
epor t

d ' c t i v i t y

2006

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Team Alchemy

Architectures, Languages and Compilers to
Harness the End of Moore Years

Futurs

http://www.inria.fr/recherche/equipes/listes/theme_COM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/alchemy.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-futurs.en.html

Table of contents

1. Team . 1
2. Overall Objectives . 2

2.1. Overall Objectives 2
3. Scientific Foundations . 2

3.1. Scientific Foundations 2
3.1.1. A practical approach to program optimizations for complex architectures 2

3.1.1.1. Iterative optimization 2
3.1.1.2. Polyhedral program representation: facilitating the analysis and transformation of

programs 4
3.1.2. Joint architecture/programming approaches 5

3.1.2.1. Passing program semantics using a synchronous language for high-performance video
processing 5

3.1.2.2. Passing program semantic using software components 6
3.1.3. Spatial computing 7
3.1.4. Transversal research activities: simulation and compilation 8

3.1.4.1. Simulation platform 9
3.1.4.2. Compilation platform 10

4. Software . 11
4.1. Main software developments 11

4.1.1. Main software developments 11
5. New Results .12

5.1. Practical approach to program optimizations 12
5.1.1. Iterative optimization 12
5.1.2. Polyhedral program representation: facilitating the analysis and transformation of programs 14
5.1.3. Iterative optimization meets the polytope model 14
5.1.4. Iterative compilation and continuous optimizations 15
5.1.5. Low-level optimization 15
5.1.6. Advanced analysis and optimization for the end-user 16

5.2. Joint architecture/programming approaches 16
5.2.1. Passing program semantics using a synchronous language for high-performance video

processing 16
5.2.2. Passing program semantic using software components 17

5.3. A biological approach to computing 18
5.3.1. Architecture simulation and sampling 18
5.3.2. Biological neural networks as bio-inspiration sources for future architectures 19
5.3.3. Optimizing the structure of large-size neural networks 20
5.3.4. Individual properties of biological neurons 21

6. Contracts and Grants with Industry .21
6.1. Collaborations involving industry 21
6.2. National and international collaborative grants 22

7. Other Grants and Activities .23
7.1. Informal collaborations 23
7.2. Seminar and invited scientists 24

8. Dissemination . 25
8.1. Leadership within scientific community 25
8.2. Teaching at university 26
8.3. Workshops, seminars, invitations 27

9. Bibliography . 28

1. Team
Head of project team

Olivier Temam [Research Director (DR) Inria, HdR]
Administrative assistants

Stéphanie Meunier [TR Inria, with Gemo]
Staff members, Inria

Hugues Berry [Research Associate (CR) Inria, on secondment from the Cergy-Pontoise University until
september, 2006, then CR1 since october 2006]
Albert Cohen [Research Associate (CR) Inria]
Christine Eisenbeis [Research Director (DR) Inria]
Grigori Fursin [Postdoctoral Fellow]

Staff members, Paris-11 University
Cédric Bastoul [Assistant Professor]
Frédéric Gruau [Assistant Professor]

Technical staff
Hamid Daoud [Expert engineer, FP6 IST grant]
Sylvain Girbal [Expert engineer, FP6 IST Grant]
Sebastian Pop [Expert engineer, since October, 2006, Thalès (Carroll) grant]

Ph. D. students
Mounira Bachir [Inria scholarship, since October, 2006, University of Versailles-Saint-Quentin]
Patrick Carribault [Bull fellowship (Cifre), University of Versailles-Saint-Quentin]
Mohamed Fellahi [Inria scholarship, since October, 2006, University of Paris-Sud]
Fei Jiang [Inria scholarship, with the TAO Inria team, University of Paris-Sud]
Piotr Lesnicki [MENRT scholarship, since October, 2006 University of Paris-Sud]
Zheng Li [Inria scholarship, University of Paris-Sud]
Pierre Palatin [CNRS BDI scholarship, University of Paris-Sud]
Sebastian Pop [École Nationale Supérieure des Mines de Paris, until September, 2006]
Louis-Noël Pouchet [MENRT scholarship, since October, 2006, University of Paris-Sud]
Benoît Siri [Inria scholarship, University of Paris-Sud]
Nicolas Vasilache [MENRT scholarship, University of Paris-Sud]

Student interns
Hamid Daoud [Master of computer science, Paris-13 University, March to September, 2006]
Frédéric De Mesmay [École Polytechnique, March to July, 2006]
Mohamed Fellahi [Master of computer science, University of Paris-Sud, March to September, 2006]
Helena Fulger [École Polytechnique, March to July, 2006]
Fei Jiang [Master of computer science, University of Paris-Sud, March to September, 2006 (with the Tao Inria
team)]
Charles-Eric Laporte [Master Paris Centre, March to July, 2006]
Piotr Lesnicki [Master of computer science, University of Paris-Sud, March to September, 2006]
Louis-Noël Pouchet [Master of computer science, University of Paris-Sud, March to September, 2006]
Alina Stoica [École Polytechnique, March to July, 2006]

External collaborators
Pierre Amiranoff [PRAG, IUT d’Orsay]
Denis Barthou [Assistant professor, University of Versailles-Saint-Quentin]
Benjamin Dauvergne [PhD student, Tropics project-team, Inria Sophia-Antipolis]
Sébastien Donadio [PhD student, University of Versailles-Saint-Quentin]
Nathalie Drach [Professor, Paris-6 University]
Sid-Ahmed-Ali Touati [Assistant professor, University of Versailles-Saint-Quentin]

2 Activity Report INRIA 2006

2. Overall Objectives

2.1. Overall Objectives
ALCHEMY is a joint Inria/University of Paris Sud research group.

The general research topics of the ALCHEMY group are architectures, languages and compilers for high-
performance embedded and general-purpose processors. ALCHEMY investigates scalable architecture and
compiler/programming solutions for high-performance general-purpose and embedded processors. ALCHEMY
stands for Architectures, Languages and Compilers to Harness the End of Moore Years, referring to both
the traditional processor architectures implemented using the current photolithographic processes, and novel
architecture/language paradigms compatible with future and alternative technologies. The current emphasis of
ALCHEMY is on the former part, and we are progressively increasing our efforts on the latter part.

The research goals of ALCHEMY span from short term to long term. The short-term goals target existing
complex processor architectures, and thus focus on improving program performance on these architectures
(software-only techniques). The medium-term goals target the upcoming CMPs (Chip Multi-Processors) with
a large number of cores, which will result from the now slower progression of core clock frequency due to
technological limitations. The main challenge is to take advantage of the large number of cores for a wide
range of applications, considering that automatic parallelization techniques have not yet proved an adequate
solution. In ALCHEMY, we explore joint architecture/programming paradigms as a pragmatic alternative
solution. Finally, even longer term research is conducted with the goal of harnessing the properties of future
and alternative technologies for processing purposes.

Most of the research in ALCHEMY attempts to jointly consider the hardware and software aspects, based on
the premise that many of the limitations of existing architecture and compiler techniques stem from the lack
of cooperation between architects and compiler designers. However, ALCHEMY addresses the aforementioned
research goals through two different, though sometimes complementary, approaches. One approach considers
that, in spite of their complexity, architectures and programs can still be accurately and efficiently modeled
(and optimized) using analytical methods. The second approach considers the architecture/program pair
already has or will reach a complexity level that will evade analytical methods, and explores a complex systems
approach; the principle is to accept that the architecture/program pair is more easily understood (and thus
optimized) based on its observed behavior rather than infered from its known design.

3. Scientific Foundations

3.1. Scientific Foundations
In the sections below, the different research activities of Alchemy are described, from short-term to long-term
goals. For most of the goals, both analytical and complex systems approaches are conducted.

3.1.1. A practical approach to program optimizations for complex architectures
This part of our research work is more targeted at single-core architectures but also applies to multi-cores.
The rationale for this research activity is that compilers rely on architecture models embedded in heuristics to
drive compiler optimizations and strategy. As architecture complexity increases, such models tend to be too
simplistic, often resulting in inefficient steering of compiler optimizations.

3.1.1.1. Iterative optimization

Our general approach consists in acknowledging that architectures are too complex to embed reliable
architecture models in compilers, and to explore the behavior of the architecture/program pair through
repeated executions. Then, using machine-learning techniques, a model of this behavior is infered from the
observations. This approach is usually called iterative optimization.

Team Alchemy 3

In the recent years, iterative optimization has emerged as a major research trend, both in traditional compilation
contexts and in application-specific library generators (like ATLAS or SPIRAL). The topic has matured
significantly since the pionneering works of Mike O’Boyle [78] at University of Edinburgh, UK or Keith
Cooper [53] at Rice University. While these research works successfully demonstrated the performance
potential of the approach, they also highlighted that iterative optimization cannot become a practical technique
unless a number of issues are resolved. Some of the key issues are: the size and structure of the search space,
the sensitivity to data sets, and the necessity to build long transformation sequences.

Scanning a large search space. Transformation parameters, the order in which transformations are applied,
and even which transformations must be applied and how many times, all form a huge transformation space.
One of the main challenges of iterative optimization is to rapidly converge towards an efficient, if not optimal,
point of the transformation space. Machine-Learning techniques can help build an empirical model of the
transformation space in a simple and systematic way, only based on the observation of transformations
behavior, and then rapidly deduce the most profitable points of the space. We are investigating how to
correlate static and dynamic program features with transformation efficiency. This approach can speed up
the convergence of the search process by one or two orders of magnitude compared to random search [25],
[38], [1].

We have also shown that by representing the impact of loop transformations using structured encoding derived
from polyhedral program representation, it is possible to reduce the complexity of the search by several orders
of magnitude [39]. This encoding is further described in Section 3.1.1.2.

We have also shown that it is possible to further speed up transformation space exploration by exploring
several transformations during a single run [60]. Currently, one program transformation is explored for each
loop nest, while performance often reaches a stable state soon after the start of the execution. We have
shown that, assuming we properly identify the phase behavior of programs, it is possible to explore multiple
transformations in each run.

Data set sensitivity. Iterative optimization is based on the notion that the compiler will discover the best
way to optimize a program through repeatedly running the same program on the same data set, trying one
or a few different optimizations upon each run. However, in reality, a user rarely needs to execute the same
data set twice. Therefore, iterative optimization is based on the implicit assumption that the best optimization
configuration found will work well for all data sets of a program. To the best of our knowledge, this assumption
has never been thoroughly investigated. Most studies on iterative optimization repeatedly execute the same
program/data set pair [52], [61], [58], [70], [42], only recently, some studies have focused on the impact of
data sets on iterative optimizations [68], [45].

In order to explore the issue of data set sensitivity, we have assembled a data set suite, of 20 data sets per
benchmark, for most of the MiBench [65] embedded benchmarks. We have found that, though a majority
of programs exhibit stable performance across data sets, the variability can significantly increase with many
optimizations. However, for the best optimization configurations, we find that this variability is in fact small.
Furthermore, we show that it is possible to find a compromise configuration across data sets which is often
within 5% of the best possible optimization configuration for most data sets, and that the iterative process
can converge in less than 20 iterations (for a population of 200 optimization configurations). Overall, the
preliminary conclusion, at least for the MiBench benchmarks, is that iterative optimization is a fairly robust
technique across data sets, which brings it one step closer to practical usage.

Compositions of program transformations. Compilers impose a certain set of program transformations, an
order of application and how many times each transformation is applied. In order to explore what are the
possible gains beyond these strict constraints, we have manually optimized kernels and benchmarks, trying to
achieve the best possible performance assuming no constraint on transformation order, count or selection [80],
[79]. The study helped us clarify which transformations bring the best performance improvements in general.
But the main conclusion of that study is that surprisingly long compositions of transformations are sometimes
needed (in one case, up to 26 composed loop transformations) in order to achieve good performance. Either
because multiple issues must be tackled simultaneously or because some transformations act as enabling
operations for other transformations.

4 Activity Report INRIA 2006

As a result, we have started developing a framework facilitating the composition of long transformations.
This framework is based on the polyhedral representation of program transformations [51]. This framework
also enables a more analytical approach to program optimization and parallelization, beyond the simple
composition of transformations. This latter part is further developed in Section 3.1.1.2.

Putting it all together: continuous optimization. Increasingly, we are now moving toward automatizing the
whole iterative optimization process. Our goal is to bring together, within a single software environment, the
different aforementioned observations and techniques (search space techniques, data set sensitivity properties,
long compositions of transformations,...). We are currently in the process of plugging these different techniques
within GCC in order to create a tool capable of doing continuous, whole-program optimization, and even
collaborative optimization across different users.

Hardware-Oriented applications of iterative optimization. Because iterative optimization can successfully
capture complex dynamic/run-time phenomena, we have shown that the approach can act as a replacement
for costly hardware structures designed to improve the run-time behavior of programs, such as out-of-
order execution in superscalar processors. An iterative optimization-like strategy applied to an embedded
VLIW processor [54] was shown to achieve almost the same performance as if the processor was fitted
with dynamic instruction reordering support. We are also investigating applications of this approach to the
specialization/idiomization of general-purpose and embedded processors [88]. Currently, we are exploring
similar approaches for providing thread scheduling and placement information for CMPs without requiring
costly run-time environement overhead or hardware support. This latter study is related to the work presented
in Section 3.1.2.

CURRENT ACTIVITIES: IST STREP MilePost, FET IP SARC, MEDEA+ ITEA GGCC, IST NoE HiPEAC,
RNTL COP.

CURRENT PEOPLE: Albert Cohen, Patrick Carribault, Grigori Fursin, Sylvain Girbal, Piotr Lesnicki, Louis-
Noël Pouchet, Olivier Temam, Nicolas Vasilache.

3.1.1.2. Polyhedral program representation: facilitating the analysis and transformation of programs

As loop transformations are utterly important — performancewise — and among the hardest to predictably
drive through static cost models, their current support in compilers is disappointing. After decades of experi-
ence and theoretical advances, the best compilers can miss some of the most important loop transformations
in simple numerical codes from linear algebra or signal processing codes. Performance hits of more than an
order of magnitude are not uncommon on single-threaded code, and the situation worsens when automatically
parallelizing or optimizing parallel code.

Our previous work on sequences of loop transformations [51] has led to the design of a theoretical framework,
based on the polyhedral model [55], [56], [57], [83], [75], [87], and a set of tools based on the advanced
Open64 compiler. We have shown that this framework does simplify the problem of building complex
transformation sequences, but also that it scales to real-world benchmarks [36], [16], [50], [9], and allows
to significantly reduce the size of the search space and better understand its structure [39]. The latter work, for
example, is the first attempt at directly characterizing all legal and distinct ways to reschedule a loop nest.

