%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team Contraintes

Constraint Programming

Rocquencourt

S THEME SYM S

ctivity

http://www.inria.fr/recherche/equipes/listes/theme_SYM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/contraintes.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-rocq.en.html

t—m

10. Bibliography

Table of contents

eaM ... e
Overall ObjJectiveso e

2.1. Overall Objectives

Scientific Foundations

3.1. Concurrent constraint programming
3.2. Constraint solvers
3.3. Computational systems biology

Application Domains

4.1. Combinatorial optimization problems
4.2. In-silico cell

SO WAL . . o

5.1. BIOCHAM
5.2. TCLP

5.3. GNU-Prolog
5.4. CLPGUI
5.5. Tra4CP

New ReSUIS e

6.1. Implementation of SiLCC

6.2. Module System for SiLCC

6.3. Type systems

6.4. Constraint programming environments

6.5. Global constraint of scheduling with concentration constraints

6.6. Continuous dynamics in BIOCHAM

6.7. Inferring reaction rules in BIOCHAM

6.8. Coupled model of the cell cycle and the circadian cycle in mammalian cells

Contracts and Grants with Industry

7.1. ILOG
7.2. TOTAL

Other Grants and Activities i

8.1. National contracts
8.2. European contracts
8.3. Invitations

Dissemination

9.1. Teaching
9.2. Leadership within scientific community

(o) NV, BV, TR, R SN N W W NN

=

Neliole SlEN BN e Nl o)

1. Team

Head of project-team
Francois Fages [Research Director (DR) INRIA]

Vice-head of project-team
Sylvain Soliman [Research Associate (CR) INRIA]

Administrative assistant
Nadia Mesrar [Secretary (SAR) Inria]

Staff member
Pierre Deransart [Research Director (DR) INRIA]

Post-Doctoral fellow
Laurence Calzone [PostDoc APrIL2, up to August 06]
Andras Kovacs [PostDoc ERCIM, from Sep. 06]
Sriram Krishnamachari [PostDoc ARC MOCA, from August 06]

Research scientist (partner)
Nicolas Beldiceanu [Professor, Ecole des Mines de Nantes]
Emmanuel Coquery [Associate Professor, University of Lyon 1]
Daniel Diaz [Associate Professor, University of Paris 1]

Ph.D. students
Nathalie Chabrier-Rivier [INRIA scholarship]
Rémy Haemmerlé [INRIA scholarship]
Julien Martin [INRIA scholarship]
Aurélie Strobbe [CIFRE TOTAL]

Student interns
Adiga Satish [IIT Kanpur]
Jean-Christophe Reussner [ENSTA]

2. Overall Objectives

2.1. Overall Objectives

Constraint Logic Programming supports a great ambition for programming: the one of making of programming
essentially a modeling task, with equations, constraints and logical formulas.

Constraint Programming is a field born during the mid 80s from Logic Programming, Linear Programming
coming from Operations Research, and Constraint Propagation techniques coming from Acrtificial Intelligence.
Its foundation is the use of relations on mathematical variables to compute with partial information. The suc-
cesses of Constraint Programming for solving combinatorial optimization problems in industry or commerce
are related to the bringing of new local consistency techniques and of declarative languages which allow
control on the mixing of heterogeneous resolution techniques: numerical, symbolic, deductive and heuristic.

The "Contraintes" group investigates the logical foundations, design, implementation, programming environ-
ments and applications of constraint programming languages. The study of Concurrent Constraint languages is
a core aspect of the project as they provide a conceptual framework for analyzing different issues of constraint
programming, like constraint resolution techniques, concurrent modeling, reactive applications, etc.

The main application domains investigated are combinatorial optimization problems and computational system
biology. In bioinformatics, our objective is not to work on structural biology problems, which has been the
main trend up to now, but to attack the great challenge of systems biology, namely to model the function,
activity and interaction of molecular systems in living cells, with logic programming concepts and program
verification technologies.

2 Activity Report INRIA 2006

3. Scientific Foundations

3.1. Concurrent constraint programming

The class of Concurrent Constraint programming languages (CC) was introduced a decade ago by Vijay
Saraswat as a unifying framework for constraint logic programming and concurrent logic programming. The
CC paradigm constitutes a representative abstraction of constraint programming languages, and thus allows a
fine grained study of their fundamental properties.

CC generalizes the Constraint Logic Programming framework (CLP) by introducing a synchronization
primitive, based on constraint entailment. It is a model of concurrent computation, where agents communicate
through a shared store, represented by a constraint, which expresses some partial information on the values
of the variables involved in the computation. The variables play the role of transmissible dynamically created
communication channels.

One of the big successes of CC has been the simple and elegant reconstruction of finite domain constraint
solvers, and the cooperation of several models to solve a single combinatorial problem. On the other hand, to
use CC for programming reactive applications forces one to abandon the hypothesis of monotonic evolution
of the constraint store; this is a strong motivation for new extensions of CC languages.

