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2. Overall Objectives
2.1. Overall Objectives

The VERTECS team is focused on the reliability of reactive software using formal methods. By reactive
software we mean software that continuously reacts with its environment. The environment can be a human
user for a complete reactive system, or another software using the reactive software as a component. Among
these, critical systems are of primary importance, as errors occurring during their execution may have dramatic
economical or human consequences. Thus, itis essential to establish their correctness before they are deployed
in a real environment. Correctness is also essential for less critical applications, in particular for COTS
components whose behavior should be trusted before integration in software systems.

For this, the \ERTECSs team promotes the use of formal methods, i.e. formal specification and mathematically
founded analysis methods. During the analysis and design phases, correctness of specifications with respect to
requirements or higher level specifications can be established by feerifitation Alternatively, control

consists in forcing specifications to stay within desired behaviours by coupling them with a supervisor.
During validation,testingcan be used to check the conformance of implementations with respect to their
specificationsTest generatiolis the process of automatically generating test cases from specifications.

More precisely, the aim of the BRTECSs project is to improve the reliability of reactive systems by providing
software engineers with methods and tools for automatingehécation, thetest generationandcontroller
synthesisfrom formal specifications. We adapt or develop formal models for the description of testing and
control artifacts, e.g. specifications, implementations, test cases, supervisors. We formally describe correctness
relations (e.g. conformance or satisfaction). We also formally describe interaction semantics between testing
artifacts. From these models, relations and interaction semantics, we develop algorithms for automatic test and
controller synthesis that ensure desirable properties. We try to be as generic as possible in terms of models
and techniques in order to cope with a wide range of specification languages and application domains. We
implement prototype tools for distribution in the academic world, or for transfer to industry.
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Our research is based on formal models and our basic toolgegifecation techniques such as model
checking, theorem proving, abstract interpretation, the control theory of discrete event systems, and their
underlying models and logics. The close connection between testing, control and verification produces a
synergy between these research topics and allows us to share theories, models, algorithms and tools.

3. Scientific Foundations
3.1. Underlying Models.

Keywords: controllable/uncontrollable eventsmplicit transition relation input/output eventdabeled tran-
sition systemssymbolic

The formal models we use are mainly automata-like structures such as labelled transition systems (LTS) and
some of their extensions: an LTS is a tuple= (Q, A, —,q,) whereQ is a non-empty set of stateg; € Q
is the initial state;A is the alphabet of actions»C @ x A x @ is the transition relation. These models are
adapted to testing and controller synthesis.

To model reactive systems in the testing context, we use Input/Output labeled transition systems (IOLTS for
short). In this setting, the interactions between the system and its environment (where the tester lies) must be
partitioned into inputs (controlled by the environment), outputs (observed by the environment), and internal
(non observable) events modeling the internal behavior of the system. The alphaliben partitioned into
AU A, UT whereA, is the alphabet of outputg\, the alphabet of inputs, ari@l the alphabet of internal
actions.

In the controller synthesis theory, we also distinguish between controllable and uncontrollable events
(A =A.UA,.), observable and unobservable everts{ Ap U 7).

In order to cope with more realistic models, closer to real specification languages, we also need higher level
models that consider both control and data aspects. We defined (input-output) symbolic transition systems
((I0)STS), which are extensions of (IO)LTS that operate on data (i.e., program variables, communication
parameters, symbolic constants) through message passing, guards, and assignments. Formally, an IOSTS
is a tuple(V,0,%,T), whereV is a set of variables (including a counter variable encoding the control
structure),O is the initial condition defined by a predicate &h X is the finite alphabet of actions, where
each action has a signature (just like in IOLTScan be partitioned as e g, U X U 3;), T is a finite set of
symbolic transitions of the form= (a, p, G, A) wherea is an action (possibly with a polarity reflecting its
input/output/internal naturep,is a tuple of communication parametetsis a guard defined by a predicate on
pandV, andA is an assignment of variables. The semanticB@$7'S is defined in terms of (IO)LTS where
states are vectors of values of variables, and transitions between them are labelled with instantiated actions
(action with valued communication parameter). This (IO)LTS semantics allows us to perform syntactical
transformations at the (I0)STS level while ensuring semantical properties at the (IO)LTS level. We also
consider extensions of these models with added features such as recursion, fifo channels, etc. An alternative
to IOSTS to specify systems with data variables is the model of synchronous dataflow equations.

Our research is based on well established theories: conformance testing, supervisory control, abstract inter-
pretation, and theorem proving. Most of the algorithms that we employ take their origins in these theories:

e graph traversal algorithms (breadth first, depth first, strongly connected components, ...). We use
these algorithms for verification as well as test generation and control synthesis.

e BDDs (Binary Decision Diagrams) algorithms, for manipulating Boolean formula, and their MTB-
DDs (Multi-Terminal Decision Diagrams) extension for manipulating more general functions. We
use these algorithms for verification and test generation.

e abstract interpretation algorithms, specifically in the abstract domain of convex polyhedra (for
example, Chernikova’s algorithm for the computation of dual forms). Such algorithms are used in
verification and test generation.

e logical decision algorithms, such as satisfiability of formulas in Presburger arithmetics. We use these
algorithms during generation and execution of symbolic test cases.
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3.2. Verification

Most of our research, and in particular controller synthesis and conformance testing, relies on the ability
to solve some verification problems. A large part of these problems reduces to reachability and coreachability
problems on a formal model (a statés reachable from an initial state; if an execution starting from;
can lead tos; s is coreachable from a final state; if an execution starting froms can lead tosf). These are
important cases of verification problems, as they correspond to the verification of safety properties.

Verification in its full generality consists in checking that a system, which is specified in a formal model,
satisfies a required property. When the state space of the system is finite and not too large, verification can
be carried out by graph algorithms (model-checking). For large or infinite state spaces, we can perform
approximate computations, either by computing a finite abstraction and resort to graph algorithms, or
preferably by using more sophisticated abstract interpretation techniques. Another way to cope with large or
infinite state systems is deductive verification, which, either alone or in combination with compositional and
abstraction techniques, can deal with complex systems that are beyond the scope of fully automatic methods.

3.2.1. Abstract interpretation and Data Handling

The techniques described above, which are dedicated to the analysis of LTS, are already mature. It seems
natural to extend them to IOSTS or data-flow applications that manipulate variables taking their values into
possibly infinite data domains.

The techniques we develop for test generation or controller synthesis require to solve state reachability and
state coreachability problems which can be solved by fixpoint computations (and also by deductive methods).

The big change induced by taking into account the data and not only the (finite) control of the systems
under study is that the fixpoints become uncomputable. The undecidability is overcome by resorting to
approximations, using the theoretical framework of Abstract Interpretadign [

Abstract Interpretation is a theory of approximate solving of fixpoint equations applied to program analysis.
Most program analysis problems, among others reachability analysis, come down to solving a fixpoint equation

x=F(z),zeC

whereC'is a lattice. In the case of reachability analysis, if we denoté llye state space of the considered
program,C is the latticep(.S) of sets of states, ordered by inclusion, dnds roughly the Successor statés
function defined by the program.

The exact computation of such an equation is generally not possible for undecidability (or complexity)
reasons. The fundamental principles of Abstract Interpretation are:

1. to substitute to theoncrete domairC' a simplerabstract domainA (static approximation) and
to transpose the fixpoint equation into the abstract domain, so that one has to solve an equation
y=G(y),y €A

2. to use awidening operatodynamic approximation) to make the iterative computation of the least
fixpoint of G converge after a finite number of steps to some upper-approximation (more precisely,
a post-fixpoint).

Approximations are conservative so that the obtained result is an upper-approximation of the exact result.
Those two principles are well illustrated by the Interval Analy§is][which consists in associating to each
numerical variable of a program an interval representing an (upper) set of reachable values:

1. One substitutes to the concrete domaifiR”) induced by the numerical variables the abstract
domain(Iz)™, wherel denotes the set of intervals on real numbers; a set of values of a variable is
then represented by the smallest interval containing it;
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2. An iterative computation on this domain may not converge: it is indeed easy to generate an infinite
sequence of intervals which is strictly growing. The “standard” widening operator extrapolates by
~+o0 the upper bound of an interval if the upper bound does not stabilize within a given number of
steps (and similarly for the lower bound).

