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2. Overall Objectives
2.1. Overall Objectives

The TROPICS team is at the junction of two research domains:

• AD: On one hand, we study software engineering techniques, to analyze and transform programs
semi-automatically. In the past, we developed semi-automatic parallelization strategies aiming at
SPMD parallelization. Presently, we focus on Automatic Differentiation (AD). AD transforms a
programP that computes a functionF , into a programP’ that computes some derivatives ofF ,
analytically. In particular, the so-calledreverse modeof AD yields gradients. However, this reverse
mode remains very delicate to use, and its implementation requires carefully crafted algorithms.

• CFD application of AD: On the other hand, we study the application of AD, and particularly
of the adjoint method, to Computational Fluid Dynamics. This involves necessary adaptation of
optimization strategies. This work applies to two real-life problems, optimal shape design and mesh
adaptation.

The second aspect of our work (optimization in Scientific Computing), is thus at the same time the moti-
vation and the application domain of the first aspect (program analysis and transformation, and computation
of gradients through AD). Concerning AD, our goal is to automatically produce derivative programs that can
compete with the hand-written sensitivity and adjoint programs which exist in the industry. We implement our
ideas and algorithms into the toolTAPENADE, which is developed and maintained by the project. Apart from
being an AD tool,TAPENADE is also a platform for other analyses and transformations of scientific programs.
TAPENADE is easily available. We provide a web server, and alternatively a version can be downloaded from
our web server. Practical details can be found in section5.1.

Our present research directions are :
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• Modern numerical methods for finite elements or finite differences: multigrid methods, mesh
adaptation.

• Optimal shape design, in the context of fluid dynamics: for example shape optimization of the wings
of a supersonic aircraft, to reduce sonic bang. Also, new optimization tactics combining interior
point, SQP or one-shot algorithms.

• Automatic Differentiation : reduce runtime and memory consumption when computing gradients
(“adjoints”) or Jacobian matrices, differentiate parallel programs, differentiate particular algorithms
in a specially adapted manner, validate the derivatives.

• Common tools for program analysis and transformation: adequate internal representation, Call
Graphs, Flow Graphs, Data-Dependence Graphs.

3. Scientific Foundations
3.1. Automatic Differentiation

Keywords: adjoint models, automatic differentiation, optimization, program transformation, scientific com-
puting, simulation.

Participants: Mauricio Araya-Polo, Benjamin Dauvergne, Laurent Hascoët, Christophe Massol, Valérie
Pascual.

automatic differentiation (AD) Automatic transformation of a program, that returns a new program
that computes some derivatives of the given initial program, i.e. some combination of the partial
derivatives of the program’s outputs with respect to its inputs.

adjoint model Mathematical manipulation of the Partial Derivative Equations that define a problem,
that returns new differential equations that define the gradient of the original problem’s solution.

checkpointing General trade-off technique, used in the reverse mode of AD, that trades duplicate
execution of a part of the program to save some memory space that was used to save intermediate
results. Checkpointing a code fragment amounts to running this fragment without any storage
of intermediate values, thus saving memory space. Later, when such an intermediate value is
required, the fragment is run a second time to obtain the required values.

Automatic or Algorithmic Differentiation (AD) differentiatesprograms. An AD tool takes as input
a source computer programP that, given a vector argumentX ∈ IRn, computes some vector function
Y = F (X) ∈ IRm. The AD tool generates a new source program that, given the argumentX, computes
some derivatives ofF . In short, AD first assumes thatP represents all its possible run-time sequences of in-
structions, and it will in fact differentiate these sequences. Therefore, thecontrolof P is put aside temporarily,
and AD will simply reproduce this control into the differentiated program. In other words,P is differentiated
only piecewise. Experience shows that this is reasonable in most cases, and going further is still an open re-
search problem. Then, any sequence of instructions is identified with a composition of vector functions. Thus,
for a given control:

P is {I1; I2; · · · Ip; },
F = fp ◦ fp−1 ◦ · · · ◦ f1,

(1)

where eachfk is the elementary function implemented by instructionIk. Finally, AD simply applies the chain
rule to obtain derivatives ofF . Let us callXk the values of all variables after each instructionIk, i.e.X0 = X
andXk = fk(Xk−1). The chain rule gives the JacobianF ′ of F

F ′(X) = f ′p(Xp−1) . f ′p−1(Xp−2) . · · · . f ′1(X0) (2)
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which can be mechanically translated back into a sequence of instructionsI ′k, and these sequences inserted
back into the control ofP , yielding programP ′. This can be generalized to higher level derivatives, Taylor
series, etc.

In practice, the above JacobianF ′(X) is often far too expensive to compute and store. Notice for instance
that equation (2) repeatedly multiplies matrices, whose size is of the order ofm × n. Moreover, some problems
are solved using only some projections ofF ′(X). For example, one may need onlysensitivities, which are
F ′(X).Ẋ for a given directionẊ in the input space. Using equation (2), sensitivity is

F ′(X).Ẋ = f ′p(Xp−1) . f ′p−1(Xp−2) . · · · . f ′1(X0) . Ẋ, (3)

which is easily computed from right to left, interleaved with the original program instructions. This is the
principle of thetangent modeof AD, which is the most straightforward, of course available inTAPENADE.

