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2. Overall Objectives
2.1. Main topics

TANC is located in the Laboratoire d’Informatique de l’École polytechnique (LIX). The project was created
on 2003-03-10.

The aim of the TANC project is to promote the study, implementation and use of robust and verifiable
asymmetric cryptosystems based on algorithmic number theory.

It is clear from this sentence that we combine high-level mathematics and efficient programming. Our main
area of competence and interest is that of algebraic curves over finite fields, most notably the computational
aspects of these objects, that appear as a substitute of good old-fashioned cryptography based on modular
arithmetic. One of the reasons for this change is the key-size that is smaller for an equivalent security. We
participate in the recent bio-diversity mood that tries to find substitutes for RSA, in case some attack would
appear and destroy the products that employ it.

Whenever possible, we produce certificates (proofs) of validity for the objects and systems we build. For
instance, an elliptic curve has many invariants, and their values need to be proved, since they may be difficult
to compute.

Our research area includes:

• Fundamental number theoretic algorithms: we are interested in primality proving algorithms based
on elliptic curves (F. Morain being the world leader in this topic), integer factorization, and the
computation of discrete logarithms over finite fields. These problems lie at the heart of the security
of arithmetic based cryptosystems.
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• Algebraic curves over finite fields: the algorithmic problems that we tackle deal with the efficient
computation of group laws on Jacobians of curves, evaluation of the cardinality of these objects,
and the study of the security of the discrete logarithm problem in such groups. These topics are the
crucial points to be solved for potential use in real crypto-products.

• Complex multiplication: the theory of complex multiplication is a meeting point of algebra, complex
analysis and algebraic geometry. Its applications range from primality proving to the efficient
construction of elliptic or hyperelliptic cryptosystems.

2.2. Exploratory topics
As described in the name of our project, we aim at providing robust primitives for asymmetric cryptography.

In recent years, we have made several attempts at coming closer to another part of cryptology, by applying our
knowledge to real life protocols. This has led TANC to recruit two postdocs, one in the framework of ERCIM,
and another one from INRIA. The idea was to hire two specialists on signature schemes in which elliptic
curves have a decisive impact, since they provide shorter signatures than traditional ones. We are currently
trying to promote their use in environments where this could be useful, namelyad hocnetworks.

In the same vein, we have hired aningénieur associéto write a platform implementing the IEEE P-1363
cryptography standards, so that we can incorporate and test the algorithms normalized in it. This can be used
to answer questions on the performance of our systems.

3. Scientific Foundations
3.1. General overview

Keywords: Cryptology, arithmetic.

Once considered beautiful but useless, arithmetic has proven incredibly efficient when asked to assist
the creation of a new paradigm in cryptography. Old cryptography was mainly concerned withsymmetric
techniques: two principals wishing to communicate secretly had to share a common secret beforehand and this
same secret was used both for encrypting the message and for decrypting it. This way of communication is
efficient enough when traffic is low, or when the principals can meet prior to communication.

It is clear that modern networks are too large for this to remain efficient any longer. Hence the need for
cryptography without first contact. In theory, this is easy. Find two algorithmsE andD that are reciprocal
(i.e., D(E(m)) = m) and such that the knowledge ofE does not help in computingD. ThenE is dubbed
a public key available to anyone, andD is the secret key, reserved to a user. When Alice wants to send an
email to Bob, she uses his public key and can send him the encrypted message, without agreeing on a common
key beforehand. Though simplified and somewhat idealized, this is the heart of asymmetric cryptology. Apart
from confidentiality, modern cryptography provides good solutions to the signature problem, as well as some
solutions for identifying all parties in protocols, thus enabling products to be usable on the INTERNET (ssh,
ssl/tls, etc.).

Of course, everything has to be presented in the modern language of complexity theory: computingE and
D must be doable in polynomial time; findingD from E alone should be possible only in, say, exponential
time, without some secret knowledge.

Now, where do difficult problems come from? Mostly from arithmetical problems. There we find the integer
factoring problem, the discrete logarithm problem, etc. Varying the groups appears to be important, since
this provides some bio-diversity which is the key of the resistance to attacks from crypto-analysts. Among
the groups proposed: finite fields, modular integers, algebraic curves, class groups, etc. All these now form
cryptographic primitives that need to be assembled in protocols, and finally in commercial products.

Our activity is concerned with the beginning of this process: we are interested in difficult problems arising
in computational number theory and the efficient construction of these primitives. TANC concentrates on
modular arithmetic, finite fields and algebraic curves.
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We have a strong well-known reputation of breaking records whatever the subject is: constructing systems
or breaking them, including primality proving, class polynomials, modular equations, computing cardinalities
of algebraic curves, discrete logs, etc. This means writing programs and putting in all the work needed to make
them run for weeks or months. An important part of our task is now to transform record programs into ones
that can solve everyday life problems for current sizes of the parameters.