In this example, the state spag€R™) that should be abstracted has a simple structure, but this may be
more complicated when variables belong to different data types (Booleans, numerics, arrays) and when it is
necessary to establisblationsbetween the values of different types.

Programs performing dynamic allocation of objects in memory have an even more complex state space.
Solutions have been devised to represent in an approximate way the memory heap and pointers between
memory cells by graphskape analysi§47], [46]). Values contained in memory cells are however generally
ignored.

In the same way, programs with recursive procedure calls, parameter passing and local variables are
more delicate to analyse with precision. The difficulty is to abstract the execution stacks which may have
a complex structure, particularly when parameters passing by reference are allowed, as it induces aliasing on
the stack 32].

3.2.2. Theorem Proving

For verification we also use theorem proving and more particularlyrthe[43] and CoqQ [44] proof
assistants. These are two general-purpose systems based on two different versions of higher-order logic. A
verification task in such a proof assistant consists in encoding the system under verification and its properties
into the logic of the proof assistant, together with verificatiolesthat allow to prove the properties. Using the
rules usually requires input from the user; for example, proving that a state predicate holds in every reachable
state of the system (i.e., it is amvariant) typically requires to provide a strongémductiveinvariant, which
is preserved by every execution step of the system. Another type of verification problem is iaviriation
between a concrete and an abstract semantics of a system. This too can be done by induction in a systematic
manner, by showing that, in each reachable state of the system, each step of the concrete system is simulated
by a corresponding step at the abstract level.

3.3. Automatic Test Generation

In testing, we are mainly interested in conformance testing. Conformance testing consists in checking
whether a black box implementation under test (the real system that is only known by its interface) behaves
correctly with respect to its specification (the reference which specifies the intended behavior of the system).
In the line of model-based testing, we use formal specifications and their underlying models to unambiguously
define the intended behavior of the system, to formally define conformance and to design test case generation
algorithms. The difficult problems are to generate test cases that correctly identify faults (the oracle problem)
and, as exhaustiveness is impossible to reach in practice, to select an adequate subset of test cases that are
likely to detect faults. Hereafter we detail some elements of the models, theories and algorithms we use.
Models: We use IOLTS (or IOSTS) as formal models for specifications, implementations, test purposes, and
test cases. Most often, specifications are not directly given in such low-level models, but are written in higher-
level specification languages (e.g. SDL, UML, Lotos). The tools associated with these languages often contain
a simulation API that implements their semantics under the form of IOLTS. On the other hand, the IOSTS
model is expressive enough to allow a direct representation of most constructs of the higher-level languages.
Conformance testing theory: We adapt a well established theory of conformance testitd, which
formally defines conformance as a relation between formal models of specifications and implementations.
This conformance relation, callédco is defined in terms of visible behaviors (callsdspension tracg¢of
the implementatiod (denoted bySTraces(I)) and those of the specificatigh (denoted bySTraces(S)).
Suspension traces are sequence of inputs, outputs or quiescence (absence of action déndied bipstract
away internal behaviors that cannot be observed by testers. The conformance relatiorms originally
written in [49] as follows:
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Lioco S £ Vo € STraces(S), Out(I after o) C Out(S after o)

whereM after o is the set of states wherd can stay after the observation of the suspension raead
Out(M after o) is the set of outputs and quiescence allowedbyn this set. Intuitively,l ioco S if, after

a suspension trace of the specification, the implementdticem only show outputs and quiescences of the
specificationS. We re-formulated ioco as a partial inclusion of visible behaviors as follows

Iioco S < STraces(I) N STraces(S).A)C STraces(S)

Intuitively, this says that suspension traced ofhich are suspension traces®frolongated by an output or
guiescence, are still suspension traceS§.oAn alternative characterization of ioco is then

Iioco S < STraces(I) N [STraces(S).A)~STraces(S)] = &

Interestingly, this characterization presents conformance with respScasaa safety property of suspension
traces ofl. In fact STraces(S).A{~STraces(S) characterizes finite unexpected behaviours. Thus confor-
mance with respect t§' is clearly a safety property df which negation can be specified by a “non confor-
mance” observed ;... s built from .S and recognizing these unexpected behaviours. Howevéisasblack
box, one cannot check conformance exhaustively, but may only experimesing test cases, expecting the
detection of some non-conformances. In fact the non-conformance obserygs s can also be thought as
the canonical tester f for ioco, i.e. the most general testing processSdbr ioco. It then serves also as a
basis for test selection.

Test cases are processes executed against implementations in order to detect non-conformance. They are also
formalized by IOLTS (or IOSTS) with special states indicatirgdicts The execution of test cases against
implementations is formalized by a parallel composition with synchronization on common actions. Usually a
Fail verdict means that the IUT is rejected and should correspond to non-conformdtassyvardict means
that the IUT exhibited a correct behavior and some specific targeted behaviour has been observed, while an
Inconclusiveverdict is given to a correct behavior that is not targeted. Based on these models, the execution
semantics, and the conformance relation, one can then define required properties of test cases and test suites
(sets of test cases). Typical properties are soundness (only non conformant implementations should be rejected
by a test case) and exhaustiveness (every non conformant implementation may be rejected by a test case).
Soundness is not difficult to obtain, but exhaustiveness is not possible in practice and one has to select test
cases.

Test selection:in the literature, in particular in white box testing, test selection is often based on coverage

of some criteria (state coverage, transition coverage, etc). But in practice, test cases are often associated with
test purposeslescribing some particular behaviors targeted by a test case. We have developed test selection
algorithms based on the formalization of thésst purposedn our framework, test purposes are specified as
IOLTS (or IOSTS) associated with marked states, giving them the status of automata or observers accepting
sequences of actions or visible behaviors (suspension traces), deh®ftices(TP). Now selection of

test cases amounts at selecting visible behaviors of the specification that are accepted by the test purpose
i.e. STraces(S) N ASTraces(TP), and then complement them with unspecified outputs leadirfgailo
Alternatively, this can be seen as the computation of a sub-automaton of the canonical tester whose
accepting traces aféTraces(S).A) \STraces(S)] N ASTraces(T P). The resulting test case is then both

an observer of the negation of a safety property (non-conformance&yyrnd an observer of a reachability
property (acceptance by the test purpose).

Test selection algorithms are based on the computation of the visible behaviors of the specifica-
tion STraces(S), involving the identification of quiescencd (actions) followed by determinisation,
the construction of a product between the specification and test purpose which accepted behavior is
STraces(S) N ASTraces(T'P), and finally the selection of these accepted behaviors. Selection can be
seen as a model-checking problem where one wants to identify states (and transition between them) that
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are reachable from the initial state and co-reachable from the accepting states. We have proved that these
algorithms ensure soundness. Moreover the (infinite) set of all possibly generated test cases is also exhaustive.
Apart from these theoretical results, our algorithms are designed to be as efficient as possible in order to be
able to scale up to real applications.

Our first test generation algorithms are based on enumerative techniques, thus adapted to IOLTS models,
and optimized to fight the state-space explosion problem. We have developed on-the-fly algorithms, which
consist in performing a lazy exploration of the set of states that are reachable in both the specification and the
test purpose. This technique is implemented in the TGV tool §sBeHowever, this enumerative technique
suffers from some limitations.

More recently, we have explored symbolic test generation techniques for IOSTS specifications. This is
a promising techniqgue whose main objective is to avoid the state space explosion problem induced by
the enumeration of values of variables and communication parameters. The idea consists in computing a
test case under the form of d@STS i.e., a reactive program in which the operations on data is kept
in a symbolic form. Test selection is still based on test purposes (also described as IOSTS) and involves
syntactical transformations of IOSTS models that should ensure properties of their IOLTS semantics. However,
most of the operations involved in test generation (determinisation, reachability, and coreachability) become
undecidable. For determinisation we employ heuristics that allow us to solve the so-called bounded observable
non-determinism (i.e., the result of an internal choice can be detected after finitely many observable actions).
The product is defined syntactically. Finally test selection is performed as a syntactical transformation of
transitions which is based on a semantical reachability and co-reachability analysis. As both problems
are undecidable for IOSTS, syntactical transformations are guided by over-approximations using abstract
interpretation techniques. Nevertheless, these over-approximations still ensure soundness of test cases. These
techniques are implemented in the STG tool (5€8, with an interface with NBAC used for abstract
interpretation.

