]. More precisely, the L2 algorithm requires far lower precisions
than theses variants. Moreover, its complexity bound is the first that is only quadratic inlog B whereB is
the maximum of the lengths of the input vectors, whereas all other LLL algorithms have a cubic dependance
in log B. Since the LLL algorithm can be seen as a vectorial generalisation of the well-known euclidean
algorithm, this quadratic complexity bound seems to be the correct one.

This algorithmic improvement helped understanding more precisely the numerical behaviour of the LLL
algorithm. In this direction, Damien Stehlé wrote an efficient code for lattice reduction. A classical application
of the LLL algorithm is the search of small integer relations between numbers. As an example of the efficiency
of the code, it can find such a relation between 121 numbers of 30,000 bits each in less than 9 minutes.

7. Contracts and Grants with Industry
7.1. MPQS

Participant: Paul Zimmermann.

MPQS is a program that factors integers using the Multiple Polynomial Quadratic Sieve, developed by
Scott Contini and Paul Zimmermann. It is distributed under GPL fromhttp://www.loria.fr/~zimmerma/free/.
A license agreement is under discussion with Waterloo Maple Inc. (WMI), to enable the use of a fixed version
of the MPQS software within the Maple computer algebra software.

7.2. European Initiatives
7.2.1. PAI with Berlin

Participant: Pierrick Gaudry.

We have a grant from the French Ministry of Foreign Affairs in the PAI program (Programme d’Actions
Intégrées) with Germany. This is an exchange research program with Florian Heß and the “Algebra und
Zahlentheorie” group in the TU Berlin. The topic fits with our overall objectives, since the goal is to investigate
new methods in number theory and geometry with a view towards cryptology.

http://www.loria.fr/~zimmerma/free/

16 Activity Report INRIA 2005

8. Dissemination
8.1. Scientific Animation
8.1.1. RNC’7 Conference

The members of the project are organizing the 7th Real Numbers and Computers conference (RNC’7) that
will take place in Nancy in 2006 (http://rnc7.loria.fr). E. Thomé is publicity chair, L. Fousse and V. Lefèvre are
organizing a “friendly competition”, C. Simon is in charge of the invited speakers and the conference budget,
and G. Hanrot, P. Zimmermann are co-chairs of the program committee.

8.2. Leadership within Scientific Community
G. Hanrot and P. Zimmermann are program co-chairs of the RNC’7 conference, that will take place in

Nancy in July 2006. P. Zimmermann was member of the program committee of the Arith’17 conference (June
2005, Cape Cod, USA).

8.3. Committees memberships
G. Hanrot is vice-head of the Project Committee of INRIA Lorraine. He is also an appointed member of

the INRIA Commission d’Évaluation, of the Mathematics “Commissions de Spécialistes” from Universités
Montpellier 2, Henri-Poincaré Nancy 1-Nancy 2-INPL, Jean-Monnet Saint-Étienne. He was a member of the
hiring committee for CR2 at INRIA Futurs and INRIA Lorraine in 2005.

P. Zimmermann is also an elected member from the INRIA Evaluation Committee, and of the Computer
Science “Commission de Spécialistes” from University Henri Poincaré Nancy 1.

8.4. Vulgarization
G. Hanrot gave two 1h30 lectures on algorithms for diophantine equations for teachers inclasses prépara-

toires. A paper version of those talks [15] will be published as a chapter of a book with the other talks given
at that occasion.

P. Zimmermann wrote a vulgarization article entitled“MPFR : vers un calcul flottant correct ?”on
the Intersticesweb site [19]. He also wrote the chapterThe Elliptic Curve Methodin the Encyclopedia of
Cryptography and Security, a collaborative work edited by Henk van Tilborg, and published by Springer [18].
He also contributed a chapter on algorithmic techniques and programmming methods in a French encyclopedia
on computer science to be published by Vuibert [17].

8.5. Teaching
G. Hanrot gave three 3 hours lectures at MPRI (Master Parisien de Recherche en Informatique) about

algorithmic number theory.
G. Hanrot is a member of the jury of “agrégation externe de mathématiques”, a competitive exam to hire

high school teachers.

9. Bibliography
Major publications by the team in recent years

[1] Y. B ILU , G. HANROT, P. VOUTIER. Existence of primitive divisors of Lucas and Lehmer sequences, in "J.
Reine Angew. Math.", vol. 539, 2001, p. 75–122.