However in optimization, data assimilation [41], adjoint problems [36], or inverse problems, the appropriate
derivative is thegradientF ′∗(X).Y . Using equation (2), the gradient is

F ′∗(X).Y = f ′∗1 (X0).f ′∗2 (X1). · · · .f ′∗p−1(Xp−2).f ′∗p (Xp−1).Y , (4)

which is most efficiently computed from right to left, because matrix×vector products are so much cheaper
than matrix×matrix products. This is the principle of thereverse modeof AD.

This turns out to make a very efficient program, at least theoretically [38]. The computation time required
for the gradient is only a small multiple of the run-time ofP . It is independent from the number of parameters
n. In contrast, notice that computing the same gradient with thetangent modewould require running the
tangent differentiated programn times.

We can observe that theXk are required in theinverseof their computation order. If the original program
overwritesa part ofXk, the differentiated program must restoreXk before it is used byf ′∗k+1(Xk). There are
two strategies for that:

• Recompute All (RA): theXk is recomputed when needed, restartingP on inputX0 until instruction
Ik. The TAF [34] tool uses this strategy. Brute-force RA strategy has a quadratic time cost with
respect to the total number of run-time instructionsp.

• Store All (SA): the Xk are restored from a stack when needed. This stack is filled during a
preliminary run ofP , that additionally stores variables on the stack just before they are overwritten.
TheADIFOR [29] andTAPENADE tools use this strategy. Brute-force SA strategy has a linear memory
cost with respect top.

Both RA and SA strategies need a special storage/recomputation trade-off in order to be really profitable,
and this makes them become very similar. This trade-off is calledcheckpointing. SinceTAPENADE uses the
SA strategy, let us describe checkpointing in this context. The plain SA strategy applied to instructionsI1 to
Ip builds the differentiated program sketched on figure1, where

time

I I I I I
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pp-1p-2321

Figure 1. The “Store-All” tactic

an initial “forward sweep” runs the original program and stores intermediate values (black dots), and is
followed by a “backward sweep” that computes the derivatives in the reverse order, using the stored values
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when necessary (white dots). Checkpointing a fragmentC of the program is illustrated on figure2. During
the forward sweep, no value is stored while inC. Later, when the backward sweep needs values fromC, the
fragment is run again, this time with storage. One can see that the maximum storage space is grossly divided by
2. This also requires some extra memorization (a “snapshot”), to restore the initial context ofC. This snapshot
is shown on figure2 by slightly bigger black and white dots.

time

C{
Figure 2. CheckpointingC with the “Store-All” tactic

Checkpoints can be nested. In that case, a clever choice of checkpoints can make both the memory size and
the extra recomputations grow like only the logarithm of the size of the program.

3.2. Static Analyses and Transformation of programs
Keywords: abstract interpretation, abstract syntax tree, compilation, control flow graph, data dependence
graph, data flow analysis, program transformation, static analysis.

Participants: Mauricio Araya-Polo, Benjamin Dauvergne, Laurent Hascoët, Christophe Massol, Valérie
Pascual.

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses, or
separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known
as basic blocks, contain each a list of instructions to be executed in sequence, and whose arcs
represent all possible control jumps that can occur at run-time.

abstract interpretation Model that describes program static analyses as a special sort of execution,
in which all branches of control switches are taken simultaneously, and where computed values
are replaced by abstract values from a givensemantic domain. Each particular analysis gives
birth to a specific semantic domain.

data flow analysis Program analysis that studies how a given property of variables evolves with
execution of the program. Data Flow analyses are static, therefore studying all possible run-
time behaviors and making conservative approximations. A typical data-flow analysis is to detect
whether a variable is initialized or not, at any location in the source program.

data dependence analysisProgram analysis that studies the itinerary of values during program
execution, from the place where a value is generated to the places where it is used, and finally to
the place where it is overwritten. The collection of all these itineraries is often stored as adata
dependence graph, and data flow analysis most often rely on this graph.

data dependence graphDirected graph that relates accesses to program variables, from the write
access that defines a new value to the read accesses that use this value, and conversely from the
read accesses to the write access that overwrites this value. Dependences express a partial order
between operations, that must be preserved to preserve the program’s result.
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The most obvious example of a program transformation tool is certainly a compiler. Other examples are
program translators, that go from one language or formalism to another, or optimizers, that transform a
program to make it run better. AD is just one such transformation. These tools use sophisticated analyses [27]
to improve the quality of the produced code. These tools share their technological basis. More importantly,
there are common mathematical models to specify and analyze them.

