
c t i v i t y

te p o r

2005

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Triskell

Model Driven Engineering for Component
Based Software

Rennes

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/triskell.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-ren.en.html




Table of contents

1. Team 1
2. Overall Objectives 1

2.1. Overall Objectives 1
2.1.1. Research fields 1
2.1.2. Project-team Presentation Overview 2

3. Scientific Foundations 2
3.1. Overview 2
3.2. Object Oriented Technologies for Distributed Software Engineering 3

3.2.1. Object-Oriented Software Engineering 3
3.2.2. Design Pattern 3
3.2.3. Framework 3
3.2.4. Component 4
3.2.5. Contracts 4
3.2.6. Modeling with the UML 5
3.2.7. Model Driven Engineering 5

3.3. Mathematical foundations for distributed and reactive software 6
3.3.1. Transition systems 6
3.3.2. Non interleaved models 6

4. Application Domains 7
4.1. Software for Telecommunication and large Distributed Systems 7

5. Software 8
5.1. Kermeta : Kernel Metamodeling 8
5.2. UMLAUT NG : Extendible model transformation tool and framework 9
5.3. Mutator : Mutation testing tool family for OO programs 10
5.4. Requested : a toolbox for requirement simulation and testing 10

6. New Results 10
6.1. Contract-based and Aspect Oriented Design 10

6.1.1. Model Driven Engineering for Distributed Real Time Embedded Systems 10
6.1.2. Model Composition and Weaving 11
6.1.3. Weaving Behavioural Models 11
6.1.4. Timed-based contracts for components 12

6.2. Model-Based Testing 12
6.2.1. Validation in a MDE context : Models and Model Transformations testing 12

6.3. Model-Driven Engineering 13
6.3.1. Weaving Executability into Object-Oriented Meta-Languages 13
6.3.2. Model Transformations 13
6.3.3. Model Typing for Improving Reuse in Model-Driven Engineering 14
6.3.4. Code Generation from UML Models with Semantic Variation Points 14
6.3.5. Bridges between Models and Text/Hypertext 14

7. Contracts and Grants with Industry 14
7.1. AOSD-Europe (Network of Excellence) 14
7.2. Artist2 (Network of Excellence) 15
7.3. FAMILIES (ITEA Eureka) 16
7.4. MUTATION 2 (carroll) 17
7.5. MDE Standards for Aerospace (carroll) 18
7.6. Amadeus 18
7.7. KEREVAL 18



2 Activity Report INRIA 2005

8. Other Grants and Activities 18
8.1. International working groups 18

8.1.1. ERCIM Working Group on Software Evolution 18
8.1.2. Standardization at OMG 19
8.1.3. Collaboration with foreign research groups: 19

9. Dissemination 20
9.1. Scientific community animation 20

9.1.1. Journals 20
9.1.1.1. Jean-Marc Jézéquel 20
9.1.1.2. Pierre-Alain Muller 20

9.1.2. Examination Committees 20
9.1.2.1. Jean-Marc Jézéquel 20
9.1.2.2. Yves Le traon 20
9.1.2.3. Pierre-Alain Muller 21

9.1.3. Conferences 21
9.1.3.1. Jean-Marc Jézéquel 21
9.1.3.2. Jean-Marc Jézéquel 21
9.1.3.3. Yves Le Traon 21
9.1.3.4. Noël Plouzeau 21
9.1.3.5. Pierre-Alain Muller 22

9.1.4. Workshops 22
9.2. Teaching 22
9.3. Miscellaneous 22

10. Bibliography 23



1. Team
Scientific head

Jean-Marc Jézéquel [professor, Rennes 1 University]

Administrative assistant
Myriam David [TR Inria]

Inria staff
Benoit Baudry [Research scientist Inria]
Didier Vojtisek [Research engineer Inria]

Faculty member Université de Rennes 1
Noël Plouzeau [Assistant Professor Université de Rennes 1]

Visiting Scientist
Pierre-Alain Muller [Assistant Professor Université de Mulhouse]
Antoine Beugnard [Assistant Professor ENST de Bretagne]
Yves Le Traon [France telecom R&D]

Post-doctoral Fellow
Olivier Defour [until February 2005]
Olivier Barais [from December 2005]

Technical staff
Zoé Drey [Inria Associated Engineer]
Erwan Drezen [Inria (Project Carroll/Motor Carroll/Mutation) from June 2003 to March 2005]
Jean-Philippe Thibault [Inria (project RNTL ACCORD) since october 2002 until June 2005, (project FAMI-
LIES) from October 2003 to June 2005]

Lecturer
Tewfik Ziadi [until September 2005]
Damien Pollet [since September 2005]

PhD Students
Erwan Brottier [CIFRE grant since November 2005]
Franck Chauvel [Brittany Council grant]
Franck Fleurey [MENRT grant]
Marouane Himdi [CIFRE grant]
Jacques Klein [INRIA grant]
Christophe Métayer [CIFRE grant]
Martin Monperus [DGA grant since October 2005]
Jean-Marie Mottu [MENRT grant since October 2005]
Sébastien Saudrais [INRIA grant]
Jim Steel [INRIA grant]

2. Overall Objectives
2.1. Overall Objectives

Keywords: Components, MDA, UML, aspects, contracts, design patterns, frameworks, objects, requirements
engineering, scenarios, software product lines, test, validation.

2.1.1. Research fields
In its broad acceptation, Software Engineering consists in proposing practical solutions, founded on

scientific knowledge, in order to produce and maintain software with constraints on costs, quality and



2 Activity Report INRIA 2005

deadlines. In this field, it is admitted that the complexity of a software increases exponentially with its size.
However on the one hand, the size itself of the software is on average multiplied by ten every ten years, and
on the other hand, the economic pressure resulted reducing the durations of development, and in increasing
the rates of modifications made to the software.

To face these problems, today’s mainstream approaches build on the concept of component based software.
The assembly of these components makes it possible to build families of products (a.k.a.product lines) made
of many common parts, while remaining opened to new evolutions. As component based systems grow more
complex and mission-critical, there is an increased need to be able to represent and reason on such assemblies
of components. This is usually done by building models representing various aspects of such a product
line, such as for example the functional variations, the structural aspects (object paradigm), of the dynamic
aspects (languages of scenarios), without neglecting of course non-functional aspects like quality of service
(performance, reliability, etc.) described in the form of contracts, or the characteristics of deployment, which
become even dominating in the field of reactive systems, which are often distributed and real-time. Model
Driven Engineering (MDE) is then a sub-domain of software engineering focusing on reinforcing design,
validation and test methodologies based on multi-dimensional models.

2.1.2. Project-team Presentation Overview
The research domain of the Triskell project is the reliable and efficient design of software product lines by

assembling software components described with the UML. Triskell is particularly interested in reactive and
distributed systems with quality of service constraints.

Triskell’s main objective is to develop model-based methods and tools to help the software designer to
obtain a certain degree of confidence in the reliability of component assemblies that may include third-party
components. This involves, in particular, investigating modeling languages allowing specification of both
functional and non-functional aspects and which are to be deployed on distributed systems. It also involves
building a continuum of tools which make use of these specification elements, from off-line verifiers, to test
environments and on-line monitors supervising the behavior of the components in a distributed application.
Since these modeling languages and associated tools appear quite open-ended and very domain specific, there
is a growing need for “tools for building tools for building software”. Triskell is hence developping KerMeta as
an original meta-meta modeling approach allowing the user to fully define his modeling languages (including
dynamic semantics) and associated environments (including interpreters, compilers, importers/exporters, etc.)
within Eclipse.

To avoid the pitfall of developping “tools for building tools for the sake of it”, the Triskell project also
has the goal of explicitly connecting research results to industrial problems through technology transfer
actions. This implies, in particular, taking into account the industrial standards of the field, namely the Eclipse
Modeling FrameworkEMF, the OMG’s Meta-Object FacilityMOF and Unified Modeling LanguageUML ,
Corba Component Model (CCM), Com+/.Net and Enterprise JavaBeans.

Triskell is at the frontier of two fields of software: the field of specification and formal proof, and that of
design which, though informal, is organized around best practices (e.g.; separation of concerns with aspects,
design patterns, or the use of off-the-shelf components). We believe that the use of our techniques will make it
possible to improve the transition between these two worlds, and will contribute to the fluidity of the processes
of design, implementation and testing of software.

3. Scientific Foundations
3.1. Overview

The Triskell project studies new techniques for the reliable construction of software product lines, especially
for distributed and reactive software. The key problems are components modeling and the development of
formal manipulation tools to refine the design, code generation and test activities. The validation techniques
used are based on complex simulations of models building on the standards in the considered domain.



Project-Team Triskell 3

3.2. Object Oriented Technologies for Distributed Software Engineering
Keywords: Objects, UML, contracts, design patterns, frameworks, software components.

3.2.1. Object-Oriented Software Engineering
The object-oriented approach is now widespread for the analysis, the design, and the implementation of

software systems. Rooted in the idea of modeling (through its origin in Simula), object-oriented analysis,
design and implementation takes into account the incremental, iterative and evolutive nature of software
development [47], [44]: large software system are seldom developed from scratch, and maintenance activities
represent a large share of the overall development effort.

In the object-oriented standard approach, objects are instances of classes. A class encapsulates a single
abstraction in a modular way. A class is bothclosed, in the sense that it can be readily instanciated and used
by clients objects, andopen, that is subject to extensions through inheritance [50].