[2] Y. BUGEAUD, G. HANROT. Un nouveau critère pour l’équation de Catalan, in "Mathematika", vol. 47, 2000,
p. 63–73.

http://rnc7.loria.fr

Project-Team SPACES 17

[3] D. DEFOUR, G. HANROT, V. LEFÈVRE, J.-M. MULLER, N. REVOL, P. ZIMMERMANN . Proposal for
a Standardization of Mathematical Function Implementation in Floating-Point Arithmetic, in "Numerical
Algorithms", vol. 37, no 1-2, 2004, p. 367–375.

[4] L. FOUSSE, P. ZIMMERMANN . Accurate Summation : Towards a Simpler and Formal Proof, in "5th Conference
on Real Numbers and Computers 2003 - RNC5, Lyon, France", Sept. 2003, p. 97–108.

[5] V. L EFÈVRE. Moyens arithmétiques pour un calcul fiable, Thèse de doctorat, École Normale Supérieure de
Lyon, 2000.

[6] F. ROUILLIER , P. ZIMMERMANN . Efficient Isolation of Polynomial Real Roots, in "Journal of Computational
and Applied Mathematics", vol. 162, no 1, 2003, p. 33-50.

[7] D. STEHLÉ, V. LEFÈVRE, P. ZIMMERMANN . Worst Cases and Lattice Reduction, in "16th IEEE Symposium
on Computer Arithmetic 2003 - ARITH-16’03, Santiago de Compostela, Spain", Jun. 2003, p. 142-147.

Doctoral dissertations and Habilitation theses

[8] J.-P. CERRI. Spectres euclidiens et inhomogènes des corps de nombres, Thèse, Université Henri-Poincaré
Nancy 1, 2005,http://tel.ccsd.cnrs.fr/tel-00011151.

[9] G. HANROT. Quelques algorithmes en arithmétique, Habilitation à diriger des recherches, Université Henri-
Poincaré Nancy 1, 2005.

[10] D. STEHLÉ. Algorithmique de la réduction de réseaux et application à la recherche de pires cas pour l’arrondi
de fonctions mathématiques, Thèse, Université Henri-Poincaré Nancy 1, 2005,http://tel.ccsd.cnrs.fr/tel-
00011150.

Articles in refereed journals and book chapters

[11] R. BRENT, S. LARVALA , P. ZIMMERMANN . A Primitive Trinomial of Degree 6972593, in "Mathematics of
Computation", vol. 74, no 250, Mar 2005, p. 1001–1002.

[12] J.-P. CERRI. Euclidean and inhomogeneous spectra of number fields with unit rank greater than 1, in "J. Reine
Angew. Math.", 2005.

[13] J.-P. CERRI. Euclidean minima of totally real fields. Algorithmic determination, in "Math. Comp.", 2005.

[14] Y. GERARD, I. DEBLED-RENNESSON, P. ZIMMERMANN . An elementary digital plane recognition algorithm,
in "Discrete Appl. Math.", vol. 151, no 1–3, 2005, p. 169–183.

[15] G. HANROT. Journées X-UPS 2005, chap. Quelques idées sur l’algorithmique des équations diophantiennes,
Presses de l’École polytechnique, 2005.

[16] D. STEHLÉ, P. ZIMMERMANN , V. LEFÈVRE. Searching Worst Cases of a One-Variable Function Us-
ing Lattice Reduction, in "IEEE Transactions on Computers", vol. 54, no 3, Mar 2005, p. 340-346,
http://hal.inria.fr/inria-00000379.

http://tel.ccsd.cnrs.fr/tel-00011151
http://tel.ccsd.cnrs.fr/tel-00011150
http://tel.ccsd.cnrs.fr/tel-00011150
http://hal.inria.fr/inria-00000379

18 Activity Report INRIA 2005

[17] P. ZIMMERMANN . Encyclopédie de l’informatique et des systèmes d’information, 7 pages, chap. Techniques
algorithmiques et méthodes de programmation, Vuibert, 2005,http://www.loria.fr/~zimmerma/papers/algo.pdf.

[18] P. ZIMMERMANN . Encyclopedia of Cryptography and Security, van Tilborg, Henk C.A. (Ed.), chap. The
Elliptic Curve Method, Springer, 2005,http://hal.inria.fr/inria-00000630.

[19] P. ZIMMERMANN . MPFR : vers un calcul flottant correct ?, in "Interstices", 2005,
http://interstices.info/display.jsp?id=c_9345.

