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2. Overall Objectives

2.1. Overall Objectives
Keywords: hidden Markov model (HMM), localisation, navigation and tracking, particle filtering, rare event
simulation, risk evaluation.

The scientific objectives of ASPI are the design, analysis and implementation of interacting Monte Carlo
methods, also known as particle methods, with focus on

• statistical inference in hidden Markov models, e.g. state or parameter estimation, including particle
filtering,

• risk evaluation, including simulation of rare events.

The whole problematic is multidisciplinary, not only because of the many scientific and engineering areas in
which particle methods are used, but also because of the diversity of the scientific communities which have
already contributed to establish the foundations of the field : target tracking, interacting particle systems,
empirical processes, genetic algorithms (GA), hidden Markov models and nonlinear filtering, Bayesian
statistics, Markov chain Monte Carlo (MCMC) methods, etc. Intuitively speaking, interacting Monte Carlo
methods are sequential simulation methods, in which particles

• explore the state space by mimicking the evolution of an underlying random process,

• learn the environment by evaluating a fitness function,

• and interact so that only the most successful particles (in view of the value of the fitness function)
are allowed to survive and to get offsprings at the next generation.
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The effect of this mutation / selection mechanism is to automatically concentrate particles (i.e. the available
computing power) in regions of interest of the state space. In the special case of particle filtering, which has
numerous applications under the generic heading of positioning, navigation and tracking, in target tracking,
computer vision, mobile robotics, ubiquitous computing and ambient intelligence, sensor networks, etc.
each particle represents a possible hidden state, and is multiplied or terminated at the next generation on
the basis of its consistency with the current observation, as quantified by the likelihood function. These
genetic–type algorithms are particularly adapted to situations which combine a prior model of the mobile
displacement, sensor-based measurements, and a base of reference measurements, for example in the form
of a digital map (digital elevation map, attenuation map, etc.). In the most general case, particle methods
provide approximations of probability distributions associated with a Feynman–Kac flow, by means of the
weighted empirical probability distribution associated with an interacting particle system, with applications
that go far beyond filtering, in simulation of rare events, simulation of conditioned or constrained random
variables, molecular simulation, etc.

ASPI essentially carries methodological research activities, rather than activities oriented towards a single
application area, with the objective of obtaining generic results with high potential for applications, and of
bringing these results (and other results found in the literature) until implementation on a few appropriate
examples, through collaboration with industrial partners.

The main applications currently considered are geolocalisation and tracking of mobile terminals, calibration
of models for electricity price, and risk assessment for complex hybrid systems such as those used in air traffic
management.

3. Scientific Foundations

3.1. Monte Carlo methods
Monte Carlo methods are numerical methods that are widely used in situations where (i) a stochastic (usually
Markovian) model is given for some underlying process, and (ii) some quantity of interest should be evaluated,
that can be expressed in terms of the expected value of a functional of the process trajectory, which includes
as an important special case the probability that a given event has occurred. Numerous examples can be found,
e.g. in financial engineering (pricing of options and derivative securities) [41], in performance evaluation
of communication networks (probability of buffer overflow), in statistics of hidden Markov models (state
estimation, evaluation of contrast and score functions), etc. Very often in practice, no analytical expression
is available for the quantity of interest, but it is possible to simulate trajectories of the underlying process.
The idea behind Monte Carlo methods is to generate independent trajectories of this process or of an alternate
instrumental process, and to build an approximation (estimator) of the quantity of interest in terms of the
weighted empirical probability distribution associated with the resulting independent sample. By the law
of large numbers, the above estimator converges as the size N of the sample goes to infinity, with rate
1/
√

N and the asymptotic variance can be estimated using an appropriate central limit theorem. To reduce
the asymptotic variance of the estimator, many variance reduction techniques have been proposed. However,
running independent Monte Carlo simulations can lead to very poor results, because trajectories are generated
blindly, and only afterwards are the corresponding weights evaluated. Some of the weights can happen to
be negligible, in which case the corresponding trajectories are not going to contribute to the estimator, i.e.
computing power has been wasted.

A recent and major breakthrough, a brief mathematical presentation of which is given in 3.2, has been the
introduction of interacting Monte Carlo methods, also known as sequential Monte Carlo (SMC) methods,
in which a whole (possibly weighted) sample, called system of particles, is propagated in time, where the
particles

• explore the state space under the effect of a mutation mechanism which mimics the evolution of the
underlying process,
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• and are replicated or terminated, under the effect of a selection mechanism which automatically
concentrates the particles, i.e. the available computing power, into regions of interest of the state
space.

In full generality, the underlying process is a discrete–time Markov chain, whose state space can be finite,
continuous (Euclidean), hybrid (continuous / discrete), graphical, constrained, time varying, pathwise, etc., the
only condition being that it can easily be simulated. The very important case of a sampled continuous–time
Markov process, e.g. the solution of a stochastic differential equation driven by a Wiener process or a more
general Lévy process, is also covered.

In the special case of particle filtering, originally developed within the tracking community, the algorithms
yield a numerical approximation of the optimal filter, i.e. of the conditional probability distribution of the
hidden state given the past observations, as a (possibly weighted) empirical probability distribution of the
system of particles. In its simplest version, introduced in several different scientific communities under
the name of interacting particle filter [34], bootstrap filter [43], Monte Carlo filter [51] or condensation
(conditional density propagation) algorithm [48], and which historically has been the first algorithm to
include a redistribution step, the selection mechanism is governed by the likelihood function : at each time
step, a particle is more likely to survive and to replicate at the next generation if it is consistent with the
current observation. The algorithms also provide as a by–product a numerical approximation of the likelihood
function, and of many other contrast functions for parameter estimation in hidden Markov models, such as the
prediction error or the conditional least–squares criterion.