There are strong completeness theorems relating the execution of a CLP program and its translation in classical
logic, which provide smooth reasoning techniques for such programs. However these theorems are broken by
the synchronization operation of CC. Looking for a logical semantics of CC programs in the general paradigm
of logic programming,
program = logical formula,
execution = proof search,
leads to a translation in Jean-Yves Girard’s linear logic. This allows the recovery of some completeness results

about successes and stores; even suspensions may be characterized with the non-commutative logic of Ruet
and Abrusci.

It is thus possible to address important issues for Constraint Programming:

e verifying CC programs;

e combining CLP and state-based programming;

e dealing with local search inside a global constraint solving procedure.
The last two cases rely on a natural extension of CC languages, called Linear Concurrent Constraint languages
(LCC), which simply replaces constraint systems built onto classical logic by constraint systems built onto

linear logic. This allows us to represent state changes thanks to the consumption of resources during the
synchronization action, modeled by the linear implication.

3.2. Constraint solvers
Our domains of application use quite different constraint systems:
e finite domains (bounded natural numbers): primitive constraint of some finite domain membership,
numerical, symbolic, higher order and global constraints;
e reals: Simplex algorithm for linear constraints and interval methods otherwise;
e terms: subtyping constraints and ontologies;
e temporal constraints: CTL and LTL formulae, either propositional or with numerical constraints.
The project works on constraint resolution methods and their cooperation. The main focus is the declara-
tiveness of the constraint solver (e.g. implemented by CHR rules), the efficiency of constraint propagation

methods, the design of global constraints and the combination of constraint propagation with local search
methods.

Project-Team Contraintes 3

3.3. Computational systems biology

Systems biology is a cross-disciplinary domain involving biology, computer science, logics, mathematics, and
physics to elucidate the high-level functions of the cell from their biochemical bases at the molecular level.

At the end of the Nineties, research in Bioinformatics evolved, passing from the analysis of the genomic
sequence to the analysis of post-genomic interaction networks (expression of RNA and proteins, protein-
protein interactions, etc). The complexity of these networks requires a large research effort to develop symbolic
notation and analysis tools for biological processes and data. In order to scale-up, and get over the complexity
walls to reason about biological systems, there is a general feeling that beyond providing tools to biologists,
computer science has much to offer in terms of concepts and methods.

We are interested in the modeling and analysis of complex molecular processes in the cell, at different levels
of abstraction, qualitative and quantitative. The most original aspect of our research can be summarized by the
following identifications:

biological model = transition system,
biological property = temporal logic formula,
biological validation = model-checking.

Our main research axis is thus the application of logic programming concepts and circuit or program
verification techniques to the analysis of complex biochemical processes in the cell.

4. Application Domains

4.1. Combinatorial optimization problems

The number and economic impact of combinatorial optimization problems found in the industrial world are
constantly increasing. They cover:

e resource allocation;
e placement;

e scheduling;

e planing;

e transport;

e etc.

The last forty years have brought many improvements in Operations Research resolution techniques. In this
context, Constraint Programming can be seen as providing, on the one hand, local consistency techniques that
can be applied to various numerical or symbolic constraints, and on the other hand, declarative languages. This
last point is crucial for quickly developing complex combinations of algorithms, which is not possible without
a language with a high level of abstraction. It allowed for better results, for instance in scheduling problems,
than traditional methods, and is promised to an even better future when thinking about the cooperation of
global resolution, local consistency techniques and search methods.

The project builds upon its knowledge of CC languages, constraint solvers and their implementation to work
in these directions. The LCC paradigm offers at the same time a theoretical framework for analysis, and a
valuable guide for practical language design and implementation. The work on programming environments
helps to integrate the Constraint Programming tools into this application domain.

4 Activity Report INRIA 2006

4.2. In-silico cell

In 2002 , we started a Collaborative Research Initiative ARC CPBIO on “Process Calculi and Biology of
Molecular Networks”. By working on well understood biological models, we sought:

e to identify in the family of competitive models coming from the Theory of Concurrency! and from
Logic Programming 2, the ingredients of a language for the modular and multi-scale representation
of biological processes;

e to provide a series of examples of biomolecular processes transcribed in formal languages, and a set
of biological questions of interest about these models;

e to design and apply to these examples formal computational reasoning tools for the simulation, the
analysis and the querying of the models.

This work lead us to the design and implementation of the Biochemical Abstract Machine BIOCHAM that has
the unique feature of providing formal languages corresponding to different qualitative and quantitative levels
of abstraction, for, on the one hand, modeling biomolecular interaction diagrams with reaction rules, and on
the other hand, modeling the biological properties of the system in temporal logic. This double formalization
of both the model and the biological properties of the system at hand opens several new research avenues on
the design and systematic validation of biological models.