3.2.2. Design Pattern
Since by definition objects are simple to design and understand, complexity in an object-oriented system is

well known to be in thecollaborationbetween objects, and large systems cannot be understood at the level of
classes and objects. Still these complex collaborations are made of recurring patterns, called design patterns.
The idea of systematically identifying and documenting design patterns as autonomous entities was born in the
late 80’s. It was brought into the mainstream by such people as Beck, Ward, Coplien, Booch, Kerth, Johnson,
etc. (known as the Hillside Group). However the main event in this emerging field was the publication, in
1995, of the bookDesign Patterns: Elements of Reusable Object Oriented Softwareby the so-called Gang
of Four (GoF), that is Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides [46]. Today, design
patterns are widely accepted as useful tools for guiding and documenting the design of object-oriented software
systems. Design patterns play many roles in the development process. They provide a common vocabulary
for design, they reduce system complexity by naming and defining abstractions, they constitute a base of
experience for building reusable software, and they act as building blocks from which more complex designs
can be built. Design patterns can be considered reusable micro-architectures that contribute to an overall
system architecture. Ideally, they capture the intent behind a design by identifying the component objects,
their collaborations, and the distribution of responsibilities. One of the challenges addressed in the Triskell
project is to develop concepts and tools to allow their formal description and their automatic application.

3.2.3. Framework
Frameworks are also closely related to design patterns. An object-oriented software framework is made

up of a set of related classes which can be specialized or instantiated to implement an application. It is
a reusable software architecture that provides the generic structure and behavior for a family of software
applications, along with a context which specifies their collaboration and use within a given domain [42]. A
framework differs from a complete application in that it lacks the necessary application-specific functionality.
It can be considered as a prefabricated structure, or template, of a working application, where a number of
pieces in specific places, calledplug-pointsor hot spots, are either not implemented or given overridable
implementations. To obtain a complete application from a framework, one has to provide the missing pieces,
usually by implementing a number of call-back functions (that is, functions that are invoked by the framework)
to fill the plug-points. In an object-oriented context, this feature is achieved by the dynamic binding: an
operation can be defined in a library class but implemented in a subclass in the application specific code.
A developer can thus customize the framework to a particular application by subclassing and composing
instances of framework classes [46]. A framework is thus different from a classical class library in that the
flow of control is usually often bi-directional between the application and the framework. The framework is
in charge of managing the bulk of the application, and the application programmer just provides various bits
and pieces. This is similar to programming some event driven applications, when the application programmer
usually has no control over the main control logic of the code.

Design patterns can be used to document the collaborations between classes in a framework. Conversely, a
framework may use several design patterns, some of them general purpose, some of them domain-specific.



4 Activity Report INRIA 2005

Design patterns and frameworks are thus closely related, but they do not operate at the same level of
abstraction: a frameworkis made ofsoftware, whereas design patterns represent knowledge, information and
experienceaboutsoftware. In this respect, frameworks are of a physical nature, while patterns are of a logical
nature: frameworks are the physical realization of one or more software pattern solutions; patterns are the
instructions for how to implement those solutions.

3.2.4. Component
The object concept also provides the bases needed to developsoftware components, for which Szyperski’s

definition [52] is now generally accepted, at least in the industry:
A software component is a unit of composition with contractually specified interfaces and

explicit context dependencies only. A software component can be deployed independently and is
subject to composition by third party.

Component based software relies on assemblies of components. Such assemblies rely in turn on fundamental
mechanisms such as precise definitions of the mutual responsability of partner components, interaction means
between components and their non-component environment and runtime support (e.g. .Net,EJB, Corba
Component Model).

Components help reducing costs by allowing reuse of application frameworks and components instead of
redeveloping applications from scratch (product line approach). But more important, components offer the
possibility to radically change the behaviors and services offered by an application by substitution or addition
of new components, even a long time after deployment. This has a major impact of software lifecycle, which
should now handle activities such as:

• design of component frameworks,

• design of reusable components as deployment units,

• validation of component compositions coming from various origins,

• component life-cycle management.

Empirical methods without real component composition models have appeared during the emergence of
a real component industry (at least in the Windows world). These methods are now clearly the cause of
untractable validation and of integration problems that can not be transposed to more critical systems (see
for example the accidental destruction of Ariane 501 [48]).

Providing solutions for formal component composition models and for verifiable quality (notion oftrusted
components) are especially relevant challenges. Also the methodological impact of component-based devel-
opment (for example within the maturity model defined by theSEI (CMM model)) is also worth attention.

3.2.5. Contracts
Central to this trusted component notion is the idea ofcontract. A software contract captures mutual

requirements and benefits among stake-holder components, for example between the client of a service and its
suppliers (including subcomponents). Contracts strengthen and deepen interface specifications. Along the lines
of abstract data type theory, a common way of specifying software contracts is to use boolean assertions called
pre- and post-conditions for each service offered, as well as class invariants for defining general consistency
properties. Then the contract reads as follows: the client should only ask a supplier for a service in a state
where the class invariant and the precondition of the service are respected. In return, the supplier promises
that the work specified in the postcondition will be done, and the class invariant is still respected. In this
way rights and obligations of both client and supplier are clearly delineated, along with their responsibilities.
This idea was first implemented in the Eiffel language [51] under the nameDesign by Contract, and is now
available with a range of expressive power into several other programming languages (such as Java) and even
in the Unified Modeling Language (UML) with the Object Constraint Language (OCL) [53]. However, the
classical predicate based contracts are not enough to describe the requirements of modern applications. Those
applications are distributed, interactive and they rely on resources with random quality of service. We have



Project-Team Triskell 5

shown that classical contracts can be extended to take care of synchronization and extrafunctional properties
of services (such as throughput, delays, etc) [43].

3.2.6. Modeling with the UML
As in other sciences, we are increasingly resorting to modelling to master the complexity of modern software

development. According to Jeff Rothenberg,
Modeling, in the broadest sense, is the cost-effective use of something in place of something

else for some cognitive purpose. It allows us to use something that is simpler, safer or cheaper
than reality instead of reality for some purpose. A model represents reality for the given purpose;
the model is an abstraction of reality in the sense that it cannot represent all aspects of reality.
This allows us to deal with the world in a simplified manner, avoiding the complexity, danger
and irreversibility of reality.

The massive adoption of Unified Modeling Language (UML) in many industrial domains open new
perspectives to make the underlying ideas on modeling evolve, scale up, and hence become profitable. Unlike
its predecessors, (OMT, Booch, etc.), that only proposed a graphical syntax, UML is partially formalized by a
meta-model (expressed itself as a UML model) and contains a very sophisticated constraint language called
OCL (Object Constraint Language), that can be used indifferently at the model level and at the meta-model
level. All this makes it possible to consider formal manipulations of models that capture many aspects of
software, both from the technical side, (with the four UML main dimensions: data, functional, dynamic, and
deployment) and on the process side, ranging from the expression of requirements and the analysis to design
(framework models and design patterns) and test implementation.

3.2.7. Model Driven Engineering
Usually in science, a model has a different nature that the thing it models ("do not take the map for the

reality" as Sun Tse put it many centuries ago). Only in software and in linguistics a model has the same nature
as the thing it models. In software at least, this opens the possibility to automatically derive software from its
model. This property is well known from any compiler writer (and others), but it was recently be made quite
popular with an OMG initiative called the Model Driven Architecture (MDA).

The OMG has built a meta-data management framework to support the MDA. It is mainly based on a unique
M3 “meta-meta-model” called the Meta-Object Facility (MOF) and a library of M2 meta-models, such as the
UML (or SPEM for software process engineering), in which the user can base his M1 model.

The MDA core idea is that it should be possible to capitalize on platform-independent models (PIM), and
more or less automatically derive platform-specific models (PSM) –and ultimately code– from PIM through
model transformations. But in some business areas involving fault-tolerant, distributed real-time computations,
there is a growing concern that the added value of a company not only lies in its know-how of the business
domain (the PIM) but also in the design know-how needed to make these systems work in the field (the
transformation to go from PIM to PSM). Reasons making it complex to go from a simple and stable business
model to a complex implementation include:

• Various modeling languages used beyond UML,

• As many points of views as stakeholders,

• Deliver software for (many) variants of a platform,

• Heterogeneity is the rule,

• Reuse technical solutions across large product lines (e.g. fault tolerance, security, etc.),

• Customize generic transformations,

• Compose reusable transformations,

• Evolve and maintain transformations for 15+ years.

This wider context is now known as Model Driven Engineering.



6 Activity Report INRIA 2005

3.3. Mathematical foundations for distributed and reactive software
Keywords: Labeled transition systems, event structures, partial orders.

3.3.1. Transition systems
A labeled transition system (or LTS) is a directed graph which edges, called transitions, are labeled by

letters from an alphabet ofevents. The vertices of this graph are calledstates. A LTS can be defines as a tuple
M = (QM , A, TM ⊂ QM ×A×QM , qM

init), in whichQM is a set of states,qM
init is an initial state,A is a set

of events,TM is a transition relation.
Note that from this definition, the set of states in a LTS s not necessarily finite. Usually, the termfinite

state automatais used to designate a LTS with a finite set of states and events. In fact, automatas are the
simplest models than can be proposed. They are often used to model reactive (and usually distributed) systems.
Within this framework, events represent the interactions (inputs and outputs) with the environment. The term
input/output LTS (IO-LTS) is often used to designate this kind of automata.

Labeled transition systems are obtained from reactive systems specifications in high-level description
languages such asUML . The construction of a LTS from a specification is done using an operational semantics
for this language, which is usually formalized as a deduction rules system. For simple languages such as
process algebras (like CCS ), operational semantics can be defined using less than axioms and inference rules,
while for notations such as UML, semantics would be defined in more than 100 pages.

For performance reasons, these operational semantics rules are never used directly, and are subject to several
transformations. For example, the way states are encoded is an efficiency factor for LTS generation.

Computation of transformations of LTS can be resumed to search and fix-point calculus on graphs. These
calculi can be performed either explicitely or implicitly, without an exhaustive calculus or storage of a LTS.