Efficiency is not our single concern. Certificates are again another one. By this, we mean that we provide
proofs of the properties of the objects we build. The traditional example is that of prime numbers, where
certificates were introduced by Pratt in 1974. These certificates might be difficult to build, yet they are easy to
check (by customers, say). We know how to do this for elliptic curves, with the aim of establishing what we
call anidentity card for a curve, including its cardinality together with the proof of its factorization, its group
structure (with proven generators), discriminant (and factorization), class number of the associated order. The
theory is ready for this, algorithms not out of reach. This must be extended to other curves, and in several cases,
the theory is almost ready or not at all, and algorithms still to be found. This is one of the main problems we
have to tackle in TANC.

It is clear that more and more complex mathematics will be used in cryptology (see the recent algorithms that
usep-adic approaches). These cannot live if we do not implement them, and this is where we need more and
more evolved algorithms, that are for the moment present in very rare mathematical systems, like MAGMA that
we use for this. It should be noted that some of our programs (an old version of ECPP, some parts of discrete
log computations, cardinality of curves) are now included in this system, as a result of our collaboration with
the Sydney group. Once the algorithms work in MAGMA , it is customary to rewrite them in C or C++ to gain
speed.

3.2. Algebraic curves over finite fields
One of the most used protocol is that of Diffie-Hellman that enables Alice and Bob to exchange a secret

information over an insecure channel. Given a publicly known cyclic groupG of generatorg, Alice sends
ga for a randoma to Bob, and Bob responds with a randomgb. Both Alice and Bob can now computegab

and this is henceforth their common secret. Of course, this a schematic presentation, since real-life protocols
based on this need more security properties. Being unable to recovera from ga (the discrete log problem
– DLP) is a major concern for the security of the scheme, and groups for which theDLP is difficult must
be favored. Therefore, groups are important, and TANC concentrates on algebraic curves, since they offer
a very interesting alternative to finite fields, in which theDLP can be broken by subexponential algorithms.
Thus using curves a smaller key can be used, and this is very interesting as far as limited powered devices are
concerned.

In order to build a cryptosystem based on an algebraic curve over a finite field, one needs to efficiently
compute the group law (hence have a nice representation of the elements of the Jacobian of the curve). Next,
computing the cardinality of the Jacobian is required, so that we can find generators of the group, or check
the difficulty of the discrete logarithm in the group. Once the curve is built, one needs to test its security, for
example how hard the discrete logarithm in this group is.

3.2.1. Effective group laws
A curve that interests us is typically defined over a finite fieldGF(pn) wherep is the characteristic of the

field. Part of what follows does not depend on this setting, and can be used as is over the rationals, for instance.
The points of an elliptic curveE (of equationy2 = x3 + ax + b, say) form an abelian group, that was

thoroughly studied during the preceding millenium. Adding two points is usually done using what is called the
tangent-and-chordformulae. When dealing with a genusg curve (the elliptic case beingg = 1), the associated
group is the Jacobian (set ofg-tuples of points modulo an equivalence relation), an object of dimensiong.
Points are replaced by polynomial ideals. This requires the help of tools from effective commutative algebra,
such as Gröbner bases or Hermite normal forms.

A. Enge and N. Gürel have worked with J. -C. Faugère and A. Basiri (LIP 6) on the arithmetic of superelliptic
andCa,b curves, the next complex class of algebraic curves after the well understood hyperelliptic ones. They
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have dramatically improved the existing algorithms and have found new algorithms for superelliptic cubic
curves, that is, curves of the formy3 = f(x) with deg(f) prime to 3 and at least 4[13]. They have generalized
their work, in part based on Gröbner basis computations, toC3,4 curves and have provided explicit formulae
for realizing the group law using only operations in the underlying (finite) field [31].

The great catalog of usable curves is complete, as a result of the work of TANC, notably in two ACI
(CRYPTOCOURBESandCRYPTOLOGIE P-ADIQUE) that are finished now.

3.2.2. Cardinality
Once the group law is tractable, one has to find means of computing the cardinality of the group, which

is not an easy task in general. Of course, this has to be done as fast as possible, if changing the group very
frequently in applications is imperative.

Two parameters enter the scene: the genusg of the curve, and the characteristicp of the underlying
finite field. Wheng = 1 and p is large, the only current known algorithm for computing the number of
points ofE/GF(p) is that of Schoof–Elkies–Atkin. Thanks to the works of the project, world-widespread
implementations are able to build cryptographically strong curves in less than one minute on a standard PC.