We participate in two European Projects of the 6th PCRD. First the STREP APrIL II where the main objective
is to apply probabilistic inductive logic programming techniques to bioinformatics applications. Our main
focus is on the regulatory and metabolic networks in the cell, and the semi-automatic completion or revision of
models from observed temporal properties of the system [3]. Second, the Network of Excellence REWERSE,
in which we focus, among other themes, on bioinformatics as a field of application of the new Semantic
Web technologies based on rules and constraints. In this context we intend to use the biological knowledge
stored in online ontologies like GO in order to improve the re-use and composition of models, as well as the
semi-automatic correction/completion of models. In this respect, we developped type inference and abstract
interpretation techniques to extract information from reaction models [15].

We coordinate the ARC MOCA (2006-2008) on “MOdularity, Compositionality and Abstraction in gene and
protein networks”, and collaborate in this framework with Denis Thieffry, Claudine Chaouyia, Univ. Marseille,
Anne Siegel and Ovidiu Radulescu, IRISA SYMBIOSE and IHES, Ralf Blossey IRI and Vincent Danos
CNRS Paris, on the exploration of different techniques and methods allowing semi-automatic composition,
decomposition, simplification and refinement of biological models. More precisely, we study the formal links
between logical and numerical models of some parts of the cell cycle and the decomposition in modules based
on control theory intuitions.

This technology developed in the last years is now applied to new biological questions that we investigate
in partnerships with biologists in two new projects. First, the EU STREP project TEMPO on “temporal
genomics for patient tailored chornotherapeutics”, coordinated by Francis Levi INSERM Villejuif, where,
in partnership with Jean Clairambault of the BANG project-team, we develop in BIOCHAM coupled models
of the cell cycle, the circadian cycle and the effect of cytotoxic drugs in cancer therapies. Second, the INRA
AgroBi project, coordinated by Eric Reiter INRA Tours, where, in partnership with Frédérique Clément of the
SOSSO2 project-team, we develop in BIOCHAM models of FSH signaling networks in mammalian cells.

5. Software

5.1. BIOCHAM

Participants: Nathalie Chabrier-Rivier, Frangois Fages, Sylvain Soliman.

17T-calculus, Join-calculus and their derivatives
2Constraint Logic Programming, Concurrent Constraint languages and their extensions to discrete and continuous time, TCC, HCC

http://www.aprill.org
http://www.rewerse.net
http://www.geneontology.org
http://contraintes.inria.fr/moca/

Project-Team Contraintes 5

The Biochemical Abstract Machine BIOCHAM is a modeling and validation environment for molecular
systems biology. BIOCHAM provides precise semantics to biomolecular interaction maps at three abstraction
levels:

1. the boolean semantics of molecules presence and absence,
2. the continuous semantics of molecular concentrations,

3. the stochastic semantics of molecule populations.
Based on this formal framework, BIOCHAM offers:

e a compositional rule-based language for modeling biochemical systems, allowing patterns and
kinetic expressions when numerical data are available;

e numerical and boolean simulators;

e atemporal logic language (CTL for qualitative models and LTL with numerical constraints for quan-
titative models) for formalizing biological properties such as reachability, checkpoints, oscillations
or stability, and checking them automatically with model-checking techniques;

e automatic search procedures to infer interaction rules and parameter values from known temporal
properties of the system.

BIOCHAM is fully implemented in GNU-Prolog and interfaced to the state-of-the-art symbolic model checker
NuSMYV for evaluating boolean CTL queries in large models over several hundreds of variables. BIOCHAM
models can be imported from, and exported to, the standard Systems Biology Markup Language SBML.

5.2. TCLP

Participant: Emmanuel Coquery.

TCLP is a prescriptive type system for Constraint Logic Programming, currently: ISO-Prolog, GNU-Prolog,
SICStus Prolog and the constraint programming libraries of SICStus Prolog. TCLP can also type check
constraint solvers written in the Constraint Handling Rules (CHR) language.

The flexibility of the TCLP type system is obtained by the combination of three kinds of polymorphism: para-
metric polymorphism (e.g. list(A)), subtyping (e.g. list(A)<term) and overloading (e.g. —:num*num—num
and —:AxB—pair(A,B)). No type declaration are required, thanks to a type inference algorithm for predicates
and to a default ferm type for function symbols.

5.3. GNU-Prolog

Participants: Daniel Diaz, Rémy Haemmerlé.

GNU Prolog is a free Prolog compiler with constraint solving over finite domains developed by Daniel Diaz.
GNU Prolog accepts Prolog extended with primitives for constraint programming and produces native binaries
(like gce does from a C source). The Prolog part conforms to the ISO standard for Prolog with many practical
extensions (global variables, OS interface, sockets,...). GNU Prolog also includes an efficient constraint solver
over Finite Domains (FD), giving the user the combined power of constraint programming and the declarativity
of logic programming.