Particle methods are currently being used in many scientific and engineering areas : positioning, navi-
gation, and tracking [44], visual tracking [48], mobile robotics [40], ubiquitous computing and ambient
intelligence [45], sensor networks [46], risk evaluation and simulation of rare events [42], genetics, molecular
dynamics, etc. Other examples of the many applications of particle filtering can be found in the contributed
volume [27] and in the special issue of IEEE Transactions on Signal Processing devoted to Monte Carlo Meth-
ods for Statistical Signal Processing in February 2002, which contains in particular the tutorial paper [29], and
in the textbook [59] devoted to applications in target tracking. Applications of sequential Monte Carlo methods
to other areas, beyond signal and image processing, e.g. to genetics, and molecular dynamics, can be found
in [58].

Particle methods are very easy to implement, since it is sufficient in principle to simulate independent
trajectories of the underlying process. The whole problematic is multidisciplinary, not only because of the
already mentioned diversity of the scientific and engineering areas in which particle methods are used, but
also because of the diversity of the scientific communities which have contributed to establish the foundations
of the field : target tracking, interacting particle systems, empirical processes, genetic algorithms (GA), hidden
Markov models and nonlinear filtering, Bayesian statistics, Markov chain Monte Carlo (MCMC) methods.

3.2. General framework : Particle approximations of Feynman–Kac flows
The following abstract point of view, developed and extensively studied by Pierre Del Moral [33], [5], has
proved to be extremely fruitful in providing a very general framework to the design and analysis of numerical
approximation schemes, based on systems of branching and / or interacting particles, for nonlinear dynamical
systems with values in the space of probability distributions, associated with Feynman–Kac flows of the form

〈µn, f〉 =
〈γn, f〉
〈γn, 1〉

and 〈γn, f〉 = E[f(Xn)
n∏

k=0

gk(Xk)] ,

where Xn denotes a Markov chain with (possibly) time dependent state spaces En and with transition kernels
Qn, and where the nonnegative potential functions gn play the role of selection functions. Feynman–Kac flows
naturally arise whenever importance sampling is used : this applies for instance to simulation of rare events, to
filtering, i.e. to state estimation in hidden Markov models (HMM), etc. Clearly, the unnormalized linear flow
satisfies the dynamical system
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〈γn, f〉 = 〈γn−1, Qn(gn f)〉 = 〈γn−1, Rn f〉 ,

with the nonnegative kernel Rn(x, dx′) =Qn(x, dx′) gn(x′), and the associated normalized nonlinear flow of
probability distributions satisfies the dynamical system

〈µn, f〉 =
〈µn−1, Qn(gn f)〉
〈µn−1, Qn gn〉

= 〈Rn(µn−1), f〉 where Rn(µ) =
µRn

〈µRn, 1〉
,

which can be decomposed in the following two steps

µn−1 7→ ηn = µn−1 Qn 7→ µn = gn · ηn .

Conversely, the normalizing constant 〈γn, 1〉, hence the unnormalized (linear) flow as well, can be expressed
in terms of the normalized (nonlinear) flow : indeed 〈γn, 1〉 = 〈η0, g0〉 · · · 〈ηn, gn〉. To solve these equations
numerically, and in view of the basic assumption that it is easy to simulate r.v.’s according to the probability
distributions Qn(x, dx′), i.e. to mimic the evolution of the Markov chain, the original idea behind particle
methods consists of looking for an approximation of the probability distribution µn in the form of a (possibly
weighted) empirical probability distribution associated with a system of particles :

µn ≈ µN
n =

N∑
i=1

wi
n δ

ξi
n

with
N∑

i=1

wi
n = 1 .

The approximation is completely characterized by the set Σn= (ξi
n, wi

n , i = 1, · · · , N) of particle positions
and weights, and the algorithm is completely described by the mechanism which builds Σk from Σk−1. In
practice, in the simplest version of the algorithm, known as the bootstrap algorithm, particles

• are selected according to their respective weights (selection step),
• move according to the Markov kernel Qk (mutation step),
• are weighted by evaluating the fitness function gk (weighting step).

The algorithm yields a numerical approximation of the probability distribution µn as the weighted empirical
probability distribution µN

n associated with a system of particles, and many asymptotic results have been
proved as the number N of particles (sample size) goes to infinity, using techniques coming from applied
probability (interacting particle systems, empirical processes [62]), see e.g. the survey article [33] or the
recent textbook [5], and references therein : convergence in Lp, convergence as empirical processes indexed
by classes of functions, uniform convergence in time (see also [9], [55]), central limit theorem (see also [53]),
propagation of chaos, large deviations principle, moderate deviations principle (see [35]), etc. Beyond the
simplest bootstrap version of the algorithm, many algorithmic variations have been proposed [37], and are
commonly used in practice :

• in the redistribution step, sampling with replacement could be replaced with other redistribution
schemes so as to reduce the variance (this issue has also been addressed in genetic algorithms),

• to reduce the variance and to save computational effort, it is often a good idea not to redistribute the
particles at each time step, but only when the weights (wi

k , i = 1, · · · , N) are too much uneven.