Publications in Conferences and Workshops

[20] V. L EFÈVRE. New Results on the Distance Between a Segment andZ2. Application to the Exact Rounding,
in "17th IEEE Symposium on Computer Arithmetic (Arith’17), Cape Cod, MA, USA", P. MONTUSCHI, E.
SCHWARZ (editors). , IEEE Computer Society, June 2005, p. 68–75,http://hal.inria.fr/inria-00000025.

[21] P. NGUYẼN, D. STEHLÉ. Floating-Point LLL Revisited, in "Proceedings of Eurocrypt 2005", Lecture Notes
in Computer Science, vol. 3494, Springer-Verlag, 2005, p. 215–233.

[22] D. STEHLÉ, P. ZIMMERMANN . Gal’s Accurate Tables Method Revisited, in "17th IEEE Symposium on Com-
puter Arithmetic - ARITH’17, Cape Cod, MAS, USA", IEEE, Jun 2005, p. 236-257,http://hal.inria.fr/inria-
00000378.

Internal Reports

[23] L. FOUSSE. Correctly rounded Newton-Cotes Quadrature, Research Report, no RR-5605, Institut National de
Recherche en Informatique et en Automatique, 2005,http://hal.inria.fr/inria-00000760.

[24] L. FOUSSE. Multiple-Precision Correctly Rounded Gauss-Legendre Quadrature, Research Report, no RR-
5705, Institut National de Recherche en Informatique et en Automatique, 2005,http://hal.inria.fr/inria-
00000759.

[25] L. FOUSSE, G. HANROT, V. LEFÈVRE, P. PÉLISSIER, P. ZIMMERMANN . MPFR: A Multiple-Precision
Binary Floating-Point Library With Correct Rounding, Research Report, no RR-5753, INRIA, November
2005,http://www.inria.fr/rrrt/rr-5753.html.

[26] G. HANROT, G. TENENBAUM, J. WU. Valeurs moyennes de fonctions multiplicatives sur les entiers friables,
2, Technical report, 2005.

[27] V. L EFÈVRE. The Euclidean Division Implemented with a Floating-Point Division and a Floor, Research
Report, no RR-5604, INRIA, June 2005,http://hal.inria.fr/inria-00000154.

Bibliography in notes

[28] W. BOSMA (editor).Fourth Algorithmic Number Theory Symposium, Leiden, The Netherlands, Lecture Notes
in Comput. Sci., vol. 1838, Springer–Verlag, July 2000.

[29] L. C. GUILLOU , J.-J. QUISQUATER (editors).Advances in Cryptology – EUROCRYPT ’95, Lecture Notes

http://www.loria.fr/~zimmerma/papers/algo.pdf
http://hal.inria.fr/inria-00000630
http://interstices.info/display.jsp?id=c_9345
http://hal.inria.fr/inria-00000025
http://hal.inria.fr/inria-00000378
http://hal.inria.fr/inria-00000378
http://hal.inria.fr/inria-00000760
http://hal.inria.fr/inria-00000759
http://hal.inria.fr/inria-00000759
http://www.inria.fr/rrrt/rr-5753.html
http://hal.inria.fr/inria-00000154

Project-Team SPACES 19

in Comput. Sci., Proc. International Conference on the Theory and Application of Cryptographic Techniques,
Saint-Malo, France, vol. 921, May 1995.

[30] B. PRENEEL (editor).Advances in Cryptology – EUROCRYPT 2000, Lecture Notes in Comput. Sci., Proc.
International Conference on the Theory and Application of Cryptographic Techniques, Brugge, Belgium, vol.
1807, Springer–Verlag, May 2000.

[31] C. D. WALTER, Ç. K. KOÇ, C. PAAR (editors). CHES 2003, Lecture Notes in Comput. Sci., Proc.
5th International Workshop on Cryptographic Hardward and Embedded Systems, Sep. 8–10, vol. 2779,
Springer–Verlag, 2003.

[32] S. ARITA . Algorithms for computations in Jacobians ofCab curve and their application to discrete-log-based
public key cryptosystems, in "Proceedings of Conference on The Mathematics of Public Key Cryptography,
Toronto, June 12–17", 1999.

[33] W. BACKES, S. WETZEL. New Results on Lattice Basis Reduction in Practice, in "ANTS-IV", W. B OSMA

(editor). , Lecture Notes in Comput. Sci., vol. 1838, Springer–Verlag, July 2000, p. 135–152.