An experimental version, called GNU-Prolog-RH, is developed as an extension introducing concurrency,
attributed variables, and constraint solving over the reals. This version greatly extends the expressive and
modeling power of GNU-Prolog. It is also used to prototype the design and implementation of our new SiLCC
language.

5.4. CLPGUI

Participant: Francois Fages.

http://contraintes.inria.fr/BIOCHAM
http://nusmv.irst.itc.it/
http://www.sbml.org/
http://www710.univ-lyon1.fr/~ecoquery/tclp/index.html
http://gprolog.inria.fr

6 Activity Report INRIA 2006

CLPGUI is a generic graphical user interface written in Java for constraint logic programming. It is available
for GNU-Prolog and SICStus Prolog. CLPGUI has been developed both for teaching purposes and for
debugging complex programs. The graphical user interface is composed of several windows: one main console
and several dynamic 2D and 3D viewers of the search tree and of finite domain variables. With CLPGUI it
is possible to execute incrementally any goal, backtrack or recompute any state represented as a node in the
search tree. The level of granularity of the search tree is defined by annotations in the CLP program.

5.5. Tra4dCP

Participant: Pierre Deransart.

Following the former OADymPPaC project, we have set up with J.-D Fekete a new open source project called
Tra4CP (Traces for Constraint Programming). The main objective of this open project is to build a repository
of constraint resolution traces and analysis tools.

The purpose is to pursue dissemination the results of the former OADymPPaC project, to facilitate contacts
and working exchanges between researchers in the field of complex problem solving using constraint
programming, and mainly to promote new analysis methods. Following this idea, the project allowed to
integrate recent developments related to the use of the generic trace format Gentra4CP for constraint
programming to produce trace analysis based on music (work of Jeremie Vautard Tra4CP). The creation
of a working group on constraint problem XML repsesentation and its integration in the Gentra4CP is also
considered.

6. New Results

6.1. Implementation of SiLCC

Participants: Francois Fages, Rémy Haemmerlé, Adiga Satish, Sylvain Soliman.

We are developing SiLCC an imperative and concurrent constraint programming language based on a single
paradigm: the one of Vijay Saraswat’s concurrent constraint programming extended with constraint systems
based on Jean-Yves Girard’s Linear Logic. In the late 90’s we developed the theory of this extension and we
have now begun its implementation.

From a constraint programming point of view, the unique combination of constraint programming with
imperative features opens many new possibilities, among which:
e the capability of programming constraint solvers in the language, making them extensible by the

user,

e making a fully bootstrapped implementation of a constraint programming language (for the first time
since Prolog)

e combining constraint reasoning with state change;

e proving program correctness using Linear Logic.
Our current implementation of SiLCC uses GNU-Prolog-RH as temporary kernel language, on top of which
a module system and the first bootstrapping libraries have been developed. The objective is to define a small
kernel language as an instance of LCC over a simple constraint domain of labelled graphs, on top of which
the complete SiLCC language will be built by bootstrapping. Bootstrapping is a fundamental step for getting

over the current limits of today constraint programming tools, concerning their extensibility, robustness, and
teaching. The main step realized this year has been the definition of the module system.

6.2. Module System for SiLCC

Participants: Francois Fages, Rémy Haemmerlé, Sylvain Soliman.

http://contraintes.inria.fr/~fages/CLPGUI/
http://tra4cp.sourceforge.net/
http://contraintes.inria.fr/OADymPPaC
http://www.univ-orleans.fr/SCIENCES/LIFO/Membres/lallouet/research/cspsinger/cspsinger.html
http://contraintes.inria.fr/~haemmerl/gprolog-rh

Project-Team Contraintes 7

Module systems are an essential feature of programming languages as they facilitate the re-use of existing
code and the development of general purpose libraries. However, there has been no consensual module
system for Prolog, hence no strong development of libraries, in sharp contrast to what exists in Java for
instance. One difficulty comes from the call predicate which interferes with the protection of the code, an
essential task of a module system. In [16], by distinguishing the called module code protection from the
calling module code protection, we have reviewed the existing syntactic module systems for Prolog and
shown that no module system ensures both forms of code protection, with the noticeable exceptions of Ciao-
Prolog and XSB. We presented a formal module system for logic programs with calls and closures, defined
its operational semantics and formally proved the code protection property. Interestingly, we also provided an
equivalent logical semantics of modular logic programs without calls nor closures, which shows how they can
be translated into constraint logic programs over a simple module constraint system.

The module system of SiLCC goes however beyond the one we propose for Prolog-like languages. There are
indeed two somewhat contradictory ways of looking at modules in a given programming language. On the
one hand, module systems are largely independent of the particulars of programming languages, and several
examples of module systems have indeed been adapted to different programming languages. On the other hand,
the module constructs often interfere with the programming constructs, and may be redundant with other scope
mechanisms of programming languages, such as closures for instance. There is therefore a need to unify the
programming concepts and constructs that are similar, and retain a minimum number of essential constructs to
avoid arbitrary programming choices. In [21] we realize this aim in the framework of linear logic concurrent
constraint programming (LCC) languages. We first show how declarations and closures can be internalized
as agents in LCC. We then present a modular version of LCC (MLCC), where modules are referenced by
variables and where implementation hiding is obtained with the usual hiding operator for variables. We develop
the logical semantics of MLCC in linear logic, and show the completeness of the operational semantics for the
observation of successes and accessible stores.