After two decades of academic research, the polyhedral model is finally evolving into a mature, production-
ready approach to solve the challenges of maximizing the scalability and efficiency of statically-controlled,
loop-based computations on a variety of high performance and embedded targets. After Open64, we are
now porting these techniques to the GCC compiler [31], applying them to several multi-level parallelization
and optimization problems, including vectorization, extraction and exploitation of thread-level parallelism
on distributed memory CMPs like the Cell broadband engine from IBM, NXP’s CAT-DI scalable signal-
processing accelerator and novel STMicroelectronics emerging xStream architecture.

CURRENT ACTIVITIES: IST STREP ACOTES, ANR CIGC PARA, RNTL COP.

CURRENT PEOPLE: Cedric Bastoul, Albert Cohen, Sebastian Pop, Louis-Noël Pouchet, Nicolas Vasilache.

Team Alchemy 5

3.1.2. Joint architecture/programming approaches
While Section 3.1.1 is only concerned with transforming programs for a more efficient exploitation of existing
architectures, in the longer term, researchers can assume modifications of architectures and/or programs are
possible. These relaxed constraints allow to target the root causes of poor architecture/program performance.

The current architecture/program model partly fails because the burden is either excessively on the architecture
(superscalar processors), or the compiler (VLIW and now CMPs). And both compiler and architecture
optimizations often aim at program reverse-engineering: compilers attempt to dig up program properties
(locality, parallelism) from the static program, while architectures attempt to retrieve them from program
run-time behavior. Now, in many cases, the user is not only aware of these properties but may pass them
effortlessly to the architecture and the compiler provided she had the appropriate programming support,
provided the compiler would pass this information to the architecture, and the architecture would be fitted with
the appropriate support to take advantage of them. For instance, simply knowing that a C structure denotes a
tree rather than a graph can provide significant information for parallel execution. Such approaches, while not
fully automatic, are practical and would relieve the complexity burden of the architecture and the compiler,
while extracting significant amounts of task-level parallelism.

In the paragraphs below we apply this approach of passing more program semantic to the compiler and
the architecture, first for domain-specific stream-oriented programs, and then for the parallelization of more
general programs.

3.1.2.1. Passing program semantics using a synchronous language for high-performance video processing

While we are currently investigating the aforementioned approach for general-purpose applications, we have
started with the investigation of the specific domain of high-end video processing. In this domain, assessing
that real-time properties will be satisfied is as important as reaching uncommon levels of compute density on
a chip. 150 giga-operations per second per Watt (on pixel components) is the norm for current high-definition
TVs, and cannot be achieved with programmable cores at present. The future standards will need an 8-fold
increase (e.g., for 3D displays or super-high-definition). Predictability and efficiency are the keywords in this
domain, in terms of both architecture and compiler behavior.

Our approach combines the aforementioned iterative optimization and polyhedral modeling research with a
predictability- and efficiency-oriented parallel programming language. We focus on warrantable (as opposed
to best-effort) usage of hardware resources with respect to real-time constraints. Therefore, this parallel
programming language must allow overhead-free generation of tightly coupled parallel threads, interacting
through dedicated registers rather than caches, streaming data through high-bandwidth, statically managed
interconnect structures, with frequent synchronizations (once every few cycles), and very limited memory
resources immediately available. This language also needs to support advanced loop transformations, and
its representation of concurrency compatible with the expression of multi-level partitioning and mapping
decisions. All these conditions tend to consider a language closer to hardware synthesis languages than
general-purpose, von Neumann oriented imperative ones [48], [49].

The synchronous data-flow paradigm is a natural candidate, because of its ability to combine high-productivity
in programming complex concurrent applications (due to the determinism and compositionality of the
underlying model, a rare feature of a concurrent semantics), direct modeling of computation/communication
time, and static checking of non-functional properties (time and resource constraints). Yet generating low-
level, tightly fused loops with maximal exposition of fine-grain parallelism from such languages is a difficult
problem, as soon as the target processor is not the one being described by the synchronous data-flow program,
but a pre-existing target on which we are folding an application program. The two tasks are totally different:
although the most difficult decisions are pushed back to the programmer in the hardware synthesis case,
application programmers usually rely on the compiler to abstract away the folding of their code in a reasonably
portable fashion across a variety of targets. This aspect of synchronous language compilation has largely
been overlooked and constitutes the main direction of our work. Another direction lies in the description of
hardware resources, at the same level as the application being mapped and scheduled onto them; this unified

6 Activity Report INRIA 2006

representation would allow the expression of the search space of program transformations, and would be a
necessary step to apply incremental refinement methods (expert-driven, very popular in this domain).

Technically, we extend the classical clock calculus (a type system) of the Lucid Synchrone language,
expliciting significantly more information about the program behavior, especially when tasks must be started
and will be completed, how information flow among tasks, etc. Our main contribution is the integration
of relaxed synchronous operators like jittering and bursty streams within synchronous bounds [26]. This
research consists in revisiting the semantics of synchronous Kahn networks in the domain of media streaming
applications and reconfigurable parallel architectures, in collaboration with Marc Duranton from Philips
Research Eindhoven (now NXP Semiconductors) and with Marc Pouzet from LRI and the Proval Inria project
team.

CURRENT ACTIVITIES: IST STREP ACOTES, Marie Curie ToK-IAP PSYCHES.

CURRENT PEOPLE: Albert Cohen, Christine Eisenbeis, Mohammed Fellahi.

3.1.2.2. Passing program semantic using software components

Beyond domain-specific and regular applications (loops and arrays), automatic compiler-based parallelization
has achieved only mixed results on programs with complex control and data structures [66]. Writing, and
especially debugging, large parallel programs is a notoriously difficult task [69], and one may wonder
whether the vast majority of programmers will be able to cope with it. Currently, transactional memory is
a popular approach [67] for reducing the programmer burden using intuitive transaction declarations instead
of more complex concurrency control constructs. However, it does not depart from the classic approach of
parallelizing standard C/C++/Fortran programs, where parallelism can be difficult to extract or manipulate.
Parallel languages, such as HPF [73], require more ambitious evolutions of programming habits, but they also
let programmers pass more semantic about the control and data characteristics of programs to the compiler
for easier and more efficient parallelization. However, one can only observe that, for the moment, few such
languages have become popular in practice.

A solution would have a better chance to be adopted by the community of programmers at large if it
integrates well with popular practices in software engineering, and this aspect of the parallelization problem
may have been overlooked. Interestingly, software engineering has recently evolved towards a programming
model that can blend well with multi-core architectures and parallelization. Programming has consistently
evolved towards more encapsulation: procedures, then objects, then components [86]. Essentially for two
reasons, because programmers have difficulties grasping large programs and need to think locally, and because
encapsulation enables reuse of programming efforts. Component-based programming, as proposed in Java
Beans, .Net or more ad-hoc component frameworks, is the step beyond C++ or Java objects: programs are
decomposed into modules which fully encapsulate code and data (no global variable) and which communicate
among themselves through explicit interfaces/links.

Components have many assets for the task of developing parallel programs. (1) Components provide a
pragmatic approach for bringing parallelization to the community at large thanks to component reuse. (2)
Components provide an implicit and intuitive programming model: the programmer views the program as a
"virtual space" (rather than a sequence of tasks) where components reside; two components residing together
in the space and not linked or not communicating through an existing link implicitly operate in parallel; this
virtual space can be mapped to the physical space of a multi-threaded/multi-core architecture. (3) Provided
the architecture is somehow aware of the program decomposition into components, and can manipulate
individual components, the compiler (and the user) would be also relieved of the issue of mapping programs
to architectures.

In order to use software components for large-scale and fine-grain parallelization, the key notion is to augment
them with the ability to split or replicate. For instance, a component walking a binary tree could spawn two
components to scan two child nodes and the corresponding subtrees in parallel.

We are investigating a low-overhead component-based approach for fine-grain parallelism where components
have the ability to replicate [71], [30]. We investigate both a hardware-supported and software-only approach
to component division. We show that a low-overhead component framework, possibly paired with component

Team Alchemy 7

hardware support, can provide both an intuitive programming model for writing fine-grain parallel programs
with complex control flow and data structures, and an efficient platform for parallel components execution.

CURRENT ACTIVITIES: FET IP SARC, IST NoE HiPEAC, ANR APE.

CURRENT PEOPLE: Olivier Certner, Zheng Li, Pierre Palatin, Olivier Temam.

3.1.3. Spatial computing
The last research direction stems from possible evolutions of technology. While this research direction may
seem very long term, processor manufacturers cannot always afford to investigate many risky alternatives way
ahead in time. At the same time, for them to accept and adopt radical changes, they have to be anticipated long
in advance. Thus, we believe prospective research is a core role for academic researchers, which may be less
immediately useful to companies, but which can bring a real addition to their internal research activities, and
which also carries the potential of bringing disruptive technology.

Prospective information on the future of CMOS technology suggests that, though the density of transistors
will keep increasing, the commuting speed of transistors will not increase as fast, and transistors may be more
faulty (either fabrication defects or execution faults). Possible replacement/alternative technologies, such as
nanotubes [63] which have received a lot of attention lately, share many of these properties: high density,
but slow components (possibly even slower than current components), a large rate of defects/faults, and more
difficulty to place them except than in fairly regular structures.

In short, several potential upcoming technologies seem to bring a very large number of possibly faulty and not
so fast components with layout issues. For architectures to take advantage of such technology, they would have
to rely on space much more than time/speed to achieve high performance. Large spatial architectures bring a
set of new architecture issues, such as controling the execution of a program in a totally decentralized way,
efficiently managing the placement of program tasks on the space, and managing the relative movement of
these different tasks so as to minimize communications. Furthermore, beyond a certain number of processing
elements, it is not even clear whether many applications will embed enough traditional task-level parallelism
to take advantage of such large spaces, so applications may have to be expressed (programmed) differently in
order to leverage that space. These two research issues are addressed in the two research activities described
below.

Blob computing. Blob computing [5] is both a spatial programming and architecture model which aims at
investigating the utilization of a vast amount of processing elements. The key originality of the model is to
acknowledge that the chip space becomes too large for anything else than purely local actions. As a result,
all architecture control becomes local. Similarly, the program itself is decomposed into a set of purely local
actions/tasks, called Blobs, connected together through links; the program can create/destroy these links during
its lifetime.

With respect to architecture control, for instance, the local method for expressing that two tasks frequently
communicating through a link must get close together in space so that their communication latency is low is
expressed through a simply physical law, emulating spring tension; the more communications, the higer the
tension. Similarly, expressing that tasks should move away because too many tasks are grouped in the same
physical spot is achieved through a law similar to pressure: as the number of tasks increases, the local pressure
on neighbor tasks increases, inducing them to move away. Overall many of these local control rules derive
from physical or biological laws which achieve the same goals: controling a large space through simple local
interactions.

With respect to programming, the user essentially has to decompose the program into a set of nodes and links.
The program can create a static node/link topology that is later used for computations, or it can dynamically
change that topology during execution. But the key concept is that the user is not in charge of placing tasks on
the physical space, only to express the potential parallelism through task division. As can be observed, several
of the intuitions of the CAPSULE environment of Section 3.1.2.2 stems from this Blob model.

8 Activity Report INRIA 2006

Bio-Inspired computing. As mentioned above, beyond a certain number of individual components, it is not
even clear whether it will be possible to decompose tasks in such a way they can take advantage of a large
space. Searching for pieces of solution to this problem has progressively lead us to biological neural networks.
Indeed, biological neural networks (as opposed to artificial neural networks, ANNs) are well-known examples
of systems capable of complex information processing tasks using a large number of self-organized, but slow
and unreliable components. And the complexity of the tasks typically processed by biological neurons is well
beyond what is classically implemented with ANNs, because ANNs lack key features of biological neural
networks.
Emulating the workings of biological neural networks may at first seem far-fetched. However, the SIA
(Semiconductor Industry Association) in its 2005 roadmap addresses for the first time “biologically inspired
architecture implementations” [85] as emerging research architectures and focuses on biological neural
networks as interesting scalable designs for information processing. More importantly, the computer science
community is beginning to realize that biologists have made tremendous progress in the understanding of
how certain complex information processing tasks are implemented (programmed) using biological neural
networks.
One of the key emerging features of biological neural networks is that they process information by abstracting
it, and then only manipulate such higher abstractions. As a result, each new input (for image processing
for instance) can be analyzed using these learned abstractions directly, thus avoiding to rerun a lengthy set
of elementary computations. More precisely, Poggio et al. [81] at MIT have shown how combinations of
neurons implementing simple operations such as MAX or SUM, can automatically create such abstractions
for image processing, and some computer science researchers in the image processing domain have started to
take advantage of these findings.
We are starting to investigate the information processing capabilities of this abstraction programming
method [34], [13], [33], [12]. While image processing is also our first application, we plan to later look at
a more diverse set of example applications.

A complex systems view of computing systems. More generally, the increased complexity of computing
systems at stake, whether due to a large number of individual components, a large number of cores or
simply complex architecture program/pairs, suggest that novel design and evaluation methodologies should
be investigated that rely less on known design information than on observed behavior of the global resulting
system. The main problem here is to be able to extract general characteristics of the architecture on the basis of
measurements of its global behavior. For that purpose, we are using tools provided by the physics of complex
systems (nonlinear time series analysis, phase transitions, multifractal analysis...).
We have already applied such tools to better understand the performance behavior of complex but traditional
computing systems such as superscalar processors [24], [3]. And we are starting to apply them to sampling
techniques for performance evaluation [64], [29]. We will be progressively expanding the reach of these
techniques in our research studies in the future.

CURRENT ACTIVITIES: ASTICO ACI grant.

CURRENT PEOPLE: Hugues Berry, Christine Eisenbeis, Frédéric Gruau, F. Jiang, Benoît Siri, Olivier Temam

3.1.4. Transversal research activities: simulation and compilation
Since our research group has been involved in both compiler and architecture research for several years, we
have progressively given increased attention to tools, partly because we found a lot of productivity was lost
in inefficient or hard to reuse tools. Since then, both simulation and compilation platforms have morphed into
research activities of their own. Our group is now coordinating the development of the simulation platform of
the European HiPEAC network, and it is co-coordinating the development of the compiler research platform
of HiPEAC together with University of Edinburgh.