3.4. Controller Synthesis

The Supervisory Control Problem is concerned with ensuring (not only checking) that a computer-
operated system works correctly. More precisely, given a specification model and a required property, the
problem is to control the specification’s behavior, by coupling it to a supervisor, such that the controlled
specification satisfies the propertyd]. The models used are LTSs, s@y and the associated languages, say
L(G), which make a distinction betweawontrollable andnon-controllableactions and betweewbservable
andnon-observablactions. Typically, the controlled system is constrained by the supervisor, which acts on
the system’s controllable actions and forces it to behave as specified by the property. The control synthesis
problem can be seen as a constructive verification problem: building a supervisor that prevents the system
from violating a property. Several kinds of properties can be ensured such as reachability, invariance (i.e.
safety), attractivity, etc. Techniques adapted from model checking are then used to compute the supervisor
w.r.t. the objectives. Optimality must be taken into account as one often wants to obtain a supervisor that
constrains the system as few as possible.

The Supervisory Control Theory overview. Supervisory control theory deals with control of Discrete Event
Systems45)]. In this theory, the behavior of the systefris assumed not to be fully satisfactory. Hence, it has

to be reduced by means of a feedback control (named Supervisor or Controller) in order to achieve a given set
of requirements45]. Namely, if S denotes the specification of the system énid a safety property that has

to be ensured of (i.e. S—}®), the problem consists in computing a supervidpsuch that

S|l ere @)

where|| is the classical parallel composition between two LTSs. Gigesome events of are said to be
uncontrollable ,,..), i.e. the occurrence of these events cannot be prevented by a supervisor, while the others
are controllable X.). It means that all the supervisors satisfyirig ére not good candidates. In fact, the
behavior of the controlled system must respect an additional condition that happens to be simildaodo the
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conformance relation that we previously define®if. This condition is called theontrollability condition
and is defined as follows.

LS [ €)ZucnL(S) S L(S | ©) @)

Namely, when acting ot¥, a supervisor is not allowed to disable uncontrollable events. Given a safety
property®, that can be modeled by an LT%s, there actually exists many different supervisors satisyfing
both (1) and ). Among all the valid supervisors, we are interested in computing the supremal one, ie the
one that restricts the system as few as possible. It has been sho#i# ihgt such a supervisor always exists
and is unique. It gives access to a behavior of the controlled system that is called the supremal controllable
sub-language ofls w.r.t. S and¥,.. In some situations, it may also be interesting to force the controlled
system to be non-blocking (Se€q for details).

The underlying techniques are similar to the ones used for Automatic Test Generation. It consists in
computing a product between the specification adand to remove the states of the obtained LTS that
may lead to states that violate the property by triggering only uncontrollable events.

Optimal Control. We are also interested in the Optimal Control Problem. The purpose of optimal control is

to study the behavioral properties of a system in order to generate a supervisor that constrains the system to a
desired behavior according to quantitative and qualitative requirements. In this spirit, we have been working
on the optimal scheduling of a system through a set of multiple goals that the system had to visit one by
one [7]. We have also extended the results #§][to the case of partial observation in order to handle more
realistic applications42].

Control of Hierarchical Discrete Event System.In many applications and control problems, LTS are the
starting point to model fragments of a large scale system, which usually consists of several composed and
nested sub-systems. Knowing that the number of states of the global system grows exponentially with the
number of parallel and nested sub-systems, we have been interested in designing algorithms that perform the
controller synthesis phase by taking advantage of the structure of the plant without expanding thegystem [

In other words, given the modular structure of the system, it becomes of interest, for computational reasons,
to be able to synthesize a supervisor on each sub-part of the system w.r.t. the specification and then to infer a
global supervisor from the local ones.

In order to reduce the complexity of the supervisor synthesis phase, several approaches have been considered
in the literature. Modular control5P] and modular plantg3] are natural ways to handle this problem.
Similarly, in order to take into account nested behaviors, some techniques based on model aggregation
methods $1], [34] have been proposed to deal with hierarchical control problems. Another direction has
been proposed ir8p]. Brave and Heimann in33] introduced Hierarchical State Machines which constitute a
simplified version of the 8ATECHARTS. Compared to the classical state machines, they add concurrency and
hierarchy features. Some other works dealing with control and hierarchy can be fo@&}l [41]. This is the
direction we have chosen in thee¥TECSTeam PJ. Details are given in Sectiof.1.1

4. Application Domains

4.1. Panorama

Keywords: Telecommunicatigrcontrol-command Systepmmart-cards software embedded systerrans-
portation systems

The methods and tools developed by therRVECS project-team for test generation and control synthesis
of reactive systems are intended to be as generic as possible. This allows us to apply them in many application
domains where the presence of software is predominant and its correctness is essential. In particular, we apply
our research in the context of telecommunication systems, for embedded systems, for smart-cards application,
and control-command systems.
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4.2. Telecommunication Systems

Our research on test generation was initially proposed for conformance testing of telecommunication
protocols. In this domain, testing is a normalized proc&sk pnd formal specification languages are widely
used (SDL in particular). Our test generation techniques have already proved useful in this context, going up to
industrial transfer. New standardized component-based design methodologies such as UML and OMG’s MDE
increase the need for formal techniques in order to ensure the composionality of components, by verification
and testing. Our techniques, by their genericity and adaptativity, have also proved useful at different levels
of these methodologies, from component testing to system testing. The telecommunication industry now also
tries to provide more and more services to the users. These services also have to be validated. We are involved
with France Telecom R & D in a project on the validation of vocal services {s8e Very recently, we
also started to study the impact of our test generation techniques in the domain of network security. More
specifically, we believe that testing that a network or information systems meets its security policy is a major
concern, and complements other design and verification techniques.

4.3. Software Embedded Systems

In the context of transport, software embedded systems are increasingly predominant. This is particularly
important in automotive systems, where software replaces electronics for power train, chassis (e.g. engine
control, steering, brakes) and cabin (e.g. wiper, windows, air conditioning) or new services to passengers are
increasing (e.g. telematics, entertainment). Car manufacturers have to integrate software components provided
by many different suppliers, according to specifications. One of the problems is that testing is done late in
the life cycle, when the complete system is available. Faced with these problems, but also complexity of
systems, compositionality of components, distribution, etc, car manufacturers now try to promote standardized
interfaces and component-based design methodologies. They also develop virtual platforms which allow for
testing components before the system is complete. It is clear that software quality and trust are one of the
problems that have to be tackled in this context. This is why we believe that our techniques (testing and
control) can be useful in such a context.

4.4. Smart-card Applications
We have also applied our test generation techniques in the context of smart-card applications. Such
applications are typically reactive as they describe interactions between a user, a terminal and a card. The
number and complexity of such applications is increasing, with more and more services offered to users. The
security of such applications is of primary interest for both users and providers and testing is one of the means
to improve it.

4.5. Control-command Systems

The main application domain for controller synthesis is control-command systems. In general, such systems
control costly machines (see e.g. robotic systems, flexible manufacturing systems), that are connected to an
environment (e.g. a human operator). Such systems are often critical systems and errors occurring during
their execution may have dramatic economical or human consequences. In this field, the controller synthesis
methodology (CSM) is useful to ensure by construction the interaction between 1) the different components,
and 2) the environment and the system itself. For the first point, the CSM is often used as a safe scheduler,
whereas for the second one, the supervisor can be interpreted as a safe discrete tele-operation system.

5. Software

51. TGV
Keywords: Conformance TestindF, Lotos SDL, TGV, TTCN UML.
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Participants: Thierry Jéron [contact], Valéry Tschaen.