6.3. Type systems

Participants: Emmanuel Coquery, Pierre Deransart, Francois Fages, Sylvain Soliman.

The Constraint Handling Rules (CHR) are an untyped rewrite rule language, initially designed for implement-
ing constraint solvers. In order to benefit from type programming for the development of larger programs, we
have designed a generic type system for CHR [8]. CHR being a high-level extension of a host language, such
as Prolog or Java, the type system is parameterized by the type system of the host language. The consistency
of the type system has been shown for the operational semantics of CHR, as well as for the extended execution
model CLP+CHR, for the case where the host language is a constraint logic programming language. This
type system has been implemented as an extension of our type checker TCLP which is itself implemented in
CLP+CHR. It has been successfully evaluated on twelve CHR solvers and programs, including TCLP itself.

In [9], an analysis of constraint propagation execution is based on a formal setting of traces and trace drivers
that can be tailored to the observation of different types of events.

In the framework of computational systems biology, and in particular for the BIOCHAM modeling environ-
ment, we developed type inference and abstract interpretation techniques to either type check reaction models
or infer types from reaction models [15]. In this approach the types can represent various information such as
the categories of proteins (kinase, phosphtase, etc.) the function of the proteins (activations and inhibitions) or
the topology of compartments for instance.

6.4. Constraint programming environments
Participant: Pierre Deransart.

Semantics based debugging, static and dynamic typing, and more generally validation of CC programs are
also studied in the project.

8 Activity Report INRIA 2006

We started to study theoretical questions issued from the former OADymPPaC project (RNTL ended in 2004)
by trying to clarify the notions of trace exchanged between observed and observing processees and their
semantics called "observational semantics". We wanted also to better formalize the interactions between these
processes in order to be able to optimize their communications in particular by formalizing the introduction
of Tracer Driver and Analyser Manager respectively added to the oberserved and observing processes. Finally
the question of extending the domain of application of the approach to other domains than constraints solvers
is considered by introducing the concept of "generic obervational semantics" and "generic trace scheme".

This work is the continuation of the work started with Mireille Ducassé and Ludovic langevine on these topics
during the OADymPPaC project. First developments have been published in [9].

6.5. Global constraint of scheduling with concentration constraints

Participants: Francois Fages, Andras Kovacs, Julien Martin, Jean-Christophe Reussner, Aurélie Strobbe.

Global constraints provide a way to introduce redundant constraints from which tighter propagation mecha-
nisms may be infered, for instance by re-using a wide area of algorithms from graph theory. In [7], we describe
a global constraint and a filtering algorithm for a pure graph property : computing cutsets in a graph (i.e. sets
of vertices to remove to make the graph acyclic). This global constraint is compared to mixed integer pro-
gramming and applied to a reconciliation problem in nomadic applications, originating from a previous study
we did with Microsoft Research Cambridge.

In collaboration with TOTAL, we study an optimization problem of crude oil blending in refineries. The
problem is to find a plan of transfer and mixing of crude oil, from the boats to the distillation units
through storage and mixing tanks, under various constraints of product concentrations, continuous distillation,
schedule, and optimization criteria. This NP-hard problem is the combination of a planning problem (for
choosing the transfer tasks and quantities) with a scheduling problem.

Previous approaches based on Mixed-Integer Linear Programming (MILP) rely on a discretization of time
that may give infeasible or suboptimal solutions. On the other hand, a constraint programming approach is
appealing for its capability to treat efficiently the scheduling part of the problem without time discretization,
We have developed such a solution with ILOG tools, by introducing a global constraint of scheduling with
concentration constraints, and using heuristics for the planning part of the problem. A filtering algorithm for
this global constraint is currently developed as a generalization of the multi-resource cumulative constraint.

Because of the importance of the heuristics part on real-size data, we have also considered a constraint-based
local search method for this problem [22]. For this study we used the Comet system of Van Hentenryck
developed at Brown University, and a collaboration with Pascal Van Hentenryck is planned on this difficult
problem.

Similar methods are also investigated in collaboration with Evelyne Lutton (COMPLEX Team) for multi-user
distributed resource allocation problems and for the implementation of the CONSENSUS system.

6.6. Continuous dynamics in BIOCHAM

Participants: Laurence Calzone, Frangois Fages, Sriram Krishnamachari, Sylvain Soliman.