Most of the results proved in the literature assume that particles are redistributed (i) at each time step, and
(ii) using sampling with replacement. Studying systematically the impact of these algorithmic variations on
the convergence results is still to be done. Even with interacting Monte Carlo methods, it could happen that
some particle ξi

k generated in one time step has a negligible weight gk(ξi
k) : if this happens for too many

particles in the sample (ξi
k , i = 1, · · · , N), then computer power has been wasted, and it has been suggested

to use importance sampling again in the mutation step, i.e. to let particles explore the state space under the
action of an alternate wrong mutation kernel, and to weight the particles according to their likelihood for the
true model, so as to compensate for the wrong modeling. More specifically, using an arbitrary importance
decomposition
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Rk(x, dx′) =Qk(x, dx′) gk(x′) =Wk(x,x′) Pk(x, dx′) ,

results in the following general algorithm, known as the sampling with importance resampling (SIR) algorithm,
in which particles

• are selected according to their respective weights (selection step),
• move according to the importance Markov kernel Pk (mutation step),
• are weighted by evaluating the importance weight function Wk on the resulting transition (weighting

step).

3.3. Statistics of HMM
Keywords: asymptotic statistics, exponential forgetting, exponential stability, hidden Markov model (HMM),
local asymptotic normality (LAN).

Hidden Markov models (HMM) form a special case of partially observed stochastic dynamical systems,
in which the state of a Markov process (in discrete or continuous time, with finite or continuous state
space) should be estimated from noisy observations. The conditional probability distribution of the hidden
state given past observations is a well–known example of a normalized (nonlinear) Feynman–Kac flow,
see 3.2. These models are very flexible, because of the introduction of latent variables (non observed) which
allows to model complex time dependent structures, to take constraints into account, etc. In addition, the
underlying Markovian structure makes it possible to use numerical algorithms (particle filtering, Markov
chain Monte Carlo methods (MCMC), etc.) which are computationally intensive but whose complexity is
rather small. Hidden Markov models are widely used in various applied areas, such as speech recognition,
alignment of biological sequences, tracking in complex environment, modeling and control of networks, digital
communications, etc.

Beyond the recursive estimation of a hidden state from noisy observations, the problem arises of statistical
inference of HMM with general state space, including estimation of model parameters, early monitoring and
diagnosis of small changes in model parameters, etc.

Large time asymptotics A fruitful approach is the asymptotic study, when the observation time increases to
infinity, of an extended Markov chain, whose state includes (i) the hidden state, (ii) the observation, (iii) the
prediction filter (i.e. the conditional probability distribution of the hidden state given observations at all
previous time instants), and possibly (iv) the derivative of the prediction filter with respect to the parameter.
Indeed, it is easy to express the log–likelihood function, the conditional least–squares criterion, and many other
clasical contrast processes, as well as their derivatives with respect to the parameter, as additive functionals of
the extended Markov chain.

The following general approach has been proposed :

• first, prove an exponential stability property (i.e. an exponential forgetting property of the initial
condition) of the prediction filter and its derivative, for a misspecified model,

• from this, deduce a geometric ergodicity property and the existence of a unique invariant probability
distribution for the extended Markov chain, hence a law of large numbers and a central limit
theorem for a large class of contrast processes and their derivatives, and a local asymptotic normality
property,

• finally, obtain the consistency (i.e. the convergence to the set of minima of the associated contrast
function), and the asymptotic normality of a large class of minimum contrast estimators.

This programme has been completed in the case of a finite state space [7], and has been generalized in [36]
under an uniform minoration assumption for the Markov transition kernel, which typically does only hold
when the state space is compact. Clearly, the whole approach relies on the existence of an exponential stability
property of the prediction filter, and the main challenge currently is to get rid of this uniform minoration
assumption for the Markov transition kernel [32], [9], so as to be able to consider more interesting situations,
where the state space is noncompact.
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Small noise asymptotics Another asymptotic approach can also be used, where it is rather easy to obtain
interesting explicit results, in terms close to the language of nonlinear deterministic control theory [52]. Taking
the simple example where the hidden state is the solution to an ordinary differential equation, or a nonlinear
state model, and where the observations are subject to additive Gaussian white noise, this approach consists
in assuming that covariances matrices of the state noise and of the observation noise go simultaneously to
zero. If it is reasonable in many applications to consider that noise covariances are small, this asymptotic
approach is less natural than the large time asymptotics, where it is enough (provided a suitable ergodicity
assumption holds) to accumulate observations and to see the expected limit laws (law of large numbers, central
limit theorem, etc.). In opposition, the expressions obtained in the limit (Kullback–Leibler divergence, Fisher
information matrix, asymptotic covariance matrix, etc.) take here a much more explicit form than in the large
time asymptotics.