Classical algorithms in language theory build explicitely finite state automatas, that are usually integrally
stored in memory. However, for most of the problems we are interested in, exhaustive construction or storage
of an LTS is not mandatory. Partial construction of an LTS is enough, and strategies similar to lazy evaluation
in functional programs can be used: the only part of LTS computed is the part needed for the algorithm.

Similarly, one can forget a part of a LTS previously computed, and hence recycle and save memory space.
The combination of these implicit calculus strategies allow the study of real size systems even on reasonably
powerful machines.

3.3.2. Non interleaved models
One of the well known drawbacks of LTSs [45] is that concurrency is represented by means of behaviors

interleaving. This is why LTS, automatas and so on are called “interleaved models”. With interleaved models,
a lot of memory is lost, and models represented can become very complex. Partial order models partially solve
these problems.

A partial order is a tuple(E,≤,Π, ϕ,Σ, I) in which:

• E represents a set of atomic events, that can be observable or not. Each event is the occurrence of
an action or operation. It is usually considered that an event is executed by an unique process in an
system.

• ≤ is a partial order relation that describes a precedence relation between events. This order relation
can be obtained using the hypotheses that:

1. processes are sequential : two events executed by the same process are causally ordered.

2. communications are asynchronous and point to point: the emission of a message precedes
its reception.

• σ is an alphabet of actions.

• I is a set of process names



Project-Team Triskell 7

• Π : Σ → I is an action placement function.

• ϕ : E → Σ is an event labeling function

A partial order can be used to represent a set of executions of a system in a more “compact” way than
interleaved models. Another advantage of partial order models is to represent explicitely concurrency : two
events that are not causally dependant can be executed concurrently. In a LTS, such a situation would have
been represented by an interleaving.

A linearization of a partial order is a total order that respect the causal order. Any linearization of a partial
order is a potential execution of the system represented. However, even if partial order can represent several
executions, linearizations do not represent a real alternative. This problem is solved by a more complete partial
order model called event structures.

A primeevent structure[54] is a partial order equipped with an additional binary conflict relation. An event
structure is usually defined by a tuple(E,≤, ], Π, ϕ,Σ, I) where:

• E,≤,Π, ϕ,Σ, I have the same signification as previously,

• ] ⊆ E × E is a binary and symmetric relation that is inherited through causality
(∀e]e′, e ≤ e′′ =⇒ e′′]e′).

The conflict relation of an event structure defines pairs of events that can not appear in the same execution
of the system represented, hence introducing alternative in partial orders. The potential executions of a system
represented by an event structures are linearizations of conflict free orders contained in the structure. The
main advantage of event structures is to represent at the same time concurrency and alternative in a partial
order model. We think that these models are closer to human understanding of distributed systems executions
than interleaved models.

4. Application Domains
4.1. Software for Telecommunication and large Distributed Systems

Keywords: UML, distributed systems, software engineering, telecommunication, test.

In large scaled distributed systems such as developed for telecommunications, building a new application
from scratch is no longer possible. There is a real need for flexible solutions allowing to deal at the same time
with a wide range of needs (product lines modeling and methodologies for managing them), while reducing
the time to market (such as derivation and validation tools).

Triskell has gained experience in model engineering, and finds here a propitious domain. The increasing
software complexity and the reliability and reusability requirements fully justify the methods developed by our
project. The main themes studied are reliable software components composition, UML-based developments
validation, and test generation from UML models, iether at requirement level or at design level.

The research activity in Triskell focuses at the same time on development efficiency and reliability. Our
main applications mainly concern reliable construction of large scale communicating software, and object
oriented systems testing.

Reliability is an essential requirement in a context where a huge number of softwares (and sometimes
several versions of the same program) may coexist in a large system. On one hand, software should be able
to evolve very fast, as new features or services are frequently added to existing ones, but on the other hand,
the occurrence of a fault in a system can be very costly, and time consuming. A lot of attention should then be
paid to interoperability,i.e. the ability for software to work properly with other.We think that formal methods
may help solving this kind of problems. Note that formal methods should be more and more integrated in an
approach allowing system designer to build software globally, in order to take into account constraints and
objectives coming from user requirements.



8 Activity Report INRIA 2005

Software testing is another aspect of reliable development. Testing activities mainly consist in ensuring
that a system implementation conforms to its specifications. Whatever the efforts spent for development, this
phase is of real importance to ensure that a system behaves properly in a complex environment. We also put
a particular emphasis on on-line approaches, in which test and observation are dynamically computed during
execution.

5. Software
5.1. Kermeta : Kernel Metamodeling

Keywords: MDA, MOF, UML, model transformation.

Participants: Franck Chauvel, Zoé Drey, Franck Fleurey, Jean-Marc Jézéquel, Pierre-Alain Muller, Jean-
Philippe Thibault, Didier Vojtisek [correspondant].

Nowadays, object-oriented meta-languages such as MOF (Meta-Object Facility) are increasingly used
to specify domain-specific languages in the model-driven engineering community. However, these meta-
languages focus on structural specifications and have no built-in support for specifications of operational
semantics. Triskell has developped the Kermeta language to explore the idea of using aspect-oriented modeling
to add precise action specifications with static type checking and genericity at the meta level, and examine
related issues and possible solutions [34].

Kermeta consists of an extension to the Essential Meta-Object Facilities (EMOF) 2.0 to support behavior
definition. It provides an action language to specify the body of operations in metamodels. This action language
is imperative and object-oriented.

Kermeta is used in several use cases:

• Kermeta give a precise semantic of the behavior of a metamodel which then can be simulated.

• Kermeta can be used as a model transformation language.

• Kermeta can be used as a constraint language.

The development environment built for the Kermeta language currently contains the following tools

• an interpreter that allows ametamodel to be executed.

• a texteditor, fully integrated within Eclipse, with syntax higlighting, code autocompletion.

• an Eclipse outline view, which allows navigation through the whole model and metamodel.

• various import/export transformations such as ecore2kermeta (kermeta text), kermat2ecore, ker-
meta2xmi (xmi version of your kermeta metamodel), xmi2kermeta, xmi2ecore.

Kermeta is one of the corner stone of UMLAUT NG. However, since it will be distributed as an Eclipse
project (in the Eclipse GMT project), it has its own external visibility. Developped as an open source software
under the terms of the EPL (Eclipse Public License), it has been first deposited to the APP (Agence de
Protection des Programmes) in October 2005.



Project-Team Triskell 9

5.2. UMLAUT NG : Extendible model transformation tool and framework
Keywords: MDA, MOF, UML, component, model transformation, patterns, validation.

Participants: Franck Chauvel, Erwan Drézen, Franck Fleurey, Jean-Marc Jézéquel, Damien Pollet, Jim Steel,
Jean-Philippe Thibault, Didier Vojtisek [correspondant].

MDA is an approach to application modelling and generation that has received a lot of attention in recent
months. This is a logical evolution of the UML (Unified Modelling Language) usage supporting the following
ideas:

• Models expressed in a formally defined notation are a cornerstone to system understanding.

• Building systems can be organized around a set of models by imposing a series of transformations
between models, organized into an architectural framework of layers and transformations.

For example this evolution allows the engineers to formalize and automate the use of PIM (Platform
Independent Model) and PSM (Platform Specific Model). The resulting design lifecycle creates platform
independent abstract models which are successively refined into more concrete models (more an more platform
dependent). It gives a way to work at the best abstraction level for a given problem.

One of the main point to be addressed is the model transformation part of the problem. Triskell reuses
its expertise acquired with its toolUMLAUT and improved it to deal withMDA specificities. Thus,UMLAUT

evolved intoUMLAUT NG (next generation) in order to use it in a wider range of applications. In addition
to the manipulation ofUML models,UMLAUT NG adds the ability to manipulate any kind of models on any
kind of repositories. A transformation can be run on any repository that has compatible metamodels. The
metamodels are defined using theMOF. UMLAUT NG is now composed of a transformation language compiler
and a framework of transformations written in this language. It allows complex model transformations. A
major idea that droveUMLAUT NG evolution is that a transformation is a kind of program so it must be
possible to apply theMDA approach to itself.

As a central tool in the team,UMLAUT NG helps us investigating various research areas related to model
transformation works. Since 1998, Triskell has mainly used it in theUML context to demonstrate several
concepts. For example, to apply design patterns, to support the design by contract approach, to weave
modelling aspects, to generate code, to simulate functional and extra functional features of a system, or use
validation tools on the model. All these concepts will probably be investigated further.

UMLAUT NG as its predecessor is distributed as an open-source software.
Since UMLAUT NG was integrated into Eclipse environment,UMLAUT NG is now used by a growing

community in the domain of model transformation. Amoung other we have users within: CEA, ENSIETA,
ENST Bretagne, Swiss Federal Institute of Technology (Switzerland), University of Muenster (Germany), etc.

In 2005,UMLAUT NG was used within these projects in collaboration with industry:

Carroll Mutation with Thalès R&D, Thalès Airborne System and CEA, development of transformations
useful for the test of a military application in aMDA context;

Itea Families with (in France) Softeam, Thalès, about transformation of product lines, as the continuation
of the Itea project CAFE.



10 Activity Report INRIA 2005

5.3. Mutator : Mutation testing tool family for OO programs
Keywords: .Net, Java, Test, test by mutation.

Participants: Yves Le Traon [correspondant], Benoit Baudry, Franck Fleurey.

The level of confidence in a software component is often linked to the quality of its test cases. This quality
can in turn be evaluated with mutation analysis: faulty components (mutants) are systematically generated
to check the proportion of mutants detected ("killed") by the test cases. The software proposes specific OO
mutation operators and the corresponding tools for Java and C# programs since the Mutator line of mutation
tools is available for Java and C# languages. This work has been carried out in collaboration with Daniel
Deveaux from UBS.

5.4. Requested : a toolbox for requirement simulation and testing
Keywords: Test, requirement simulation, requirement testing, textual requirements, use cases.

Participants: Yves Le Traon [correspondant], Erwan Drézen, Franck Fleurey.