Team Alchemy 9

3.1.4.1. Simulation platform

As processor architecture and program complexity increase, so does the development and execution time
of simulators. Therefore, we have investigated simulation methodologies capable of increasing our research
productivity. The key point is to improve the reuse, sharing, comparison and speed capabilities of simulators.
For the first three properties, we are investigating the development of a modular simulation platform, and for
the latter fourth property, we are investigating sampling techniques and more abstract modeling techniques.
Our simulation platform is called UNISIM [41].

What is UNISIM? UNISIM is a structural simulation environment which provides an intuitive mapping from
the hardware block diagram to the simulator; each hardware block corresponds to a simulation module.
UNISIM is also a library of modules where researchers will be able to download and upload (contribute)
modules.

What are the assets of UNISIM over other simulation platforms? UNISIM allows to reuse, exchange and
compare simulator parts (and architecture ideas), something that is badly needed in academic research, and
between academia and industry. Recently, we did a comparison of 10 different cache mechanisms proposed
over the course of 15 years [8], and suggested the progress of research has been all but regular because of
the lack of a common ground for comparison, and because simulation results are easily skewed by small
differences in the simulator setup.

Also, other simulation environments or simulators advocate modular simulation for sharing and comparison,
such as the SystemC environment [40], or the M5 simulator [46]. While they do improve the modularity
of simulators, in practice, reuse is still quite difficult because most simulation environments overlook the
difficulty and importance of reusing control. For instance, SystemC focuses on reusing hardware blocks such
as ALUs, caches, and so on. However, while hardware blocks correspond to the greatest share of transistors
in the actual design, they often correspond to the least share of simulator lines. For instance, the cache data
and instruction banks often correspond to a sizeable amount of transistors, but they merely correspond to array
declarations in the simulator; conversely, cache control corresponds to few transistors but most of the source
lines of any cache simulator function/module. As a result, it is difficult to achieve reuse in practice, because
control code is often not implemented in such a way that it can lend well to reuse.

On the contrary, UNISIM is focused on reuse of control code, provides a standardized module communication
protocol and a control abstraction for that purpose. Moreover, UNISIM will later on come with an open library
in order to better structure the set of available simulators and simulator components.

Taking a realistic approach at simulator usage. Obviously, many research groups will not accept easily to drop
years of investment in their simulation platforms and to switch to a new environment. We take a pragmatic
approach and UNISIM is designed from the ground up to be interoperable with existing simulators, from
industry and academia. We achieve interoperability by wrapping full simulators or simulator parts within
UNISIM modules. We have an example full SimpleScalar simulator stripped of its memory, wrapped into a
UNISIM module, and plugged into a UNISIM SDRAM module.

Moreover, we are in the process of developing a number of APIs (for power, GUI, functional simulators,
sampling,...) which will allow third-party tools to be plugged into the UNISIM engine. We call these APIs
simulator capabilities or services.

With CMPs, communications become more important than cores cycle-level behavior. While the current
version of UNISIM is focused on cycle-level simulators, we are developing a more abstract view of simulators
called Transaction-Level Models (TLM). Later on, we will also allow hybrid simulators, using TLM for
prototyping, and then zooming on some components of a complex system.

Because CMPs also require operating system support for a large part, and because existing alternatives such
as SIMICS [74] are not open enough, we are also developing full-system support in our new simulators jointly
with CEA. Currently, UNISIM has a functional simulator of a PowerPC750 capable of booting Linux.

Cooperation. While Inria was initially developing its own environment called MicroLib [77],[8],1 we found
many similarities with the Liberty environment developed at Princeton University (David August). After a few

10 Activity Report INRIA 2006

interactions, we decided to merge the two environments into a single one called UNISIM. Since then, UNISIM
has been adopted as the official simulation platform of the European HiPEAC network, and has attracted other
cooperations. First, from CEA, a French research institution, which is heavily involved in the development of
the TLM part of UNISIM, and also with UPC, which is involved in both the TLM part and the development
of CMP simulators (they have a UNISIM model of an IBM Cell). Ghent University has recently started to
investigate the application of its statistical simulation techniques to UNISIM simulators.

CURRENT ACTIVITIES: European NoE HiPEAC, European IP SARC, Inria MODSIM joint team.

CURRENT PEOPLE: Sylvain Girbal, Olivier Temam, Zheng Li.

3.1.4.2. Compilation platform

The free GNU Compiler Collection (GCC) is the leading tool suite for portable developments on open
platforms. It supports more than 6 input languages and 30 target processor architectures and instruction sets,
with state-of-the-art support for debugging, profiling and cross-compilation. It has long been supported by
the general-purpose and high-performance hardware vendors. The last couple of years have seen GCC taking
momentum in the embedded system industry, and also as a platform for advanced research in program analysis,
transformation and optimization.

GCC 4.2 features more than 170 compilation passes, two thirds of them playing a direct role in program
optimization. These passes are selected, scheduled, and parameterized through a versatile pass manager. The
main families of passes can be classified as:

• interprocedural analyses and optimizations;

• profile-directed optimization (interprocedural and intraprocedural);

• induction variable analysis, canonicalization and strength-reduction;

• loop optimizations;

• automatic vectorization;

• data layout optimization.

More advanced developments are in progress. We identified three major ones with a direct impact on high-
performance embedded systems research:

• link-time optimization (towards just-in-time and dynamic compilation), with emphasis on scalability
to whole-program optimization and compatibility with production usage;

• automatic parallelization, featuring full OpenMP 2.5 support and evolving towards automatic extrac-
tion of loop and functional parallelism, with ongoing research on speculative forms of parallelism.

The HiPEAC network supports GCC as a platform for research and development in compilation for high-
performance and embedded systems. The network activities on the GCC research platform are coordinated by
Mike O’Boyle and Albert Cohen. We briefly survey the activities conducted in this context in the Alchemy
project team.

Collaborative research and mutual-interest development. Multiple research collaborations have emerged.
Those including Alchemy are listed below.

• IBM Haifa and Philips Research (now NXP Semiconductors) are jointly working on automatic
vectorization for complex and wide embedded vector architectures. This work makes heavy use of
Sebastian Pop’s results on induction variables and dependence analysis. A paper has been submitted
to a journal;

• STMicroelectronics, Inria Futurs and the University of Edinburgh regularly exchange personnel and
ideas on just-in-time and machine learning compilation; one PhD student (Piotr Lesnicki) started in
October on these topics, with the option to hire another one early in 2007.

1Some of the MicroLib developments were rather heavily disseminated: 3500+ downloads of our PowerPC750 simulator, 7400+
downloads of our parallel simulation environment DIST [62] as of November 2006.

Team Alchemy 11

These efforts have an impact on the visibility and influence of European researchers in the GCC developer
community (heavily industry backed, with major contributions from IBM, HP, Intel, AMD, RedHat and
Apple). 7 participants to the 2006 GCC developer’s summit were affiliated to HiPEAC institutions (IBM
Haifa, STMicroelectronics, Philips and Inria Futurs).

CURRENT ACTIVITIES: IST NoE HiPEAC, FET IP SARC, IST STREP ACOTES, IST STREP MilePost,
MEDEA+ ITEA GGCC.

CURRENT PEOPLE: Albert Cohen, Grigori Fursin, Sebastian Pop, Olivier Temam, Piotr Lesnicki, Hamid
Daoud.

4. Software

4.1. Main software developments
4.1.1. Main software developments

COMPILERS & PROGRAM OPTIMIZATION:

Polyhedral transformations in Open64 The WRaP-IT tool (WHIRL Represented as Polyhedra – Interface
Tool) is a program analysis and transformation tool implemented on top of the Open64 compiler
[44] and of the CLooG code generator [43]. The formal basis of this tool is the polyhedral model
for reasoning about loop nests. We introduced a specific polyhedral representation that guarantees
strong transformation compositionality properties [51]. This new representation is used to generalize
classical loop transformations, to lift the constraints of classical compiler frameworks and enable
more advanced iterative optimization and machine learning schemes. WRaP-IT — and its loop
nest transformation kernel called URUK (Unified Representation Universal Kernel) — is designed
to support a wide range of transformations on industrial codes, starting from the SPEC CPU2000
benchmarks, and recently considering a variety of media and signal processing codes (vision, radar,
software radio, video encoding, and DNA-mining in particular, as part of the IST STREP ACOTES,
ANR CIGC PARA, and a collaboration with Thales).

Based on this framework, we are also planning an extension of the polyhedral model to handle
speculative code generation and transformation of programs with data-dependent control, and a
direct search and transformation algorithm based on the Farkas lemma. These developments will
take place in the GRAPHITE project: a migration/rewrite of our Open64-based software to the GCC
suite. This project is motivated by the maturity — performancewise and infrastructurewise — of
GCC 4.x, and on the massive industrial investment taking off on GCC in the recent years, especially
in the embedded world. We are heavily involved in fostering research projects around GCC as a
common compilation platform, and GRAPHITE is one of those projects.

Grigori Fursin developed the first prototype of an iterative optimization API for GCC, and started
using this infrastructure for continuous and adaptive optimization research, in collaboration with the
University of Edinburgh.

PROCESSOR SIMULATION:

UNISIM The UNISIM platform has been described in Section 3.1.4.1. As of now, besides the simulation
engine, the developments include a shared-memory CMP based on the PowerPC 405, functional
simulators for the PowerPC 405 (and cycle-level), PowerPC 750, a functional system simulator of
the PowerPC 750 capable of booting Linux, 10 different cache modules corresponding to various
research works. The following simulators or tools are currently under development: a functional and
cycle-level version of the ARM 9 with full-system capability, a distributed-memory CMP based on
the Power 405 core, an ST231 VLIW functional and later on cycle-level simulator.

12 Activity Report INRIA 2006

BeeRS & IDDCA BeeRS [17] is a sampling technique that focuses on practicality by jointly considering
warm-up and sampling. Most sampling techniques treat the problem separately which complicates
their practical usage. BeeRS also includes the IDDCA clustering technique which has been shown
to outperform traditional k-means techniques by an order of magnitude [64].

MicroLib MicroLib [84] is our former version of a modular simulation platform. It includes a library
of modular simulator components freely distributed on a web site (www.microlib.org). As of now,
it contains generic modules for each of the main components of a superscalar processor, a full
superscalar processor model, an embedded processor model (PowerPC 750).

FastSysC FastSysC [76] is an enhanced SystemC engine. SystemC is itself a modular simulation envi-
ronment which is becoming a de facto standard supported by more than 50 companies in the em-
bedded domain. However, the SystemC engine development is geared toward adding functionalities
rather than improving performance. Because performance is critical in processor simulation, due
to excessively long traces, we have developed from scratch a new SystemC engine geared toward
performance.

DiST As part of our efforts on speeding up simulation execution, we have developed a tool for paral-
lelizing simulators, called DiST [62], requiring little simulator modifications and incurring only a
small loss of accuracy. The main asset of the tool is that it can take advantage of multiple computing
resources.

5. New Results

5.1. Practical approach to program optimizations
5.1.1. Iterative optimization

Our general approach consists in acknowledging that architectures are too complex to embed reliable
architecture models in compilers, and to explore the behavior of the architecture/program pair through
repeated executions. Then, using machine-learning techniques, a model of this behavior is infered from the
observations. This approach is usually called iterative optimization.

In the recent years, iterative optimization has emerged as a major research trend, both in traditional compilation
contexts and in application-specific library generators (like ATLAS or SPIRAL). The topic has matured
significantly since the pionneering works of Mike O’Boyle [78] at University of Edinburgh, UK or Keith
Cooper [53] at Rice University. While these research works successfully demonstrated the performance
potential of the approach, they also highlighted that iterative optimization cannot become a practical technique
unless a number of issues are resolved. Some of the key issues are: the size and structure of the search space,
the sensitivity to data sets, and the necessity to build long transformation sequences.

Scanning a large search space. Transformation parameters, the order in which transformations are applied,
and even which transformations must be applied and how many times, all form a huge transformation space.
One of the main challenges of iterative optimization is to rapidly converge towards an efficient, if not optimal,
point of the transformation space. Machine-Learning techniques can help build an empirical model of the
transformation space in a simple and systematic way, only based on the observation of transformations
behavior, and then rapidly deduce the most profitable points of the space. We are investigating how to
correlate static and dynamic program features with transformation efficiency. This approach can speed up
the convergence of the search process by one or two orders of magnitude compared to random search [25],
[38], [1].

We have also shown that by representing the impact of loop transformations using structured encoding derived
from polyhedral program representation, it is possible to reduce the complexity of the search by several orders
of magnitude [39]. This encoding is further described in Section 3.1.1.2.

Team Alchemy 13

We have also shown that it is possible to further speed up transformation space exploration by exploring
several transformations during a single run [60]. Currently, one program transformation is explored for each
loop nest, while performance often reaches a stable state soon after the start of the execution. We have
shown that, assuming we properly identify the phase behavior of programs, it is possible to explore multiple
transformations in each run.

Data set sensitivity. Iterative optimization is based on the notion that the compiler will discover the best
way to optimize a program through repeatedly running the same program on the same data set, trying one
or a few different optimizations upon each run. However, in reality, a user rarely needs to execute the same
data set twice. Therefore, iterative optimization is based on the implicit assumption that the best optimization
configuration found will work well for all data sets of a program. To the best of our knowledge, this assumption
has never been thoroughly investigated. Most studies on iterative optimization repeatedly execute the same
program/data set pair [52], [61], [58], [70], [42], only recently, some studies have focused on the impact of
data sets on iterative optimizations [68], [45].

In order to explore the issue of data set sensitivity, we have assembled a data set suite, of 20 data sets per
benchmark, for most of the MiBench [65] embedded benchmarks. We have found that, though a majority
of programs exhibit stable performance across data sets, the variability can significantly increase with many
optimizations. However, for the best optimization configurations, we find that this variability is in fact small.
Furthermore, we show that it is possible to find a compromise configuration across data sets which is often
within 5% of the best possible optimization configuration for most data sets, and that the iterative process
can converge in less than 20 iterations (for a population of 200 optimization configurations). Overall, the
preliminary conclusion, at least for the MiBench benchmarks, is that iterative optimization is a fairly robust
technique across data sets, which brings it one step closer to practical usage.

Compositions of program transformations. Compilers impose a certain set of program transformations, an
order of application and how many times each transformation is applied. In order to explore what are the
possible gains beyond these strict constraints, we have manually optimized kernels and benchmarks, trying to
achieve the best possible performance assuming no constraint on transformation order, count or selection [80],
[79]. The study helped us clarify which transformations bring the best performance improvements in general.
But the main conclusion of that study is that surprisingly long compositions of transformations are sometimes
needed (in one case, up to 26 composed loop transformations) in order to achieve good performance. Either
because multiple issues must be tackled simultaneously or because some transformations act as enabling
operations for other transformations.