TGV (Test Generation with Verification technology) is a tool for test generation of conformance test suites
from specifications of reactive systenig.[It is based on the IOLTS model, a well defined theory of testing,
and on-the-fly test generation algorithms coming from verification technology. Originally, TGV allows test
generation focused on well defined behaviors formalized by test purposes. The main operations of TGV are
(1) a synchronous product which identifies sequences of the specification accepted by a test purpose, (2)
abstraction and determinisation for the computation of next visible actions, (3) selection of test cases by the
computation of reachable states from the initial states and co-reachable states from accepting states. TGV has
been developed in collaboration with Vérimag Grenoble and uses libraries of the CADP toolbox (VERIMAG
and VASY). TGV can be seen as a library that can be linked to different simulation tools through well defined
APIs. An academic version of TGV is distributed in the CADP toolbox and allows test generation from
Lotos specifications by a connection to its simulator APIl. The same API is used for a connection with the
UMLAUT validation framework of UML models. This version has been transfered in the SDL ObjectGéode
toolset as part of the TestComposer tool. A new version of TGV has been adapted to a new API of the IF
simulator (VERIMAG) allowing test generation from IF and UML models (via a compilation from UML
to IF). This new version TGV-IF extends the previous one with new functionalities for coverage based test
generation combined with test purposes based test generation. This year some CADP libraries used in TGV-IF
have been replaced with STL libraries in order to gain some independency with respect to CADP and allow
easier porting. The first version of TGV is protected by APP (Agence de Protection des Programmes) Number
IDDN.FR.001.310012.00.R.P.1997.000.2090. TGV-IF is currently being deposit at APP.

5.2. NBAC
Keywords: Abstract InterpretrationReactive Systenisoolean and numerical typggolyhedra
Participant: Bertrand Jeannet [contact].

NBAC is a verification/slicing tool developed in collaboration with Vérimag. This tool analyses syn-
chronous and deterministic reactive systems containing combination of Boolean and numerical variables and
continuously interacting with an external environment. Its input format is directly inspired by the low-level
semantics of the LUSTRE dataflow synchronous language. Asynchronous and/or non-deterministic systems
can be compiled in this model. The kind of analyses performed by NBAC are: reachability analysis from a
set of initial states, which allows to compute invariants satisfied by the system; coreachability analysis from
a set of final states, which allows to compute sets of states that may lead to a final state; and combination of
the above. The result of an analysis is either a set of states together with a necessary condition on states and
inputs to stay in this set during an execution, either a verdict of a verification problem. The tool is founded on
the theory of abstract interpretation: sets of states are approximated by abstract values belonging to an abstract
domain, on which fix-point computations are performed. The originality of NBAC resides in

e the use of a very general notion of control structure in order to very precisely tune the trade-off
between precision and efficiency;

o the ability to dynamically refine the control structure, and to guide this refinement by the needs of
the analysis;

e sophisticated methods for computing postconditions and preconditions of abstract values.
More recently, NBAC has been extended with auxiliary translation toolSO®NBAC and NBAC2AUTO.

This allows to specify systems to be analyzed as a product of hybrid automata with constant differential
inclusion g.g, 1 < @ + 2g < 3) and to get the result of the analysis on the product automaton.
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5.3.STG
Keywords: Conformance Testingymbolic TestingSymbolic Verification
Participants: Vlad Rusu [contact], Florimond Ployette, Bertrand Jeannet, Thierry Jéron.

StG (Symbolic Test Generation] is a prototype tool for the generation and execution of test cases
using symbolic techniques. It takes as input a specification and a test purpose described as IOSTS, and
generates a test case program also in the form of IOSTS. Test generation in STG is based on a syntactic
product of the specification and test purpose IOSTS, an extraction of the subgraph corresponding to the test
purpose, elimination of internal actions, determinisation, and simplification. The simplification phase now
relies on NBAC, which approximates reachable and coreachable states using abstract interpretation. It is used
to eliminate unreachable states, and to strengthen the guards of system inputs in order to eliminate some
Inconclusive verdicts. After a translation into C++ or Java, test cases can be executed on an implementation
in the corresponding language. Constraints on system input parameters are solved on-the-fly during execution
using a constraint solver. The first version of STG was developed in C++, using Omega as constraint solver
during execution. This version has been deposit at APP (IDDN.FR.001.510006.000.S.P.2004.000.10600). A
new version in OCaml is now under development. This version will be more generic and will serve as a library
for symbolic operations on IOSTS. Most functionalities of the C++ version have been re-implemented. Also
a new translation of abstract test cases into Java executable tests has been developed, in which the constraint
solver is LUCKYDRAw (Verimag).

5.4. SIGALI

Keywords: Controller Synthesjssymbolic techniqueserification
Participant: Hervé Marchand [contact].

SIGALI is a model-checking tool that operates on ILTS (Implicit Labeled Transition Systems, an equational
representation of an automaton), an intermediate model for discrete event systems. It offers functionalities for
verification of reactive systems and discrete controller synthesis. It is developed jointly by the ESPRESSO
and VERTECs teams. The techniques used consist in manipulating the system of equations instead of the sets
of solution, which avoids the enumeration of the state space. Each set of states is uniquely characterized by
a predicate and the operations on sets can be equivalently performed on the associated predicates. Therefore,
a wide spectrum of properties, such as liveness, invariance, reachability and attractivity can be checked.
Algorithms for the computation of predicates on states are also availbIBIGALI is connected with the
Polychrony environment (Espresso project-team) as well as the Matou environment (Verimag), thus allowing
the modeling of reactive systems by means of Signal Specification or Mode Automata and the visualization of
the synthesized controller by an interactive simulation of the controlled systenLiSis protected by APP
(Agence de Protection des Programmes).

5.5. SYNTOOL
Keywords: Controller Synthesjsstructured systems
Participants: Benoit Gaudin, Hervé Marchand [contact].

SYNTOOL is a tool dedicated to the control of structured discrete event systems. It implements the theory
developed during the Ph.D. of Benoit GaudB]j. [SYNTOOL has an API allowing the user to graphically
describe the different LTSs modeling the plant, to perform some controller synthesis computations solving the
forbidden state avoidance problem for structured systems, and finally to simulate the result (i.e. the behavior
of the controlled system). This tool is currently under testing.

5.6. RAPTURE
Keywords: Markov Decision ProcessgBrobabilistic verification
Participant: Bertrand Jeannet [contact].
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RAPTUREIs a verification tool developed jointly by BRICS and INRIAJ. The tool is designed to verify
reachability properties on Markov Decision Processes (MDP), also known as Probabilistic Transition Systems.
This model can be viewed both as an extension to classical (finite-state) transition systems extended with
probability distributions on successor states, or as an extension of Markov Chains with non-determinism. We
have developed a simple automata language that allows to describe a set of processes communicating over a
set of channela la CSP. Processes can also manipulate local and global variables of finite type. Probabilistic
reachability properties are specified by defining two sets of initial and final states together with a probability
bound. The originality of the tool is to provide two reduction techniques that limit the state space explosion
problem: automatic abstraction and refinement algorithms, and the so-called essential states r&€dlction [

6. New Results
6.1. Controller Synthesis

Keywords: Hierarchical modelscontroller synthesis methodologgymbolic methods

6.1.1. Supervisory Control of Structured Discrete Event Systems
Participants: Benoit Gaudin, Hervé Marchand.

In many applications (as e.g. manufacturing systems, control-command systems, protocol networks, etc)
and control problems, systems are also often modeled by several components acting concurrently. We are
concerned with the control of a system where its construction is assumed not to be feasible (due to the
state space explosion resulting from the composition), making the use of classical supervisory control
methodologies impractical. Given a concurrent system asdfety property, modeled as a languagéso
called specification that have to be ensured on this system, we investigafediiam@l [22] the computation
of the supremal controllable language contained in the expected language. We do not adopt the decentralized
approach. Instead, we have chosen to use a modular centralized approach and to perform the control on
some approximations of the plant derived from the behavior of each component. The behavior of these
approximations is restricted so that they respect a new language property for discrete event systems called
partial controllability conditionthat depends on the safety property. It is shown that, under some assumptions
(the objectives have to be eithkrcally consistent w.r.t. the plant 18] or locally controllable w.r.t. the
plant [22]), the intersection of these “controlled approximations” corresponds to the supremal controllable
language contained in the specification with respect to the plant. This computation is performed without
building the whole plant, hence avoiding the state space explosion induced by the concurrent nature of the
plant. It is finally shown that the class of specifications on which our method can be applied strictly subsumes
that considered ing()].