When p is small (one of the most interesting cases for hardware implementation in smart cards being
p = 2) the best current methods usep-adic numbers, following the breakthrough of T. Satoh with a method
working for p ≥ 5. The first version of this algorithm forp = 2 was proposed independently by M. Fouquet,
P. Gaudry and R. Harley and by B. Skjernaa. J. -F. Mestre has designed the currently fastest algorithm using
the arithmetico-geometric mean (AGM) approach. Developed by R. Harley and P. Gaudry, it led to new world
records. Then, P. Gaudry combined this method together with other approaches, to make it competitive for
cryptographic sizes [40].

Wheng > 1 andp is large, polynomial time algorithms exist, but their implementation is not an easy task.
P. Gaudry and É. Schost have modified the best existing algorithm so as to make it more efficient. They were
able to build the first random cryptographically strong genus 2 curves defined over a large prime field [10]. To
get one step further, one needs to use genus 2 analogues of modular equations. After a theoretical study [18],
they are now investigating the practical use of these equations.

Whenp = 2, p-adic algorithms led to striking new results. First, the AGM approach extends to the case
g = 2 and is competitive in practice (only three times slower than in the caseg = 1). In another direction,
Kedlaya has introduced a new approach, based on the Monsky-Washnitzer cohomology. His algorithm works
originally whenp > 2. P. Gaudry and N. Gürel implemented this algorithm and extended it to superelliptic
curves, which had the effect of adding these curves to the list of those usable in cryptography.

Closing the gap between small and large characteristic leads to pushing thep-adic methods as far as possible.
In this spirit, P. Gaudry and N. Gürel have adapted Kedlaya’s algorithm and exhibited a linear complexity in
p, making it possible to reach a characteristic of around 1000 (see [39]). For largerp’s, one can use the
Cartier-Manin operator. Recently, A. Bostan, P. Gaudry and É. Schost have found a much faster algorithm
than currently known ones [33]. Primesp around109 are now doable.

3.3. Complex multiplication
Despite the achievements described above, random curves are sometimes difficult to use, since their

cardinality is not easy to compute or useful instances are too rare to occur (curves for pairings for instance).
In some cases, curves with special properties can be used. For instance curves withcomplex multiplication(in
brief CM), whose cardinalities are easy to compute. For example, the elliptic curve defined overGF (p) of
equationy2 = x3 + x has cardinalityp + 1− 2u, whenp = u2 + v2, and computingu is easy.

The CM theory for genus 1 is well known and dates back to the middle of the nineteenth century (Kronecker,
Weber, etc.). Its algorithmic part is also well understood, and recently more work was done, largely by TANC.
Twenty years ago, this theory was applied by Atkin to the primality proving of arbitrary integers, yielding the
ECPP algorithm developed ever since by F. Morain. Though the decision problemISPRIME? was shown to be
in P (by the 2002 work of Agrawal, Kayal, Saxena), practical primality proving is still done only with ECPP.
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These CM curves enabled A. Enge, R. Dupont and F. Morain to give an algorithm for building good curves
that can be used in identity based cryptosystems (cf. infra).

CM curves are defined by algebraic integers, whose minimal polynomial has to be computed exactly, its
coefficients being exact integers. The fastest algorithm to perform these computations requires a floating point
evaluation of the roots of the polynomial to a high precision. F. Morain on the one hand and A. Enge (together
with R. Schertz) on the other, have developed the use of new class invariants that characterize CM curves. The
union of these two families is currently the best that can be achieved in the field (see [36]). Later, F. Morain
and A. Enge have designed a fast method for the computation of the roots of this polynomial over a finite field
using Galois theory [37]. These invariants, together with this new algorithm, are incorporated in the working
version of the program ECPP.

The theory of Complex Multiplication also exists for non-elliptic curves, but is more intricate, and only
recently can we dream to use them. The first results in that direction are described below.

4. Application Domains
4.1. Telecom

Our main field of applications is clearly that of telecommunications. We participate in the protection of
information. We are proficient on a theoretical level, as well as ready to develop applications using modern
cryptologic techniques, with a main focus on elliptic curve cryptography. One potential application are
cryptosystems in environments with limited resources as smart cards, mobile phones orad hocnetworks.

5. Software
5.1. ECPP

F. Morain has been continuously improving his primality proving algorithm called ECPP, originally
developed in the early ’90. Binaries for version 6.4.5 are available since 2001 on his web page. Proving the
primality of a 512 bit number requires less than a second on a GHz PC. His personal record is about≈ 10, 000
decimal digits, with the fast version he started developing in 2003.