The following results have been obtained using this approach :

• the consistency of the maximum likelihood estimator (i.e. the convergence to the set M of global
minima of the Kullback–Leibler divergence), has been obtained using large deviations techniques,
with an analytical approach [49],

• if the abovementioned set M does not reduce to the true parameter value, i.e. if the model is not
identifiable, it is still possible to describe precisely the asymptotic behavior of the estimators [50] :
in the simple case where the state equation is a noise–free ordinary differential equation and using
a Bayesian framework, it has been shown that (i) if the rank r of the Fisher information matrix I is
constant in a neighborhood of the set M , then this set is a differentiable submanifold of codimension
r, (ii) the posterior probability distribution of the parameter converges to a random probability
distribution in the limit, supported by the manifold M , absolutely continuous w.r.t. the Lebesgue
measure on M , with an explicit expression for the density, and (iii) the posterior probability
distribution of the suitably normalized difference between the parameter and its projection on the
manifold M , converges to a mixture of Gaussian probability distributions on the normal spaces to
the manifold M , which generalized the usual asymptotic normality property,

• it has been shown in [56] that (i) the parameter dependent probability distributions of the obser-
vations are locally asymptotically normal (LAN) [54], from which the asymptotic normality of the
maximum likelihood estimator follows, with an explicit expression for the asymptotic covariance
matrix, i.e. for the Fisher information matrix I, in terms of the Kalman filter associated with the lin-
ear tangent linear Gaussian model, and (ii) the score function (i.e. the derivative of the log–likelihood
function w.r.t. the parameter), evaluated at the true value of the parameter and suitably normalized,
converges to a Gaussian r.v. with zero mean and covariance matrix I.

4. Application Domains

4.1. Localisation, navigation and tracking
Keywords: localisation, navigation, tracking.

See 5.1.

Among the many application domains of particle methods, or interacting Monte Carlo methods, ASPI has
decided to focus on applications in localisation (or positioning), navigation and tracking [44], which already
covers a very broad spectrum of application domains. The objective here is to estimate the position (and also
velocity, attitude, etc.) of a mobile object, from the combination of different sources of information, including

• a prior dynamical model of typical evolutions of the mobile,

• measurements provided by sensors,

• and possibly a digital map providing some useful feature (altitude, gravity, power attenuation, etc.)
at each possible position,
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This Bayesian dynamical estimation problem is also called filtering, and its numerical implementation
using particle methods, known as particle filtering, has found applications in target tracking, integrated
navigation, points and / or objects tracking in video sequences, mobile robotics, wireless communications,
ubiquitous computing and ambient intelligence, sensor networks, etc. Particle filtering was definitely invented
by the target tracking community [43], [59], which has already contributed to many of the most interesting
algorithmic improvements and is still very active. Beyond target tracking, ASPI is also considering various
possible applications of particle filtering in positioning, navigation and tracking, see 7.1.

4.2. Natural resources management and environmental sciences
Keywords: Bayesian estimation, Markov chain Monte Carlo (MCMC), particle filtering, renewable resource
management.

Participant: Fabien Campillo.

See 6.4.

We focus on renewable biomass resources (fishery, forest, plant) and agricultural dynamics. Environmental
applications give raise to problems with short observations series with a few tens of measurements obtained
every day, month or year. Moreover these measurements are of poor quality. The Bayesian inference is adapted
to this framework : for a set of observations, we propose a hidden Markov model with given initial law and
some structural parameters whose prior laws are given. Monte Carlo methods like Markov chain Monte Carlo
(MCMC) and sequential Monte Carlo (particle filtering) should be customized to the present set up [21].
This activity relies on different collaborations with Agrocampus de Rennes, University of Fianarantsao in
Madagascar, INRA and CIRAD in Montpellier. It is also supported by the SARIMA program 8.3.

5. Software

5.1. Demos
Participant: François Le Gland [corresponding person].

See 4.1.

To illustrate that particle filtering algorithms are efficient, easy to implement, and extremely visual and intuitive
by nature, several demos are available on the site http://www.irisa.fr/aspi/demos/, for localisation, navigation
and tracking problems in complex environments, with many geometrical constraints, that would be very
difficult to solve with usual Kalman filters. This material has proved very useful in training sessions and
seminars that have been organized in response to a demand from an industrial partner (SAGEM, CNES and
EDF), and also in teaching. At the moment, the following three demos are available :

Terrain–aided navigation of an aircraft Inertial position and velocity estimates are known to drift away
from their true values, and need to be combined with some external source of information. In this
demo, noisy measurements of the terrain height below an aircraft are obtained as the difference
between (i) the aircraft altitude above the sea level (provided by a pression sensor) and (ii) the
aircraft altitude above the terrain (provided by an altimetric radar), and are compared to the terrain
height in any possible point (read on the elevation map). A cloud (swarm) of particles explores
various possible trajectories generated from inertial navigation estimates and from a model of inertial
navigation errors, and are replicated or discarded depending on whether the terrain height below the
particle (i.e. at the same horizontal position) matches or not the available noisy measurement of the
terrain height below the aircraft.

Positioning and tracking in the presence of obstacles In this demo, several stations cooperate to locate
and track a mobile from noisy angle measurements, in the presence of obstacles (walls, tunnels, etc),
which make the mobile temporarily invisible from one or several stations.

http://www.irisa.fr/aspi/demos/
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Indoor navigation of a mobile robot In this demo, a mobile robot is finding its way inside a building, a
digital map of which (including walls, doorways, etc.) is provided. The initial position, velocity and
orientation of the robot are unknown, and noisy measurements of its rotation and linear displacement
are given by an odometer. In addition, a ring of laser sensors detects with some error the distance
from the robot to obstacles in sixteen different directions. A cloud (swarm) of particles explores
various possible trajectories generated from odometer navigation estimates and from a model of
odometer navigation errors, and are replicated or discarded depending on whether the distance
from the particle to obstacles matches or not the available noisy measurement of the distance from
the robot to the obstacles, in all sixteen directions, and depending also on whether the generated
trajectories are compatible with the presence of obstacles.