BIOCHAM (the BIOCHemical Abstract Machine) is a software environment for modeling biochemical
systems [4], [19]. It is based on two aspects: (1) the analysis and simulation of boolean, differential and
stochastic reaction models and (2) the formalization of biological properties in temporal logic. BIOCHAM
provides tools and languages for describing protein networks with a straightforward syntax, and for integrating
biological properties into the model. It then becomes possible to analyze, query, verify, and maintain the model
w.r.t. those properties. For kinetic models, BIOCHAM can search for appropriate parameter values in order to
reproduce a specific behavior observed in experiments and formalized in temporal logic. Coupled with other
methods such as bifurcation diagrams, this search assists the modeler/biologist in the modeling process.

http://contraintes.inria.fr/BIOCHAM

Project-Team Contraintes 9

In the differential semantics, the time series obtained from numerical integration allows us to use model-
checking techniques for LTL queries with numerical constraints [3]. A model-checker incorporated in
BIOCHAM and implemented in GNU-Prolog, enables the automatic verification of quantifier free first-order
LTL formulae (about concentrations and their derivatives) but also of some specific quantified first-order
formulae, such as periods of oscillations for instance [18].

Current work involves:

e using this model-checking features for learning parameter values, as explained in section 6.8;
e identifying precisely which fragment of first-order LTL is wanted;

e formalizing, as an abstraction, the relationship between the continuous and boolean semantics;
e defining more precisely the relationship with the stochastic semantics;

e using bifurcation theory to gain information about possible parameter values for certain behaviors
of the system, and elucidating how to connect LTL with “types of bifurcations”.

6.7. Inferring reaction rules in BIOCHAM

Participants: Laurence Calzone, Nathalie Chabrier-Rivier, Francois Fages, Sylvain Soliman.

The formalization of biomolecular interactions in BIOCHAM syntax, and the specification of the observed
behavior of the system in temporal logic (CTL or LTL) make it possible to develop machine learning
algorithms to automatically correct or complete existing models. It is worth noting that structural learning
of reaction rules from temporal logic properties is quite new, both from the machine learning perspective and
from the systems biology perspective.

In the framework of the APrIL IT STREP, we first applied state-of-the-art inductive logic programming tools
to simple reachability properties. The objective was to complete a boolean BIOCHAM model to satisfy a
CTL specification. We developed a more powerful search algorithm for learning new reaction rules from
general temporal logic properties. This algorithm evolved into a theory revision algorithm, taking into account
that ACTL and ECTL formulae (i.e. those where the only path operator is respectively A and F) can guide
the search for the addition or deletion of rules. In the quantitative case, the same strategy can be applied to
learn kinetic parameter values. Once the biological properties of a system under various initial conditions, are
described both qualitatively and quantitatively with LTL formulae and constraints, an enumerative algorithm
can be applied to estimate parameter values by model-checking [3]. This provides an interesting tool to the
biologist/modeler who has to proceed in part by trial and error.

These algorithms are currently improved in BIOCHAM by applying various optimizations, such as :

e compressing the simulation trace used by the LTL model checker with constraints for searching
parameter values;

e using the type information contained in reaction models [15] to restrict the search for reaction rules
to add to a model;

e improving the data structures of BIOCHAM code, in the spirit of its migration from Prolog to
SiLCC;

e exploring inductive logic programming techniques, through a translation of Biocham models to
Prolog and Stochastic Logic Programs code.

6.8. Coupled model of the cell cycle and the circadian cycle in mammalian cells

Participants: Laurence Calzone, Sriram Krishnamachari, Sylvain Soliman.

Recent advances in cancer chronotherapy techniques support the evidence that there exist some links between
the cell and the circadian cycles. Both cycles have been successfully modeled, however, as of today, there
are no precise models describing the coupling of the two cycles. One purpose of a coupled model is to better
understand how to efficiently target malignant cells depending on the phase of the day. This is at the heart of
our participation in the EU STREP project TEMPO.

10 Activity Report INRIA 2006

Our model [18] is built from two models, a model of the circadian cycle from Leloup and Goldbeter and a
generic model of the cell cycle model focusing on a crucial event, the entry into mitosis. Currently, the model
is focused on the coupling through the WEEI1 kinase. This protein plays an important role in the regulation of
the activity of MPF, a complex crucial in cell division. The WEE]1 kinase seems to be regulated positively by
CLOCK/BMALI and negatively by CRY, these three genes being well-known circadian core genes.

The BIOCHAM feature for learning parameter values under period constraints was introduced for this study.
This allowed us to compute the domain of entrainment of the cell cycle by the circadian cycle. This domain
mainly depends on the strength of the WEEI1 kinase, regulated by circadian genes, on the activity of MPF.
We now intend to incorporate other links, based on evidence from the literature: through the protein c-MYC
for instance; and to make the generic cell cycle model more complete in order to see the effect of these other
links.

7. Contracts and Grants with Industry

7.1. ILOG

Collaboration within the RNTL pre-competitive project Manifico (Feb. 2003 - Sep. 2006) on non intrusive
metacompilation of matching with constraints in rule based languages

7.2. TOTAL

Collaboration with TOTAL on a constraint programming approach to the optimization of crude oil blending
and the Thesis of Aurélie Strobbe under a CIFRE contract.