The objective of the Requested toolbox is to offer a MDA transformation from textual requirements to
simulable requirements within the UML (use cases + scenarios). It allows the simulation of requirements and
the automated generation of test objectives. Two tools are under development:

1. The transformation of natural language requirements expressed in the LDE language (Langage de
Description des Exigences) into a use case model, enhanced with contracts. This tool is not stable
yet and thus not available. It is currently used and tested in the mutation project.

2. The UCTS system allows the simulation of the use case model, enhanced with contracts, and the
automated generation of test objective. The first version is available.

More precisely, UCTSystem is a prototype designed to perform automatic test generation from UML
requirements. It uses UML use cases enhenced with contracts (i.e. precondition and postconditions) to build
an execution model allowing all valid sequences of use cases. Using this execution model and several test
criteria, it generates test objectives as sequence of use cases to exerce. It includes both criteria for functional
testing and a criterion for robusness testing. Those test objectives are then mapped into test cases using test
templates.

6. New Results
6.1. Contract-based and Aspect Oriented Design
6.1.1. Model Driven Engineering for Distributed Real Time Embedded Systems

Participants: Jean-Marc Jézéquel, Pierre-Alain Muller, Christophe Métayer.

In domains such as automotive or avionics, real-time and embedded systems are getting ever more software
intensive. The software cannot any longer be produced as a single chunk, and engineers are contemplating
the possibility of componentizing it along the lines presented in Section3.2. In this vision, any composite
application is viewed as a particular configuration of components, selected at build-time and configured or re-
configured at run-time. A software component only exhibits its provided or required interfaces. This defines
basic contracts between components allowing one to properly wire them.

In real-time and embedded systems however, we have to take into account many extra-functional aspects,
such as timeliness, memory consumption, power dissipation, reliability, performances, and generally speaking
Quality of Service (QoS). These aspects can also be seen as contracts between the system, its environment and
its users. These contracts must obviously be propagated down to the component level. One of the key desiderata
in component-based development for embedded systems is thus the ability to capture both functional and
extra-functional properties in component contracts, and to verify and predict corresponding system properties.



Project-Team Triskell 11

A contract is in practice taken to be a constraint on a given aspect of the interaction between a component
that supplies a service, and a component that consumes this service. Component contracts differ from object
contracts in the sense that to supply a service, a component often explicitly requires some other service, with
its own contract, from another component. So the expression of a contract on a component-provided interface
might depend on another contract from one of the component-required interfaces. For instance, the throughput
of a component A doing some kind of computation on a data stream provided by component B clearly depends
on the throughput of B.

It is then natural that people resort to modelling to try to master this complexity [32]. Since models of
software have the same nature as the thing they models, this opens the possibility to automatically derive
software from its model. This was recently be made quite popular with an OMG initiative called the Model
Driven Architecture (MDA). The aim of this work is to show how MDA can be used in relation with real-
time and embedded component based software engineering [18]. Building on Model Driven Engineering
techniques, we show how the very same contracts expressed in a UML model can be exploited for (1)
validation of individual components, by automatically weaving contract monitoring code into the components;
and (2) validation of a component assembly, including getting end-to-end QoS information inferred from
individual component contracts, by automatic translation to a Constraint Logic Programming language.

In [32] we report on our experience with a model-driven architecture for distributed and embedded process-
control based on the assembly of pre-defined components implemented for low-cost micro-controlers.

6.1.2. Model Composition and Weaving
Participants: Benoit Baudry, Franck Fleurey.

The aspect oriented modeling (AOM) approach provides mechanisms for separating crosscutting function-
ality from core functionality in design models. Crosscutting functionality is described by aspect models and
the core application functionality is described by a primary model. The integrated system view is obtained by
composing the primary and aspect models. In [39], we present a model composition technique that relies on
signature matching: A model element is merged with another if their signatures match. A signature consists of
some or all properties of an element as defined in the UML metamodel. The technique proposed in this paper
is capable of detecting some conflicts that can arise during composition.

To implement the composition algorithm we have chosen to use our Kermeta language [34]. First, the
language allows implementing composition by adding the algorithm in the body of the operations defined in
the composition metamodel. Second, KerMeta tools are compatible with the Eclipse Modeling Framework
(EMF) which allows us to use Eclipse tools to edit, store, and visualize models.

The apparent similarities between model composition and model transformations often lead to the following
question: Is model composition a special type of model transformation? Answering this question can lead to
useful insights that can be used to develop technologies that leverage the relationship between composition and
transformation. In [25] we show that there are a number of ways to implement composition as transformations.
We give an overview of these approaches in terms of their generality, ease of use, and ease of implementation.
The insights gained from our initial analysis suggest that one can implement model composition as model
transformations. This is important in that it indicates that research on model composition can leverage research
on model transformations.

This work is done in collaboration with Robert France, Sudipto Ghosh and Raghu Reddy from Colorado
State University (CSU). It was ignitiated during a visit from Benoit Baudry and Franck Fleurey to CSU. This
visit was supported by INRIA and by the ARTIST network of excellence.

6.1.3. Weaving Behavioural Models
Participants: Jacques Klein, Jean-Marc Jézéquel, Noel Plouzeau.

Languages for aspect-oriented programming (AOP), such as AspectJ, are now popular, and the concepts
used by the AOP community such as join points, pointcuts and advice are well-known. At the same time,
in recent years, the aspect oriented software development (AOSD) approach has been developing itself
beyond the programming activity. More particularly, the Early Aspects Initiative advocates the management



12 Activity Report INRIA 2005

of crosscutting properties, i.e. aspects, at the early development stages of requirements engineering and
architecture design to identify the impact of aspects as soon as possible. Some composition operators of aspects
exist for these development stages, but they do not closely match standard AOP concepts (pointcuts, advice...).
In [29], we propose an automatic way for weaving behavioural aspects given as scenarios. With these kinds
of behavioural modelling languages, aspect weaving cannot always be performed at the abstract syntax level.
In [28], we present the problems relating to the design of a semantic based aspect weaver for Hierarchical
Message Sequence Charts (HMSCs).

6.1.4. Timed-based contracts for components
Participants: Pierre-Alain Muller, Noël Plouzeau, Sébastien Saudrais.

In many application domains, contract-based specification for software components need to take time
properties as well as other so calledextra-functionalproperties (e.g. throughput, bandwidth consumption,
etc).

[38] is a rigorous and automated approach for the behavioral validation of control software systems,
based on metamodeling, model-transformations and process algebra. The work combines semi-formal object-
oriented models with formal validation.

Triskell has also designed in the past three years a language for specifiying extra-functional properties on
software components. This language allows the definition of extra-functional dependencies between required
services and provided services.

Since the beginning of 2005, our team is working on a formal definition of this language. This formalization
effort aims at supporting extra-functional property specification and verification through a complete chain of
model transformation and validation that implements model driven engineering processes. The major difficulty
to be tackled is the correct transformation of formal properties bound to the successive software models
generated during the model transformation. The target platforms are real-time runtimes and frameworks such
as the Giotto runtime model. The work also aims at maximing the compatibility with existing tool chain items
from external partners.

This work is done in cooperation with the Jacquard project team at LIFL and with partners of the Artist2
network of excellence.

6.2. Model-Based Testing
6.2.1. Validation in a MDE context : Models and Model Transformations testing

Participants: Benoit Baudry, Franck Fleurey, Jim Steel, Jean-Marie Mottu, Yves le Traon.

Model-driven software development techniques raise the level of abstraction at which developers conceive
and implement complex software systems. To ensure that the developed systems are of high quality, it is
important for developers to evaluate the quality of the system models and the model transformations which
manipulate them.

A systematic study of faults that occur in UML designs will help us develop better design evaluation
techniques. While there is a large body of literature on fault models for system implementations (code), there
is a lack of research on fault models in designs. In many cases, researchers reverse engineer the code to obtain
views of the design. Our goal is to develop fault models for UML designs at various levels of abstraction, not
just models of the code. There will be some overlap in the fault models for designs and code. However, there
is a completely new set of fault types that arise from the use of different UML diagram types that can be used
to represent different views of a system. In [27] we present a taxonomy of faults that occur in UML designs.
We also describe a set of mutation operators for UML class diagrams. This work is part of a collaboration with
Trung Dinh-Trong, Sudipto Gosh and Robert France from the Computer Science Department of the Colorado
State University.

Once we can trust the models used, transformations allow automatic manipulations of these. It’s an
important feature for the models reuse. Thus, it is necessary to propose efficient techniques to validate the
transformation programs. For every program, test process is composed of three steps: the test data generation,



Project-Team Triskell 13

their execution and the validation of the results produced by the oracle. If the execution has no specificities,
the two other features depend on the program tested. With transformation programs, we need dedicated
techniques because the data are particularly complex: the models. In [31], we study original solutions for
model transformation testing. We introduce criteria to generate test data. We discuss an adaptation of the
mutation testing which allows to evaluate the efficiency of the data generated. Finally, different issues for the
oracle feature are analyzed. This work is part of a collaboration with Erwan Brottier from the Research and
Development department of France Telecom.

6.3. Model-Driven Engineering
6.3.1. Weaving Executability into Object-Oriented Meta-Languages

Participants: Pierre-Alain Muller, Franck Fleurey, Jean-Marc Jézéquel.

Nowadays, object-oriented meta-languages such as MOF (Meta-Object Facility) are increasingly used
to specify domain-specific languages in the model-driven engineering community. However, these meta-
languages focus on structural specifications and have no built-in support for specifications of operational
semantics. In [34] we explore the idea of using aspect-oriented modeling to add precise action specifications
with static type checking and genericity at the meta level, and examine related issues and possible solutions.
We believe that such a combination would bring significant benefits to the community, such as the speci-
fication, simulation and testing of operational semantics of metamodels. We present requirements for such
statically-typed meta-languages and rationales for the aforementioned benefits.