5.2. mpc
The mpc library, developed by A. Enge in collaboration with P. Zimmermann, implements the basic

operations on complex numbers in arbitrary precision, which can be tuned to the bit. This library is based
on the multiprecision librariesgmp andmpfr. Each operation has a precise semantics, in such a way that the
results do not depend on the underlying architecture. Several rounding modes are available. This software,
licensed under the GNU Lesser General Public License (LGPL), can be downloaded freely from the URL

http://www.lix.polytechnique.fr/Labo/Andreas.Enge/Software.html
The latest version 0.4.5 has been released in December 2005. This library is used in our team to build curves

with complex multiplication, and isde factoincorporated in the ECPP program.
We plan to make A. Enge’s program that builds elliptic curves with complex multiplication available.

This program is a very important building block for cryptographic purposes as well as for primality proving
(fastECPP).

6. New Results
6.1. Algebraic curves over finite fields

Participants: Andreas Enge, Pierrick Gaudry, Nicolas Gürel, François Morain.

http://www.lix.polytechnique.fr/Labo/Andreas.Enge/Software.html
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6.1.1. Effective group laws
P. Gaudry [28] has designed fast formulae for the group law in Jacobians of hyperelliptic curves of genus 2.

These formulae are based on the theory of theta functions and work only for base fields of odd characteristic.
The number of field operations is significantly less than with previous formulae. A first implementation has
been done; on a typical workstation, the running times are essentially the same as for elliptic curves for
similar security levels. It is expected that in constrained environments (in particular smart cards), genus 2
cryptosystems that use these formulae should be faster than elliptic curves cryptosystems.

6.1.2. Cardinality
F. Morain, helped by A. Enge and P. Gaudry, has been revisiting the SEA algorithm in genus 1, to see what

was left to be improved since the last record, which was achieved in 1995 [43]. This led first to new easy
records resulting from Moore’s law. The program was completely rewritten of the program was performed in
NTL and new algorithms were introduced, concerning mainly the fast search for eigenvalues. The new record
is currently (October 2005) for a primep of 1700 decimal digits (compared to 500dd back in 1995). This was
made possible only because of A. Enge new algorithm for computing modular equations of index greater than
2000. These equations are still a stumbling block to reach higher numbers. Several articles are in preparation,
describing the improvements to SEA and the computation of modular equations.

We plan to make our new implementation available as an extension to the NTL library.

During his postdoctoral stay in Sydney, N. Gürel worked with D. Kohel and R. Gerkmann on practical
aspects of Dwork theory ofp-adic differential equations. Based on an unpublished article of N. Tsuzuki, they
have constructed the Frobenius matrix of a general family of elliptic curves in characteristic two. In particular,
this matrix, whose coefficients are overconvergent series, gives a new point counting method in characteristic
two. This work is still in progress.

6.1.3. The discrete logarithm in Jacobians of curves
P. Gaudry [41] has developped an algorithm that can solve the discrete logarithm problem in elliptic curves

defined over a finite field of the formGF (qn), whenn ≥ 3 is a small integer. His algorithm lies in the family
of the so-called Weil-descent attacks. The main difference with previously known algorithms is that the use
of the theory of function fields is replaced by Gröbner basis computations. As a consequence, the range of
applicability of the algorithm is less restrictive than previously known attacks (that often worked only for
small classes of curves). On the other hand, the dependence inn is so bad that only the casesn = 3 andn = 4
are meaningful in practice.

It is important to stress that the two cases widely used in practice, which areGF (p) andGF (2n) with
a primen, are not vulnerable to this approach. Gaudry’s result can be viewed as a confirmation about “bad
feelings” that most researchers had about the security of curves over small degree extension fields.

P. Gaudry, E. Thomé, N. Thériault and C. Diem [20] have improved index calculus algorithms for computing
discrete logarithms in Jacobians of hyperelliptic curves of genus at least 3. Their attack is based on the addition
of a double large prime variation to a previously known algorithm. The surprise is that in the case of discrete
logarithms of curves, the complexity is improved, whereas in all other application ranges of double large
prime variations, the gain is only by a constant factor. Hence, the main difficulty for this work was to provide
a complexity analysis that was also validated by numerous computer experiments.

As a consequence, curves of genus 3 and larger than 3 should be used with extreme care when deployed in
a cryptosystem. At the very least, a cryptosystem based on a genus 3 curves must have a key size about12%
larger than an elliptic cryptosystem to offer the same level of security.