6. New Results

6.1. Rare event simulation by MCMC in trajectory space
Keywords: Metropolis–Hastings dynamics, population Monte–Carlo, rare event.

Participants: Frédéric Cérou, Arnaud Guyader, Valentine Méar, Julia Charrier.

The estimation of rare event probabilities is a crucial issue in areas such as reliability, telecommunication
networks, air traffic management, etc. In complex systems, analytical methods cannot be used, and naive
Monte Carlo methods are clearly unefficient to estimate accurately probabilities of order less than 10−9, say.
Beside importance sampling, a widespread technique is multilevel splitting, which requires at least some
knowledge of the system, to decide where to place the intermediate level sets. In both cases, we need to have
some knowledge of the process to find a good set of parameters to run the algotirhm. Moreover, in the case of
a rare event to happen before some deterministic final time, we also need the transient behavior of the process,
even if it is ergidic. But usually this transient behavior is very difficult to characterize.

To circumvent these difficulties, we have adopted a completly different approach. We assume that the process
is in discrete time, such that a trajectory up to final time T is a vector of some finite dimensional space,
and we propose to use MCMC approaches to simulate trajectories, given the rare event. Basically, when a
proposed transition in the trajectory space is out of a given set, then it is rejected with probability 1. In this very
preliminary work, the plain Metropolis–Hastings algorithm showed inefficient because of the large dimension
of the state space, but some population Monte Carlo variants showed large improvements. The main difficulty
here is to built an efficient Metropolis–like algorithm in very large dimension.

6.2. Particle approximations of Feynman–Kac distributions depending on a
parameter
Keywords: Monte Carlo maximum likelihood (MCML), hidden Markov model (HMM).

Participant: François Le Gland.

This is a collaboration with Nadia Oudjane, from the OSIRIS (Optimisation, simulation, risque et statistiques)
department of Électricité de France R&D.

In full generality, given nonnegative kernels R1, · · · , Rn and a nonnegative measure γ0, we consider the
unnormalized (linear) Feynman–Kac distribution

〈γn, f〉 =
∫

En

· · ·
∫

E0

f(xn)
n∏

k=1

Rk(xk−1, dxk) γ0(dx0) .
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A well–known example is provided by the unnormalized conditional probability distribution of the hidden state
given past observations, when the hidden state and the observation form jointly a Markov chain : this includes
HMM and switching AR models as special cases, with the decomposition Rk(x, dx′) =Qk(x, dx′) gk(x′)
where Qk is the Markov transition kernel and where the selection function gk is the likelihood function.

If the nonnegative kernels depend on a parameter, in such a way that the Feynman–Kac distribution is
continuous or differentiable w.r.t. the parameter, we would like to design a particle approximation that would
have the same regularity properties. The need for such a regularity property arises for instance

• in sensitivity analysis, e.g. in the computation of Greeks, in option pricing,

• in statistics of HMM, see 3.3, e.g. in the evaluation of the derivative w.r.t. the parameter of any
contrast function that can be expressed in terms of the conditional probability distribution of the
hidden state given past observations.

The smooth particle approximation introduced earlier has been further studied, where a unique interacting
particle system is propagated for a given reference value of the parameter, and where importance weights
are computed separately for each value of the parameter in a neighborhood of the reference value. Differ-
entiating these importance weights w.r.t. the parameter yields a particle approximation of the linear tangent
Feynman–Kac distribution, which coincides with an earlier approach followed in the team, where a particle
approximation is derived directly from the linear tangent Feynman–Kac flow. The new results obtained this
year for the joint particle approximation of the Feynman–Kac distribution and the linear tangent Feynman–Kac
distribution are

• a central limit theorem,

• uniform Lp error estimates over a neighborhood of the reference value of the parameter,

using an original and promising technique where the importance weights are incorporated into the state
variable. A Rao–Blackwellized version of the particle approximation has also been studied, when the
underlying state–space model is conditionnally linear Gaussian.

6.3. Sequential data assimilation : ensemble Kalman filter vs. particle filter
Keywords: data assimilation, ensemble Kalman filter (EnKF).

Participants: François Le Gland, Vu Duc Tran.

Our first step has been to better understand on simple examples [20] such as the three–dimensionnal Lorenz
model, the qualitative behaviour and the performance of the ensemble Kalman filter [38], [39] and other
sequential data assimilation methods, and to compare these with several different particle filters. If the Lorenz
model is observed at low rate, then the bootstrap particle filters, with or without redistribution, in which
particles are propagated with the prediction model only, perform rather poorly, and more advanced particle
filters should be used, in which particles are propagated with an observation–driven model. In terms of
performance, these more advanced particle filters, with or without redistribution, seem very close to the
ensemble Kalman filter.

This preliminary work has motivated our current interest to study the asymptotic behaviour of the ensemble
Kalman filter, as the number of ensemble elements increases to infinity. Indeed, very little is known about this
question, whereas on the other hand, the asymptotic behaviour of the many different brands of particle filters,
as the number of particles goes to infinity, is well understood.

6.4. Monte Carlo methods for Bayesian inference
Keywords: Bayesian estimation, Markov chain Monte Carlo (MCMC), Metropolis-Hastings, interacting
Monte Carlo methods, particle methods.