An important principle isabstraction: the core of a compiler should not bother about syntactic details of the
compiled program. In particular, it is desirable that the optimization and code generation phases be independent
from the particular input programming language. This can generally be achieved through separatefront-ends,
that produce an internal language-independent representation of the program, generally a abstract syntax tree.
For example, compilers likegcc for C andg77 for FORTRAN77 have separate front-ends but share most of
their back-end.

One can go further. As abstraction goes on, the internal representation becomes more language independent,
and semantic constructs such as declarations, assignments, calls, IO operations, can be unified. Analyses
can then concentrate on the semantics of a small set of constructs. We advocate an internal representation
composed of three levels.

• At the top level is thecall graph, whose nodes are the procedures. There is an arrow from nodeA
to nodeB iff A possibly callsB. Recursion leads to cycles. The call graph captures the notions of
visibility scope between procedures, that come from modules or classes.

• At the middle level is the control flow graph. There is one flow graph per procedure, i.e. per node in
the call graph. The flow graph captures the control flow between atomic instructions. Flow control
instructions are represented uniformly inside the control flow graph.

• At the lowest level are abstract syntax trees for the individual atomic instructions. Certain semantic
transformations can benefit from the representation of expressions as directed acyclic graphs, sharing
common sub-expressions.

To each basic block is associated a symbol table that gives access to properties of variables, constants,
function names, type names, and so on. Symbol tables must be nested to implementlexical scoping.

Static program analyses can be defined on this internal representation, which is largely language indepen-
dent. The simplest analyses on trees can be specified with inference rules [30], [39], [28]. But many analyses
are more complex, and are thus better defined on graphs than on trees. This is the case fordata-flow analyses,
that look for run-time properties of variables. Since flow graphs are cyclic, these global analyses generally
require an iterative resolution.Data flow equationsis a practical formalism to describe data-flow analyses.
Another formalism is described in [31], which is more precise because it can distinguish separateinstances
of instructions. However it is still based on trees, and its cost forbids application to large codes.Abstract
Interpretation[32] is a theoretical framework to study complexity and termination of these analyses.

Data flow analyses must be carefully designed to avoid or control combinatorial explosion. The classical
solution is to choose a hierarchical model. In this model, information, or at least a computationally expensive
part of it, is synthesized. Specifically, it is computed bottom up, starting on the lowest (and smallest) levels
of the program representation and then recursively combined at the upper (and larger) levels. Consequently,
this synthesized information must be made independent of the context (i.e., the rest of the program). When
the synthesized information is built, it is used in a final pass, essentially top down and context dependent,
that propagates information from the “extremities” of the program (its beginning or end) to each particular
subroutine, basic block, or instruction.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge
of actual run-time values. Most of them areundecidable; that is, there always exists a particular program
for which the result of the analysis is uncertain. This is a strong, yet very theoretical limitation. More
concretely, there are always cases where one cannot decide statically that, for example, two variables are
equal. This is even more frequent with two pointers or two array accesses. Therefore, in order to obtain
safe results, conservativeover-approximationsof the computed information are generated. For instance, such



6 Activity Report INRIA 2005

approximations are made when analyzing the activity or the TBR (“To Be Restored”) status of some individual
element of an array. Static and dynamicarray region analyses[44], [33] provide very good approximations.
Otherwise, we make a coarse approximation such as considering all array cells equivalent.

When studying programtransformations, one often wants to move instructions around without changing
the results of the program. The fundamental tool for this is thedata dependence graph. This graph defines an
order betweenrun-timeinstructions such that if this order is preserved by instructions rescheduling, then the
output of the program is not altered. Data dependence graph is the basis for automatic parallelization. It is also
useful in AD.Data dependence analysisis the static data-flow analysis that builds the data dependence graph.

3.3. Automatic Differentiation and Computational Fluid Dynamics
Keywords: adjoint methods, adjoint state, computational fluid dynamics, gradient, linearization, optimization.

Participants: Alain Dervieux, Laurent Hascoët, Bruno Koobus, Mariano Vázquez.

linearization The mathematical equations of Fluid Dynamics are Partial Derivative Equations, that
are discretized and then solved by a computer program. Linearization of these equations, or
alternatively linearization of the computer program, gives a modelization of the behavior of the
flow when small perturbations are applied. This is useful when the perturbations are effectively
small, like in acoustics, or when one wants the sensitivity of the system with respect to one
parameter, like in optimization.

adjoint state Consider a system of Partial Derivative Equations that define some characteristics of a
system with respect to some input parameters. Consider one particular scalar characteristic. Its
sensitivity, (or gradient) with respect to the input parameters can be defined as the solution of
“adjoint” equations, deduced from the original equations through linearization and transposition.
The solution of the adjoint equations is known as the adjoint state.

Computational Fluid Dynamics is now able to make reliable simulations of very complex systems. For
example it is now possible to simulate completely the 3D air flow around a plane that captures the physical
phenomena of shocks and turbulence. The next step in CFD appears to be optimization. Optimization is one
degree higher in complexity, because it repeatedly simulates, evaluates directions of optimization and applies
optimization steps, until an optimum is reached.