6.2. Complex multiplication
6.2.1. Genus 1

Participants: Régis Dupont, Andreas Enge, François Morain.
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The work of AKS motivated the work of F. Morain on a fast variant of ECPP, called fastECPP, which led
him to gain one order of magnitude in the complexity of the problem (see [23], [22]), reaching heuristically
O((log N)4+ε), compared toO((log N)5+ε) for the basic version. By comparison, the best proven version of
AKS has complexityO((log N)6+ε) and has not been implemented so far. F. Morain implemented fastECPP
and was able to prove the primality of10, 000 decimal digit numbers [23], as opposed to5, 000 for the basic
(historical) version. Continuously improving this algorithm, this led to new records in primality proving, some
of which obtained with his co-authors J. Franke, T. Kleinjung and T. Wirth [38] who developed their own
programs. The current world record was set to 15071 decimal digits early July 2004, as opposed to 8000 a
year before.

R. Dupont has investigated the complexity of the evaluation of some modular functions and forms (such
as the elliptic modular functionj or the Dedekind eta function for example). High precision evaluation of
such functions is at the core of algorithms to compute class polynomials (used in complex multiplication) or
modular polynomials (used in the SEA elliptic curve point counting algorithm).

Exploiting the deep connection between the arithmetic-geometric mean (AGM) and a special kind of
modular forms known as theta constants, he devised an algorithm based on Newton iterations and the AGM
that has quasi-optimal linear complexity. In order to certify the correctness of the result to a specified precision,
a fine analysis of the algorithm and its complexity was necessary [14].

Using similar techniques, he has given a proven algorithm for the evaluation of the logarithm of complex
numbers with quasi-optimal time complexity.

A. Enge has been able to analyze precisely the complexity of class polynomial computations via complex
floating point approximations. In fact, this approach has recently been challenged by algorithms usingp-
adic liftings, that achieve a running time that is (up to logarithmic factors) linear in the output size. He has
shown that the algorithm using complex numbers, in its currently implemented form, has a slightly worse
asymptotic complexity (polynomial with exponent1.25). Using techniques from fast symbolic computation,
namely multievaluation of polynomials, he has obtained an asymptotically optimal (up to logarithmic factors)
algorithm with floating point approximations. The implementation has shown, however, that in the currently
practical range, the asymptotically fast algorithm is slower than the previous one. This is due, on the one
hand, to the multitude of algorithmic improvements introduced in [36], and on the other hand, to the lack of
logarithmic factors and better constants. A publication is in preparation.

Using R. Dupont’s results described above, A. Enge has devised a second quasi-linear algorithm (that
actually even saves a logarithmic factor in the complexity). Breaking the record for class polynomial
computations, he has computed a polynomial of degree 100,000, the largest coefficient of which has almost
250,000 bits. For this enormous example, the asymptotically fast algorithm finally beats the one with exponent
1.25. The implementation is based on gmp, mpfr and mpc (see Section 5.2) and a library of A. Enge’s for fast
arithmetic with polynomials over multiprecision floating point numbers. It turns out that the algorithms are so
optimized that the limiting factor becomes the memory consumption [27].

6.2.2. Genus 2
Participants: Pierrick Gaudry, Thomas Houtmann, Régis Dupont.

P. Gaudry, T. Houtmann, D. Kohel, C. Ritzenthaler and A. Weng [29] have designed a new approach for
constructing class polynomials of genus 2 curves having CM. The main feature of their method is the use
of p-adic numbers instead of complex floating point approximations. Although not always applicable, the
corresponding algorithm is very efficient compared to previous approaches.

Building upon his work in genus 1, R. Dupont is now developing a similar algorithm in genus 2, aiming
at computing class polynomials and modular polynomials using complex floating point evaluations. His
algorithm uses what is known as Borchardt’s mean (that can be seen as a generalization of the AGM). A
byproduct of that work is an algorithm to compute the Riemann matrix of a given genus 2 curve: given the
equation of a such a curve, it computes a latticeL such that the Jacobian of the curve is isomorphic toC/L.
The algorithms obtained both for the computation of Riemann matrices and for the evaluation of genus 2
modular forms such as the theta constants are quasi-optimal.



8 Activity Report INRIA 2005

R. Dupont has applied his methods to the computation of modular polynomials for groups of the
form Γ0(p) in genus 2 (these polynomials link the genus 2j-invariants ofp-isogenous curves). He com-
puted the modular polynomials forp = 2, and did some partial computations forp = 3 (results are available
athttp://www.lix.polytechnique.fr/Labo/Regis.Dupont).

He also studied more theoretically the main ingredient used in his algorithms in genus 2, a procedure known
as Borchardt sequences. In particular, he proved a theorem that parametrizes the set of all possible limits of
Borchardt sequences starting with a fixed 4-tuple.

6.3. Cryptographic protocols
6.3.1. Identity based cryptography

Participants: Régis Dupont, Andreas Enge, Javier Herranz.