[34] P. BARRETT. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard
digital signal processor, in "Advances in Cryptology, Proceedings of Crypto’86", A. M. ODLYZKO (editor). ,
Lecture Notes in Comput. Sci., vol. 263, Springer–Verlag, 1987, p. 311–323.

[35] A. BASIRI, A. ENGE, J.-C. FAUGÈRE, N. GÜREL. The arithmetic of Jacobian groups of superelliptic cubics,
To appear in Math. Comp..

[36] C. BURNIKEL , J. ZIEGLER. Fast Recursive Division, Research Report, no MPI-I-98-1-022, MPI Saarbrücken,
1998,http://citeseer.ifi.unizh.ch/burnikel98fast.html.

[37] D. G. CANTOR. Computing in the Jacobian of a hyperelliptic curve, in "Math. Comp.", vol. 48, no 177, 1987,
p. 95–101.

[38] D. COPPERSMITH. Finding Small Solutions to Small Degree Polynomials, in "Proceedings of CALC’01",
Lecture Notes in Computer Science, no 2146, 2001, p. 20–31.

[39] D. COPPERSMITH. Solving linear equations overGF(2) via block Wiedemann algorithm, in "Math. Comp.",
vol. 62, no 205, 1994, p. 333–350.

[40] D. DEFOUR, G. HANROT, V. LEFÈVRE, J.-M. MULLER, N. REVOL, P. ZIMMERMANN . Proposal for a Stan-
dardization of Mathematical Function Implementation in Floating-Point Arithmetic, in "Numer. Algorithms",
vol. 37, no 1–4, 2004, p. 367–375.

[41] S. D. GALBRAITH , S. PAULUS, N. P. SMART. Arithmetic on Superelliptic Curves, in "Math. Comp.", vol.
71, no 237, 2002, p. 393–405.

[42] P. GAUDRY. An algorithm for solving the discrete log problem on hyperelliptic curves, B. PRENEEL

(editor). , Lecture Notes in Comput. Sci., Proc. International Conference on the Theory and Application of

http://citeseer.ifi.unizh.ch/burnikel98fast.html

20 Activity Report INRIA 2005

Cryptographic Techniques, Brugge, Belgium, vol. 1807, Springer–Verlag, May 2000, p. 19–34.

[43] P. GAUDRY, É. SCHOST. Cardinality of a genus 2 hyperelliptic curve overGF (5 · 1024+41), 2002.

[44] P. GAUDRY, E. SCHOST. Construction of Secure Random Curves of Genus 2 over Prime Fields, in "Advances
in Cryptology – EUROCRYPT 2004", C. CACHIN , J. CAMENISCH (editors). , Lecture Notes in Comput. Sci.,
vol. 3027, Springer-Verlag, 2004, p. 239–256.

[45] M. HACK . On intermediate precision required for correctly-rounding decimal-to-binary floating-point con-
version, in "Proceedings of RNC’6, Schloß Dagstuhl, Germany, November 15-17", 2004.

[46] G. HANROT, M. QUERCIA, P. ZIMMERMAN . The middle product algorithm, I. Speeding up the division and
square root of power series, in "Appl. Algebra Engrg. Comm. Comput.", no 14, 2004, p. 415–438.

[47] G. HANROT, P. ZIMMERMAN . A long note on Mulders’ short product, in "J. Symbolic Comput.", no 37, 2004,
p. 391–401.

[48] R. HARASAWA , J. SUZUKI . Fast Jacobian group arithmetic onCab curves, in "ANTS-IV", W. B OSMA

(editor). , Lecture Notes in Comput. Sci., vol. 1838, Springer–Verlag, 2000, p. 359–376.

[49] F. HESS. Computing Riemann-Roch spaces in algebraic function fields and related topics, in "J. Symbolic
Comput.", vol. 33, 2002, p. 425–445.

[50] IEEE.P1363: Standard specifications for public key cryptography.

[51] H. KOY, C. P. SCHNORR. Segment LLL-Reduction with Floating Point Orthogonalization, in "Proceedings of
CalC’01", Lecture Notes in Comput. Sci., vol. 2146, Springer–Verlag, 2001, p. 81–96.

[52] T. LANG, J.-M. MULLER. Bounds on Runs of Zeros and Ones for Algebraic Functions, in "Proceedings of
the 15th IEEE Symposium on Computer Arithmetic", IEEE Computer Society, 2001, p. 13–20.