Meanwhile, we have also been interested in ensuring safety properties that are more related to the notion of
states rather than to the notion of trajectories of the system (the mutual exclusion problem for example). For
this class of problem, one of the main issue isdtate avoidance control probleme. the supervisor has to
control the plant so that the controlled plant does not reach a set of forbidden states. Note that if one wants to
used a language-based approach to encode this problem, a&&0kay. [18], then the obtained specification
may be of the size of the global system itself. This leads us to develop techniques totally devoted to the state
avoidance control problem. Assuming the system is modeled as concurrent FSMs, we thus provide algorithms
that, based on a particular decomposition of the set of forbidden configurations, solve the control problem
locally (i.e. on each component without computing the whole system) and produce a global supervisor ensuring
the desired propertylp]. We then provide sufficient conditions under which the obtained controlled system is
non-blocking [L7]. This kind of objectives may be useful to perform dynamic interactions between different
parts of a system. Finally, we apply these results to the case of Hierarchical Finite State Malfjines [

6.1.2. Supervisory Control of Symbolic and Hybrid Transition systems
Participants: Tristan Le Gall, Bertrand Jeannet, Hervé Marchand.
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This year, we have been interested in solving the safety controller synthesis problem for various models
(from finite transition systems to hybrid systems). Within this framework, we have been mainly interested in
an intermediate model: symbolic transition systems. Due to the infiniteness of the alphabet, we have chosen
to redefine the concept of controllability by introducing the notion of dynamic uncontrollable transitions (the
controllability status is carried on by the symbolic transitions by means of guards, instead of the events). We
focus onsafety requirementsnodeled by observers that encode the negation of a safety property. We then
defined synthesis algorithms based on abstract interpretation techniques so that we can ensure convergence of
fixpoint computations in a finite number of ste@S]l We finally generalized our methodology to the control
of hybrid systems, which gives an unified framework to the supervisory control problem for several classes of
models Pg].

6.2. Test Generation on Enumerative and Symbolic Models
Keywords: symbolic transition systemtest generationtesting transition systems

6.2.1. Symbolic Test Generation and Selection
Participants: Camille Constant, Bertrand Jeannet, Thierry Jéron, Vlad Rusu.

We address here the generation of symbolic test cases for testing the conformance of a black-box implemen-
tation with respect to a specification. More specifically, the problem we consider is the selection of test cases
according to a test purpose, which is here a set of scenarii of interest that one wants to observe during test
execution. Because of the interactions that occur between the test case and the implementation, test execution
can be seen as a game involving two players, in which the test case attempts to satisfy the test purpose (in
addition to its role of detecting conformance errors).

Efficient solutions to this problem have been proposed in the past in the context of finite-state models, based
on the use of fixpoint computations. 18], we extend them in the context of infinite-state symbolic models
(IOSTS), by showing how approximate fixpoint computations can be used in a conservative way. We also
formalize a quality criterion for test cases, and we provide a result relating the quality of a generated test case
to the approximations used in the selection algorithm.

Instead of considering the extension of the finite-state IOLTS model with variables, a6],iije can
also consider the extension of the IOLTS model with recursion, which corresponds to a pushdown system.
A preliminary study was done in 2004 with the master thesis of Liva Randriamanohisoa. One of the main
problems still to be solved is the determinisation of a pushdown system. This determinisation is a necessary
operation for test generation, but is undecidable. To overcome this problem, we study context-free grammars
in order to find a sub-class of these grammars that can be translated into a deterministic pushdown system. We
are also working on the combination of IOSTS and pushdown systems, which gives the full expressiveness of
a programming language.

6.2.2. From Safety Verification to Safety Testing
Participants: Camille Constant, Thierry Jéron, Hervé Marchand, Vlad Rusu.

In this work, we present a combination of verification and conformance testing techniques for the formal
validation of reactive systems. A formal specification of a system, which may be infinite-state, and a set
of safety properties are assumed. Each property is verified on the specification using automatic techniques
based on abstract interpretation, which are sound, but, as a price to pay for automation, are not necessarily
complete. Next, for each property, atest case is automatically generated from the specification and the property,
and is executed on a black-box implementation of the system to detect violations of the property by the
implementation and non-conformances between implementation and specification. If the verification step did
not conclude, the test execution may also detect violations of the property by the specifi2é}iorh|s
work generalizes our previous works on test selection with test purposes, allowing selection based on safety
properties (while test purposes describe reachability properties). Moreover generated test cases are decorated
with new verdicts.
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We have also extended the combination of verification and conformance testing techniques by considering
more expressive properties, allowing a better and finer selection of test cases. These properties are represented
by observers with internal actions (the same as the specification) that are unobservable actions. Unfortunately,
compared to26], without any assumption about a mapping between the internal actions of the specification
and the ones of the implementation, we cannot verify whether the implementation violates these properties or
not (internal actions of the implementation are not known). Nevertheless, we can still detect non-conformances
between the implementation and the specification and violations of the property by the specification.

6.2.3. Conformance Testing and Run-time Verification
Participants: Sophie Quinton, Vlad Rusu.

The Master’s thesis of Sophie Quinton consisted in comparing and combining run-time verification and
conformance testing techniques. The basic idea of run-time verification is to execute a program together with
a monitor that checks the validity of some properties on the program’s behaviour; typically, the monitor
is automatically synthesized from logical annotations written in the program’s code. On the other hand,
conformance testing consists in comparing the observable behaviour of a black-box implementation of a
system with respect to that described by an operational specification; this comparison is typically performed
by executing the implementation in parallel widst casegenerated from the specification and test purposes
that may be, e.g., reachability or safety properties. This prodeseserdictabout the conformance between
implementation and specification and about the satisfaction of the properties by the implementation.

Clearly, there are similarities between the two approaches: for example, monitors and test cases play the
same role of observing the program’s behaviour and checking whether it respects some required properties.
There are also some differences: run-time verification typically checks one particular implementation, namely,
the executable program obtained by compiling the given (annotated) source code. In contrast, in conformance
testing the implementation is not necessarily derived from the specification - the only requirement is that both
views of the system have the same interface. Moreover, a test case not only observes, but may also control
the implementation in attempting to satisfy a given test purpose (reachability property), or to violate a given
safety property.

We have shown that many errors that can be discovered by run-time verification can be formalised as non-
conformances with respect to an adequately chosen specification.

We also propose a methodology for replacing runtime verification by conformance testing in situations
where runtime verification cannot work, for example, when not all the code of functions constituting the
program under test is available, but only the annotations for those functions are available.

6.3. Verification and Abstract Interpretation

Keywords: Abstract InterpretationAcceleration Communicating Finite State Machinesxact Widening
FIFO channelsReachability AnalysisShape Analysis

6.3.1. Abstract Lattices for the Analysis of Systems with Unbounded FIFO Channels
Participants: Bertrand Jeannet, Thierry Jéron, Tristan Le Gall.

The PhD thesis of Tristan Le Gall holds on the verification of asynchronous systems communicating through
FIFO channels and applications of it. This year, we tackled the reachability analysis of finite-state systems
communicating through unbounded FIFO channels, using a finite set of mes&apdsdtead of related
works relying on exact acceleration techniques, that may non terminate, our approach is based on abstract
interpretation. We proposed a set of abstract lattices based on regular languages for representing sets of
possible configurations of FIFO queues. We first focused on the simple case of systems with only one queue.
We then generalized our results to systems with several queues, for which we proposed both non-relational
and relational abstract lattices (a relational lattice preserves relations between contents of different queues,
while a non relational one does not). Our experiments show that our method is generally as precise as exact
methods founded on acceleration techniques, while it is arguably simpler.
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6.3.2. A Relational Abstraction for Functions
Participant: Bertrand Jeannet.

In [19] we are interested in abstracting sets of functions. Main applications where one needs to infer
properties on functions are interprocedural analysis, analysis of higher-order programs, and shape analysis,
where one may use functions to associate to memory records their field conteti§ v [give an overview
of existing methods, which are illustrated with applications to shape analysis, and we formalize a new family
of relational abstract domains that allows sets of functions to be abstracted more precisely than with known
approaches, while being still machine-representable.