Elliptic curves in cryptography have first been used to replace finite fields in protocols whose security relies
on the discrete logarithm problem, essentially keeping the protocols as they are and substituting one algebraic
structure for another. There are, however, new applications of elliptic curves that exploit specific additional
structures that are not found in the finite field setting, for instance the Tate and Weil pairings.

Everybody knows that the most difficult problem in modern cryptography, and more precisely its would-be
widespread use, is the key authentication problem, or more generally that of authenticating principals on an
open network. The “classical” approach to this problem is that of apublic key infrastructure(PKI), in which
some centralized or distributed authority issues certificates for authenticating the different users. Another
approach, less publicized, is that ofidentity based cryptography(ID), in which the public key of a user can be
built very easily from his email address for instance. The cryptographic burden is then put on the shoulders of
theprivate key generator(PKG) that must be contacted by the users privately to get their secret keys and open
their emails. The ID approach can be substituted to the PKI approach in some cases, where some form of ideal
trustable PKG exists (private networks, etc.).

This ID idea is not new, but no efficient and robust protocol was known prior to the ideas of Boneh et
al. using pairings on elliptic curves. R. Dupont and A. Enge have worked on such an ID-system. They have
defined a notion of security for such a protocol and have given a proof of security of a generalization of a
system of Sakai, Ohgishi and Kasahara’s in this model [35].

With respect to signatures, a current area of research is related to the aggregation of different signatures on
different messages. In many applications, it is desirable to be able to transform many signatures on different
messages into a single signature, in such a way that the length of this (aggregate) signature is much less than
the total length of the initial signatures. A recipient should be able to verify the correctness of all the initial
signatures by using only the list of messages and the aggregate signature, ideally with less computational
efforts than in the case where he must verify all the signatures one by one.

For traditional PKI-based signature schemes, some efficient proposals of aggregate signature schemes have
been proposed [32], [42]. In particular, in [32], the length of the resulting aggregate signature is constant,
independent of the number of messages and the number of signers. This proposal uses bilinear pairings as
a tool. Using RSA techniques, the obtained aggregate signatures have a length which is independent of the
number of messages, but still linear with respect to the number of signers.

In the scenario of identity-based signatures, none of the existing signature schemes allows an efficient
aggregation of signatures, in the sense that resulting aggregate signatures have a length which is always linear
with respect to the number of messages. To partially solve this problem, Javier Herranz has proposed in
[21] a new identity-based signature scheme, which allows to obtain an aggregate signature whose length is
independent of the number of messages, but linear with respect to the number of signers. In situations where
one wants to aggregate many signatures coming from a small set of signers (even a unique signer) the length
of the resulting signatures is simply constant.

6.3.2. Special (short) signatures
Participant: Fabien Laguillaumie.

http://www.lix.polytechnique.fr/Labo/Regis.Dupont
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To achieve specific properties desired in real-world applications of cryptography, variants of the classical
digital signatures have been designed. Undeniable signatures and confirmer signatures are examples of such
variants. Directed signatures differ from the well-known confirmer signatures in that the signer has the
simultaneous abilities to confirm, deny and individually convert a signature. The universal conversion of these
signatures has remained an open problem since their introduction in 1993. F. Laguillaumie, in collaboration
with Pascal Paillier (Gemplus) and Damien Vergnaud (Univ. Caen) provides in the Asiacrypt’05 paper
"Universally Convertible Directed Signatures" a positive answer to this quest by showing a very efficient
design for universally convertible directed signatures, both in terms of computational complexity and signature
size. The construction relies on the so-calledxyz-trick, previously introduced by F. Laguillaumie and Damien
Vergnaud, applicable to bilinear map groups.

F. Laguillaumie, in collaboration with Damien Vergnaud, also introduced a new undeniable signature
scheme which is existentially unforgeable and anonymous under chosen message attacks in the standard
model [25]. The scheme is an embedding of Boneh and Boyen’s recent short signature scheme in a group
where the decisional Diffie-Hellman problem is assumed to be difficult. The anonymity of the scheme relies
on a decisional variant of the strong Diffie-Hellman assumption, while its unforgeability relies on the strong
Diffie-Hellman assumption.

F. Laguillaumie is still working on asymmetric techniques with special properties, concerning both authen-
tication and encryption.

6.3.3. CESAM
Participants: Andreas Enge, Pierrick Gaudry, Nicolas Gürel.

The CESAM project is a contract of the ACI Sécurité Informatique, involving TANC and the crypto team at
ENS. The goal of this project is to study cryptographic protocols involving elliptic curves, with a view towards
specific environment where the resources (cpu, memory, bandwidth) are limited.