8. Other Grants and Activities

8.1. National contracts

e INRA project AgroBi (2006-2010) on the modeling of FSH signaling, coordinated by Eric Reiter,
INRA Tours;

e ARC MOCA (2006-2007) MOdularité, Compositionalité et Abstraction dans les réseaux géniques
et protéiques, coordinated by Sylvain Soliman;

e ACI IMPbio VICANNE (2004-2007) Modélisation dynamique et simulation des systemes bi-
ologiques;

e RNTL project MANIFICO (Sep. 2003-2006) on the compilation of rules and constraints. with
LORIA PROTHEO and ILOG coord;

e CIFRE thesis and industrial contract with TOTAL (July 2004- July 2007) on the optimization of
petroleum processes by constraint programming.

8.2. European contracts

e 6th PCRD STREP Net-WMS (2006-2010) on constraint optimization in Wharehouse Management
Systems, ERCIM coord, F. Fages scientific coordinator, Ecole des Mines de Nantes, SICS, KLS
optim, CEA, mindbiz, Widescope, PSA, Fiat;

e 6th PCRD STREP TEMPO (2006-2010) on temporal genomics for tailored chronotherapeutics,
coordinated by Francis Lévi at INSERM Villejuif;

e 6th PCRD STREP APRIL II “Applications of probabilistic inductive logic programming”, coord.
Prof. L. de Raedt, University of Freiburg;

http://www.informatik.uni-freiburg.de/~ml/april2/

Project-Team Contraintes 11

e 6th PCRD Network of Excellence REWERSE “Reasoning with rules and semantics”, coord. Prof.
F. Bry, Ludwig Maximillian’s University in Munich;

e ERCIM Working Group on Constraints, coord. F. Fages, INRIA Rocquencourt.

8.3. Invitations
Have been invited for short visits :

e Stephanie Spranger, Ludwig Maximilian University, Munich, Germany,
e Bela Novak, Univ. Budapest, Hungary,
e Jacques Robin, Universidade Federal de Pernambuco, Brazil,

e Khalil Djelloul, University of Ulm, Germany.

9. Dissemination

9.1. Teaching

Contraintes is affiliated to the Doctoral school EDITE of the University of Paris 6.

Several Ph.D. students and members of Contraintes teach in the first cycles of Universities or Engineering
schools. Our involvement in Master courses is the following:

e 24h Course on Constraint Programming, Master Parisien de Recherche en Informatique (MPRI) by
Sylvain Soliman (12h) and Frangois Fages (6h).

e 48h Course on Computational Systems Biology, Master Parisien de Recherche en Informatique
(MPRI) by Francois Fages (15h) and Sriram Krishnamachari (3h).

9.2. Leadership within scientific community
o Pierre Deransart is the General Secretary, past Chairman, of the “Association Francaise pour la
Programmation par Contraintes” AFPC.

He is "Brazil Correspondent” in the DREI (INRIA international Direction) and organized several
INRIA activities related to INRIA-Brazil scientific cooperation.

e Francois Fages is member of the Editorial Board of RAIRO Operations Research, the Chairman
of the ERCIM Working Group on Constraints, vice-Chairman, past Chairman of the “Association
Francaise pour la Programmation par Contraintes” AFPC, member of the Scientific Councils of the
Epigenomics project of the Genopole of Evry, and of the French-Russian Liapunov Institute.

e Sylvain Soliman is the Secretary of the ERCIM Working Group on Constraints.

10. Bibliography

Year Publications
Books and Monographs
[1] B. HNICH, M. CARLSSON, F. FAGES, F. ROSSI. Recent Advances in Constraints, selected papers from the

Joint ERCIM/Colognet Workshop CSCLP’05, Lecture Notes in Artificial Intelligence, vol. 3978, Springer-
Verlag, 2006.

http://www.rewerse.net/
http://contraintes.inria.fr/~soliman/ercim/
http://mpri.master.univ-paris7.fr/C-2-4.html
http://mpri.master.univ-paris7.fr/C-2-19.html
http://www.afpc-asso.org
http://www.edpsciences.org/ro
http://contraintes.inria.fr/~soliman/ercim/
http://www.afpc-asso.org
http://www-direction.inria.fr/international/liapunov.html
http://contraintes.inria.fr/~soliman/ercim/

12 Activity Report INRIA 2006

Articles in refereed journals and book chapters

[2] L. CALZONE, N. CHABRIER-RIVIER, F. FAGES, S. SOLIMAN. Langages formels dans la machine
abstraite biochimique BIOCHAM, in "Techniques et Sciences Informatiques”, to appear, 2006,
http://contraintes.inria.fr/~fages/Papers/CCFS05tsi.pdf.