We restrict here to gradient descent methods. One risk is obviously to fall into local minima before reaching
the global minimum. We do not address this question, although we believe that more robust approaches, such
as evolutionary approaches, could benefit from a coupling with gradient descent approaches. Another well-
known risk is the presence of discontinuities in the optimized function. We investigate two kinds of methods
to cope with discontinuities: we can devise AD algorithms that detect the presence of discontinuities, and we
can design optimization algorithms that solve some of these discontinuities.

We investigate several approaches to obtain the gradient. There are actually two extreme approaches:

• One can write anadjoint system, then discretize it and program it by hand. The adjoint system is a
new system, deduced from the original equations, and whose solution, theadjoint state, leads to the
gradient. A hand-written adjoint is very sound mathematically, because the process starts back from
the original equations. This process implies a new separate implementation phase to solve the adjoint
system. During this manual phase, mathematical knowledge of the problem can be translated into
many hand-coded refinements. But this may take an enormous engineering time. Except for special
strategies (see [36]), this approach does not produce an exact gradient of the discrete functional, and
this can be a problem if using optimization methods based on descent directions.
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• A program that computes the gradient can be built by pure Automatic Differentiation in the reverse
mode (cf 3.1). It is in fact the adjoint of the discrete functional computed by the software, which
is piecewise differentiable. It produces exact derivatives almost everywhere. Theoretical results
[35] guarantee convergence of these derivatives when the functional converges. This strategy gives
reliable descent directions to the optimization kernel, although the descent step may be tiny, due to
discontinuities. Most importantly, AD adjoint isgeneratedby a tool. This saves a lot of development
and debug time. But this systematic approach leads to massive use of storage, requiring code
transformation by hand to reduce memory usage. Mohammadi’s work [40] [42] illustrates the
advantages and drawbacks of this approach.

The drawback of AD is the amount of storage required. If the model is steady, can we use this important
property to reduce this amount of storage needed? Actually this is possible, as shown in [37], where
computation of the adjoint state uses the iterated states in the direct order. Alternatively, most researchers
(see for example [40]) use only the fully converged state to compute the adjoint. This is usually implemented
by a hand modification of the code generated by AD. But this is delicate and error-prone. The TROPICS team
investigate hybrid methods that combine these two extreme approaches.

4. Application Domains
4.1. Panorama

Automatic Differentiation of programs gives sensitivities or gradients, that are useful for many types of
applications:

• optimum shape design under constraints, multidisciplinary optimization, and more generally any
algorithm based on local linearization,

• inverse problems, such as data assimilation or parameter estimation,

• first-order linearization of complex systems, or higher-order simulations, yielding reduced models
for simulation of complex systems around a given state,

• mesh adaptation and mesh optimization with gradients or adjoints,

• equation solving with the Newton method,

• sensitivity analysis, propagation of truncation errors.

We will detail some of them in the next sections. These applications require an AD tool that differentiates
programs written in classical imperative languages,FORTRAN77, FORTRAN95, C, or C++. We also consider
our AD tool TAPENADE as a platform to implement other program analyses and transformations.TAPENADE

does the tedious job of building the internal representation of the program, and then provides an API to build
new tools on top of this representation. One application ofTAPENADE is therefore to build prototypes of new
program analyses.
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4.2. Multidisciplinary optimization
A CFD program computes the flow around a shape, starting from a number of inputs that define the shape

and other parameters. From this flow, it computes an optimization criterion, such as the lift of an aircraft.
To optimize the criterion by a gradient descent, one needs the gradient of the output criterion with respect
to all the inputs, and possibly additional gradients when there are constraints. The reverse mode of AD is a
promising way to compute these gradients.

4.3. Inverse problems
Inverse problems aim at estimating the value of hidden parameters from other measurable values, that

depend on the hidden parameters through a system of equations. For example, the hidden parameter might
be the shape of the ocean floor, and the measurable values the altitude and speed of the surface. Another
example isdata assimilationin weather forecasting. The initial state of the simulation conditions the quality
of the weather prediction. But this initial state is largely unknown. Only some measures at arbitrary places and
times are available. The initial state is found by solving a least squares problem between the measures and a
guessed initial state which itself must verify the equations of meteorology. This rapidly boils down to solving
an adjoint problem, which can be done though AD [43].

4.4. Linearization
To simulate a complex system often requires solving a system of Partial Differential Equations. This is

sometimes too expensive, in particular in the context of real time. When one wants to simulate the reaction
of this complex system to small perturbations around a fixed set of parameters, there is a very efficient
approximate solution: just suppose that the system is linear in a small neighborhood of the current set of
parameter. The reaction of the system is thus approximated by a simple product of the variation of the
parameters with the Jacobian matrix of the system. This Jacobian matrix can be obtained by AD. This is
especially cheap when the Jacobian matrix is sparse. The simulation can be improved further by introducing
higher-order derivatives, such as Taylor expansions, which can also be computed through AD. The result is
often called areduced model.