[53] T. LANGE. Formulae for Arithmetic on Genus 2 Hyperelliptic Curves, Preprint, 2003.

[54] V. L EFÈVRE, J.-M. MULLER. Worst Cases for Correct Rounding of the Elementary Functions in Double Pre-
cision, in "Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’15)", N. BURGESS,
L. CIMINIERA (editors). , IEEE Computer Society, 2001, p. 111-118.

[55] V. L EFÈVRE. Moyens arithmétiques pour un calcul fiable, Thèse de doctorat, École Normale Supérieure de
Lyon, 2000.

[56] A. K. L ENSTRA, H. W. LENSTRA, L. LOVÁSZ. Factoring Polynomials with Rational Coefficients, in
"Mathematische Annalen", vol. 261, 1982, p. 515–534.

[57] P. L. MONTGOMERY. A block Lanczos algorithm for finding dependencies overGF(2), L. C. GUILLOU , J.-J.
QUISQUATER (editors). , Lecture Notes in Comput. Sci., Proc. International Conference on the Theory and
Application of Cryptographic Techniques, Saint-Malo, France, vol. 921, May 1995, p. 106–120.

Project-Team SPACES 21

[58] T. MULDERS. On Short Multiplications and Divisions, in "Appl. Algebra Engrg. Comm. Comput.", vol. 11,
no 1, 2000, p. 69–88.

[59] V. NECHAEV. Complexity of a determinate algorithm for the discrete logarithm, in "Math. Notes", vol. 55, no

2, 1994, p. 165–172.

[60] J. PELZL , T. WOLLINGER, J. GUAJARDO, C. PAAR . Hyperelliptic Curve Cryptosystems: Closing the
Performance Gap to Elliptic Curves, C. D. WALTER, Ç. K. KOÇ, C. PAAR (editors). , Lecture Notes in
Comput. Sci., Proc. 5th International Workshop on Cryptographic Hardward and Embedded Systems, Sep.
8–10, vol. 2779, Springer–Verlag, 2003, p. 351–365.

[61] C. P. SCHNORR, M. EUCHNER. Lattice basis reduction: improved practical algorithms and solving subset
sum problems, in "Math. Programming", vol. 66, 1994, p. 181–199.

[62] C. P. SCHNORR, M. EUCHNER. Lattice basis reduction: improved practical algorithms and solving subset
sum problems, in "Mathematics of Programming", vol. 66, 1994, p. 181–199.

[63] C. P. SCHNORR. Fast LLL-type lattice reduction, in "To appear", 2005,http://www.mi.informatik.uni-
frankfurt.de/research/papers.html.

[64] C. P. SCHNORR. A more efficient algorithm for lattice basis reduction, in "Journal of Algorithms", vol. 9, no

1, 1988, p. 47–62.

[65] R. SCHOOF. Elliptic curves over finite fields and the computation of square roots modp, in "Math. Comp.",
vol. 44, 1985, p. 483–494.

[66] A. SCHÖNHAGE. Factorization of Univariate Integer Polynomials by Diophantine Approximation and an Im-
proved Basis Reduction Algorithm, in "Proc. of ICALP ’84", Lecture Notes in Comput. Sci., Springer–Verlag,
1984, p. 436–447.

[67] E. THOMÉ. Computation of discrete logarithms inF2607 , in "Advances in Cryptology – ASIACRYPT 2001",
C. BOYD, E. DAWSON (editors). , Lecture Notes in Comput. Sci., vol. 2248, Springer–Verlag, 2001, p.
107–124.

[68] E. THOMÉ. Discrete logarithms inGF(2607), 2002.

[69] E. THOMÉ. Subquadratic computation of vector generating polynomials and improvement of the block
Wiedemann algorithm, in "J. Symbolic Comput.", vol. 33, no 5, 2002, p. 757–775.

[70] D. H. WIEDEMANN . Solving sparse linear equations over finite fields, in "IEEE Trans. Inform. Theory", vol.
IT–32, no 1, 1986, p. 54–62.

[71] J. VAN DER HOEVEN. Relax, but don’t be too lazy, in "J. Symbolic Comput.", vol. 34, no 6, 2002, p. 479–542.

http://www.mi.informatik.uni-frankfurt.de/research/papers.html
http://www.mi.informatik.uni-frankfurt.de/research/papers.html