Participants: Fabien Campillo, Vivien Rossi.
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Markov chain Monte Carlo (MCMC) algorithms [61], [28], [60] allow us to draw samples from a probability
distribution π known up to a multiplicative constant. They consist in sequentially simulating a single Markov
chain whose limit distribution is π. There exist many techniques to speed up the convergence towards the
target distribution by improving the mixing properties of the chain.

An alternative is to run many Markov chains in parallel. The simplest multiple chains algorithm is to make use
of parallel independent chains. The recommendations concerning this idea seem contradictory in the literature,
as shown by the many short runs vs. one long run debate. We can note that independent parallel chains could
be a poor idea: among these chains some may not converge, so one long chain could be preferable to many
short ones. Moreover, many parallel independent chains can artificially exhibit a more robust behavior which
does not correspond to a real convergence of the algorithm.

In practice one however makes use of several chains in parallel. It is then tempting to exchange information
between these chains to improve mixing properties of the MCMC samplers. A general framework of
population Monte Carlo has been proposed in this context [47], [30].

In the present work [23] we propose an interacting method between parallel chains which provides an
independent sample from the target distribution. Contrary to papers previously cited, the proposal law in our
work is given and does not adapt itself to the previous simulations. Hence, the problem of the choice of this
law still remains.

6.5. Bayesian inference for renewable resources models
Keywords: Bayesian estimation, Markov chain Monte Carlo (MCMC), Metropolis within Hastings, Ricker
model, fishery models, interacting Monte Carlo methods.

Participants: Philippe Cantet, Fabien Campillo, Vivien Rossi, Rivo Rakotozafy.

The approach proposed in 6.4 was applied to the Ricker fishery recruitment model [16], [21]. Markov
chain Monte Carlo (MCMC) methods are now widely used to study the evolution of natural resources,
such as biomass in fisheries or the dynamics of forests. Although flexible, these methods have however
low convergence speeds. By contrast, particle filtering methods are fast but are not well adapted to these
models, where measurements are sampled daily, monthly or yearly. Therefore there is no need to treat these
measurements in a recursive way, and it seems more appropriate to call upon Monte Carlo methods in
interaction, such as population Monte Carlo [5]. In the first case study particle filtering has been applied
to calibrate tree-growth models, which are complex and highly nonlinear. MCMC (Metropolis–Hastings)
techniques have been compared with particle filtering methods for fitting and identifying such model. The first
results showed that MCMC methods are more consuming in terms of computational time. By comparison,
particle filtering is faster and less sensitive to prior knowledge, but it also presents a greater variance than the
MCMC methods.

6.6. Convolution filter based methods for parameter estimation in general
state-space models
Keywords: Bayesian estimation, convolution particle methods.

Participants: Fabien Campillo, Vivien Rossi.

Consider a hidden Markov model depending on an unknown parameter. The goal is to estimate simultaneously
the parameter and the state process based on the observations. In the Bayesian approach, the augmented state
variable includes the parameter and is processed by a filtering procedure. These methods suppose that a prior
law is given for the parameter and are performed on–line. It is well known that the standard bootstrap particle
filter exhibits degenerate behavior in this situation. In [22], [17] we proposed a convolution particle filter that
avoid this difficulty.
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7. Contracts and Grants with Industry

7.1. Localization and tracking of mobile terminals — contract with FTRD
Participants: Fabien Campillo, François Le Gland, Julien Guillet.

See 4.1.

Contract ALLOC 851 — May 2005/August 2006

The objective was to implement and assess the performance of particle filtering in localisation and tracking of
mobile terminals in a wireless network, using network measurements (received signal power strength and
possibly TOA (time of arrival)) and a database of reference measurements of the signal power strength,
available in a few points or in the form of a digital map (power attenuation map). Generic algorithms have been
specialized to the indoor context (wireless local area network, e.g. WiFi) and to the outdoor context (cellular
network, e.g. GSM). In particular, constraints and obstacles such as building walls in an indoor environment,
street, road or railway networks in an outdoor environment, have been represented in a simplified manner,
using a prior model on a graph, e.g. a Voronoï graph as in similar experiments in mobile robotics [57]. To
assess the performance of the proposed localisation and tracking algorithms, posterior Cramèr–Rao bounds
for a Markov process on a graph have been derived.

The findings of this work is that localisation in outdoor applications using measurements of the signal power
strength alone is not yet operational, whereas the situation is much more favorable in indoor applications.
This is because the digital maps available for GSM are obtained by running numerical propagation models
that do not capture small scale variations, and the solution would be to use additional measurements, such as
TOA (time of arrival). A follow–up objective objective would be to update and enrich the initial database of
reference measurements, using network measurements collected on–the–fly.

8. Other Grants and Activities

8.1. Data assimilation for air quality (ADOQA) — ARC INRIA
Participants: Fabien Campillo, François Le Gland, Vu Duc Tran.

January 2005/December 2006.

This ARC is coordinated by the project–team CLIME from INRIA Rocquencourt and CEREA / ENPC. Its
partners are the project–team IDOPT from INRIA Rhône–Alpes, and INERIS.

One objective of ADOQA is to investigate advanced sequential methods (as opposed to variational methods)
for data assimilation of intrinsically nonlinear models, i.e. coupling of numerical models and measured data. In
principle, a data assimilation algorithm should propagate uncertainties through the probability distribution of
the state variables, whereas current sequential algorithms, such as the Kalman filter and its simplest extensions,
only propagate the first two moments. For large–scale systems (physical state of the atmosphere, of the ocean,
chemical composition of the atmosphere, etc.), the direct implementation of sequential Monte Carlo methods
seems impractical, and simplified, reduced–order models should be used.