As a result, we have started developing a framework facilitating the composition of long transformations.
This framework is based on the polyhedral representation of program transformations [51]. This framework
also enables a more analytical approach to program optimization and parallelization, beyond the simple
composition of transformations. This latter part is further developed in Section 3.1.1.2.

Putting it all together: continuous optimization. Increasingly, we are now moving toward automatizing the
whole iterative optimization process. Our goal is to bring together, within a single software environment, the
different aforementioned observations and techniques (search space techniques, data set sensitivity properties,
long compositions of transformations,...). We are currently in the process of plugging these different techniques
within GCC in order to create a tool capable of doing continuous, whole-program optimization, and even
collaborative optimization across different users.

Hardware-Oriented applications of iterative optimization. Because iterative optimization can successfully
capture complex dynamic/run-time phenomena, we have shown that the approach can act as a replacement
for costly hardware structures designed to improve the run-time behavior of programs, such as out-of-
order execution in superscalar processors. An iterative optimization-like strategy applied to an embedded
VLIW processor [54] was shown to achieve almost the same performance as if the processor was fitted
with dynamic instruction reordering support. We are also investigating applications of this approach to the
specialization/idiomization of general-purpose and embedded processors [88]. Currently, we are exploring
similar approaches for providing thread scheduling and placement information for CMPs without requiring

14 Activity Report INRIA 2006

costly run-time environement overhead or hardware support. This latter study is related to the work presented
in Section 3.1.2.

CURRENT ACTIVITIES: IST STREP MilePost, FET IP SARC, MEDEA+ ITEA GGCC, IST NoE HiPEAC,
RNTL COP.

CURRENT PEOPLE: Albert Cohen, Patrick Carribault, Grigori Fursin, Sylvain Girbal, Piotr Lesnicki, Louis-
Noël Pouchet, Olivier Temam, Nicolas Vasilache.

5.1.2. Polyhedral program representation: facilitating the analysis and transformation of
programs
As loop transformations are utterly important — performancewise — and among the hardest to predictably
drive through static cost models, their current support in compilers is disappointing. After decades of experi-
ence and theoretical advances, the best compilers can miss some of the most important loop transformations
in simple numerical codes from linear algebra or signal processing codes. Performance hits of more than an
order of magnitude are not uncommon on single-threaded code, and the situation worsens when automatically
parallelizing or optimizing parallel code.

Our previous work on sequences of loop transformations [51] has led to the design of a theoretical framework,
based on the polyhedral model [55], [56], [57], [83], [75], [87], and a set of tools based on the advanced
Open64 compiler. We have shown that this framework does simplify the problem of building complex
transformation sequences, but also that it scales to real-world benchmarks [36], [16], [50], [9], and allows
to significantly reduce the size of the search space and better understand its structure [39]. The latter work, for
example, is the first attempt at directly characterizing all legal and distinct ways to reschedule a loop nest.

After two decades of academic research, the polyhedral model is finally evolving into a mature, production-
ready approach to solve the challenges of maximizing the scalability and efficiency of statically-controlled,
loop-based computations on a variety of high performance and embedded targets. After Open64, we are
now porting these techniques to the GCC compiler [31], applying them to several multi-level parallelization
and optimization problems, including vectorization, extraction and exploitation of thread-level parallelism
on distributed memory CMPs like the Cell broadband engine from IBM, NXP’s CAT-DI scalable signal-
processing accelerator and novel STMicroelectronics emerging xStream architecture.

CURRENT ACTIVITIES: IST STREP ACOTES, ANR CIGC PARA, RNTL COP.

CURRENT PEOPLE: Cedric Bastoul, Albert Cohen, Sebastian Pop, Louis-Noël Pouchet, Nicolas Vasilache.

5.1.3. Iterative optimization meets the polytope model
Participants: Albert Cohen, Sylvain Girbal, David Parello, Olivier Temam, Nicolas Vasilache.

Static cost models have a hard time coping with hardware components exhibiting complex run-time behaviors,
calling for alternative solutions. Iterative optimization is emerging as a promising research direction, but
currently, it is mostly limited to finding the parameters of program transformations or selecting whole
optimization phases. One of the cornerstones of our Center for Program Tuning (RNTL project, Centre
d’Optimisation de Programmes, 2003–2005) is to facilitate the expression and search of compositions
of program transformations. Our framework relies on a unified polyhedral representation of loops and
statements. The key is to clearly separate the impact of each program transformation on the following three
components: the iteration domain, the statements schedule and the memory access functions [50]. Within
this framework, composing a long sequence of program transformations induces no code explosion. As a
result, searching for compositions of transformations is not hampered by the multiplicity of compositions,
and ultimately, it is equivalent to testing different values of the matrices parameters in many cases. Our
techniques have been implemented on top of the Open64/ORC compiler. In addition, we have designed a
prototype iterative optimization infrastructure for iterative optimization, based on genetic algorithms. This
infrastructure distributes simulations, dynamic profiles, compilations, transformations, while interacting with
a machine-learning component or with an expert user. Validation of these concepts and application of the tools
is beginning on the SPEC CPU2000 benchmarks; showing the ability of our tools and framework to scale

Team Alchemy 15

to larger codes is a critical phase in the center for program tuning. Recent research addresses the automatic
search of program transformations in a multidimensional space, combining Lagrangian relaxation (e.g., Farkas
Lemma), operation research algorithms and iterative optimization.

5.1.4. Iterative compilation and continuous optimizations
Participants: Albert Cohen, Grigori Fursin, Olivier Temam.

Currently we are working on iterative compilation and continuous optimizations. For iterative compilation
we attempt to further improve existing compiler infrastructure such as gcc or PathScale to be able to apply a
greater variety of program transformations systematically and automatically to considerably improve program
performance and/or reduce power consumption for embedded systems. We investigate both static and run-time
optimizations and adaptation towards various data inputs. For continuous optimizations we attempt to collect
all information available during program optimization and its multiple executions with various datasets. We
further intend to use machine-learning techniques to quickly and automatically optimize new programs or
adapt towards new datasets by exploiting all previously gathered knowledge.

This year we published 3 papers on the above topics.

The paper [60], ranked first at the International Conference on High Performance Embedded Architectures
and Compilers (HIPEAC 2005) shows a method to make iterative optimization practical and usable by
speeding up the evaluation of a large range of optimizations. Instead of using a full run to evaluate a single
program optimization, we take advantage of periods of stable performance, called phases. For that purpose, we
propose a low-overhead phase detection scheme geared toward fast optimization space pruning, using code
instrumentation and versioning implemented in a production compiler .We demonstrate that it is possible
to search for complex optimizations at run-time without resorting to sophisticated dynamic compilation
frameworks. In addition to that, our approach also enables to quickly design self-tuned applications.

The two other papers [72] and [59] (in collaboration with Edinburgh University) explore the ways to search
for best transformations in large optimizations spaces. The first paper uses Pugh’s Unified Transformation
Framework to exploit the performance improvement potential of complex transformation compositions and
presents a heuristic search algorithm capable of efficiently locating good program optimizations within such
a space. The second paper empirically evaluates source-level transformations and the probabilistic feedback-
driven search for "good" transformation sequences within a large optimization space.

5.1.5. Low-level optimization
Participants: Patrick Carribault, Albert Cohen.

This work is done in collaboration with William Jalby from University of Versailles-Saint-Quentin. To achieve
the best performance on single processors, optimizations need to target most components of the architecture
simultaneously, focusing on the memory hierarchy (including registers), branch prediction, instruction-level
parallelism and vector (SIMD) parallelism. Typical examples of good candidates for aggressive optimization
technologies include regular and numerical computations from scientific, signal processing or multimedia
applications.

More irregular programs can also be data and compute intensive, but less architecture-aware optimizations
have been proposed for such programs. Still, speculative and very complex transformations are available
for such codes in the context of massively parallel computers. We investigated the applicability and exten-
sion/adaptation of some of these techniques for the optimization on uniprocessors, and our results were ex-
tremely promising in the case of two approximate string-matching codes (for computational biology). Hybrid
static-dynamic optimizations for such programs are also being considered, driving the selection of optimiza-
tion parameters at run-time through the fine-grain tracking of the behaviour of the application (performance
counters).

16 Activity Report INRIA 2006

Finally, we studied even more irregular codes: decision trees in control-intensive emulators, text processors or
memory management functions. We showed that, surprisingly, high quality performance predictions could be
achieved at compile time, helping the compiler to take the right code generation decisions. This study also led
to the design of a new program transformation, called Deep Jam, generalizing the unroll-and-jam optimization
to nested irregular loops with conditionals and early exits [47].

5.1.6. Advanced analysis and optimization for the end-user
Participants: Albert Cohen, Sebastian Pop.

This work is done in collaboration with Georges Silber, Pierre Jouvelot and François Irigoin from École
Nationale Supérieure des Mines de Paris.

We designed an induction variable analyzer suitable for the analysis of typed, low-level, three address
representations in SSA form. At the heart of our analyzer is a new algorithm recognizing scalar evolutions.
We define a representation called trees of recurrences that is able to capture different levels of abstractions:
from the finer level that is a subset of the SSA representation restricted to arithmetic operations on scalar
variables, to the coarser levels such as the evolution envelopes that abstract sets of possible evolutions in
loops. Unlike previous work, our algorithm tracks induction variables without prior classification of a few
evolution patterns: different levels of abstraction can be obtained on demand [7]. The low complexity of the
algorithm fits the constraints of a production compiler, and roots the mainline dependence analysis framework
in the Gnu Compiler Collection (GCC), as illustrated by the evaluation of our implementation on standard
benchmark programs [82].

5.2. Joint architecture/programming approaches
5.2.1. Passing program semantics using a synchronous language for high-performance video

processing
While we are currently investigating the aforementioned approach for general-purpose applications, we have
started with the investigation of the specific domain of high-end video processing. In this domain, assessing
that real-time properties will be satisfied is as important as reaching uncommon levels of compute density on
a chip. 150 giga-operations per second per Watt (on pixel components) is the norm for current high-definition
TVs, and cannot be achieved with programmable cores at present. The future standards will need an 8-fold
increase (e.g., for 3D displays or super-high-definition). Predictability and efficiency are the keywords in this
domain, in terms of both architecture and compiler behavior.

Our approach combines the aforementioned iterative optimization and polyhedral modeling research with a
predictability- and efficiency-oriented parallel programming language. We focus on warrantable (as opposed
to best-effort) usage of hardware resources with respect to real-time constraints. Therefore, this parallel
programming language must allow overhead-free generation of tightly coupled parallel threads, interacting
through dedicated registers rather than caches, streaming data through high-bandwidth, statically managed
interconnect structures, with frequent synchronizations (once every few cycles), and very limited memory
resources immediately available. This language also needs to support advanced loop transformations, and
its representation of concurrency compatible with the expression of multi-level partitioning and mapping
decisions. All these conditions tend to consider a language closer to hardware synthesis languages than
general-purpose, von Neumann oriented imperative ones [48], [49].

The synchronous data-flow paradigm is a natural candidate, because of its ability to combine high-productivity
in programming complex concurrent applications (due to the determinism and compositionality of the
underlying model, a rare feature of a concurrent semantics), direct modeling of computation/communication
time, and static checking of non-functional properties (time and resource constraints). Yet generating low-
level, tightly fused loops with maximal exposition of fine-grain parallelism from such languages is a difficult
problem, as soon as the target processor is not the one being described by the synchronous data-flow program,
but a pre-existing target on which we are folding an application program. The two tasks are totally different:
although the most difficult decisions are pushed back to the programmer in the hardware synthesis case,

Team Alchemy 17

application programmers usually rely on the compiler to abstract away the folding of their code in a reasonably
portable fashion across a variety of targets. This aspect of synchronous language compilation has largely
been overlooked and constitutes the main direction of our work. Another direction lies in the description of
hardware resources, at the same level as the application being mapped and scheduled onto them; this unified
representation would allow the expression of the search space of program transformations, and would be a
necessary step to apply incremental refinement methods (expert-driven, very popular in this domain).

Technically, we extend the classical clock calculus (a type system) of the Lucid Synchrone language,
expliciting significantly more information about the program behavior, especially when tasks must be started
and will be completed, how information flow among tasks, etc. Our main contribution is the integration
of relaxed synchronous operators like jittering and bursty streams within synchronous bounds [26]. This
research consists in revisiting the semantics of synchronous Kahn networks in the domain of media streaming
applications and reconfigurable parallel architectures, in collaboration with Marc Duranton from Philips
Research Eindhoven (now NXP Semiconductors) and with Marc Pouzet from LRI and the Proval Inria project
team.

CURRENT ACTIVITIES: IST STREP ACOTES, Marie Curie ToK-IAP PSYCHES.

CURRENT PEOPLE: Albert Cohen, Christine Eisenbeis, Mohammed Fellahi.

5.2.2. Passing program semantic using software components
Beyond domain-specific and regular applications (loops and arrays), automatic compiler-based parallelization
has achieved only mixed results on programs with complex control and data structures [66]. Writing, and
especially debugging, large parallel programs is a notoriously difficult task [69], and one may wonder
whether the vast majority of programmers will be able to cope with it. Currently, transactional memory is
a popular approach [67] for reducing the programmer burden using intuitive transaction declarations instead
of more complex concurrency control constructs. However, it does not depart from the classic approach of
parallelizing standard C/C++/Fortran programs, where parallelism can be difficult to extract or manipulate.
Parallel languages, such as HPF [73], require more ambitious evolutions of programming habits, but they also
let programmers pass more semantic about the control and data characteristics of programs to the compiler
for easier and more efficient parallelization. However, one can only observe that, for the moment, few such
languages have become popular in practice.

A solution would have a better chance to be adopted by the community of programmers at large if it
integrates well with popular practices in software engineering, and this aspect of the parallelization problem
may have been overlooked. Interestingly, software engineering has recently evolved towards a programming
model that can blend well with multi-core architectures and parallelization. Programming has consistently
evolved towards more encapsulation: procedures, then objects, then components [86]. Essentially for two
reasons, because programmers have difficulties grasping large programs and need to think locally, and because
encapsulation enables reuse of programming efforts. Component-based programming, as proposed in Java
Beans, .Net or more ad-hoc component frameworks, is the step beyond C++ or Java objects: programs are
decomposed into modules which fully encapsulate code and data (no global variable) and which communicate
among themselves through explicit interfaces/links.