6.3.3. Flat Acceleration in Symbolic Model Checking
Participant: Jérdme Leroux.

Symbolic model checking provides partially effective verification procedures that can handle systems with
an infinite state space. So-called "acceleration techniques" enhance the convergence of fixpoint computations
by computing the transitive closure of some transitions. We have developed a new framework for symbolic
model checking with accelerations. We have also proposed new symbolic algorithms using accelerations to
compute reachability sets.

We have shown that flathess appears as a central notion in the verification of counter automata. A counter
automaton is called flat when its control graph can be “replaced”, equivalently w.r.t. reachability, by another
one with no nested loops.

From a practical view point, we have proved that flatness is a necessary and sufficient condition for
termination of accelerated symbolic model checking, a generic semi-algorithmic technique implemented in
successful tools like £&5T, LASH or TREX.

From a theoretical view point, we have also proved that many known semilinear subclasses of counter
automata are flat: reversal bounded counter machines, lossy vector addition systems with states, reversible
Petri nets, persistent and conflict-free Petri nets, etc. Hence, for these subclasses, the semilinear reachability
set can be computed usinguaiform accelerated symbolic procedure (whereas previous algorithms were
specifically designed for each subclasz][[14], [25], [24].

6.4. Transversal Results

Keywords: Data Flow AnalysisDeterminisationDiagnosis Fault Mode| Logic, Proof, Symbolic Transition
SystemsType Theory

6.4.1. Determinisation of Symbolic Automata
Participants: Thierry Jeron, Hervé Marchand, Vlad Rusu.

Determinisation of symbolic transition systems is a crucial problem for the verification of properties on
external traces, test generation, and diagnosis based on these models. However STSs cannot be determinised
in general. In this work, we define a symbolic determinisation procedure for a class of STS. The class consists
of extended automata operating on symbolic variables and synchronizing with the environment (a simplified
version of STS). The subclass of extended automata for which the procedure terminates is characterized. This
class named “Bounded Lookahead Automata” corresponds to systems where non-deterministic choices can
be find out after the observation of a bounded number of actions. Decidable sufficient conditions for checking
termination are also given. This work is under submission.

6.4.2. Supervision Patterns for the Diagnosis of Discrete Event Systems
Participants: Thierry Jéron, Hervé Marchand.

In this work, we are interested in the diagnosis of finite transition systems. We propose a model of
supervision patterns corresponding to reachability properties (i.e. violation of a safety property). This allows
to generalize the properties to be diagnosed and to render them independent of the description of the system.
We thus deduce techniques for the verification of diagnosability and the construction of a diagnoser based on
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standard operations on transition systems. We show that these techniques are general enough to express and
solve in a unified way a broad class of diagnosis problems found in the literature, e.g. diagnosing permanent
faults, multiple faults, fault sequences and some problems of intermittent fatjltg his work has been done
in cooperation with Marie-Odile Cordier (Dream project-team) and Sophie Pinchinat (S4 project-team).

Our aim is now to extend these results to infinite state systems and to apply these techniques to the automatic
generation of passive testers (intruder detection systems) in order to test on-line whether an implementation
respects a given security policy.

6.4.3. Extracting a Data Flow Analyser in Constructive Logic
Participant: Vlad Rusu.

This work has been done in cooperation with David Cachera, Thomas Jensen, and David Pichardie from the
Lande project-team of Irisa. A constraint-based data flow analysis is formalized in the specification language
of the Coq proof assistant. This involves defining a dependent type of lattices together with a library of
lattice functors for modular construction of complex abstract domains. Constraints are represented in a way
that allows for both efficient constraint resolution and correctness proof of the analysis with respect to an
operational semantics. The proof of existence of a solution to the constraints is constructive which means that
the extraction mechanism of Coq provides a provably correct data flow analyser in Ocaml from the proof.
The library of lattices and the representation of constraints are defined in an analysis-independent fashion that
provides a basis for a generic framework for proving and extracting static analysers ifiZL.oq [

6.4.4. Defining and Reasoning About General Recursive Functions in Type Theory
Participant: Vlad Rusu.

This is common work with David Pichardie, formerly in the Lande project of Irisa, currently in the Everest
project-team at Sophia Antipolis.

In [30] we describe practical method for defining and proving properties of general (i.e., not necessarily
structural) recursive functions in proof assistants based on type theory. The idea is to defjrzpthe the
intended function as an inductive relation, and to prove that the relation actually represents a function, which
is by construction the function that we are trying to define. Then, we gerirdatetion principlesor proving
other properties of the function.

The approach has been experimented in the Coq proof assistant, but should work in like-minded proof
assistants as well. It allows for functions with mutual recursive calls, nested recursive calls, and works also for
the standard encoding of partial functions using total functions over a dependent type that restricts the original
function’s domain.

We present simple examples and report on a larger case study (sets of integers represented as ordered lists
of intervals) that we have conducted in the context of certified static analy$es|

In ongoing independent work, yet unpublished, Barthe and Forest from the Everest project at Inria Sophia
Antipolis are developing an approach for synthesizing a recursive function from an arbitrary inductive relation.
We have submitted a paper to FLOPS’06 (Int. Symposium on Functional and Logic Programming) on a general
framework that encompasses both our approaches, as well as on an implementation of these techniques in a
prototype tool within Coq.

7. Contracts and Grants with Industry
7.1. France Telecom R&D

Keywords: test generationtesting vocal phone services
Participants: Camille Constant, Thierry Jéron, Vlad Rusu.

The goal of this 3-year project (starting October 2004) is to build a platform for the formal validation
of France Telecom’s vocal phone services. Vocal services are based on speech recognition and synthesis
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algorithms, and they include automatic connection to the callee’s phone number by pronouncing her name,
or automatic pronounciation of the callee’s name whose phone number was dialed in by the user. Here, we
are not interested in validating the voice recognition/synthesis algorithms, but on the logic surrounding them.
For example, the system may allow itself a certain number of attempts for recognizing a name, after which it
switches to normal number-dialing mode, during which the user may choose to go back to voice-recognition
mode by pronouncing a certain keyword. This logic may become quite intricate, and this complexity is
multiplied by the number of clients that may be using the service at any given time. Its correctness has
been identified by France Telecom as a key factor in the success of the deployment of voice-based systems.
To validate them we are planning to apply a combination of formal verification and conformance testing
techniques (cf. Sectiof.2.9.

8. Other Grants and Activities

8.1. National Grants & Contracts

8.1.1. CNRS ACI Sécurité Potestat: Security Policies: Test Directed Analysis of Open Network
Systems
Participants: Thierry Jéron, Hervé Marchand, Vlad Rusu.

The Potestat projecthftp://www-Isr.imag.fr/POTESTAT/[2004-2006] involves LSR-IMAG Grenaoble,
Verimag Grenoble and Lande and Vertecs project teams in Irisa.

In the framework of open service implementations, based on the interconnection of heterogeneous systems,
the security managers lack of well-formalized analysis techniques. The security of such systems is therefore
organized from pragmatic elements, based on well-known vulnerabilities and their associated solutions. It then
remains to verify if such security policies are correctly and effectively implemented in the actual system. This
is usually carried out by auditing the administrative procedures and the system configuration. Tests are then
performed, for instance by probing, to check the presence of some particular vulnerabilities. Although some
tools are already available for specific tests (like password crackers), there is no solution to analyse the whole
system conformance with respect to a security policy. This lack may be explained by several factors. First,
there is currently no complete study about the formal modeling of a security policy, even if some particular
aspects have been more thoroughly studied. Furthermore, verification based researches about security usually
concerned more precise elements, like cryptographic protocols or code analysis. Finally, most of these works
are dedicated to a priori verification of the coherency of security policies before their implementation. We are
concerned here by the conformance of a system configuration with respect to a given policy. In the framework
of the POTESTAT project we plan to tackle this problem according to the following items:

e Formal modeling of security policies, allowing a test directed analysis.

e Definition of a conformance notion between a system configuration and some security policies
elements. The goal is to obtain a test theory similar to the one existing in the protocol testing area
(like the Z.500 norm).

e Definition of methods to test this conformance notion, including the testability problems, the
environment of execution, code analysis and test selection.