4.5. Mesh adaptation
It has been noticed that some approximation errors can be expressed by an adjoint state. Mesh adaptation

can benefit from this. The classical optimization step can give an optimization direction not only for the control
parameters, but also for the approximation parameters, and in particular the mesh geometry. The ultimate goal
is to obtain optimal control parameters up to a precision prescribed in advance.

5. Software
5.1. Tapenade

Participants: Laurent Hascoët [contact], Mauricio Araya-Polo, Benjamin Dauvergne, Christophe Massol,
Valérie Pascual.

TAPENADE is the Automatic Differentiation tool developed by the TROPICS team.TAPENADE progres-
sively implements the results of our research about models and static analyses for AD. From this standpoint,
TAPENADE is a research tool. Our objective is also to promote the use of AD in the scientific computation
world, and therefore in the industry. Therefore the team constantly maintainsTAPENADE to meet the demands
of our industrial users.TAPENADE can be simply used as a web server, available at the URL
http://tapenade.inria.fr:8080/tapenade/index.jsp
It can also be downloaded and installed from our FTP server
ftp://ftp-sop.inria.fr/tropics

http://tapenade.inria.fr:8080/tapenade/index.jsp
ftp://ftp-sop.inria.fr/tropics
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A documentation is available on our web page
http://www-sop.inria.fr/tropics/
and as an INRIA technical report (RT-0300)
http://www.inria.fr/rrrt/rt-0300.html

TAPENADE differentiates computer programs according to the model described in section3.1. It supports
three modes of differentiation:

• thetangentmode that computes a directional derivativeF ′(X).Ẋ,

• thevector tangentmode that computesF ′(X).Ẋn for many directionsXn simultaneously, and can
therefore compute Jacobians, and

• thereversemode that computes the gradientF ′∗(X).Y .

A obvious fourth mode could be thevector reversemode, which is not yet implemented. Many other
modes exist in the other AD tools in the world, that compute for example higher degree derivatives or
Taylor expansions. For the time being, we restrict ourselves to first-order derivatives and we put our efforts
on the reverse mode. But as we said before, we also viewTAPENADE as a platform to build new program
transformations, in particular new differentiations.

Like any program transformation tool,TAPENADE needs sophisticated static analyses in order to produce an
efficient output. Concerning AD, the following analyses are a must, andTAPENADE now performs them all:

• Activity: The end-user has the opportunity to specify which of the output variables must be differ-
entiated (called the dependent variables), and with respect to which of the input variables (called the
independent variables). Activity analysis propagates the dependent, backward through the program,
to detect all intermediate variables that possibly influence the dependent. Conversely, activity analy-
sis also propagates the independent, forward through the program, to find all intermediate variables
that possibly depend on the independent. Only the intermediate variables that both depend on the
independent and influence the dependent are calledactive, and will receive an associated derivative
variable. Activity analysis makes the differentiated program smaller and faster.

• Read-Write: Each procedure has a number of arguments, that may be inputs, outputs, or both.
Compilers use this to remove useless arguments.TAPENADE uses Read-Write information more
specifically to detect aliasing, which is very harmful in AD, and to reduce the size of snapshots
needed by checkpointing in the reverse mode. Read-Write analysis makes the differentiated program
safer and less costly in memory space.

• Adjoint Liveness and Read-Write: Programs produced by the reverse mode of AD show a very
particular structure, due to their mechanism to restore intermediate values of the original program in
thereverseorder. This has deep consequences on the liveness and Read-Write status of variables, that
we can exploit to take away unnecessary instructions and memory usage from the reverse (adjoint)
program. This makes the adjoint program smaller and faster by factors that can go up to 40%.

• TBR: The reverse mode of AD, with the Store-All strategy, stores all intermediate variables
just before they are overwritten. However this is often unnecessary, because derivatives of some
expressions (e.g. linear expressions) only use the derivatives of their arguments and not the original
arguments themselves. In other words, the local Jacobian matrix of an instruction may not need
all the intermediate variables needed by the original instruction. TheTo Be Restored (TBR)analysis
finds which intermediate variables need not be stored during the forward sweep, and therefore makes
the differentiated program smaller in memory.

http://www-sop.inria.fr/tropics/
http://www.inria.fr/rrrt/rt-0300.html
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Several other strategies are implemented inTAPENADE to improve the differentiated code. For example,
a data-dependence analysis allowsTAPENADE to move instructions around safely, gathering instructions to
reduce cache misses. Also, long expressions are split in a specific way, to minimize duplicate sub-expressions
in the derivative expressions.

The input languages ofTAPENADE today areFORTRAN77 andFORTRAN95. Notice however that the
internal representation of programs is language-independent, as shown on figure5, so that extension to other
languages should be easier.

There are two user interfaces forTAPENADE. One is a simple command that can be called from a shell
or from a Makefile. The other is interactive, usingJAVA SWING components andHTML pages. This interface
allows one to useTAPENADE from WINDOWS as well asLINUX . The input interface, shown on figure3, lets
one specify interactively the routine to differentiate, its independent inputs and dependent outputs.