Components have many assets for the task of developing parallel programs. (1) Components provide a
pragmatic approach for bringing parallelization to the community at large thanks to component reuse. (2)
Components provide an implicit and intuitive programming model: the programmer views the program as a
"virtual space" (rather than a sequence of tasks) where components reside; two components residing together
in the space and not linked or not communicating through an existing link implicitly operate in parallel; this
virtual space can be mapped to the physical space of a multi-threaded/multi-core architecture. (3) Provided
the architecture is somehow aware of the program decomposition into components, and can manipulate
individual components, the compiler (and the user) would be also relieved of the issue of mapping programs
to architectures.

18 Activity Report INRIA 2006

In order to use software components for large-scale and fine-grain parallelization, the key notion is to augment
them with the ability to split or replicate. For instance, a component walking a binary tree could spawn two
components to scan two child nodes and the corresponding subtrees in parallel.

We are investigating a low-overhead component-based approach for fine-grain parallelism where components
have the ability to replicate [71], [30]. We investigate both a hardware-supported and software-only approach
to component division. We show that a low-overhead component framework, possibly paired with component
hardware support, can provide both an intuitive programming model for writing fine-grain parallel programs
with complex control flow and data structures, and an efficient platform for parallel components execution.

CURRENT ACTIVITIES: FET IP SARC, IST NoE HiPEAC, ANR APE.

CURRENT PEOPLE: Olivier Certner, Zheng Li, Pierre Palatin, Olivier Temam.

5.3. A biological approach to computing
5.3.1. Architecture simulation and sampling

Participants: Hugues Berry, Daniel Gracia Pérez, Olivier Temam.

Sampling and Simulation
Architecture simulation is usually based on cycle-accurate simulators that are very slow compared to execution
times on the real architecture. This problem might even become a real blockage with the forthcoming complex
multi-core architectures. One possible solution is to simulate only chosen pieces (i.e. samples) of the whole
program and use the simulation of these samples to extrapolate to the whole program. In the past few years,
several research works have demonstrated that sampling can drastically speed up architecture simulation,
and several of these sampling techniques are already largely used. However, for a sampling technique to be
both easily and properly used, it must fulfill a number of conditions: it should require no hardware-dependent
modification of the simulator, it should simultaneously consider warm-up of the cache structures and sampling,
while still delivering high speed and accuracy.
We recently proposed [17] a sampling technique focused more on transparency than on speed and accuracy,
though the technique delivers almost state-of-the-art performance. Our sampling technique is based on algo-
rithms that were originally developed for neurological image analysis. We make the following contributions:
(1) a technique for splitting the execution trace into a potentially very large number of variable-size regions
to capture program dynamic control flow, (2) a clustering method capable of efficiently coping with such a
large number of regions, (3) a budget- based method for jointly considering warm-up and sampling costs,
presenting them as a single parameter to the user, and for distributing the number of simulated instructions be-
tween warmup and sampling based on the region partitioning and clustering information. Overall, the method
achieves an accuracy/time tradeoff that is close to the best reported results using clustering-based sampling
(though usually with perfect or hardware-dependent warm-up), with an average CPI error of 1.68% and an
average number of simulated instructions of 288 million instructions over the Spec benchmarks. The tech-
nique/tool can be readily applied to a wide range of benchmarks, architectures and simulators, and will be
used as a sampling option of the UniSim modular simulation framework.
Complex systems analysis of performance
The difficulties encountered in the field of architecture simulators can in part be ascribed to the complexity
of the microprocessors themselves. Indeed, performance traces obtained during simulations can be highly
variable and difficult to predict. A better understanding and characterization of these complex signals
could lead to development of better sampling/simulation techniques. In this context, we studied the time-
evolution of performance traces during execution of several prototypical programs on prototypical modern
microprocessors [10], [23]. We recorded several metrics characterizing execution performance and memory
operations, and analyzed them using current techniques from complex systems sciences (nonlinear time
series analysis in particular). These techniques have been used, for example, to analyze and quantify signals
from complex physiological systems, such as heartbeat time series (electrocardiograms) or brain waves
(electroencephalograms). Besides regular periodic behaviors, we evidenced highly variable performance
evolutions for several programs. More interestingly, we showed that the evolution of performance during

Team Alchemy 19

the execution of several programs displays clear evidences of deterministic chaos, with sensitivities to
initial conditions that are comparable to textbook chaotic systems. This is a clear demonstration that current
monoprocessor architectures are, if not complex systems, at least complicated enough to yield such complex
behaviors. Future work will focus on applying these analytical tools to concrete simulation issues, and extend
our analysis to still more complex architectures, such as chip multiprocessors.

5.3.2. Biological neural networks as bio-inspiration sources for future architectures
Participants: Hugues Berry, Bruno Cessac, Bruno Delord, Mathias Quoy, Benoit Siri, Olivier Temam.

Current trends in the evolution of microprocessor architecture outline systems consisting of a huge number
of slow components (possibly even slower than current ones) with a large rate of defects/faults as well as
interconnect and placement with variable degrees of irregularity. For architectures to take advantage of such
technology, they would have to rely on space much more than time/speed to achieve high performance.
The major issues that architects will face at long term are thus how to design, organize and programm
these systems, in such a way to warranty scalability. Searching for pieces of solution to this problem has
progressively led us to biological neural networks. Indeed, biological neural networks (as opposed to artificial
neural networks, ANNs) are well-known examples of systems capable of complex information processing
tasks using a large number of self-organized, but slow and unreliable components. And the complexity of the
tasks typically processed by biological neurons is well beyond what is classically implemented with ANNs,
because ANNs lack key features of biological neural networks. Emulating the workings of biological neural
networks may at first sight seem far-fetched. However, the SIA (Semiconductor Industry Association) in its
2005 roadmap addresses for the first time “biologically inspired architecture implementations” as emerging
research architectures and focuses on biological neural networks as interesting scalable designs for information
processing.
An abstract model for biological neural network growth
Computing machines, such as current processor architectures, are designed using a very abstract model of
the physical properties of transistors and circuits. Typically, microprocessor architects do not deal with the
complex physics occurring at the transistor level but rely upon a very abstract and simplified model of the
undergoing physical phenomena. Similarly, if we want to start thinking about computing systems built upon
biological neurons, we must come up with sufficiently abstract models of biological neural networks, that will
enable the design of large systems without dealing with the detailed individual behavior of the neurons. For
instance, to understand what kind of computing systems can be built upon biological neurons, we must first
understand the kind of structures into which biological neurons can self-assemble. To this aim, we started
with the biological neural network of Caenorhabditis elegans, which has been described in great details in
the biology literature. Using this map as an oracle, we defined [13] a model of network growth in real space
and provided empirical evidence that the characteristics of networks built upon this model and the above
mentioned biological network closely match. Since this model describes the network growth using simple local
rules, it can be used to represent much larger networks, as would be needed for computing systems. In other
words, it allows the generation of surrogate networks with structures comparable to that of Caenorhabditis
elegans. Further works will be devoted to testing the implementation of these bioinspired structures inside real
computing systems such as the interconnect network of chip multiprocessors.
Structure and dynamics of recurrent neural networks
A second major research direction consists in the study of the relationship between function, learning and
structure in recurrent neural networks (RNNs). RNNs include backward connections, which endow them with
a rich variety of dynamical behaviors. Many real biological neuron networks show such high proportions
of backward connections. Recurrent neural networks appear thus more interesting to the understanding
of computation in large neural networks than the classical feed-forward structures used in most artificial
neural networks. Unlike Hopfield-like networks, RNNs exhibit complex dynamics (limit cycles, chaos) and
transitions between them. We started to study these systems using complex networks approaches. In this
framework, the dynamics of the neurons (the network nodes) depends on synaptic weights (the network links)
that themselves vary over time (“learning”) as a function of the neuron dynamics. The system can thus be
thought of as composed by two coupled layers (one for neuron dynamics and one for network structure)
whose mutual coupling remains largely obscure. We proposed to use both a dynamical system and a graph

20 Activity Report INRIA 2006

theory approach in order to understand this mutual coupling [12]. We investigated several local (unsupervised)
learning rules to update synaptic strengths. These rules are simple implementations of Hebb’s rule for learning
in biological neurons (i.e. neurons which fire together become more tightly coupled).
Due to the aforementioned coupling, learning shapes the network dynamics, topology and function. We
evidenced that the modifications of the dynamics can be related to changes in the local loop content. We
further showed that, because of these local structural alterations, the global network topology changes as
well. Indeed, under the influence of learning, the distribution of the strong synapses on the network is no more
homogeneous, i.e. two neurons have an increasing probability to be strongly coupled if they are both connected
to a third neuron by strong synapses. Besides, the mean-shortest path remains low, so that these learning rules
organize the network as a small-world one. Our studies [34], [33] thus progressively uncover a global sketch
allowing the understanding of the relationships between dynamics, structure and function in these networks.
Future works in this project will follow two main directions. Firstly, we will extend our fundamental studies
of RNNs using tools from spectral graph theory, that should allow us to better delineate how input patterns are
actually encoded into the network structure. Secondly, we will apply these fundamental studies to the case of
visual object recognition. Our aim here is to develop a bio-inspired model for object recognition in which the
network structure would emerge through activity-based local learning rules.

5.3.3. Optimizing the structure of large-size neural networks
Participants: Hugues Berry, Fei Jiang, Marc Schoenauer.

The connectivity structure of complex networks (i.e. their topology) is a crucial determinant of information
transfer in large networks (internet, social networks, metabolic networks...). For instance, information, virus or
epidemic spreading in complex networks (“small-world” or “scale-free” networks) is much more efficient/fast
than in comparable random or regular networks. Other crucial properties of these systems are topology-
controlled, such as tolerance to faults/defects (robustness), vaccination or the existence of critical thresholds
for epidemic spreading. Several studies have applied such complex networks tools to neural networks.
Here again, several functional properties of neural networks seem to depend on the network (complex)
topology. For instance, a recent study (Simard et al., Physics Letters A 336:8-15,2005) has shown that
introducing a “small-world” topology in a monolayer perceptron increases the learning rate of the network.
Symmetrically, evolutionary algorithms are commonly used to modify the topology of neural networks so as
to optimize their performance. But, in most cases, the studied topologies are quite simple and the number of
connections/neurons is low. Furthermore, the evolutionary mechanisms used in most of these studies do not
modify the topology in an intensive manner.
Hence, optimization of large neural networks through artificial evolution has hardly been studied. However
optimization of complex topologies in related systems has recently begun to be inspected. For instance,
Tomassini and collaborators (Complex Systems 15:261-284, 2005) have used evolutionary algorithms to
optimize the topology of 1D-cellular automata networks and reported that their optimal topologies were
systematically close to “small-world” ones. More recently, Oikonomou & Cluzel (Nature Physics 2:532-536,
2006) have optimized the topology of boolean networks and found that the evolution of networks with random
topology is very different, even quantitatively, from networks with “scale-free” topology. Here, we wish to
study the interaction between the topology of large neural networks and their learning capacities. Our approach
tackles both the direct and inverse problem:

• Direct problem: Given a network with fixed topology, we study how the network learns to perform its
target task through local (Hebb’s) rules. An important part of this study consists in trying to under-
stand the emergence of modular structures in the networks. Modularity is indeed a common feature
in biological neural networks, but is usually not observed in artificial neural networks obtained with
artificial evolution. Another important aspect of this part of the study is that quantification of the
network efficiency can be defined on the basis of its pure performance, but it may also be based on
its robustness to failures, noise, or attacks.

Team Alchemy 21

• Inverse problem: Given a set of local learning rules and a given evolutionary optimization algorithm
acting on the network topology, we study what kind of topology the networks evolve to. In other
words, we want to know if there exists such a thing as an optimal topology, for given local
learning rules and a given task to perform. Here again, network optimization can concern the pure
performance of the network, but, alternatively, it may as well concern its robustness to noise or
defects.

This project is a collaboration with project-team TAO (INRIA futurs, Orsay), headed by Marc Schoenauer,
and grounds the Ph.D. thesis work of F. Jiang, which is co-supervised and co-funded by both groups.

5.3.4. Individual properties of biological neurons
Participants: Hugues Berry, Bruno Delord, Stephane Genet, Emmanuel Guigon, Loic Sabarly.

The properties of biological neural networks that are of direct interest to architecture research are in part
due to the intrinsic properties of the individual neurons. We are collaborating with the neuroscience research
lab ANIM (INSERM U742) to develop simulation and modeling studies of specific properties of individual
biological neurons such as time handling or plasticity and memory properties.
A major effort in this project is devoted to modeling of the cerebellum. The cerebellum is a non-cortical
structure that contains more neurons than the rest of the brain (in mammals) and has been implied in
motor control, among others. The repetition of a conserved connectivity motif (i.e. a module) throughout
this structure suggests that this motif produces a unique computational process at the basis of most of the
cerebellum functions. One hypothesis suggests that the cerebellum basically provides representations of the
time interval separating two successive events (in the tenths second range). Purkinje cells (PCs) are the only
output of the cerebellar cortex and probably provide essential mechanisms for this temporal computation. But
the implied mechanisms are still poorly understood. The most probable mechanism seems to be the generation
of a slow response in PCs, such as the dendrite plateau potentials observed experimentally. In this work,
we studied the triggering and propagation of the plateaus in spatial representations (cables) of the complex
PC dendrite [28]. Our model showed that plateau potentials form an original type of electrical signaling,
that cannot be classified as action potentials nor passive electrotonus. Furthermore, our model suggests that
plateau potentials could be adaptive signals, whose duration could be learned in order to code time intervals
between successive events. The main perspectives of this works consist thus in including synaptic plasticity
mechanisms in the model to test its adaptability and time learning properties. In particular, we will use the
plasticity model that is currently under study by our group and is able to yield, in a unique dynamical process,
plasticity and memory properties which agree with experimental observations at PC synapses. We shall then
obtain a module able to model learning of time interval representations in the cerebellum.

6. Contracts and Grants with Industry

6.1. Collaborations involving industry
STMicroelectronics Besides the aforementioned RNTL contract COP, and the HiPEAC network of

excellence, and IP SARC, we have a regular and informal collaboration on iterative compilation and
novel processor architecture with the AST (Advanced Systems and Technologies) research group of
STMicroelectronics based in Lugano, Switzerland and Grenoble, France.

Philips Semiconductors, now NXP We have had regular collaborations with Philips for almost 10 years
now, including direct contracts. Currently, we are involved in several grants with Philips (IP SARC,
Marie-Curie fellowships, ACOTES). Philips Semiconductors has recently become NXP.