In [34], an authenticated key exchange algorithm is designed using specific properties of elliptic curves,
namely the existence of thequadratic twistthat can be associated to any elliptic curve. The nice feature of
this approach is that it is possible to prove the security of the protocol in the standard model, and in particular
without relying on the controversial Random Oracle Model. Indeed, in key exchange protocols, the session
key is usually obtained via the application of a hash function to a group element. In the present case, this hash
function is no longer necessary.

The curves that can be used in this protocol are not the same as the curves that are used in classical protocols,
since the group orders of the curve and of the quadratic twist both need to be prime. A. Enge has made use of
the complex multiplication approach presented above to generate such curves. Finding curves of cryptographic
size (192 bits) is a matter of seconds with his implementation. A note is in preparation.

In the same direction, N. Gürel [30] has provided new tools to avoid the use of hash functions in elliptic
curve key exchange protocols. The method is simple to put in practice, since one just takes some of the bits of
the abscissa of a point. The difficult part is to give a rigorous proof that if this point is indistinguishable from
a random point then the bits that are extracted are indistinguishable from random bits. N. Gürel proved this
result in two contexts: the case where the base field is an extension of degree 2, and in the case where the base
field is a prime field. In the former case, one can extract 1/2 of the bits of the abscissa, whereas in the latter
case the extraction rate is lower (and depends on the indistinguishability that is required).

6.3.4. Security in ad hoc networks
Participants: François Morain, Javier Herranz, Fabien Laguillaumie.

F. Morain and D. Augot (CODES) participate in the ACI SERAC (SEcuRity models and protocols for Ad-
hoC Networks), which started in september 2004. Their interest there is to understand the (new?) cryptographic
needs required and to try to invent new trust models.

It is clear that the recent arrival of HIPERCOM (also a member of SERAC) at École polytechnique triggers
new collaborations in that direction.
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A collaboration between TANC (J. Herranz, F. Laguillaumie) and CODES (R. Bhaskar) via the SERAC
project of the ACI S&I leads to the submission of "Efficient Authentication for Reactive Routing Protocols"
at the SNDS 2006 workshop.

Achieving secure routing in ad-hoc networks is a big challenge. The typical way to prevent or reduce
the possible attacks is to use mechanisms to authenticate the origin of all messages. Standard (asymmetric)
signature schemes provide these mechanisms, but may result in inefficient implementations, especially when
many nodes (and so many signatures) are expected.

Some of these efficiency problems can be reduced with the use of aggregate signatures, which improve
the length and the cost of managing many different signatures. In this article, they propose a new concept,
aggregate designated verifier signature schemes, which can be implemented in a more efficient way than
standard aggregate signatures (for example by using MACs). Such schemes can be sufficient to authenticate
the establishment of routes in reactive protocols. Formal definitions for the new primitive and the required
security properties are given. Moreover a specific and efficient scheme is proposed which uses MACs, and is
proven secure in the random oracle model.

J. Herranz and F. Laguillaumie have started a series of lectures on digital signatures for the members of the
SERAC project.

7. Contracts and Grants with Industry
7.1. Gemplus

This corresponds to the thesis of É. Brier on the use of (hyper-)elliptic curves in cryptology.

8. Other Grants and Activities
8.1. Network of excellence

Together with the CODES project at INRIA Rocquencourt, the project TANC participates in ECRYPT, a
NoE in the Information Society Technologies theme of the 6th European Framework Programme (FP6).

J. Herranz and F. Laguillaumie have participated in the AZTEC working group WG3 on asymmetric
techniques with special properties on November 23–24.

8.2. ACI

• ACI SÉCURITÉ CESAM: elliptic curves for the security of mobile networks.

• ACI SÉCURITÉ SERAC: SEcuRity models and protocols for Ad-hoC networks.
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8.3. Miscellaneous
PAI "Procope" with the group "Algebra and Number Theory" of the TU-Berlin (Florian Heß).

9. Dissemination
9.1. Program committees

F. Morain has been a member of the programme committee of Indocrypt 2005, held in Bangalore, India, in
December.

A. Enge has co-organised the Journées Nationales du Calcul Formel 2005 from November 21 to 25 at
Luminy.

J. Herranz is in the Program Committee of the conference ACIS’06, to be held in Glasgow next year (May
8-11, 2006).

9.2. Teaching
François Morain is the head of the 1st year course “Introduction à l’informatique et à la programmation”

at École polytechnique, and gives a cryptology course in Majeure 2. He is vice-head of the Département
d’Informatique. He represents École polytechnique in the Commission des Études of the Master MPRI.