Figure 3.TAPENADE two successive query windows from the input interface

The output interface, shown on figure4, displays the differentiated programs, withHTML links that
implement source-code correspondence, as well as correspondence between error messages and locations
in the source.

TAPENADE is now available forLINUX , SUN, or WINDOWS-XP platforms.
Figure5 shows the architecture ofTAPENADE. It is implemented mostly inJAVA, apart from the front-ends

which are separated and can be written in their own languages.
Notice the clear separation between the general-purpose program analyses, based on a general representa-

tion, and the differentiation engine itself. Other tools can be built on top of the Imperative Language Analyzer
platform.

The end-user can also specify properties of external or black-box routines. This is essential for real industrial
applications that use many libraries. The source of these libraries is generally hidden. However AD needs some
information about these black-box routines in order to produce efficient code.TAPENADE lets the user specify
this information in a separate signature file.
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Figure 4.TAPENADE output interface, with source-code-error correspondence
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trees  (IL) trees  (IL)

XXX parser

C parser (C)

Fortran95 parser (C)

Fortran77 parser (C)
Signatures of externals

XXX printer

C printer
�

Fortran95 printer (Java)

Fortran77 printer (Java)

other tool

Imperative Language Analyzer (Java)

Differentiation Engine (Java)

User Interface (Java / XHTML)

API

Figure 5. Overall Architecture ofTAPENADE

6. New Results
6.1. Data-flow properties of adjoint programs

Keywords: checkpointing, data-flow analyses, reverse mode of AD, snapshots, static analyses.

Participants: Mauricio Araya-Polo, Benjamin Dauvergne, Laurent Hascoët.

This year we focused on the properties of checkpointing in reverse differentiated programs. Last year, we
have given the data-flow equations of the essential analyses for reverse AD, namely activity analysis, adjoint-
liveness analysis, TBR analysis, and adjoint-write analysis. These equations were derived from classical data-
flow analysis, which gave a proof of their correctness, in the case where no checkpointing was used. This year
we studied the more complex case of checkpoints.

Checkpointing requires to save a subset of the variables (the “snapshot”) at a given instant in execution. This
snapshot interferes with the variables saved by the TBR analysis, so that many choices are available. Among
those, many are “optimal” choices, but none can be an absolute “optimum” for all cases.

Starting back from classical data-flow theory, we derived the equations of all possible optimal choices. We
also studied the efficiency of a number of these choices on real applications taken from our validation tests
suite. The solution which gives the best results is now implemented as the default strategy inTAPENADE.

We presented this question to the other AD researchers during the first European AD workshop, which we
organized in Nice in April. We presented our results during the 2nd workshop of this series, in Cranfield UK
in November. An article is submitted to the ICCS 2006 conference in Reading UK.

Still on checkpointing, Mauricio Araya has been developing the so-called “split-mode” of reverse AD. It
amounts to modifying the structure of differentiated programs, to give the end-user the choicenotto checkpoint
some procedure calls of the original program. This new flexibility can dramatically improve efficiency of the
differentiated programs, especially for calls to small subroutines. This is strongly related to the PhD subject of
Benjamin Dauvergne, who explores strategies to choose which procedure calls must be checkpointed or not,
based on external information such as execution profiles.

In parallel, Benjamin Dauvergne started to study selective introduction of recomputation to reduce the cost
due to storage of intermediate values in reverse AD. Based on properties of data-dependencies, we are able
to find which values can actually be recomputed, and to compare the cost of recomputation with the cost of
simple storage. Recomputation is not limited to computed values: it also applies to the discrete values involved
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in the flow of control, e.g. the results of tests in conditionals. Here also, recomputation can be of great interest
by reducing the memory storage due to control.

6.2. Automatic estimation of the validity domain of derivatives
Keywords: discontinuities, validity of derivatives.

Participants: Mauricio Araya-Polo, Laurent Hascoët.

Automatic Differentiation gives analytical derivatives, e.g. gradients, based on local properties of the
function at the given input point. These derivatives are then used to extrapolate the behavior of the function
around this point. Since the analysis is local, these derivatives do not take into account discontinuities that may
occur in the neighborhood of the current point. These discontinuities basically correspond to conditionals in
the source program.

At the end of last year research, we proposed an algorithm to evaluate the size of the neighborhood around
the current point, in which the function remains differentiable. This algorithm is very expensive. We proposed
and implemented a limited algorithm that evaluates this size only in one dimension, which could be the descent
direction in gradient-based optimization.

This year we made further experiments on larger applications. Mauricio Araya presented his results at
the French-Latin American congress on Applied Mathematics in Santiago, Chile [20]. He made a deeper
presentation at the WSEAS’05 conference in Cancún, Mexico. We are pleased to highlight that he won the
best student paper award. His presentation was then made an article in the “WSEAS transactions on circuits
and systems” journal [12].