A long-term of this project is to offer some tools allowing security managers to model information flow,
network elements (protocols, node types and their associated security policy, etc) to better describe the security
policy for conformance testing and to provide some practical tools to perform coherency verification and
vulnerabilities detection.
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8.1.2. RNRT POLITESS: Security Policies for Network Information Systems: Modeling,
Deployment, Testing and Supervision
Participants: Thierry Jéron, Hervé Marchand.

The POLITESS project has just been accepted as an RNRT project. Partners of the project are GET (INT
Evry and ENST Rennes), INPG-IMAG (LSR and Verimag laboratories), France Telecom R&D Caen, Leyrios
Technologies, SAP Research, AQL Silicomp and Irisa. In a sense, this project is an extension of the Potestat
project. The objective of the project is to study and provide methodological guidelines and software solutions
for a formal approach to security of networks. This encompasses the specification of high level security policies
with clear semantics, their deployment on the network in terms of security artifacts and the analysis of this
deployment, testing and monitoring of security based on models of security policies and abstract models of
networks.

8.1.3. CNRS ACI Sécurité APRON: Analysis of Numerical Programs
Participant: Bertrand Jeannet.

The APRON (Analyse de PROgrammes Numériques) profjetd:(/www.cri.ensmp.fr/aprop[2004-2006]
involves ENSMP, LIENS-ENS, LIX-Polytechnique, VERIMAG and Vertecs-Irisa.

The goal is to develop methods and tools to analyse statically embedded software with high-level of criticity
for which the detection of errors at run-time is unacceptable for safety or security reasons. Such safety and
security software is found in the context of transportation, automotive, avionics, space, industrial process
control and supervision, etc. One characteristics of such software is that it is based on physical models whence
involve a lot of numerical computations. Moreoveountersplay an important role in the control of reactive
programs (e.g., delay counting in synchronous programming). Critical properties depending on these counters
are generally outside the scope of model-checking approaches, while being simple enough to be accurately
analysed by more sophisticated numerical analyses.

The goal of the project is the static analysis of large specifications (e.g. adarg) and corresponding
programs (e.g. of 100 to 500 000 LOCs of C), made of thousands of procedures, involving a lot of numerical
floating-point computations, as well as boolean and counter-based control in order to verify critical properties
(including the detection of possible runtime errors), and to help in automatically locating the origin of critical
property potential violation.

An example of such critical properties, as found in control/command programs, is of the form “under a
condition holding on boolean and numerical variables for some time, the program must imperatively establish
a given boolean and/or numerical property, in given bounded delay”.

Vertecs contributes to the following topics within the APRON project:

e The design and implementation of a common interface to several abstraction libraries (intervals,
linear equalities, octagons, polyhedra, ...and their combination).

e The study of adaptative techniques for adjusting the trade-off between the efficiency and the
precision of analyses, among other dynamic partitioning techniq@@sHesults have already been
obtained in the intraprocedural case, but to a less extend in the interprocedural case.

Vertecs focuses mainly onUsTRE specifications and provides with the N8 tool one of the main
experimental platforms of the project for the verification of critical properties on such specifications.

In 2005, most of the effort of Vertecs was spent on the design and implementation of the common interface,
a task which should be soon completed.


http://www.cri.ensmp.fr/apron/

18 Activity Report INRIA 2005

8.1.4. CNRS ACI Sécurité V3F: Validation and Verification of Programs with Floating Point
Numbers
Participants: Bertrand Jeannet, Thierry Jéron, Jérbme Leroux.

V3F (http://lifc.univ-fcomte.fr/~v3f)[2003-2005] is a project involving LIFC Besancon, Inria-13S Nice,
LIST-CEA Saclay and project teams Lande and Vertecs in Irisa. The goal of this project is to provide tools
to support the verification and validation process of programs with floating-point numbers. More precisely,
project V3F investigates techniques to check that a program satisfies the calculations hypothesis on the real
numbers that have been done during the modeling step. The underlying technology will be based on constraint
programming. Constraints solving techniques have been successfully used during the last years for automatic
test data generation, model-checking and static analysis. However in all these applications, the domains of
the constraints were restricted either to finite subsets of the integers, rational numbers or intervals of real
numbers. Hence, the investigation of solving techniques for constraint systems over floating-point numbers is
an essential issue for handling problems over the floats.

The results obtained in the course of the project V3F are a clean design of constraint solving techniques
over floating-point number, and a study of the capabilities of these techniques in the software validation and
verification process. An open and generic prototype of a constraint solver over the floats was developped.
We also paid attention on the integration of floats into various formal notations (e.g., B, Lustre, UML/OCL)
to allow an effective use of the constraint solver in formal model verification, automatic test data generation
(functional and structural) and static analysis.

Our contribution to this project is to precisely formalize a conformance testing theory for programs with
floating point with respect to their specifications, and second, to describe test generation algorithms in this
framework. We consider the IOSTS model for the specification and the test purpose. An important point is to
obtain a computable conformance relation. The solution that we propose takes into account the unprecision
of floating points computations w.r.t. real semantics by allowing a limited skew of floating points values in
conformant traces. In order to be able to recognize conformant traces/execution during test execution, and to
check that the allowed skew does not diverge, we use a projection technique that allows the tester to use safely
the values emitted by the implementation for its own execution. A nice point of our approach is that we can
fully reuse the test generation and selection techniques implemented in our STG tool, the only change being
in the implementation of the test driver. This result has been presented in the last meeting but has not yet been
published.

8.2. European and International Grants

8.2.1. ARTIST2 Network of Excellence
Participants: Thierry Jéron, Hervé Marchand, Vlad Rusu.

We are partners of the ARTIST2 Network of Excellence on Embedded Systeitms//{(vww.artist-
embedded.or)y/ involved in the Testing and Verification cluster with Brics in Aalborg (DK), University of
Twente (NL), University of Liége (B), Uppsala (SE), Verimag Grenoble, ENS Cachan, LIAFA Paris, EPFL
Lausanne (S). The aim of the cluster is to develop a theoretical foundation for real-time testing, real-time
monitoring and optimal control, to design data structures and algorithms for quantitative analysis, and to ap-
ply testing and verification tools in industrial settings. For security, we plan to create a common semantic
framework for describing security protocols including notion of "trust" and to develop tools and methods for
the verification of security protocols. Test and verification tools developed by partners will be made available
via a web-portal and with dedicated verification servers.

In Artist2, the main role of Vertecs is to integrate our research on testing and test generation based on
symbolic transition systems with other works based on timed models.

This year we participated in a cluster meeting that took place in Oldenborg (Germany) in March 2005.
A Summer School on Components & Modeling, Testing & Verification, and Static Analysis of Embedded
Systems was organized in Nasslingen, Sweden in September by three clusters. T. Jéron gave a lecture on
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“Testing and Model-checking” in this summer school. We also participated to the first review meeting of
Artist2 in Grenoble in October. Finally, a Strep proposal on quantitative testing and verification, initiated by
our cluster was submitted this year.

8.2.2. UIUC/CNRS/INRIA Collaboration
Participants: Vlad Rusu, Sophie Quinton, Thierry Jéron.

This grant involving three groups, IRISA/INRIA, Verimag (Stavros Tripakis), and University of Illinois at
Urbana-Champaign (Grigore Rosu), is concerned with various aspects of runtime analysis of software systems,
and aims both at advancing theoretical foundations and at developing and improving supporting tools and
prototypes. Our activity this year has been on conformance testing and rewriting logic. Vlad Rusu and Sophie
Quinton visited Urbana for 2 weeks (resp. 1 month) during Summer 2005. Grigore Rosu from Urbana visited
us this summer and gave a talk on runtime analysis of distributed systems.

8.2.3. Bilateral CNRS/CONICET Collaboration
Participant: Bertrand Jeannet.

This bilateral collaboration grant, between France and Argentina, involves 4 teams: the team MOVE of LIF
(Laboratoire d’'Informatique Fondamentale) of Marseille (Peter Niebert) and the Vertecs project, on the French
side, the university of Cordoba (Pedro d’Argenio) and the La Empesa University of Buenos Aires (Alfredo
Olivero), on the Argentinian side.

The aim of this starting collaboration (august 2005- august 2007) is to make progress in the verification of
probabilistic timed concurrent systems. The Vertecs project brings its expertise in algorithms and abstraction
techniques implemented in theaARTURE tool for Markov Decision Processes.