A. Enge has taught algorithmic number theory and elliptic and hyperelliptic curve cryptography in the MPRI
Master. He has given an introductory lecture on hyperelliptic curve cryptology at the École jeunes chercheurs
en algorithmique et calcul formel at Montpellier. At École polytechnique, he has proposed computer science
labs for the first year course “Introduction à l’informatique” and the second year course “Informatique
fondamentale”. He has also been responsible for a short course on C programming for third year students.

R. Dupont, A. Enge, P. Gaudry, F. Morain, A. Weng have given lectures during the special semester on
explicit methods in number theory at Institut Henry Poincaré, Paris (RD on his work, AE/AW/FM on complex
multiplication, PG on point counting over finite fields).

F. Morain has participated for the third time in the ACM International Programming Contest (SWERC05)
in November 2005, as one of the problem authors. This contest was held at École polytechnique.

9.3. Seminars and talks
A. Enge has been an invited speaker at Moraviacrypt ’05 — The 5th Central European Conference on

Cryptography at Brno, Czech Republic.
He has presented his work at the seminars of the SPACES project at Nancy, of the Algebra and Number

Theory group at the TU-Berlin and of the Crypto group at Université Catholique de Louvain. He has spent one
week in December with the Algebra and Number Theory group in Berlin.

F. Morain: Barcelona 28-29/10. Winter school CIMPA in Bangalore. SHARCS (Paris, 24-25/02), Euro-
crypt’05 (Aarhus, 23-26/05/05); visited University of Calgary (“The end of primality”) and workshop in Banff
(“SEA++”), November 2005.

N. Gürel has given talks in Limoges (March), Paris 6 (April), ENSTA (October), Rennes (November) and
Versailles (December).

Javier Herranz attended Crypto’05 (August 14-18, 2005, Sta. Barbara, California, USA) and the 2nd OLSR
Interop & Workshop (July 28-29, 2005, Palaiseau, France, together with F. Morain. A. Enge and T. Houtmann).
He spent one week (October 1st-7th, 2005) at Radboud University, invited by the Security of Systems group
of that university, in Nijmegen (The Netherlands). There he has given a seminar (October 5th, 2005), entitled
’Aggregate Signatures’.

F. Laguillaumie attended Asiacrypt’05 (December 4–8, Chennai - India) and Indocrypt’05 (December
10–12, Bangalore - India). During Asiacrypt’05, F. Laguillaumie also participates to a meeting between indian
and french experts to organize some possible collaborations.
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R. Dupont attended “Journées Codage et Cryptographie” (Aussois), Februrary 4, 2005 and presented
Évaluation rapide de formes modulaires via l’AGM; Number theory seminar, Technische Universität Berlin
(Germany), February 9, 2005:Borchardt’s mean, theta constants and applications to the evaluation of
Riemann matrices and modular forms; Séminaire SPACES (LORIA, Nancy), March 3, 2005:Theta constantes
et moyenne de Borchardt, applications; Séminaire ALGO (INRIA Rocquencourt), November 7, 2005:AGM,
theta constantes et applications; Journées Nationales de Calcul Formel (CIRM, Luminy), November 25, 2005:
Évaluation rapide de fonctions modulaires via l’AGM.

T. Houtmann has given talks in Aussois (Journées Codes et Cryptographie 2005), in Caen (April 2005). He
attended Eurocrypt’05 in Aarhus, CAEN’05 andXV I-ièmes rencontres arithmétiques de Caen. He attended
FICS summer school on elliptic curve cryptography in Copenhagen, ECC2005 in Copenhagen too. He visited
the KANT group in Berlin (5-9/12/2005).

9.4. Vulgarisation
A. Enge has taken part in the INRIA booth during the “Salon des jeux et de la culture mathématiques”

in Paris with a presentation of public key cryptography aimed at a general public. A. Enge and R. Dupont
have presented INRIA at the Forum des métiers scientifiques at École polytechnique. During the welcoming
seminar of INRIA, A. Enge has given an overview of the TANC project.

9.5. Editorship
A. Enge is editor of “Designs, Codes and Cryptography”.

9.6. Awards
A. Enge has been awarded a 2004 Kirkman Medal of the Institute for Combinatorics and its Applications.

The medal recognises outstanding work by ICA members in their early research careers.

9.7. Thesis committees
F. Morain for M. Finiasz (01/10/04), L. Perret (17/10/05); he wrote reports for that of G. Renault (16/06/05),

D. Stehlé (02/12/05); A. Enge for B. Libert.

9.8. Research administration
A. Enge is a member of the International Relations Working Group (GTRI) at the Scientific and Technolog-

ical Orientation Council (COST) of INRIA. As such, he has participated in two selection rounds of postdoc
positions for the European ERCIM consortium and in the selection of international Associated teams.
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