ARM R&D, Cambridge In the context of the SARC FP6 FET Proactive IP project, Pierre Palatin spent a
3 months summer internship at ARM R&D, Cambridge. The goal was the application of Capsule on
specific ARM architectures.

22 Activity Report INRIA 2006

6.2. National and international collaborative grants
GGCC: EU, MEDEA+ program ITEA Call 8 project on global analysis and optimization in GCC. Our

involvment lie in the compiler infrastructure, static analysis in the polyhedral model, and feature
extraction for global and contiunous optimization. With CEA (dpt. of energy), UPM (Spain), SICS
(Sweden), major industrial partners (Airbus, Telefonica, Bertin) and SMEs (Mandriva, MySQL, and
others). 04/2006–04/2009.

ACOTES: EU, IST program FP6 STREP on language and compiler support for high-performance stream-
ing applications. We are one of the largest contractors in the project, with major involvment in
interprocedural optimization and loop transformations for concurrent distributed streaming applica-
tions; it is both a programming model and compiler project. With Philips Research (Eindhoven),
IBM Research (Haifa), STMicroelectronics (AST Lugano), Nokia (Helsinki), and UPC (Barcelona).
05/2006–05/2009.

MilePost: EU, IST program FP6 STREP on machine-learning compilation. This project matches one of
the core directions of the project: iterative optimization research, with an emphasis on making
iterative compilation methods practical in real development environments. With IBM Research
(Haifa), ARC (London), CAPS Entreprise (Rennes), IRISA (Rennes), and University of Edinburgh.
05/2006–05/2009.

PARA: French Ministry of Research ANR CIGC project on multi-level parallel programming and auto-
matic parallelization. We are involved in automatic code generation approaches for domain-specific
and target-specific optimizations; iterative and polyhedral compilation methods are explored in an
application-specific context. With Bull, University of Versailles, LaBRI (University of Bordeaux),
INT (Evry), CAPS Entreprise (Rennes). 01/2006–01/2009.

APE: French Ministry of Research ANR RNTL project on parallel real-time applications for embedded
systems. We are developing a component-based environment called CAPSULE for distributed-
memory processors. It will be applied to a novel processor of STMicroelectronics and tested
on applications from Thales. With STMicroelectronics, Thales, University of Paris 6, CEA.
01/2006–01/2009.

PSYCHES: EU, IST program Marie Curie ToK IAP (Transfer of Knowledge, Industry-Academia Partner-
ship); long-term exchange of personnel and 2 years of post-doc; with Philips Research (Eindhoven)
and UPC (Barcelona). 03/2006–03/2009.

SARC: EU, IST program FP6 FET Proactive IP on advanced computer architecture. The goal is to ad-
dress all the aspects of a scalable processor architecture based on multi-cores. It includes program-
ming paradigms, compiler optimization, hardware support and simulation issues. CAPSULE is be-
ing used as component-based programming approach, and UNISIM for the simulation platform.
01/2006–01/2010.

Embedded TeraOps A SYSTEMATIC “Pôle de Competitivité” regional funding for the development of
a large-scale embedded multi-core architectures, coordinated by Thales. It will initially focus on
streaming applications but it will later target programs with more complex control flow. Thales,
Dassault, Thomson, CEA, INRIA. 01/2006–01/2010.

MODSIM MODSIM is an INRIA grant for a joint international team between INRIA and Princeton
University. The goal is the development of the UNISIM simulation platform. With Princeton
University. 01/2006–12/2009.

ACI ASTICO Grant French Minister of Research grant to explore biological neuron networks as possible
sources of inspiration for future computing systems, with a focus on the complex structure of these
networks. Our aim is at the same time to investigate bio-inspired computing systems, and original
approaches for the modeling and understanding of biological neural networks. With University of
Cergy-Pontoise, University of Nice-Sophia-Antipolis and University of Paris 6. 01/2005–01/2008.

Team Alchemy 23

NoE HiPEAC HiPEAC is a network of excellence on High-Performance Embedded Architectures and
Compilers. It involves more than 70 European researchers from 10 countries and 6 companies,
including ST, Infineon and ARM. The goal of HiPEAC is to steer European research on future
processor architectures and compilers to key issues, relevant to the European embedded industry.
Olivier Temam is a member of the steering committee.

ACI Nanosys French Minister of Research grant to study the impact of alternative technologies, par-
ticularly nanotubes, on future computing circuits and architectures. With a large array of French
laboratories in VLSI and architecture design.

RNTL COP The purpose of the project was to bring iterative optimization techniques to general-
purpose and embedded processors. With STMicroelectronics, HP, CEA and University of Toulouse.
01/2003–01/2006.

7. Other Grants and Activities

7.1. Informal collaborations
University of Princeton We have an active collaboration with the Liberty group (David August) at Uni-

versity of Princeton in the past year. The goal is to unify our approach in modular simulation within
the UNISIM framework and thus increase the likelihood that a joint environment be adopted by the
wider community. This interaction is further synchronized with the Common Simulation Platform
activity of the HiPEAC network. Starting January 2005, we obtained an “Joint Team” grant called
MODSIM, together with the Liberty group at University of Princeton.

University of California Santa Cruz Thanks to a France-Berkeley travel grant, We are starting a collab-
oration with the group of Jose Renau, thanks to a 2006-2007 France-Berkeley grant. The topics
are close to the infrastructure work of Alchemy: fast and accurate simulation of multi-core proces-
sors, and support for a modern parallelisation infrastructure in GCC. Jose Renau is a member of the
OpenSparc consortium and contributed to major advances in architecture and compiler support for
thread-level speculation.

University of Edinburgh For the past 2 years, we had a very active cooperation with University of
Edinburgh on iterative optimization; Grigori Fursin, postdoc in our group, got his PhD from
University Edinburgh. This collaboration has resulted in a series of joint articles [60], [25], [15].

University of Illinois We have a regular collaboration with the group of David Padua, Urbana-Champaign,
Illinois, which started 6 years ago, with multiple joint publications and travel grants (CNRS-UIUC).
Research focused on high-performance Java, dependence and alias analysis, processors in memory,
and currently on adaptive program generation and machine learning compilers.

Texas A&M University We started a regular exchange of ideas and personnel with the Parasol laboratory,
led by Lawrence Rauchwerger, a reference in parallel language compilation and architecture support.
ProfṘauchwerger visited Alchemy for a total of 5 months in the last 3 years, and many of us visited
TAMU for shorter periods. The collaboration led to numerous advances in the understanding of the
main challenges and pitfals in scalable parallel processing, and also facilites the organization of
multiple academic events (e.g., the upcoming PACT’07)

UPC We have a regular collaboration with UPC, Barcelona, which started 7 years ago, with several groups
on topics ranging from program optimization to micro-architecture, resulting in several publications,
joint contracts.

University of Passau We have a regular collaboration with the group of Christian Lengauer and Martin
Griebl, Passau, Germany, which started 10 years ago, with multiple joint publications and travel
grants (Procope, Ministry of Foreign Affairs). Our collaboration focused on polyhedral compila-
tion techniques and recently headed towards domain-specific program generation and metaprogram-
ming.

24 Activity Report INRIA 2006

Lal-LPT, University of Paris Sud We have started a collaboration with physicists working on LQCD
(Lattice Quantic Chromo Dynamics). We focus on the next generation of computer that would gain
an order of magnitude speedup over their current APE-next processor (sustained 300 GFlops).

Paris 6 University The properties of biological neural networks that are of direct interest to architecture
research are in part due to the intrinsic properties of the individual neurons. We are collaborating
with the neuroscience research lab ANIM (INSERM U742) to develop simulation and modelling
studies of specific properties of individual biological neurons such as time handling or plasticity and
memory properties [28].

Project-Team TAO, INRIA Futurs We started a collaboration with Marc Schoenauer on evolutionary
algorithms for optimization of complex systems. More precisely, we study evolutionary methods
to optimize the complex structure of large size neural networks. The aim is to find wether there
exists optimal organizations for the interconnect network of such large systems. This collaboration
grounds F. Jiang’s Ph.D. work, which is co-supervised and co-founded by the two groups.

CEA List For the past 6 years, we had a regular collaboration with the Laboratoire Sûreté du Logiciel
(Software Safety Lab) at CEA LIST on two topics: processor simulation and program optimization.
Simulation of complex processor architectures is necessary for the development of software test of
complex systems investigated at CEA. Program optimization is more a way to factor in the CEA
expertise in static analysis and develop new applications. CEA has funded two scholarships in our
group until 2004 and 2005 respectively.

Others We also have regular contacts with several foreign research groups: the CAPSL group at University
of Delaware; and the PASCAL group at University of California Irvine (NSF-INRIA grant).

Hugues Berry collaborates with Bruno Cessac (Institut Non Linéaire de Nice, UMR 6618 CNRS /
Université Nice-Sophia Antipolis), Bruno Delord (ANIM, UMR 742 Inserm / Université Pierre et
Marie Curie, Paris), Stéphane Genet (ANIM, UMR 742 Inserm / Université Pierre et Marie Curie,
Paris), Mathias Quoy (ETIS, UMR 8051 CNRS / Université de Cergy-Pontoise / ENSEA), Olivier
Michel (Ibisc, Université d’Evry), Marc Schoenauer (TAO, INRIA Futurs, Orsay), Nazim Fates
(MAIA, INRIA Loraine, Nancy).

7.2. Seminar and invited scientists
ALCHEMY organizes a joint seminar with CRI (Centre de Recherches en Informatique, Ecole des Mines de
Paris), LRI (Laboratoire de Recherches en Informatique, University of Paris-Sud) and PriSM (University of
Versailles-Saint-Quentin). Talks of 2006 are given below.

• januray 23rd, 2006, Hybrid Optimization, John Cavazos, University of Edinburgh, UK.
• february 24th, 2006, Temporal Memory Streaming, Babak Falsafi, Carnegie Mellon University.
• april 28th, 2006, Dynamic selective compilation and scheduling of Byte-Code, Prof. Stefano Crespi-

Reghizzi, Politecnico di Milano.
• may 5th, 2006, Efficiently Exploring Architectural Design Spaces via Predictive Modeling, Sally A.

McKee, Cornell University Computer Systems Lab.
• june 2nd, 2006, The Tensor Contraction Engine (TCE): A High-Level Approach to Synthesiz-

ing High-Performance Codes for Quantum Chemistry, J. Ramanujam, Distinguished Professor,
Louisiana State University.

• june 14th, 2006, A fresh look at the design of high-end parallel computing systems, Guang R. R.
Gao, Endowed Distinguished Professor, University of Delaware.

• november 7th, 2006, Evolution, Fractals and Complex interactions, Evelyne Lutton, COMPLEX
Team manager, INRIA.

• november 14th, 2006, Conception, Semantics and Implementation of ReactiveML, Louis Mandel,
MOSCOVA team, INRIA.

• december 12th, 2006, Extracting coarse-grained parallelism with the slicing framework, Anna
Beletska, Politecnico di Milano.

Team Alchemy 25

Erven Rohou (ST-MicroElectronics, Lugano, Switzerland), visited ALCHEMY twice for one week in 2006.

Marc Duranton (Philips NXP, Eindhoven, Netherlands) visits ALCHEMY regularly.

Lawrence Rauchwerger from Texas A&M University spent two months in our group, first as a invited professor
supported by LRI in July 2006, and again as an invited professor supported by INRIA Futurs in December
2006.

8. Dissemination

8.1. Leadership within scientific community
Cédric Bastoul

– Member of the LRI department committee at the University of Paris-Sud of Paris-Sud since
2006.

– Member of the Orsay Technology Institute (IUT D’Orsay) Computer Science department
committee since 2006.

Albert Cohen

– HiPEAC Summer School course on GCC (55-65 attendees). The support material
for the courses and tutorials is freely available (public domain or GPL license) and
has been contributed to the main GCC site (gcc.gnu.org, Wiki section; see also
www.hipeac.net/gcc-tutorial).

– HiPEAC GCC Tutorial in Grenoble (France), in May 2006. A second HiPEAC GCC
Tutorial will be associated with the second HiPEAC International Conference, taking place
in Ghent (Belgium) in January 2007.

– Founding member of IFIP WG 2.11.

– Recruiting committee for INRIA Futurs research scientists, 2004 and 2006.

– Competitive oral examination, Écoles Normales Supérieures (TIPE d’informatique),
2004–2006.

Christine Eisenbeis

– member of IFIP WG 10.3.

Olivier Temam

– ANR Future Processor Architectures grants evaluation committee, 2006.

– HiPEAC Summer School course on UNISIM in 2005, tutorials at UPC in 2006 and
scheduled at HiPEAC Conference in 2007.

PROGRAM COMMITTEES:

Albert Cohen

– Co-organizer of Dagstuhl seminar 07361, September 2007, with Sam Midkiff (Pur-
due), Maria-Jesus Garzaran (University of Illinois at Urbana-Champaign), and Christian
Lengauer (Passau University).

– Workshop chair for IEEE Conference on Parallel Architectures and Compilation Tech-
niques (PACT’06, 4 associated workshops).

– Editorial committee of ACM Transactions on Embedded Systems (TECS, special issue on
software and compilers).

26 Activity Report INRIA 2006

– Program committee member of the ACM symp. on Principles and Practice of Parallel
Programming (PPoPP’07).

– Program committee member of the ACM symp. on Partial Evaluation and Program
Manipulation (PEPM’07).

Christine Eisenbeis

– reviewer of the PhDs of Bénédicte Kenmei, Université de Strasbourg, june 27th, 2006,
Mauricio Araya, Université de Nice and Inria Sophia-Antipolis, november 24th, 2006, and
Rachid Seghir, Université de Strasbourg, december 7th, 2006.

– Software and Compilers for Embedded Systems, SCOPES’ 2007, April 2007, Nice.

– IFIP International Conference on Network and Parallel Computing (NPC 2007), Septem-
ber 2007, China.

Frédéric Gruau

– Co-organizer (with Jean-Louis Giavitto, LaMI, Evry and André Dehon, University of
Pennsylvania) of the Dagstuhl seminar on “Spatial Computing”, September, 2006.

Olivier Temam

– ISCA, International Symposium on Computer Architecture, 2007.

– SMART, Workshop on Statistical and Machine learning approaches applied to ARchitec-
tures and compilaTion, 2007.

– CGO, ACM/IEEE International Symposium on Code Generation and Optimization, 2007.

– HPCA, High-Performance Computer Architecture, 2007.

– MoBS, Workshop on Modeling, Benchmarking and Simulation, 2006.

– ISCA, International Symposium on Computer Architecture, 2006.

– HiPEAC’07, International Conference on High-Performance Embedded Architectures and
Compilers, 2007.