Our ambition is to progress in the following directions:

1. Apply the abstraction techniques implemented in theeRURE tool and the probabilistic partial
order reduction techniques tionedprobabilistic automata, instead of untimed systems only;

2. Extend the same techniques to the verification of untimed and timed temporal logical formula
(expressed in the (timed) LTL logic);

3. Explore the applicability of program slicing and abstract interpretation techniques to quantitative
model checking;

4. Explore the possibility to use these techniques for performance analysis;
5. Implement the fundamental results;
6. Analyse case studies in order to help to understand the performances of the tools.
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8.3. Collaborations

8.3.1. Collaborations with other INRIA Project-teams

We collaborate with several Inria project-teams. We collaborate with the LANDE project-team in two ACI-

Sécurité grants (V3F and POTESTAT). With ESPRESSO project-team for the development ofthe S
tool inside the Polychrony environment. With the DART project-team on the use of the controller synthesis
methodology for the control of control-command systems (e.g. robotic systems). With DISTRIBCOM on
security testing. With the S4 project-team on the use of control, game theory and diagnosis for test generation.
With the DREAM project-team on the diagnosis of discrete event systems. With the VASY project-team on
the use of CADP libraries in TGV and the distribution of TGV in the CADP toolbox.

8.3.2. Collaborations with French Research Groups outside INRIA

Our main collaborations in France are with Vérimag. Beyond formalized collaborations, (ACI Potestat and
APRON, RNRT Politess, Rex Artist2), we also collaborate on the connection of NBAC with Lurette for the
analysis of Lustre programs, as well as the connection of SIGALI and Matou. We are also involved in several
collaborations with LSR Imag (ACI Potestat and RNRT Politess).

8.3.3. International Collaborations

University of Twente and Nijmegelin The Netherlands (E. Brinksma, J. Tretmans) on test generation
(symbolic in particular) following the Van Gogh bilateral cooperation (1999-2001).

CNR Pisain Italy (A. Bertolino) on using TGV for test generation for software architectures.

University of Wisconsin(T. Reps) on shape analysis. Bertrand Jeannet published a g&pevith T.
Reps and D. Gopan.

ENIS Sfax in Tunisia (M. Tahar Bhiri). Thierry Jéron is co-supervisor of a PhD student Hatem Hamdi
working on robustness and security testing.

University Libre Bruxellesin Belgium on testing. Thierry Massart, Bram de Wachter and Cédric Meuter
visited us in November. Thierry Jéron visited ULB for the defense of Bram de Watchter in December
and gave a talk on Test Generation using Model Checking.

University Ottawain Quebec (Guy-Vincent Jourdan) on security testing. G.-V. Jourdan visited us in
summer 2005 (one week).

Institute of Mathematics, Czech Academy of Scien@gs supervisory control of concurrent systems
(with Jan Komenda). He visited us in November (one week). Benoit Gaudin and Hervé Marchand
published a papefP] with Jan Komenda.

9. Dissemination
9.1. University courses

C. Constant is teaching in INSA of Rennes (32h in 2004-2005), on constraint programming.
B. Gaudin was teaching at the University of Rennes 1 (92h/year).
B. Jeannet is teaching in the Master of Computer Science in Rennes, on abstract interpretation,

T. Jéron is teaching in Master of Computer Science at the University of Rennes 1 and in the engineering
school EnstB in Rennes, on testing and test generation.

T. Le Gall isteaching in License in the Univeristy of Rennes 1 and in "Magistére Informatique-Télécom"
in ENS Cachan-Bretagne (64h/year)

V. Rusu teaches in the Master of Computer Science in Rennes, on deductive verification methods.
V. Tschaen was teaching at the University of Rennes 1 (92h/year).
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9.2. PhD Thesis and Trainees
Current PhD. theses:

Camille Constant: “Verification and symbolic test generation for reactive systeml year,
Tristan Le Gall: “Abstract lattice of fifo channels for verification and control syntie&isd year,
Hatem Hamdi: “Testing of network securityln collaboration with University of Sfax, 1st year.

Trainees 2004-2005:

Sophie Quinton: “Conformance testing and runtime verificatiphaster student (6 months).

Hugo Métivier: “representation of set of numerical values for verification purphddaster student (6
months).

Hatem Hamdi: “Generation of test cases with TGV-Agédis collaboration with ENIS Sfax, Master
student (6 month).

Florence Charreteur: “Test generation and execution with the STG Tdoh year INSA Student, (2
months).

Trainees 2005-2006:

Jérémy Dubreil: “Diagnosis for intrusion detectidnMaster student, university of Uppsala and Enst
Brest, (5 months).

9.3. Participation to Jurys, Committee

Thierry Jéron was jury of the following PhD defenses: Pierre Bontron (University Grenoble, March
2005, reviewer), Héléne Le Guen (University Rennes 1, June 2005), Cyril Pachon (University
Grenoble, October 2005, reviewer), Gregory Lestienne (LRI Orsay, October 2005), Franck Lebeau
(LIFC Besancon, December 2005, reviewer), Alban Gratien (University of Rennes, December 2005),
Bram de Wachter (ULB Bruxelles, December 2005, private and public defenses). He served as
reviewer of ARA SSIA and RNTL projects and Dutch Technology Foundation STW project (The
Netherlands).

Bertrand Jeannet was jury of the PhD defense of David Merchat (University Grenoble 1, May 2005).

Hervé Marchand is member of the “Commissions de Spécialistes 27e section” at University of Rennes
1.

Camille Constant is member of the Ifsic Council as PhD representative and is Vice-president of the
ADOC (association of PhD students).
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9.4. Conferences, Seminars, Invited Talks

Bertrand Jeannet was the organizer of the thematic seminar “68 NQRT{://www.irisa.fr/NQRT/index.htm)l
in Irisa.

Thierry Jéron is PC member of Fates’05 (Edinburgh, July 2005), Testcom 2005 (Montreal, June 2005),
Tacas’05 (Edimburgh, April 2006). He is PC member of the forthcoming Testcom 2006 (New-York,
May 2006), and PC member and Tool Chair of Tacas’06 (Vienna, March 06). He is SC of the Movep
summer school (Bordeaux, June 2006). He is reviewer for Zentralblatt Math. Thierry Jéron gave a
lecture on Testing and model-checking at the Artist 2 Summer School (Sept 2005). He was invited to
give presentations in LIFC Besancon (Nov. 2006) and ULB Bruxelles (Dec. 2006) on Test generation
using model-checking, and a presentation on Testing in DGA seminar “Enjeux opérationnels de la
modélisation des systémes complexes a logiciels prépondérants” in Toulouse (Nov. 2006).

Jérdbme Leroux was invited to give a seminar ¢A polynomial time Presburger criterion and synthesis
for number decision diagramsat LIAFA (Paris, France, Apr. 2005). He was also invited to
give seminars oriThe convex hull of a Number Decision Diagram is an effectively computable
polyhedron”at LIPN (Villetaneuse, France, Mar. 2005) and at LORIA, (Nancy, France, Nov. 2004).
He gave an invited talk ofDe l'automate binaire a la formule™at “Journée des systémes infinis
2005", at ENS-Cachan, (Cachan, France, Dec. 2005).

Hervé Marchand is member of the Organizing Committee of ACSD’05 (St Malo, 06/05). He is PC
member of MSR’05 conference on modeling of reactive systems (Autrans, 10/05). He is PC member
of the forthcoming WODES’2006 and is member of the IFAC Technical Committees (TC 1.3
on Discrete Event and Hybrid Systems) for the 2005- 2008 triennium. He was invited to give a
seminar on "Méthodes pour automatiser la génération de sytémes fiables: Une approche par contréle
modulaire” at ENS Cachan, antenne Bretagne.

Vlad Rusu was invited to give a seminar on “combining conformance testing and formal verification” at
"Formalisation des activités concurrentes” workshop (LAAS, Toulouse, march 2005). He also gave
a seminar on the same topic at the Univ. Urbana Champaign (august 2005) and a lecture on the same
topic at the Real-time summer school, Nancy, sept. 2005.

Tristan Le Gall is member of the Organizing Committee of MajecStic 2005 (Rennes, Nov. 2005).
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