6.3.2. Model Transformations
Participants: Jean-Marc Jézéquel, Pierre-Alain Muller, Franck Fleurey, Zoé Drey, Damien Pollet, Didier
Vojtisek, Jim Steel.

Model engineering attempts to solve how we can evolve complex software systems. Indeed, those systems
must follow the evolution of new requirements and technologies, and this evolution is faster and faster
compared to the business domain evolution. We thus propose to reuse the domain expertise independently
of any underlying technology, through model transformation techniques [35].

Domain specific languages for model transformation have recently generated significant interest in the
model-driven engineering community. A number of approaches have been presented to model transformation,
from graph-transformation-based techniques, to rule-based languages, to imperative languages. Each of these
offer comparative advantages for different classes of model transformation problems.

One such approach is Tefkat, an implementation of a language designed specifically for the transformation
of MOF models using patterns and rules. The language adopts a declarative paradigm, wherein users may
concern themselves solely with the relations between the models rather than needing to deal explicitly with
issues such as order of rule execution and pattern searching/traversal of input models. In [30], the language and
its implementation are demonstrated using a provided example and highlight a number of language features
used in solving the problem, a simple object-to-relational mapping.

Another approach is presented in [14] as an architecture for manipulating models which is independent
of any specific metamodel. During development of model transformations, this architecture supports proven
techniques of object-oriented software engineering. A reference implementation in functional programming
specifies the semantics of the interface for accessing models.

This approach is based on a MOF-level interface for model manipulation. The associated programming
language supports direct manipulation of model elements, because the metamodel structure dynamically
extends the set of types available to the model transformation program. From a methodological point of
view, we show that model transformations capture the implementation expertise for a business domain
to a given technology ; it is therefore useful to model and develop complex transformations using sound
software engineering and model engineering techniques. We illustrate this in practice using transformations
for refactoring UML models.



14 Activity Report INRIA 2005

Thus, while the adopted QVT specification has normalized some scheme of model transformation language;
several different model transformation language paradigms are likely to co-exist in the near future, ranging
from imperative to declarative (including hybrid). It remains nevertheless questionable how model transfor-
mation specific languages compare to more general purpose languages, in terms of applicability, scalability
and robustness. [20] is a general overview of the different model transformation techniques, including con-
cept and terminology presentation. In [35] we report on our specific experience in applying an executable
meta-language such as Kermeta to the model transformation field.

6.3.3. Model Typing for Improving Reuse in Model-Driven Engineering
Participants: Jim Steel, Jean-Marc Jézéquel.

Where object-oriented languages deal with objects as described by classes, model-driven development uses
models, as graphs of interconnected objects, described by metamodels. A number of new modeling languages
have been and continue to be developed for this model-based paradigm, both for model transformation and
for general programming using models. Many of these use single-object approaches to typing, derived from
solutions found in object-oriented systems, while others use metamodels as model types, but without a clear
notion of polymorphism. Both of these approaches lead to brittle and overly restrictive reuse characteristics.

The contribution presented in [40] presents a simple extension to object-oriented typing to better cater for a
model-oriented context, including a simple strategy for typing models as a collection of interconnected objects.
Using a simple example it is shown how this extended approach permits more flexible reuse, while preserving
type safety.

Going forward, the presence of a well-founded type system for models will allow developers to reason
about how various model-driven engineering artifacts interconnect, from models and metamodels to model
transformations and programs, to repository and modelling tools.

6.3.4. Code Generation from UML Models with Semantic Variation Points
Participants: Franck Chauvel, Jean-Marc Jézéquel.

UML semantic variation points provide intentional degrees of freedom for the interpretation of the meta-
model semantics. The interest of semantic variation points is that UML now becomes a family of languages
sharing lot of commonalities and some variabilities that one can customize for a given application domain.
This works [26] propose to reify the various semantic variation points of UML 2.0 statecharts into models of
their own to avoid hardcoding the semantic choices in the tools. We do the same for various implementation
choices. Then, along the line of the OMG’s Model Driven Architecture, these semantic and implementation
models are processed along with a source UML model (that can be seen as a PIM) to provide a target UML
model (a PSM) where all semantic and implementation choice are made explicit. This target model can in turn
serve as a basis for a consistent use of code generation, simulation, model-checking or test generation tools.

6.3.5. Bridges between Models and Text/Hypertext
Participants: Jim Steel, Pierre-Alain Muller, Jean-Marc Jézéquel.

In [36] we use HUTN as a bridge between ModelWare and GrammarWare, to generate parsers and editors
for DSLs defined under the shape of metamodels. We describe the problems that we have encountered with
the ambiguities of the current HUTN specification and discuss how this specification may be fixed to be usable
with grammar-driven tools.

[21] is about platform independent Web application modeling and development in the context of model-
driven engineering. Web applications are represented via three independent but related models (business,
hypertext and presentation). A kind of action language (based on OCL and Java) is used all over these models
to write methods and actions, specify constraints and express conditions.

7. Contracts and Grants with Industry
7.1. AOSD-Europe (Network of Excellence)

Keywords: Aspect Oriented Design.



Project-Team Triskell 15

Participants: Jean-Marc Jézéquel, Noël Plouzeau, Yves Le Traon, Jacques Klein, Olivier Barais, Sébastien
Saudrais, Didier Vojtisek.

Aspect-Oriented Software Development (AOSD) supports systematic identification, modularisation, repre-
sentation and composition of crosscutting concerns such as security, mobility, distribution and resource man-
agement. Its potential benefits include improved ability to reason about the problem domain and corresponding
solution; reduction in application code size, development costs and maintenance time; improved code reuse;
architectural and design level reuse by separating non-functional concerns from key business domain logic;
improved ability to engineer product lines; application adaptation in response to context information and bet-
ter modelling methods across the lifecycle. AOSD-Europe will harmonise and integrate the research, training
and dissemination activities of its members in order to address fragmentation of AOSD activities in Europe
and strengthen innovation in areas such as aspect-oriented analysis and design, formal methods, languages,
empirical studies and applications of AOSD techniques in ambient computing. Through this harmonisation,
integration and development of essential competencies, the AOSD-Europe network of excellence aims to es-
tablish a premier virtual European research centre on AOSD. The virtual research centre will synthesise the
collective viewpoints, expertise, research agendas and commercial foci of its member organisations into a
vision and pragmatic realisation of the application of AOSD technologies to improve fundamental quality at-
tributes of software systems, especially those critical to the information society. It will also act as an interface
and a centralised source of information for other national and international research groups, industrial organi-
sations and governmental bodies to access the members’ work and enter collaborative initiatives. The existence
of such a premier research base will strengthen existing European excellence in the area, hence establishing
Europe as a world leader.(http://www.aosd-europe.net/)

Project duration:2004-2008

Project budget:9.6 Meuros

Project Coordinator:University of Lancaster

Participants:University of Lancaster, Technical University of Darmstadt, INRIA, VUB, Trinity College
Dublin, University of Malaga, Katholieke Universiteit Leuven, Technion, Siemens, IBM Hursley
Development Laboratory

7.2. Artist2 (Network of Excellence)
Keywords: Real-Time Component Models.

Participants: Jean-Marc Jézéquel, Noël Plouzeau, Pierre-Alain Muller, Benoit Baudry, Didier Vojtisek.

The strategic objective of the ARTIST2 Network of Excellence is to strengthen European research in
Embedded Systems Design, and promote the emergence of this new multi-disciplinary area. Artist2 gathers
together the best European teams from the composing disciplines, and will work to forge a scientific
community. Integration will be achieved around a Joint Programme of Activities, aiming to create critical
mass from the selected European teams.

The ARTIST2 Network of Excellence on Embedded Systems Design is implementing an international
and interdisciplinary fusion of effort to create a unique European virtual centre of excellence on Embedded
Systems Design. This interdisciplinary effort in research is mandatory to establish Embedded Systems Design
as a discipline, combining competencies from electrical engineering, computer science, applied mathematics,
and control theory. The ambition is to compete on the same level as equivalent centres in the USA (Berkeley,
Stanford, MIT, Carnegie Mellon), for both the production and transfer of knowledge and competencies, and
for the impact on industrial innovation.

ARTIST2 has a double core, consisting of leading-edge research in embedded systems design issues
(described later in this document) in the Joint Programme of Research Activities (JPRA), and complementary
activities around shared platforms and staff mobility in the Joint Programme of Integration Activities (JPIA).

http://www.aosd-europe.net/


16 Activity Report INRIA 2005

The JPRA activities are pure research, and the JPIA are complementary efforts for integration. Both work
towards deep integration between the participating research teams.

The JPRA and JPIA are structured into clusters - one for each of the selected topics in embedded systems
design (in red). Teams may be involved in one or several clusters.

Around this double core is the Joint Programme of Activities for Spreading Excellence (JPASE). These
are complementary activiites for disseminating excellence across all available channels, targetting industry,
students, and other European and international research teams.

Building the embedded systems design scientific community is an ambitious programme. To succeed,
ARTIST2 will build on the achievements and experience from the ARTIST1 FP5 Accompanying Measure
(http://www.artist-embedded.org/) on Advanced Real-Time Systems. ARTIST1 provided the opportunity to
test the concept of a two-level integration (within and between clusters) four clusters in ARTIST2 originated
as “actions” in ARTIST1. Building the ARTIST2 consortium and associated structure is the culmination of
discussions and ambitions elaborated within ARTIST1.

ARTIST2 addresses the full range of challenges related to Embedded Systems Design, covering all aspects,
ranging from theory through to applications. In this way, ARTIST2 is perfectly in line with the IST priority on
embedded systems, and in particular with the focus area called “system design”.