Our contribution has been to better understand and compare on simple examples [20] such as the
three–dimensionnal Lorenz model, the qualitative behaviour and the performance of the ensemble Kalman
filter [38], [39] and other sequential data assimilation methods, with the qualitative behaviour and the
performance of particle filters.

8.2. Monte Carlo methods for rare event simulation (RARE) — ARC INRIA
Participants: Frédéric Cérou, Pierre Del Moral, François Le Gland, Arnaud Guyader.

January 2006/December 200R.

http://www-rocq.inria.fr/clime/adoqa/
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This ARC is coordinated by the project–team ARMOR from IRISA / INRIA Rennes. The academic partners
are the project–team MATHFI of INRIA Rocquencourt and CERMICS / ENPC, the project–team OMEGA of
INRIA Sophia Antipolis and INRIA Lorraine, the project–team MESCAL of INRIA Rhône–Alpes, and the
industrial partners are Électricité de France RD, and CENA / DGAC, and its international partners are CWI
(Netherlands) and University of Bamberg (Germany).

The objective of RARE is to design and evaluate various Monte Carlo techniques (importance sampling,
importance splitting, cross–entropy, etc.), for the simulation of rare but critical events, in several important
domain of applications (communication networks, financial risk management, air traffic management, etc.).

Our contribution has been to better understand the asymptotic behaviour of importance splitting methods [18],
[14], where intermediate less critical events are introduced, and where trajectories that manage to reach an
upper level are replicated into a number of offsprings. Splitting can be achieved in many different ways : in
fixed splitting for instance, each successful trajectory is given a prescribed deterministic number (possibly
depending on the generation number) of offsprings, whereas in fixed effort splitting, there is a prescribed
deterministic number of trajectories alive at each generation, which amounts to sample with replacement
from the successful trajectories at the current stage of the algorithm, and in fixed performance splitting a
random number of trajectories is simulated, until a prescribed deterministic number of successful trajectories
is obtained [15].

It appears that importance splitting can be interpreted in terms of Feynman–Kac distributions, which makes
it possible not only to approximate the probability of the rare but critical event, but also to learn which
critical trajectories are responsible for the critical event to occur [12]. Challenging issues that are investigated
here include the automatic selection of the intermediate sets and their number : asymptotic results have been
obtained in the one–dimensional case [31], while in the multi–dimensional case a preliminary objective would
be the efficient choice of the importance function, used to define the intermediate sets as level sets.

Another idea would be to use here the concept of adaptive redistribution, routinely used in particle filtering,
without any clear mathematical justification : independent trajectories would be simulated, as long as an
appropriate criterion (interpreted as the normalisation constant in the Feynman–Kac formulation) remains
below a given threshold, and would be replicated / terminated when the monitored criterion would exceed this
threshold.

8.3. SARIMA and SARIMA–Madagascar
Participant: Fabien Campillo.

See 4.2 and 6.5.

Within the SARIMA program, Fabien Campillo develops collaborations with the universities of Antananarivo
and Fianarantsoa in the field of the probabilistic modeling and the numerical statistical inference for environ-
mental sciences and development. Within this program, Rivo Rakotozafy spend three months per year (one
month and a half in 2006) within ASPI in order to prepare an HDR (habilitation à diriger les recherches) under
the supervision of Fabien Campillo. The HDR defense is planed for 2008. The results of this collaboration
have been presented to the CARI conference in Cotonou [16], see also [21].

9. Dissemination
9.1. Scientific animation

F. Campillo is a member of the committee for the PhD thesis of Ghislain Verdier (École Nationale Supérieure
Agronomique de Montpellier and INRA, advisor : Jean–Pierre Vila). He is a member of the «conseil de
laboratoire» of IRISA (UMR 6074) and of the «conseil de l’école doctorale de physique, modélisation
et sciences pour l’ingénieur de Marseille». He is the INRIA representative for scientific relations with
Madagascar, within the SARIMA (support to research activities in computer science and mathematics in
Africa) project supported by INRIA and MAE (ministère des affaires étrangères), see 8.3. In relation with
this activity, he has spent three weeks in Antananarivo and Fianarantsoa in November and December 2006.

http://www.irisa.fr/armor/Rare/
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P. Del Moral has organized an invited session on particle methods applied to engineering and physics at the
«Journées du groupe MAS» held in Lille in September 2006.

A. Guyader is the coordinator of a reading group at université de Rennes 2, on functional data analysis.

F. Le Gland has reported on the PhD theses of Jaroslav Krystul (Twente University, advisor : Arun Bagchi) and
Agnès Lagnoux (université Paul Sabatier, Toulouse, advisors : Dominique Bakry and Pascal Lezaud). He is a
member of the committee for the PhD theses of Olivier Rabaste (université de Rennes 1 and ENST Bretagne,
advisor : Thierry Chonavel) and Anne Cuzol (université de Rennes 1 and IRISA, advisor : Étienne Mémin),
and a member of the committe for the HDR (habilitation à diriger les recherches) of Bruno Tuffin (université
de Rennes 1). He has organized an invited session on particle filtering at the XXVI European Meeting of
Statisticians held in Toruń in July 2006.