– DATE, Design and Automation and Test in Europe, 2006.

8.2. Teaching at university
Hugues Berry gave two courses :

April 13th, 2006, UFR des Sciences Pharmaceutiques de Caen: "Apport de la modélisation mathématique
à l’étude de la dynamique des systèmes cellulaires", Cours (3 heures) dans le cadre de l’UE "Biologie
moleculaire de la cellule" du Master Sciences Biologiques et Médicales (4ème année des étude de
pharmacie).

November 20th, 2006, Université de Cergy Pontoise: Cours (3 heures) dans le cadre de la seconde année
du Master Recherche "Matière Organisée et Systèmes Vivants".

Olivier Temam teaches a computer architecture course at Ecole Polytechnique to 3rd-year students on
computer architectures (appr. 35 hours). He also teaches a course on novel processor architectures at University
of Paris Sud to Master’s students.

Team Alchemy 27

8.3. Workshops, seminars, invitations
The project-team members have given the following talks and attended the following conferences:

Hugues Berry

– Complex dynamics of microprocessor performances during program execution: regularity,
chaos, and others, Conference NKS 2006, Washington D.C., USA, 2006.

– Structure complexe et émergence dans les réseaux de neurones biologiques, Workshop
AMINA, Monastir, Tunisia, 2006. Chairman of the session “Implantations Parallèles”.

– Complex biological systems and computing systems, Evry University & Genopole center,
France, 2006.

– Caractérisation de la performance des microprocesseurs pendant l’exécution de pro-
grammes, 9emes Rencontres du Non Linéaire, Paris, France, 2006.

– Atelier d’épigénomique, Génopole, Evry, 27 janvier 2006.

– Séminaires de l’unité INSERM ANIM, U472, Université P. et M. Curie, february 1st,
2006.

– Séminaires de l’équipe “Bio-informatique”, L.R.I, Orsay, february 23rd, 2006.

– Journée Digiteo Labs “Architecture”, CEA, Saclay, april 27th, 2006.

– Séminaires de l’ACI “Nanosys”, ENST, Paris, october 6th, 2006.

Christine Eisenbeis

– Lal-LRI meeting, march 21st, 2006.

– Pérenniser la loi de Moore?, Cinquièmes Journées Informatique de l’IN2P3 et du DAP-
NIA, september, 2006.

– Dagstuhl seminar on “Spatial Computing”, September, 2006; talk on “N-synchronous
Kahn networks”.

Sylvain Girbal

– First UNISIM tutorial: Learning the Basics of UNISIM. 5 day tutorial at Barcelona UPC
in February 2006.

– Second UNISIM Tutorial: Prise en main de l’environnement de simulation structurelle
UNISIM. Tutoriel d’une journée présenté le 3 octobre 2006 à Sympa’06, Perpignan
France.

– UNISIM tutorial at Philips NXP. 3 days tutorial in Eindhoven, Netherland on December
18-20 2006.

Frédéric Gruau

– Dagstuhl seminar on “Spatial Computing”, September, 2006; talk on “Blob computing”.

Pierre Palatin

– Talk at Micro-39 (9–13 Decembre 2006, Orlando, Florida, USA); "CAPSULE: Hardware-
Assisted Parallel Execution of Component-Based Programs".

– Talk at Hipeac 1st Industrial Workshop (11th May 2006, Grenoble, France), with ST-
Microelectronics : "CAPSULE: Hardware-Assisted Parallel Execution of Component-
Based Programs".

– Informal presentation of "Capsule" at a NANOSYS project meeting (5th November 2006).
NANOSYS is an "ACI nanosciences" project called "Architectures pour l’intégration des
nanocomposants moléculaires".

28 Activity Report INRIA 2006

9. Bibliography
Major publications by the team in recent years

[1] F. AGAKOV, E. BONILLA, J. CAVAZOS, B. FRANKE, G. FURSIN, M. O’BOYLE, J. THOMSON, M.
TOUSSAINT, C. WILLIAMS. Using Machine Learning to Focus Iterative Optimization, in "Proceedings of
the 4th Annual International Symposium on Code Generation and Optimization (CGO)", 2006.

[2] C. BASTOUL, A. COHEN, S. GIRBAL, S. SHARMA, O. TEMAM. Putting Polyhedral Loop
Transformations to Work, in "Workshop on Languages and Compilers for Parallel Computing
(LCPC’03), College Station, Texas", LNCS, Springer-Verlag, October 2003, p. 23–30, http://www-
rocq.inria.fr/~acohen/publications/BCGST03.ps.gz.

[3] H. BERRY, D. GRACIA PÉREZ, O. TEMAM. Chaos in computer performance, in "Chaos", vol. 16, 2006,
013110, http://hal.inria.fr/inria-00000109/en/.

[4] A. COHEN, M. DURANTON, C. EISENBEIS, C. PAGETTI, F. PLATEAU, M. POUZET. N-Sychronous Kahn
Networks, in "33th ACM Symp. on Principles of Programming Languages (PoPL’06), Charleston, South
Carolina", January 2006, p. 180–193, http://www-rocq.inria.fr/~acohen/publications/CDEPPP06.ps.gz.

[5] F. GRUAU, Y. LHUILLIER, P. REITZ, O. TEMAM. Blob Computing, in "Computing Frontiers 2004 ACM
SIGMicro.", 2004, http://blob.lri.fr/publication/2004-model-blob-machine.pdf.

[6] D. PARELLO, O. TEMAM, J.-M. VERDUN. On increasing architecture awareness in program optimizations to
bridge the gap between peak and sustained processor performance : Matrix-Multiply revisited, in "Supercom-
puting", IEEE, Nov 2002.

[7] S. POP, A. COHEN, G.-A. SILBER. Induction Variable Analysis with Delayed Abstractions, in "Intl. Conf. on
High Performance Embedded Architectures and Compilers (HiPEAC’05), Barcelona, Spain", LNCS, no 3793,
Springer-Verlag, November 2005, p. 218–232, http://www-rocq.inria.fr/~acohen/publications/PCS05.ps.gz.

[8] D. G. PÉREZ, G. MOUCHARD, O. TEMAM. MicroLib: A Case for the Quantitative Comparison of Micro-
Architecture Mechanisms, in "MICRO-37: Proceedings of the 37th International Symposium on Microarchi-
tecture", IEEE Computer Society, Dec 2004, p. 43–54.

[9] N. VASILACHE, C. BASTOUL, S. GIRBAL, A. COHEN. Violated dependence analysis, in "Proceedings of the
ACM International Conference on Supercomputing (ICS’06), Cairns, Australia", ACM, June 2006.

Year Publications
Articles in refereed journals and book chapters

[10] H. BERRY, D. GRACIA PÉREZ, O. TEMAM. Chaos in computer performance, in "Chaos", vol. 16, 2006,
013110, http://hal.inria.fr/inria-00000109/en/.

[11] H. BERRY, D. PELLENC, O. GALLET. Adsorption-induced fibronectin aggregation and fibrillogenesis, in
"Journal of Colloid and Interface Science", 2006, http://hal.inria.fr/inria-00001063/en/.

http://www-rocq.inria.fr/~acohen/publications/BCGST03.ps.gz
http://www-rocq.inria.fr/~acohen/publications/BCGST03.ps.gz
http://hal.inria.fr/inria-00000109/en/
http://www-rocq.inria.fr/~acohen/publications/CDEPPP06.ps.gz
http://blob.lri.fr/publication/2004-model-blob-machine.pdf
http://www-rocq.inria.fr/~acohen/publications/PCS05.ps.gz
http://hal.inria.fr/inria-00000109/en/
http://hal.inria.fr/inria-00001063/en/

Team Alchemy 29

[12] H. BERRY, M. QUOY. Structure and dynamics of random recurrent neural networks, in "Adaptive Behavior",
vol. 14, 2006, p. 129-137.

[13] H. BERRY, O. TEMAM. Modeling Self-Developping Biological Neural Networks, in "Neurocomputing", in
press, 2006.

[14] A. COHEN, S. DONADIO, M.-J. GARZARAN, C. HERRMANN, O. KISELYOV, D. PADUA. In Search of a
Program Generator to Implement Generic Transformations for High-Performance Computing, in "Science of
Computer Programming", vol. 62, no 1, September 2006, p. 25-46.

[15] G. FURSIN, A. COHEN, M. F. P. O’BOYLE, O. TEMAM. Quick and practical run-time evaluation of multiple
program optimizations, in "Trans. on High Performance Embedded Architectures and Compilers", vol. 1, no

1, 2006, p. 13-31.

[16] S. GIRBAL, N. VASILACHE, C. BASTOUL, A. COHEN, D. PARELLO, M. SIGLER, O. TEMAM. Semi-
Automatic Composition of Loop Transformations for Deep Parallelism and Memory Hierarchies, in "Intl.
J. of Parallel Programming", Accepted with minor revisions, 2006.

[17] D. GRACIA PÉREZ, H. BERRY, O. TEMAM. The Practicality Dimension of Sampling, in "IEEE Micro", vol.
26, 2006, p. 14–28.

[18] W. JALBY, C. LEMUET, S. TOUATI. An Efficient Memory Operations Optimization Technique for Vector
Loops on Itanium 2 Processors, in "Concurrency and Computation: Practice and Experience", vol. 11, no 11,
September 2006, p. 1485–1508.

[19] S. LONG, G. FURSIN. Systematic search within an optimisation space based on Unified Transformation
Framework, in "Accepted for the special issue of the International Journal of Computational Science and
Engineering (IJCSE)", 2006.

Publications in Conferences and Workshops

[20] F. AGAKOV, E. BONILLA, J. CAVAZOS, B. FRANKE, G. FURSIN, M. O’BOYLE, J. THOMSON, M.
TOUSSAINT, C. WILLIAMS. Using Machine Learning to Focus Iterative Optimization, in "Proceedings of
the 4th Annual International Symposium on Code Generation and Optimization (CGO)", 2006.

[21] P. AMIRANOFF, A. COHEN, P. FEAUTRIER. Beyond Iteration Vectors: Instancewise Relational Abstract
Domains, in "Static Analysis Symposium (SAS’06), Seoul, Corea", To appear., August 2006.

[22] H. BERRY. Structure complexe et émergence dans les réseaux de neurones biologiques, in "3ème Workshop
Applications Médicales de l’Informatique: Nouvelles Approches, AMINA 2006, Monastir, Tunisia", Novem-
ber 2006.

[23] H. BERRY, D. GRACIA PÉREZ, O. TEMAM. Caractérisation de la performance des microprocesseurs pendant
l’exécution de programmes, in "9emes Rencontres du Non LinÃ©aire, Paris, France", March 2006.

[24] H. BERRY, D. GRACIA PÉREZ, O. TEMAM. Complex dynamics of microprocessor performances during
program execution: Regularity, chaos, and others, in "NKS2006 Wolfram Science Conference, Washington
D.C., USA", June 2006.

30 Activity Report INRIA 2006

[25] J. CAVAZOS, C. DUBACH, F. AGAKOV, E. BONILLA, M. O’BOYLE, G. FURSIN, O. TEMAM. Automatic
Performance Model Construction for the Fast Software Exploration of New Hardware Designs, in "Interna-
tional Conference on Compilers, Architecture, And Synthesis For Embedded Systems (CASES 2006)", To
appear, October 2006.

[26] A. COHEN, M. DURANTON, C. EISENBEIS, C. PAGETTI, F. PLATEAU, M. POUZET. N-Sychronous Kahn
Networks, in "33th ACM Symp. on Principles of Programming Languages (PoPL’06), Charleston, South
Carolina", January 2006, p. 180–193.

[27] B. DAUVERGNE, L. HASCOËT. The Data-Flow Equations of Checkpointing in Reverse Automatic Differenti-
ation, in "Workshop on Automatic Differentiation: Tools and Applications, Reading", May 2006.

[28] S. GENET, B. DELORD, L. SABARLY, E. GUIGON, H. BERRY. On the propagation of Ca-dependent plateau
and valley potentials in cerebellar Purkinje cells and how they drive the cell output, in "Proceedings of
NeuroComp’06, Pont-à-Mousson, France", 23-24 October 2006, p. 167–170.

[29] D. GRACIA PÉREZ, H. BERRY, O. TEMAM. Budgeted Region Sampling (BeeRS): Do Not Separate Sampling
From Warm-Up, And Then Spend Wisely Your Simulation Budget, in "5th IEEE International Symposium on
Signal Processing and Information Technology 5th IEEE International Symposium on Signal Processing and
Information Technology, Athens, Greece", 2006, http://hal.inria.fr/inria-00001061/en/.

[30] P. PALATIN, Y. LHUILLIER, O. TEMAM. Capsule : Hardware-Assisted Parallel Execution of Component-
Based Programs, in "The 39th Annual IEEE/ACM International Symposium on Microarchitecture, 2006,
Orlando, Florida", december 2006.

[31] S. POP, A. COHEN, C. BASTOUL, S. GIRBAL, P. JOUVELOT, G.-A. SILBER, N. VASILACHE. GRAPHITE:
Loop optimizations based on the polyhedral model for GCC, in "Proc. of the 4th GCC Developper’s Summit
(to appear), Ottawa, Canada", June 2006.

[32] S. POP, A. COHEN, P. JOUVELOT, G.-A. SILBER. The New Framework for Loop Nest Optimization in GCC:
from Prototyping to Evaluation, in "Proc. of the 12th Workshop Compilers for Parallel Computers (CPC’06),
A Coruña, Spain", January 2006, http://www-rocq.inria.fr/~acohen/publications/PCJS06.ps.gz.

[33] B. SIRI, H. BERRY, B. CESSAC, B. DELORD, M. QUOY. Topological and dynamical structures induced by
Hebbian learning in random neural networks, in "International Conference on Complex Systems, ICCS 2006,
Boston, MA, USA", June 2006.

[34] B. SIRI, H. BERRY, B. CESSAC, B. DELORD, M. QUOY, O. TEMAM. Learning-induced topological effects
on dynamics in neural networks, in "Proceedings of NeuroComp’06, Pont-à-Mousson, France", 23-24 October
2006, p. 206–209.

[35] S. TOUATI, D. BARTHOU. On the Decidability of Phase Ordering Problem in Optimizing Compilation,
in "Proceedings of the International Conference on Computing Frontiers, Ischia, Italy", ACM, May 2006,
http://www.prism.uvsq.fr/~touati/publis/CF06.pdf.