The Triskell team is taking part in two Artist2 clusters: theModelling and Componentscluster (led by Bengt
Jonsson, at Uppssala university, Sweden) and the Adaptive Real Time Middleware (led by Giorgo Buttazzo,
Italy).

The current cooperation topics within the Components cluster are the use of various formalisms for
timed behaviour descriptions, the definition of an architecture for interconnecting simulation and verification
platforms for these behaviours. Within the Adaptive Real Time cluster, Triskell is participating in the common
definition of quality of service dictionary, in the context of middleware runtimes.

7.3. FAMILIES (ITEA Eureka)
Keywords: COTS, UML, architecture recovery, methods, patterns, products family.

Participants: Jean-Marc Jézéquel, Yves Le Traon, Jacques Klein, Jean-Philippe Thibault, Tewfik Ziadi.

FAMILIES is a next project in a sequence of following projects: ARES and PRAISE, then ESAPS, and
CAFE.

ITEA projects ESAPS and CAFÉ have lead to a recognized European community on the subject of System
Family Engineering. The community presently has leadership over its American Counterpart, the SEI Product-
Line Initiative. The FAMILIES project aims at growing the community, consolidating results into fact-based
management for the practices of FAMILIES and its preceding projects, and to explore fields that were not
covered in the previous projects, in order to complete the Framework.

The consolidating work in FAMILIES will lead to:

• A reuse economics framework, to deal with the questions on when, why and how a family approach
has to be introduced. It is accompanied with a decision model, checklists and questionnaires.
Work package 1: Reuse economics, Fact-based business and organisation maturity.

• A family maturity model, which will complement the CMM and CMMI maturity models.
Work package 2: Family maturity, Fact-based process maturity, and consolidated tool requirements.

• Patterns, styles and rules related to satisfaction of business related quality requirements in the family,
accompanied by quality models, supporting processes, check lists, questionnaires and approaches
towards standardization of quality of service requirements.
Work package 3: Family quality, Fact-based architecture maturity.

http://www.artist-embedded.org/


Project-Team Triskell 17

• A methodology (process, tools, guidelines, and examples) supporting the separation of the domain
aspects, the technical aspects (quality of services) and the technological aspects (platforms) in
consistent models, in the MDA standardization frame.
Work package 4: Model driven family engineering.

• Extending reuse over larger parts of the organization, introducing an integrated approach to combine
existing legacy assets into a family, or even to a system population.
Work package 5: Families integration, Exploring reuse over family boundaries.

The project also has a specific work package, WP6 that takes care of exploitation and dissemination. For
this work package, Triskell has organized SPLC-EUROPE 2005 (9th International Software Product Line
Conference), Rennes, September 2005, which attracted over 130 persons from all over the world, including 70
people from industry.

7.4. MUTATION 2 (carroll)
Keywords: UML, methodology, requirements, test.

Participants: Benoit Baudry, Erwan Drézen, Franck Fleurey, Yves Le Traon, Didier Vojtisek.

MUTATION 2 is a project developed by CEA/LIST (LLSP), THALES Research and Technology, THALES
Airborne Systems and INRIA. This project aims to increase productivity during the testing steps of the
development process. The purpose of MUTATION 2 is to carry out a survey about the possibility to automate
testing procedures; the underlying idea is to automatically generate tests cases that can be associated to the
system requirements. It holds the following parts:

• formalization of system requirements,

• providing means to define testing scenarios at different levels of abstraction,

• generation of testing cases,

• assistance for understanding the generated testing cases through some criterions.

The technical issues of MUTATION 2 are:

• defining rules in order to formalize requirements,

• defining rules in order to formalize the detailed software design,

• automatic test generation from a requirements model,

• providing a low cost training for an industrial team.

The three successive parts of MUTATION 2 are:

• definition of a language dedicated to the description of requirements and its associated methodology;
a user guide and some examples will also to be written,

• defining coverage critera and identofying necessray UML extensions,

• applying the proposed concepts on a real case provided by THALES; it should allow to evaluate the
improvement in terms of productivity.

This project has already produced some results such as

• requirements formalization as a model with an associated textual syntax (called Requirements
Description Language)

• detailed design formalization,

• test objectives generation according to several criteria,



18 Activity Report INRIA 2005

• prototypes that support the underlying technologies,

• prototypes pre-evaluation on a real system provided by THALES.

This project will allow THALES to evaluate the possibility to automate the generation of tests scenarios
through UML models. At its end, THALES shall have a methodology and technological items allowing to
adapt the process used today within its teams.

7.5. MDE Standards for Aerospace (carroll)
Keywords: AADL, MDA, OMG, UML, methodology.

Participants: Jean-Marc Jézéquel, Benoit Baudry, Pierre-Alain Muller, Didier Vojtisek.

“MDE Standards for Aerospace” is a lightweight project developed by CEA/LIST (LLSP), THALES
Research and Technology, and INRIA acting as an expert group for CNES. This project aims at assessing
the suitability for the Aerospace domain of Model-Driven Engineering standards. It started in March 2005 and
was completed in November 2005.

7.6. Amadeus
Keywords: MDA, MDE, UML, methodology.

Participants: Jean-Marc Jézéquel, Pierre-Alain Muller, Antoine Beugnard, Franck Chauvel, Didier Vojtisek.

Amadeus is a project supported by the PRIR of “Région Bretagne”. It involves ENSTBr, ENSIETA,
Université de Bretagne Sud and Inria/Triskell. This project aims at building links between research teams
in Brittany working on Model Driven Engineering. Its main scientific objectives are:

• study relationships between the notion of design by contract and model refinements,

• study formal projections of UML to help model verifications,

• apply a robust design and validation methodology to the UML

7.7. KEREVAL
Keywords: components, diagnosis, extra functional, probes.

Participants: Marouane Himdi, Yves Le Traon.

In addition to detection of errors related to design, coding or deployment of an application, the diagnosis is
a well-known technique for understanding the behaviour of a software system and an absolute requirement for
its improvement. Unfortunately, applications become more difficult to diagnosis as functionalities provided
become complex. In collaboration with the KEREVAL company, we explore the use of dynamic probes
(sensors) that will be injected into running system to collect various information. The innovative aspect of
this approach is the use of generic probes to develop diagnosis framework [3].

8. Other Grants and Activities
8.1. International working groups
8.1.1. ERCIM Working Group on Software Evolution

Numerous scientific studies of large-scale software systems have shown that the bulk of the total software-
development cost is devoted to software maintenance. This is mainly due to the fact that software systems
need to evolve continually to cope with ever-changing software requirements. Today, this is more than ever
the case. Nevertheless, existing tools that try to provide support for evolution have many limitations. They are
(programming) language dependent, not scalable, difficult to integrate with other tools, and they lack formal
foundations.



Project-Team Triskell 19

The main goal of the proposed WG (http://w3.umh.ac.be/evol/) is to identify a set of formally-founded
techniques and associated tools to support software developers with the common problems they encounter
when evolving large and complex software systems. With this initiative, we plan to become a Virtual European
Research and Training Centre on Software Evolution.

Triskell contributes to this working group on the following points:

• re-engineering and reverse engineering

• model-driven software engineering and model transformation

• impact analysis, effort estimation, cost prediction, evolution metrics

• traceability analysis and change propagation

• family and product-line engineering

8.1.2. Standardization at OMG
Triskell project participates to normalization action atOMG (http://www.omg.org/):

• Triskell project participates to the RFP MOF2.0 QVT Query/view/Transformation. This RFP stan-
dardizes a model transformation language which is a key point in efficiently applying MDA.

• Triskell project participates to the new Executable UML foundation RFP. This RFP will standardize
a subset of UML2.0 with a more precise execution semantic.

• Triskell project is also involved in other OMG groups which are related to the team interests. For
example, it participates to the ORMSC group which formalizes the MDA approach, to the MDA
user SIG which represents the end user point of view for MDA. It is also invloved in the more
general Analysis and Design group which promotes standard modelling techniques including UML
and MOF.

• Triskell initiated a wiki dedicated to share information about theOMG within the INRIA
(http://omg.wiki.irisa.fr/).

8.1.3. Collaboration with foreign research groups:

• University of Oslo, Norway. Collaboration on the SWAT project (Semantics-preserving Weaving
- Advancing the Technology) with Øystein Haugen and Birger Møller-Pedersen. The goal of this
formal collaboration is to identify basic mechanisms behind the mechanisms we find in generics,
aspect orientation, family modeling and generative programming, in general what mechanisms we
should have in order to produce models/programs from generic models/programs or from fragments
of models/programs.

• Colorado State University (CSU), USA. Collaboration on several issues related to model-driven
development with Robert France and Sudipto Ghosh. More precisely we have collaborated on model
composition for aspect-oriented modelling, model transformation and model validation with testing.
Franck Fleurey and Benoit Baudry visited CSU in summer 2005, this visit was funded by INRIA as
part of the “mini prjet INRIA” program. Robert France visited Triskell in 2003, will come back in
June 2006 and should spend 6 months in sabbatical in 2006-07. To institutionalize our collaboration,
we have set up a “Equipe associée” (associated team) called MATT between CSU and Triskell on
Model-driven engineering: Aspects, Transformations and Test (seehttp://www.irisa.fr/triskell/matt
for details).

• Centre for Distributed Systems and Software Engineering, Monash University, Melbourne, Aus-
tralia. Collaboration on Trusted Components and Contracts. Professor Heinz Schimdt has been in-
vited in the Triskell team during 3 months in 2002. Christine Mingins has co-authored a book with
J.-M. Jézéquel [49].

http://w3.umh.ac.be/evol/
http://www.omg.org/
http://omg.wiki.irisa.fr/
http://www.irisa.fr/triskell/matt


20 Activity Report INRIA 2005

• Software engineering group, University of Montréal, Canada, on meta-modeling (H. Sahraoui).

• Carleton University, Ottawa, Canada: Triskell has developed a collaboration on test and objects with
Lionel Briand’s team at Carleton University.