Mauricio Araya’s algorithm is now implemented as a standard differentiation mode inTAPENADE version
2.1.

6.3. Extensions and new functionalities in tapenade
Keywords: Automatic Differentiation, Fortran90, Tapenade, data-flow analysis, pointer analysis, static anal-
ysis.

Participants: Mauricio Araya-Polo, Benjamin Dauvergne, Laurent Hascoët, Christophe Massol, Valérie
Pascual.

This year’s development followed mostly two directions: Fortran90 and pointer analysis.
Regarding Fortran90, Valérie Pascual continued extension of differentiation to additional features of

Fortran90, which were required by the large applications we have been working on (cf 6.4). Let’s quote only a
few:

• global variables in modules, especially when they have theSAVE attribute.

• selective use of only some of the functions and variables defined by a module, combined with
renaming

• overloading of standard operations, including assignment.

• array statements that use any combination ofWHERE, SUM, andMASK constructs.

Regarding pointer analysis, Christophe Massol developed a first version of the pointer analysis module. It
takes into account memory allocation, interprocedural use of pointers, and recursive nested data structures
with pointers. We collaborate with an end user from the climate group at Argonne National Laboratory, who
has received an alpha version of the pointer analysis module and has accepted to test it on a model for the
simulation of sea ice.

Extension of Automatic Differentiation (tangent mode) to programs with pointers will start soon. Adaptation
of the model of reverse mode AD is far more complex and is still an open research problem, which we will
study in the future.
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6.4. Differentiation of large real applications
Keywords: Agronomy, Automatic Differentiation, Oceanography, Tapenade, Variational Data Assimilation.

Participants: Bruno Ferron [IFREMER, Brest], Laurent Hascoët, Claire Lauvernet [INRA, Avignon].

We studied application of Automatic Differentiation to several very large scientific computation codes.
Bruno Ferron of IFREMER Brest gave us the latest Fortran90 version of the ocean simulation code OPA,

version 9.0, developed mainly by LODYC lab. at Paris 6 university. This very large application (80,000 lines)
gave us a fair amount of debugging work in the Fortran90 version ofTAPENADE, but we eventually obtained a
validated adjoint code. It is now possible to obtain an adjoint code for any further version of OPA in a matter
of minutes. Performances are satisfying, exhibiting an impressive slowdown factor ofonly seven between the
original code and its AD adjoint, on a test-case reduced in size. Work is in progress to extend this experiment
to a realistic larger test-case.

Claire Lauvernet at INRA Avignon gave us two codes devoted to simulation of the images seen by a satellite
as a function of the nature and state of the soil and the plant cover. This code will be used for data assimilation
of the parameters of the actual vegetation from the observed satellite images. Classically, this requires an
adjoint model which can be created by Automatic Differentiation in reverse mode of the simulation code.
One of these codes is called STICS and its differentiation was a large part of Claire Lauvernet’s PhD thesis,
defended in April. The other code is called MULTISAIL. Its principal interest is that it couples two simulation
codes, therefore bringing an extra level of complexity. We were able to create the adjoint code automatically
with TAPENADE, and the results were presented in the ISPMSRS conference in Beijing, China [24]. After
the conference, this work was selected for publication of an extended version in the “Remote Sensing of
Environment” journal.

6.5. Optimal control
Keywords: adjoint model, gradient, optimal control, optimum design.

Participants: Francois Courty, Bruno Koobus, Alain Dervieux, Laurent Hascoët, Mariano Vázquez, Bijan
Mohammadi [Université de Montpellier].

Now that simulation is well mastered by research groups in industry, optimization is naturally the next
frontier. Optimization problems in aerodynamics are still very difficult, because they require a enormous
computing power. To meet these needs, our investigations in AD are focused on the reverse mode, which
is an elegant way to obtain the adjoints that optimization uses.

The reverse mode, and the subsequent adjoint state, are the best way to get the gradients when the number
of parameters is large. This corresponds to what happens in industry. For example, the optimization of a
dozen of scalar parameters will not produce an optimal shape for an aircraft, because an accurate description
of a shape requires hundreds of parameters. Even when shapes are described by mathematical functions
describing surfaces or volumes, the number of scalar parameters has to be relatively large to obtain an accurate
description.

We also work on the optimization of meshes using adjoints built with AD tools. This research is made within
an European project HISAC on supersonic aircraft.

These large scale optimization problems share the common requirement for adjoint systems that are efficient
with respect to the size of the parameter space, and with respect to the length and complexity of the original
simulation. They also require that we use efficient preconditionners for the solution steps involved. This
problematic is presented in greater detail in our paper accepted to the post-SAROD workshop in Bangalore,
India [22].