[36] N. VASILACHE, C. BASTOUL, A. COHEN. Polyhedral Code Generation in the Real World, in "Proceedings of
the International Conference on Compiler Construction (ETAPS CC’06), Vienna, Austria", LNCS, Springer-
Verlag, March 2006, p. 185–201.

http://hal.inria.fr/inria-00001061/en/
http://www-rocq.inria.fr/~acohen/publications/PCJS06.ps.gz
http://www.prism.uvsq.fr/~touati/publis/CF06.pdf

Team Alchemy 31

[37] N. VASILACHE, C. BASTOUL, S. GIRBAL, A. COHEN. Violated dependence analysis, in "Proceedings of the
ACM International Conference on Supercomputing (ICS’06), Cairns, Australia", ACM, June 2006.

Miscellaneous

[38] F. AGAKOV, J. CAVAZOS, G. FURSIN, M. O’BOYLE, O. TEMAM. Predicting Good Compiler Optimizations
using Performance CountersACM International Conference on Code Generation and Optimization (CGO’07),
San Jose, California, to appear, March 2007.

[39] L.-N. POUCHET, C. BASTOUL, A. COHEN, N. VASILACHE. Iterative optimization in the polyhedral model:
Part I, one-dimensional timeACM International Conference on Code Generation and Optimization (CGO’07),
San Jose, California, to appear, March 2007.

References in notes

[40] SystemC v2.0.1 Language Reference Manual, 2003, http://www.systemc.org/.

[41] UNISIM: UNIted SIMulation environment, http://unisim.org.

[42] F. AGAKOV, E. BONILLA, J. CAVAZOS, B. FRANKE, G. FURSIN, M. O’BOYLE, J. THOMSON, M.
TOUSSAINT, C. WILLIAMS. Using Machine Learning to Focus Iterative Optimization, in "CGO-4: The Fourth
Annual International Symposium on Code Generation and Optimization", 2006.

[43] C. BASTOUL. Code Generation in the Polyhedral Model Is Easier Than You Think, in "PACT’13 IEEE
International Conference on Parallel Architecture and Compilation Techniques, Juan-les-Pins", september
2004, p. 7–16, http://hal.ccsd.cnrs.fr/ccsd-00017260.

[44] C. BASTOUL, A. COHEN, S. GIRBAL, S. SHARMA, O. TEMAM. Putting Polyhedral Loop Transformations
to Work, in "Workshop on Languages and Compilers for Parallel Computing (LCPC’03), College Station,
Texas", LNCS, Springer-Verlag, October 2003, p. 23–30.

[45] P. BERUBE, J. AMARAL. Aestimo: a feedback-directed optimization evaluation tool, in "Proceedings of the
International Symposium on Performance Analysis of Systems and Software (ISPASS)", 2006.

[46] N. L. BINKERT, R. G. DRESLINSKI, L. R. HSU, K. T. LIM, A. G. SAIDI, S. K. REINHARDT. The M5
Simulator: Modeling Networked Systems, in "IEEE Micro", vol. 26, no 4, 2006, p. 52–60.

[47] P. CARRIBAULT, A. COHEN, W. JALBY. Deep Jam: Conversion of Coarse-Grain Parallelism to Instruction-
Level and Vector Parallelism for Irregular Applications, in "Parallel Architectures and Compilation Tech-
niques (PACT’05), St-Louis, Missouri", IEEE Computer Society, September 2005, p. 291–300.

[48] Z. CHAMSKI, M. DURANTON, A. COHEN, C. EISENBEIS, P. FEAUTRIER, D. GENIUS. Ambient Intelli-
gence: Impact on Embedded-System Design, chap. Application Domain-Driven System Design for Pervasive
Video Processing, Kluwer Academic Press, 2003.

[49] A. COHEN, D. GENIUS, A. KORTEBI, Z. CHAMSKI, M. DURANTON, P. FEAUTRIER. Multi-Periodic Pro-
cess Networks: Prototyping and Verifying Stream-Processing Systems, in "Euro-Par’02, Paderborn, Germany",
LNCS, vol. 2400, Springer-Verlag, August 2002.

http://www.systemc.org/
http://unisim.org
http://hal.ccsd.cnrs.fr/ccsd-00017260

32 Activity Report INRIA 2006

[50] A. COHEN, S. GIRBAL, D. PARELLO, M. SIGLER, O. TEMAM, N. VASILACHE. Facilitating the Search
for Compositions of Program Transformations, in "ACM Intl. Conf. on Supercomputing (ICS’05), Boston,
Massachusetts", June 2005, p. 151–160.

[51] A. COHEN, S. GIRBAL, O. TEMAM. A Polyhedral Approach to Ease the Composition of Program Transfor-
mations, in "Euro-Par’04, Pisa, Italy", LNCS, no 3149, Springer-Verlag, August 2004, p. 292–303.

[52] K. D. COOPER, A. GROSUL, T. J. HARVEY, S. REEVES, D. SUBRAMANIAN, L. TORCZON, T. WATERMAN.
ACME: adaptive compilation made efficient, in "Proceedings of the Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES)", 2005, p. 69–77.

[53] K. D. COOPER, D. SUBRAMANIAN, L. TORCZON. Adaptive Optimizing Compilers for the 21st Century, in
"J. Supercomput.", vol. 23, no 1, 2002, p. 7–22.

[54] M. DUPRÉ, N. DRACH, O. TEMAM. Quickly building an optimizer for complex embedded architectures, in
"International Symposium on Code Generation and Optimization", ACM/IEEE, Mar 2004.

[55] P. FEAUTRIER. Dataflow Analysis of Array and scalar references, in "Int. J. of Parallel Programming", vol.
20, no 1, 1991, p. 23-53.

[56] P. FEAUTRIER. Some efficient solutions to the affine scheduling problem I. One-dimensional time, in "Int. J.
of Parallel Programming", vol. 21, no 5, 1992, p. 313-347.

[57] P. FEAUTRIER. Some efficient solutions to the affine scheduling problem II. Multi-dimensional time, in "Int. J.
of Parallel Programming", vol. 21, no 6, 1992, p. 389-420.

[58] B. FRANKE, M. O’BOYLE, J. THOMSON, G. FURSIN. Probabilistic Source-Level Optimisation of Embedded
Programs, in "Proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES)", 2005.

[59] B. FRANKE, M. O’BOYLE, J. THOMSON, G. FURSIN. Probabilistic Source-Level Optimisation of Embedded
Systems Software., in "Proceedings of the Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’05)", june 2005, p. pages 78-86.

[60] G. FURSIN, A. COHEN, M. O’BOYLE, O. TEMAM. A Practical Method For Quickly Evaluating Program
Optimizations, in "Intl. Conf. on High Performance Embedded Architectures and Compilers (HiPEAC’05),
Barcelona, Spain", LNCS, no 3793, Springer-Verlag, November 2005, p. 29–46, http://hal.inria.fr/inria-
00001054/en/.

[61] G. FURSIN, M. O’BOYLE, P. KNIJNENBURG. Evaluating Iterative Compilation, in "Proc. Languages and
Compilers for Parallel Computers (LCPC)", 2002, p. 305-315.

[62] S. GIRBAL, G. MOUCHARD, A. COHEN, O. TEMAM. DiST: A Simple, Reliable and Scalable Method to
Significantly Reduce Processor Architecture Simulation Time, in "Intl. Conf. on Measurement and Modeling
of Computer Systems, ACM SIGMETRICS’03, San Diego, California", June 2003.

http://hal.inria.fr/inria-00001054/en/
http://hal.inria.fr/inria-00001054/en/

Team Alchemy 33

[63] S. C. GOLDSTEIN, M. BUDIU. NanoFabrics: spatial computing using molecular electronics, in "Proceedings
of the 28th annual international symposium on Computer architecture, Göteborg, Sweden", ACM Press, 2001,
p. 178–191.

[64] D. GRACIA PÉREZ, H. BERRY, O. TEMAM. IDDCA: A New Clustering Approach For Sampling, in "MoBS:
Workshop on Modeling, Benchmarking, and Simulation MoBS: Workshop on Modeling, Benchmarking, and
Simulation, Madison, Wisconsin", 2005, http://hal.inria.fr/inria-00001062/en/.

[65] M. R. GUTHAUS, J. S. RINGENBERG, D. ERNST, T. M. AUSTIN, T. MUDGE, R. B. BROWN. MiBench: A
free, commercially representative embedded benchmark suite., in "IEEE 4th Annual Workshop on Workload
Characterization, Austin, TX", December 2001..

[66] M. H. HALL, S. P. AMARASINGHE, B. R. MURPHY, S.-W. LIAO, M. S. LAM. Detecting coarse-grain
parallelism using an interprocedural parallelizing compiler, in "Supercomputing ’95: Proceedings of the 1995
ACM/IEEE conference on Supercomputing (CDROM), New York, NY, USA", ACM Press, 1995, 49.

[67] L. HAMMOND, V. WONG, M. CHEN, B. D. CARLSTROM, J. D. DAVIS, B. HERTZBERG, M. K. PRABHU,
H. WIJAYA, C. KOZYRAKIS, K. OLUKOTUN. Transactional Memory Coherence and Consistency, in "Pro-
ceedings of the 31st Annual International Symposium on Computer Architecture", IEEE Computer Society,
June 2004, 102, http://tcc.stanford.edu/publications/tcc_isca2004.pdf.

[68] M. HANEDA, P. KNIJNENBURG, H. WIJSHOFF. On the Impact of Data Input Sets on Statistical Compiler
Tuning, in "Workshop on Performance Optimization for High-Level Languages and Libraries (POHLL)",
2006.

[69] J. HUSELIUS. Debugging Parallel Systems: A State of the Art Report, Technical report, no 63,
Mälardalen University, Department of Computer Science and Engineering, September 2002, cite-
seer.ist.psu.edu/huselius02debugging.html.

[70] P. KULKARNI, S. HINES, J. HISER, D. WHALLEY, J. DAVIDSON, D. JONES. Fast searches for effective
optimization phase sequence, in "Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI)", 2004.

[71] Y. LHUILLIER, O. TEMAM. AP+SOMT: AgentProgramming SelfOrganized, in "International Workshop on
Complexity-Effective Design, Munich, Germany", ISCA, May 2004.

[72] S. LONG, G. FURSIN. A heuristic search algorithm based on Unified Transformation Framework, in
"Proceedings of the 7th International Workshop on High Performance Scientific and Engineering Computing
(HPSEC-05)", june 2005, p. pages 137-144.

[73] D. B. LOVEMAN. High Performance Fortran, in "IEEE Parallel Distrib. Technol.", vol. 1, no 1, 1993, p.
25–42.

[74] P. S. MAGNUSSON, M. CHRISTENSSON, J. ESKILSON, D. FORSGREN, G. HALLBERG, J. HOGBERG, F.
LARSSON, A. MOESTEDT, B. WERNER. Simics: A Full System Simulation Platform, in "Computer", vol. 35,
no 2, 2002, p. 50-58.

http://hal.inria.fr/inria-00001062/en/
http://tcc.stanford.edu/publications/tcc_isca2004.pdf
file:citeseer.ist.psu.edu/huselius02debugging.html
file:citeseer.ist.psu.edu/huselius02debugging.html

34 Activity Report INRIA 2006

[75] D. E. MAYDAN, J. L. HENNESSY, M. S. LAM. Efficient and Exact Data Dependency Analysis, in "Proceed-
ings of the SIGPLAN ’91 Conference on Programming Language Design and Implementation", June 1991, p.
1-14.

[76] G. MOUCHARD, D. GRACIA PÉREZ, O. TEMAM. FastSysC: A Fast Simulation Engine, in "Design,
Automation and Test in Europe (DATE), Paris, France", 2004, http://hal.inria.fr/inria-00001108.

[77] G. MOUCHARD. PowerPC G3 simulator, 2002, http://www.microlib.org.

[78] M. O’BOYLE, P. KNIJNENBURG, G. FURSIN. Feedback Assisted Iterative Compiplation, in "Parallel
Architectures and Compilation Techniques (PACT’01)", IEEE Computer Society Press, October 2001.

[79] D. PARELLO, O. TEMAM, A. COHEN, J.-M. VERDUN. Towards a Systematic, Pragmatic and Architecture-
Aware Program Optimization Process for Complex Processors, in "ACM Supercomputing’04, Pittsburgh,
Pennsylvania", November 2004, 15.

[80] D. PARELLO, O. TEMAM, J.-M. VERDUN. On increasing architecture awareness in program optimizations
to bridge the gap between peak and sustained processor performance: matrix-multiply revisited., in "SC",
2002, p. 1-11, http://gala.univ-perp.fr/~dparello/publis/on_increasing_architecture_awareness.pdf.

[81] T. POGGIO, C. R. SHELTON. Machine Learning, Machine Vision, and the Brain, in "The AI Magazine", vol.
20, no 3, 1999, p. 37–55, citeseer.ist.psu.edu/poggio99machine.html.

[82] S. POP, A. COHEN, P. JOUVELOT, G.-A. SILBER. The New Framework for Loop Nest Optimization in GCC:
from Prototyping to Evaluation, in "Proc. of the 12th Workshop Compilers for Parallel Computers (CPC’06),
A Coruña, Spain", January 2006.

[83] W. PUGH. The Omega test: A fast and practical integer programming algorithm for dependence analysis, in
"Comm. of the ACM", vol. 8, 1992, p. 102-114.

[84] D. G. PÉREZ, G. MOUCHARD, O. TEMAM. MicroLib: A Case for the Quantitative Comparison of Micro-
Architecture Mechanisms, in "MICRO-37: Proceedings of the 37th International Symposium on Microarchi-
tecture", IEEE Computer Society, Dec 2004, p. 43–54.

[85] SIA. Semiconductor Industry Association 2005 roadmap, section on Emerging Research Devices, 2005,
http://www.sia-online.org/.

[86] C. SZYPERSKI. Component Software: Beyond Object-Oriented Programming, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[87] M. WOLF, M. LAM. A loop transformation theory and an algorithm to maximize parallelism, in "IEEE
Transactions on Parallel and Distributed Systems", vol. 2, no 4, 1991, p. 430-439.

[88] S. YEHIA, O. TEMAM. From Sequences of Dependent Instructions to Functions: a Complexity-Effective
Approach for Improving Performance without ILP or Speculation, in "International Workshop on Complexity-
Effective Design", ISCA, Jun 2003.

http://hal.inria.fr/inria-00001108
http://www.microlib.org
http://gala.univ-perp.fr/~dparello/publis/on_increasing_architecture_awareness.pdf
file:citeseer.ist.psu.edu/poggio99machine.html
http://www.sia-online.org/