• Technical University of Munich, Germany on meta-modeling and agile methodologies. B. Rumpe,
Editor in Chief of the SoSyM journal, was an invited professor with Triskell for 3 months in 2003,
and visited us again in november 2004.

• ETH Zurich (Pr.B. Meyer’s team), Switzerland on Trusted Components. B. Meyer came to Rennes
several times in the past few years.

• Distributed Systems Technology Centre, Brisbane, Australia. Triskell has collaborated and published
with the Pegamento team on rule-based approaches to model transformation.

9. Dissemination
9.1. Scientific community animation
9.1.1. Journals
9.1.1.1. Jean-Marc Jézéquel

is an Associate Editor of the following journals:

• IEEE Transactions on Software Engineering

• Journal on Software and System Modeling: SoSyM

• Journal of Object Technology: JOT

• L’Objet

9.1.1.2. Pierre-Alain Muller
is an Associate Editor of the following journals:

• Journal on Software and System Modeling: SoSyM

9.1.2. Examination Committees
9.1.2.1. Jean-Marc Jézéquel

was in the examination committee of the following PhD thesis and “Habilitation à Diriger les Recherches”:

• Adnan Bader, May 2005, Monash University (referee);

• Arnaud Thiefaine, June 2005, université de Paris 6 (referee);

• Damien Pollet, June 2005, université de Rennes (adviser);

• Jean-Charles Tournier, July 2005, INSA Lyon (referee);

• Olivier Barais, November 2005, université de Lille (referee);

• Arnaud Cuccuru, November 2005, université de Lille (referee);

• German Vega, December 2005, université de Grenoble (referee) ;

• Selma Matougui, December 2005, université de Rennes (adviser);

9.1.2.2. Yves Le traon
was in the examination committee of the following PhD thesis:

• Yves Souchard, November 2005, LEG-INPG (referee);

• Céline Bigot, June 2005, CNAM-CEA (referee);



Project-Team Triskell 21

9.1.2.3. Pierre-Alain Muller
was in the examination committee of the following PhD thesis:

• Damien Pollet, June 2005, université de Rennes.

9.1.3. Conferences
9.1.3.1. Jean-Marc Jézéquel

was Conference Chair of the following conference:

• SPLC-EUROPE 2005 (9th International Software Product Line Conference), Rennes, September
2005. This conference attracted over 130 persons from all over the world, including 70 people from
industry.

9.1.3.2. Jean-Marc Jézéquel
has been a member of the programme committee of the following conferences:

• ECOOP 2005 The 19th European Conference on Object Oriented Programming, Scottish Exhibition
and Conference Centre, Glasgow, Scotland, 25-29 July 2005

• Special session: Model Driven Engineering of 31th EUROMICRO Conference, Porto, Portugal,
August 30st - September 3rd, 2005

• MODELS 2005 The 8th International Conference on Model Driven Engineering Languages and
Systems (formerly the UML series of conferences) Jamaica, 2-7 October 2005

• ECMDA-FA’05 European Conference on Model Driven Architecture - Foundations and Applica-
tions, November 7-10, 2005, Nurenberg, Germany

• QoSA 2005 First International Conference on the Quality of Software Architectures,
Net.ObjectDays, September, 20-22, 2005, Erfurt, Germany

• JC 2005 4eme Conférence Francophone autour des Composants Logiciels, Le Croisic, France, 7 et
8 avril 2005

9.1.3.3. Yves Le Traon
has been a member of the programme committee of the following conferences and workshops:

• ISSRE 2005- the 16th IEEE International Symposium on Software Reliability Engineering, Chicago,
November 2005

• 2nd int. workshop on Model design and Validation (MoDeVa 2005), Jamaica, October 2005

• 1ères journéees sur l’Ingénierie Dirigées par les Modèles (IDM 05), Paris, June 2005

9.1.3.4. Noël Plouzeau
has been a member of the programme committee of the following conferences and workshops:

• 2ème Journée Francophone sur le Développement de Logiciels Par Aspects (JFDLPA 2005),
Septembre 2005



22 Activity Report INRIA 2005

9.1.3.5. Pierre-Alain Muller
has been a member of the programme committee of the following conferences:

• MODELS 2005 The 8th International Conference on Model Driven Engineering Languages and
Systems (formerly the UML series of conferences) Jamaica, 2-7 October 2005

• Special session: Model Driven Engineering of 31th EUROMICRO Conference, Porto, Portugal,
August 30st - September 3rd, 2005

• VL/HCC’05, IEEE Symposium on Visual Languages and Human-Centric Computing, Dalas, Texas,
USA, 20-24 September 2005

9.1.4. Workshops
J.-M. Jézéquel gave an invited talk at the DGA seminar on “Complex Software Systems engineering”,

November 2005.
P.-A. Muller was Programme Chair of the 1ères journéees sur l’Ingénierie Dirigées par les Modèles (IDM

05), Paris, June 2005 [12]. He presented an invited conference onModel Transformationsat the Artist2
summer school, septembre 2005. He was also responsible of setting up and moderating a panel on “Meta-
modeling architecture” at MODELS’2005, and another one on “Model-Driven Engineering” at LMO’05.

B. Baudry was co-organizer with Christophe Gaston (CEA) and Sudipto Ghosh (CSU) of the MoDeVa
workshop in conjunction with MoDELS’05. He was also Workshop Chair for SPLC-EUROPE 2005 (9th
International Software Product Line Conference), Rennes, September 2005.

9.2. Teaching
Jean-Marc Jézéquel teaches OO Analysis and Design with UML (Iup3 and Diic2) at Ifsic [13], as well as

at Supélec (Rennes) andENSTB (Rennes). He also gives an advanced course on model driven engineering for
Diic3 and MasterPro students.
Noël Plouzeau teaches OO Analysis and Design and Component Based Design to students of the first and
second year of Mastère Sciences et Technologies, mention Informatique (Ifsic).
Benoit Baudry teaches software testing (Iup3, Diic3, Master1).

The Triskell team receives several Master and summer trainees every year.

9.3. Miscellaneous

• J.-M. Jézéquel is a member of the Steering Committee of the MODELS/UML Conferences series.
He is appointed to the board of the Committee of Projects of INRIA Rennes.

• P.-A. Muller is a member of the Steering Committee of the MODELS/UML Conferences series. He
holds an elected position at the scientific council of the Université de Haute Alsace.

• J.-M. Jézéquel is the writer of the chapter on Design Patterns in theEncyclopédie de l’informatique
to be published by Vuibert in the second half of 2005 [19].

• N. Plouzeau is the writer of the chapter on Software Components in the encyclopedia mentioned
above [23].



Project-Team Triskell 23

10. Bibliography
Major publications by the team in recent years

[1] B. BAUDRY, F. FLEUREY, J.-M. JÉZÉQUEL, Y. LE TRAON. Automatic Test Cases Optimization: a Bacterio-
logic Algorithm, in "IEEE Software", vol. 22, no 2, March 2005, p. 76–82.

[2] A. B EUGNARD, J.-M. JÉZÉQUEL, N. PLOUZEAU, D. WATKINS . Making Components Contract Aware, in
"IEEE Computer", vol. 13, no 7, July 1999.

[3] M. H IMDI . Development of Generic Probes for Functional and Extra-Functional Diagnosis, in "Supplementary
proc. of the 15th IEEE International Symposium on Software Reliability Engineering (ISSRE 2004 Student
Paper), St Malo", November 2004.

[4] C. JARD, J.-M. JÉZÉQUEL, A. L. GUENNEC, B. CAILLAUD . Protocol Engineering using UML, in "Annales
des Telecoms", vol. 54, no 11–12, November 1999, p. 526–538.

[5] J.-M. JÉZÉQUEL, D. DEVEAUX , Y. LE TRAON. Reliable Objects: a Lightweight Approach Applied to Java, in
"IEEE Software", vol. 18, no 4, July/August 2001, p. 76–83.

[6] J.-M. JÉZÉQUEL. Model Driven Engineering for Distributed Real Time Embedded Systems, S. GÉRARD, J.-P.
BABAU (editors). , chap. Real Time Components and Contracts, Hermes Science Publishing Ltd, London,
2005.

[7] J.-M. JÉZÉQUEL. Object Oriented Software Engineering with Eiffel, ISBN 1-201-63381-7, Addison-Wesley,
March 1996.

[8] J.-M. JÉZÉQUEL. Reifying Variants in Configuration Management, in "ACM Transaction on Software Engi-
neering and Methodology", vol. 8, no 3, July 1999, p. 284–295.

[9] J.-M. JÉZÉQUEL, M. TRAIN , C. MINGINS. Design Patterns and Contracts, ISBN 1-201-30959-9, Addison-
Wesley, October 1999.

[10] G. SUNYÉ, A. L. GUENNEC, J.-M. JÉZÉQUEL. Using UML Action Semantics for Model Execution and
Transformation, in "Information Systems, Elsevier", vol. 27, no 6, July 2002, p. 445–457.

[11] Y. L. TRAON, T. JÉRON, J.-M. JÉZÉQUEL, P. MOREL. Efficient OO Integration and Regression Testing, in
"IEEE Trans. on Reliability", vol. 49, no 1, March 2000, p. 12–25.

Books and Monographs

[12] S. GÉRARD, J.-M. FAVRE, P.-A. MULLER, X. BLANC (editors). IDM05, Actes des 1ères
Journées sur l’Ingénierie Dirigée par les Modèles, no ISBN 2-7261-1284-6, June 2005,
http://planetmde.org/idm05/actes.pdf.

http://planetmde.org/idm05/actes.pdf


24 Activity Report INRIA 2005

[13] J.-M. JÉZÉQUEL, N. PLOUZEAU, Y. L. TRAON. Développement de logiciel à objets avec UML, September
2005, Polycopié IFSIC C119, version 1.6, 146 pages.