6.6. Multidisciplinary optimization
Keywords: fluid, gradient, optimization, structure.

Participants: Alain Dervieux, Bruno Koobus, Mariano Vázquez, Charbel Farhat [Stanford University],
Francois Beux [Scuola Normale Superiore di Pisa].
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The optimization of a complex product like an airplane needs to be done by taking into account simultane-
ously as many different physical effects as possible. Practically, it is useless to search the optimal aerodynamic
shape of an aircraft if the influence on the structure is not anticipated. Many of the physics to take into account
are described by complex and computer intensive models. We proposed a new coupling algorithm for the
aerodynamic shape optimization of an aircraft geometry deformed by the wind [26], [19]. Francois Beux and
Alain Dervieux are co-advisors of the thesis of Massimiliano Martinelli, on the subject of Multidisciplinary
shape optimization.

6.7. Mesh adaptation
Keywords: adjoint, mesh adaptation, optimization.

Participants: Frederic Alauzet [GAMMA], Alain Dervieux, Francois Courty, Bruno Koobus, Adrien Loseille,
Youssef Mesri, Tristan Roy.

We continued our investigations on the use of smart mesh adaptation for increasing the convergence order
of a series of adapted computations. For optimal control and optimum design (cf 6.5) we developed innovative
strategies to solve the adjoint problem. These strategies can also be applied to a different context, namely
mesh adaptation. This is possible if we can map the mesh adaptation problem into a differentiable optimal
control problem. To this end, we introduced a new methodology that consists in setting the mesh adaptation
problem under the form of a purely functional one: the mesh is reduced to a continuous property of the
computational domain, the continuous metric, and we minimize a continuous model of the error resulting
from that continuous property. Then the problem of searching an adapted mesh is transformed in the research
of an optimal metric.

In the case of mesh interpolation minimization, the optimum is given by a closed formula and gives
access to a complete theory demonstrating that second order accuracy can be obtained on discontinuous field
approximation [14].

In the case of adaptation for Partial Differential Equations, we obtain an Optimal Control problem. It
involves a state equation and the optimality is expressed in terms of an adjoint state, which can be obtained
using AD. In our first prototypes, the one-shot-SQP algorithm has been applied successfully [26]. This is
the focus of a cooperation with project-team GAMMA at INRIA-Rocquencourt (Paul-Louis George, Frédéric
Alauzet, Adrien Loseille) for the INRIA contribution to the HISAC IP European project in association with
30 other partners in aeronautics.

We present our results in detail in our paper accepted to the SAROD conference in Hyderabad, India [23].

7. Dissemination
7.1. Links with Industry, Contracts

• Alain Dervieux received a prize (prix Marcel Dassault) from the French Academy of Sciences in
august.

• Two industrial users purchased a commercial license forTAPENADE: Rolls-Royce (aeronautic
engines) and Cargill (agronomy industry).

• The National Aerospace Laboratory in Bangalore, India asked for a free research license for
TAPENADE. The license was signed at the end of the year.

• TROPICS is leader of a project “Optimisation de forme et adaptation de maillage pour le bang
supersonique” supported by the Comité d’Orientation Supersonique of the French ministry of
Research. Our partners are the université de Montpellier and the Gamma project in Rocquencourt.

• TROPICS participates in the European project HISAC, accepted last year and truly starting at the
end of this year.
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• TROPICS participates in two other requests for European funding (1 STREPS and 1 Marie-Curie),
whose results will be known by the end of the year.

• We are aware of TAPENADE regular use by research groups in Argonne National Lab. (USA),
Cranfield university (UK), Oxford university (UK), RWTH Aachen (Germany), and Humboldt
university Berlin (Germany).

7.2. Conferences and workshops

• Alain Dervieux made several presentations after receiving the “prix Marcel Dassault” of the
Academy of Sciences.

• Alain Dervieux presented his work on mesh adaptation at Oxford university and at université de
Montréal.

• Laurent Hascoët defended his “habilitation” thesis in January in Sophia-Antipolis, on “Static
Analyses and Transformations of Programs: from Parallelization to Differentiation”.

• The team organized the 1st edition of the European AD workshop in Nice from the 11th to the 15th

of April. This follows the former series of UK AD workshops in Hatfield and Cranfield. Benjamin
Dauvergne made a presentation on checkpointing.

• Mauricio Araya gave two talks on the problem of domain of validity of derivatives at the 7th French-
Latin American Congress on Applied Mathematics, in Santiago, Chile, and at the WSEAS’05
conference in Cancun, Mexico. This second talk won the best student paper award.

• Mauricio Araya also presented his research at an internal “séminaire croisé” at INRIA Sophia-
Antipolis, and to visiting executives of Chilean CONICYT.

• Laurent Hascoët made two lectures on Automatic Differentiation for Optimum Design, one at the
ERCOFTAC "Introductory Course to Design Optimization", April 6-8, in Manchester, UK, and one
at the CEA-EDF-INRIA “école d’été” on numerical analysis, June 27th till July 8th in Paris.

• Laurent Hascoët made a presentation on checkpoints at the 2nd European AD workshop in Cranfield,
UK in November.

• Laurent Hascoët served as president of the PhD jury of Claire Lauvernet, of INRA Avignon, France,
who used Automatic Differentiation for agricultural data assimilation from satellite observations.
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