A. Guyader and F. Le Gland are members of the «commission de spécialistes» in applied mathematics
(section 26) of université de Rennes 2.

9.2. Teaching
F. Campillo gives a course on Markov models, hidden Markov models, filtering and particle filtering at
université de Sud Toulon–Var, within the Master «Mathématiques (Filtrage et traitement des données)» and
the Master «Sciences et Technologies (Sciences de la mer, environnement, systèmes)».

F. Le Gland gives a course on Kalman filtering, particle filtering and hidden Markov models, at université
de Rennes 1, within the Master STI (école doctorale MATISSE), a 3rd year course on Bayesian filtering and
particle approximation, at ENSTA, Paris, within the quantitative finance track, and a 3rd year course on hidden
Markov models, at ENST Bretagne, Brest.

9.3. Participation in workshops, seminars, lectures, etc.
Several members of ASPI have given talks in the IRMAR working group on Feynman–Kac formulæ :
F. Campillo about particle filtering in practice, F. Le Gland about examples of applications of Feynman–Kac
formulæ, and A. Guyader about Feynman–Kac Metropolis algorithms.

In addition to presentations with a publication in the proceedings, and which are listed at the end of the
document, members of ASPI have also given the following presentations.

F. Campillo has given talks on Bayesian inference for renewable resource models in the «Statistiques» seminar
at ENSAI in March 2006, and in the «Modèles Statistiques à Structure(s) Cachée(s)» seminar at Institut de
Modélisation et Mathématique in Montpellier, in October 2006. He has presented the joint work on convolution
particle filtering for parameter estimation in general state–space models at the 45th IEEE Conference on
Decision and Control (CDC), held in San Diego in December 2006. He has given seminars about Bayesian
inference in environemental sciences in the University of Antananarivo and the University of Fianarantsao,
Madagascar, in November 2006.

F. Cérou has given a talk on adaptive multilevel splitting for rare event analysis at the ARC RARE (Monte
Carlo methods for rare event analysis) kick–off meeting at IRISA in April 2006, see 8.2, and a talk on recent
improvements to importance splitting at the 6th International Workshop on Rare Event Simulation (RESIM)
held in Bamberg in October 2006.

A. Guyader has given talks on adaptive multilevel splitting for rare event analysis at the «Probabilités et
Statistiques» seminar of université de Nice–Sophia Antipolis in April 2006, at the workshop on sequential
Monte Carlo methods organized in Oxford in July 2006, at the «Journées du groupe MAS de la SMAI»
held in Lille in September 2006, and at the «Probabilités et Statistiques» seminar of université de Lille 1 in
December 2006. He has given a talk on nearest neighbor classification in infinite dimension at the «4èmes
Journées de Statistique Fonctionnelle et Opératorielle» held in Grenoble in June 2006.
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F. Le Gland has given talks on the multilevel splitting approach to rare event simulation at the ARC RARE
(Monte Carlo methods for rare event analysis) kick–off meeting at IRISA in April 2006, see 8.2, and at the
mini symposium on Stochastic System Theory held at Twente University in September 2006. He has given
a talk on particle approximations of Feynman–Kac distributions depending on a parameter at the workshop
on sequential Monte Carlo methods organized in Oxford in July 2006. He has given a talk on using noisy
georeferenced information sources for navigation and tracking at the «Journées du groupe MAS de la SMAI»
held in Lille in September 2006, and at the IEEE workshop on Nonlinear Statistical Signal Processing held in
Cambridge in September 2006. He has given a talk on ensemble Kalman filter vs. particle filters at the ARC
ADOQA (Data assimilation for air quality) final meeting at INRIA Rhône Alpes in October 2006, see 8.1.
He has been one of the main lecturers in the CEA–EDF–INRIA summer school on «Assimilation de données
dans la simulation numérique» organized in Saint Lambert in June / July 2006, where he has given a course
on particle filtering. J. Guillet has organized the practical sessions related with these lectures.

9.4. Visits and invitations
F. Campillo has been invited in July and September 2006 in the UMR «Analyse des Systèmes et Biométrie»
(ASB) at INRA Montpellier. He has spent three weeks in Madagascar in November and December 2006 for
the SARIMA project, see 8.3.

F. Le Gland has been invited in November 2006 by Anastasia Papavasiliou in the Department of Statistics
of the University of Warwick, and has given there a talk in the CRiSM (Centre for Research in Statistical
Methodology) seminar on adapting the number of particles in Monte Carlo methods with interaction.

Sacha Veretennikov, professor in the Department of Statistics of the University of Leeds has visited ASPI for
two days in March 2006, and has given a talk on discrete time ergodic filters with wrong initial data.

Josselin Garnier, professor at université de Paris 7 has been invited by ASPI in June 2006 to give a talk on rare
event simulation.

Pavel Chigansky, post–doc in the Department of Mathematics of Université du Maine has visited ASPI for
two days in November 2006, and has given a talk on the stability of the Bayesian optimal filter with respect to
its initial condition.

Rivo Rakotozafy, assistant professor at the University of Fianaranstoa, has been awarded by the French
embassy in Antananarivo, Madagascar a grant to support visits to prepare an HDR (habilitation à diriger
les recherches) in Madagascar, under the supervision of Fabien Campillo. A related objective is to set up a
collaboration between the University of Fianaranstoa and INRIA.
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