Doctoral dissertations and Habilitation theses

[14] D. POLLET. Une architecture pour les transformations de modèles et la restructuration de modèles UML, Ph.
D. Thesis, Université de Rennes 1, June 2005,http://www.irisa.fr/bibli/publi/theses/2005/pollet/pollet.html.

Articles in refereed journals and book chapters

[15] B. BAUDRY, F. FLEUREY, J.-M. JÉZÉQUEL, Y. LE TRAON. Automatic Test Cases Optimization: a Bacterio-
logic Algorithm, in "IEEE Software", vol. 22, no 2, March 2005, p. 76–82.

[16] B. BAUDRY, F. FLEUREY, J.-M. JÉZÉQUEL, Y. L. TRAON. From Genetic to Bacteriological Algorithms for
Mutation-Based Testing, in "Software, Testing, Verification & Reliability journal (STVR)", vol. 15, no 2, June
2005, p. 73-96.

[17] J. BAYER, S. GÉRARD, O. HAUGEN, J. MANSELL, B. MOLLER-PEDERSEN, J. OLDEVIK , P. TESSIER,
J.-P. THIBAULT , T. WIDEN. Families Research Book, LNCS, chap. A Unified Conceptual Model for Product
Family Variability Modelling, no to be published, Springer Verlag, 2005.

[18] J.-M. JÉZÉQUEL. Model Driven Engineering for Distributed Real Time Embedded Systems, S. GÉRARD, J.-
P. BABAU (editors). , chap. Real Time Components and Contracts, Hermes Science Publishing Ltd, London,
2005.

[19] J.-M. JÉZÉQUEL. Encyclopédie Vuibert de l’informatique, chap. Patrons de conception, Vuibert, 2005.

[20] P.-A. MULLER. Model Driven Engineering for Distributed Real Time Embedded Systems, S. GÉRARD, J.-P.
BABAU , J. CHAMPEAU (editors). , chap. Model Transformations, Hermes Science Publishing Ltd, London,
2005.

[21] P.-A. MULLER, P. STUDER, F. FONDEMENT, J. BEZIVIN . Independent Web Application Modeling and
Development, in "Software and System Modeling", vol. 4, no 4, November 2005, p. 424–442.

[22] C. NEBUT, Y. LE TRAON, J.-M. JÉZÉQUEL. Families Research Book, LNCS, chap. System Testing of Product
Families: from Requirements to Test Cases, no to be published, Springer Verlag, 2005.

[23] N. PLOUZEAU. Encyclopédie Vuibert de l’informatique, chap. Composants logiciels, Vuibert, 2005.

[24] T. ZIADI , J.-M. JÉZÉQUEL. Families Research Book, LNCS, chap. Product Line Engineering with the UML:
Products Derivation, no to be published, Springer Verlag, 2005.

Publications in Conferences and Workshops

[25] B. BAUDRY, F. FLEUREY, R. FRANCE, R. REDDY. Exploring the Relationship between Model Composition
and Model Transformation, in "Aspect Oriented Modeling (AOM) Workshop, Montego Bay, Jamaica",
October 2005.

http://www.irisa.fr/bibli/publi/theses/2005/pollet/pollet.html


Project-Team Triskell 25

[26] F. CHAUVEL , J.-M. JÉZÉQUEL. Code Generation from UML Models with Semantic Variation Points, in
"Proceedings of MODELS/UML’2005, Montego Bay, Jamaica", L. BRIAND , S. KENT (editors). , LNCS, vol.
to be published, Springer, October 2005.

[27] T. DINH-TRONG, S. GHOSH, R. FRANCE, B. BAUDRY, F. FLEUREY. A Taxonomy of Faults for UML
Designs, in "Model Design and Validation (MoDeVa) Workshop, Montego Bay, Jamaica", October 2005.

[28] J. KLEIN , J.-M. JÉZÉQUEL. Problems of the Semantic-based Weaving of Scenarios, in "In Aspects and
Software Product Lines: An Early Aspects Workshop at SPLC-Europe 05, Rennes", September 2005.

[29] J. KLEIN , J.-M. JÉZÉQUEL, N. PLOUZEAU. Weaving Behavioural Models, in "In First Workshop on Models
and Aspects, Handling Crosscutting Concerns in MDSD at ECOOP 05, Glasgow", July 2005.

[30] M. L AWLEY, J. STEEL. Practical Declarative Model Transformation With Tefkat, in "Model Transformations
In Practice Workshop, Montego Bay, Jamaica", October 2005.

[31] J.-M. MOTTU, B. BAUDRY, Y. LE TRAON, E. BROTTIER. Génération Automatique de Test pour les
Transformations de Modèles, in "1ère Journées sur l’Ingénierie Dirigée par les Modèles, Paris", June 2005.

[32] P.-A. MULLER, D. BRESCH. Model-Driven Architecture for Distributed and Embedded Process-Control,
in "5ème Colloque sur l’Enseignement des Technologies et des Sciences de l’Information et des Systèmes
(CETSIS), Nancy", October 2005.

[33] P.-A. MULLER, C. DUMOULIN , F. FONDEMENT, M. HASSENFORDER. The TopModL Initiative, in "UML
2004 Satellite Activities, Montego Bay, Jamaica", March 2005.

[34] P.-A. MULLER, F. FLEUREY, J.-M. JÉZÉQUEL. Weaving Executability intoObject-Oriented Meta-
Languages, in "Proceedings of MODELS/UML’2005, Montego Bay, Jamaica", L. BRIAND , S. KENT

(editors). , LNCS, vol. to be published, Springer, October 2005.

[35] P.-A. MULLER, F. FLEUREY, D. VOJTISEK, Z. DREY, D. POLLET, F. FONDEMENT, P. STUDER, J.-M.
JÉZÉQUEL. On Executable Meta-Languages applied to Model Transformations, in "Model Transformations
In Practice Workshop, Montego Bay, Jamaica", October 2005.

[36] P.-A. MULLER, M. HASSENFORDER. HUTN as a Bridge between ModelWare and GrammarWare, in
"WISME Workshop, MODELS / UML’2005, Montego Bay, Jamaica", October 2005.

[37] C. NEBUT, F. FLEUREY. Une méthode de formalisation progressive des exigences basée sur un modèle
simulable, in "Langages et Modèles à Objets: LMO’05 (L’Objet logiciel, bases de données, réseaux, RSTI
série l’Objet Vol. 11 N° 1-2/2005), Bern, Switzerland", February 2005, p. 145-158.

[38] A. RASSE, J.-M. PERRONNE, P.-A. MULLER, B. THIRION. Using Process Algebra to Validate Behav-
ioral Aspects of Object-Oriented Models, in "MODEVA Workshop, MODELS / UML’2005, Montego Bay,
Jamaica", October 2005.



26 Activity Report INRIA 2005

[39] R. REDDY, R. FRANCE, S. GHOSH, F. FLEUREY, B. BAUDRY. Model Composition - A Signature-Based
Approach, in "Aspect Oriented Modeling (AOM) Workshop, Montego Bay, Jamaica", October 2005.

[40] J. STEEL, J.-M. JÉZÉQUEL. Model Typing for Improving Reuse in Model-Driven Engineering, in "Proceed-
ings of MODELS/UML’2005, Montego Bay, Jamaica", L. BRIAND , S. KENT (editors). , LNCS, vol. to be
published, Springer, October 2005.

[41] T. ZIADI , J.-M. JÉZÉQUEL. Manipulation de Lignes de Produits Logiciels : Une Approche Dirigée par les
Modèles, in "1ère Journées sur l’Ingénierie Dirigée par les Modèles, Paris", June 2005.

Bibliography in notes

[42] B. APPLETON. Patterns and Software: Essential Concepts and Terminology, in "Object Magazine Online",
May 1997.

[43] A. BEUGNARD, J.-M. JÉZÉQUEL, N. PLOUZEAU, D. WATKINS . Making Components Contract Aware, in
"IEEE Computer", vol. 13, no 7, July 1999.

[44] G. BOOCH. Object-Oriented Analysis and Design with Applications, 2nd, Benjamin Cummings, 1994.

[45] L. CASTELLANO, G. DE M ICHELIS, POMELLO,L.. Concurrency versus Interleaving: An Instructive Exam-
ple, in "BEATCS: Bulletin of the European Association for Theoretical Computer Science", vol. 31, 1987.

[46] E. GAMMA , R. HELM , R. JOHNSON, J. VLISSIDES. Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1995.

[47] M. JACKSON. System Development, Prentice-Hall International, Series in Computer Science, 1985.

[48] J.-M. JÉZÉQUEL, B. MEYER. Design by Contract: The Lessons of Ariane, in "Computer", vol. 30, no 1,
January 1997, p. 129–130.

[49] J.-M. JÉZÉQUEL, M. TRAIN , C. MINGINS. Design Patterns and Contracts, ISBN 1-201-30959-9, Addison-
Wesley, October 1999.

[50] B. MEYER. Reusability: The Case for Object-Oriented Design, in "IEEE SOFTWARE", no 3, March 1987, p.
50–64.

[51] B. MEYER. Applying "Design by Contract", in "IEEE Computer (Special Issue on Inheritance & Classifica-
tion)", vol. 25, no 10, October 1992, p. 40–52.

[52] C. SZYPERSKI. Component Software: Beyond Object-Oriented Programming, ACM Press and Addison-
Wesley, New York, N.Y., 1998.

[53] J. WARMER, A. KLEPPE. The Object Constraint Language, Addison-Wesley, 1998.

[54] G. WINSKEL. Event Structures, in "Petri Nets: Applications and Relationships to Other Models of Concur-



Project-Team Triskell 27

rency, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef", W. BRAUER,
W. REISIG, G. ROZENBERG(editors). , vol. 255, Springer-Verlag, september 1986, p. 325-392.