[3] L. CALZONE, N. CHABRIER-RIVIER, F. FAGES, S. SOLIMAN. Machine learning biochemical networks from
temporal logic properties, in "Transactions on Computational Systems Biology VI", G. PLOTKIN (editor).
, Lecture Notes in Biolnformatics, CMSB’05 Special Issue, vol. 4220, Springer-Verlag, November 2006, p.
68-94, http://contraintes.inria.fr/~fages/Papers/CCFS05tcsb.pdf.

[4] L. CALZONE, F. FAGES, S. SOLIMAN. BIOCHAM: An Environment for Modeling Biological Systems
and Formalizing Experimental Knowledge, in "Biolnformatics", vol. 22, n® 14, 2006, p. 1805-1807,
http://contraintes.inria.fr/~fages/Papers/bioinformatics.pdf.

[5] F. FAGES. From Syntax to Semantics in Systems Biology - Towards Automated Reasoning Tools,
in "Transactions on Computational Systems Biology IV", vol. 3939, December 2006, p. 68-70,
http://pauillac.inria.fr/~fages/Papers/Fages06tcsb.pdf.

[6] F. FAGES. Programmation logique et contraintes, in "Encyclopédie d’informatique, Paris", Vuibert, 2006, p.
151-162.

[7]1 F. FAGES, A. LAL. A Constraint Programming Approach to Cutset Problems, in "Journal Computers and
Operations Research", vol. 33:10, October 2006, p. 2852-2865.

Publications in Conferences and Workshops

[8] E. COQUERY, F. FAGES. A type system for CHR, in "Recent Advances in Constaints, revised selected papers
from CSCLP’05", Lecture Notes in Artificial Intelligence, n® 3978, Springer-Verlag, 2006, p. 100-117,
http://pauillac.inria.fr/~fages/Papers/CFO5csclp.pdf.

[9] P. DERANSART. On using Tracer Driver for External Dynamic Process Observation, in "Workshop on Logic
Programming Environments WLPE’06 associated to ICLP’06 and FLOC’06, Seattle, USA", August 2006.

[10] F. FAGES. Biological validation as model checking, in "Dagstuhl seminar on Simulation and Verification of
Dynamic Systems, Dagstuhl, Germany", In [17], April 2006.

[11] F. FAGES. Formal Languages in the Biochemical Abstract Machine BIOCHAM, in "Workshop Logic and
Interactions, associated to Geometry of Computation Geocal’06, CIRM, Marseille", February 2006.

[12] F. FAGES. Machine learning biochemical models from temporal logic properties (tutorial), in "April 11
workshop: Applications of Probabilistic Inductive Logic, associated to ECML 06, Berlin", September 2006.

[13] F. FAGES. Machine learning biochemical networks from temporal logic properties, in "Proc. Modélisation de
systemes biologiques complexes dans le contexte de la génomique, Bordeaux", April 2006.

[14] F. FAGES. On Using Temporal Logic with Constraints to Express Biological Properties of Cell Processes
(invited talk), in "Proc.Workshop on Constraint Based Methods for Bioinformatics WCB’06, associated to
CP’06, Nantes", September 2006, p. 1-5.

http://contraintes.inria.fr/~fages/Papers/CCFS05tsi.pdf
http://contraintes.inria.fr/~fages/Papers/CCFS05tcsb.pdf
http://contraintes.inria.fr/~fages/Papers/bioinformatics.pdf
http://pauillac.inria.fr/~fages/Papers/Fages06tcsb.pdf
http://pauillac.inria.fr/~fages/Papers/CF05csclp.pdf

Project-Team Contraintes 13

[15] F. FAGES, S. SOLIMAN. Type Inference in Systems Biology, in "CMSB’06: Proceedings of the fourth
international conference on Computational Methods in Systems Biology", C. PRIAMI (editor). , Lecture Notes
in Computer Science, vol. 4210, Springer-Verlag, 2006, http://pauillac.inria.fr/~fages/Papers/FSO6cmsb.pdf.

[16] R. HAEMMERLE, F. FAGES. Modules for Prolog Revisited, in "Proceedings of International Conference on
Logic Programming ICLP 2006", Lecture Notes in Computer Science, n® 4079, Springer-Verlag, 2006, p.
41-55, http://pauillac.inria.fr/~fages/Papers/HF06iclp.pdf.

[17] D. M. NicoL, C. PrRIAMI, H. R11S-NIELSON, A. M. UHRMACHER. 06161 Abstracts Collection — Simulation
and Verification of Dynamic Systems, in "Simulation and Verification of Dynamic Systems", D. M. NICOL,
C. PriaMI, H. R. NIELSON, A. M. UHRMACHER (editors). , Dagstuhl Seminar Proceedings, n® 06161,
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,
2006, http://drops.dagstuhl.de/opus/volltexte/2006/710.

Internal Reports

[18] L. CALZONE, S. SOLIMAN. Coupling the Cell cycle and the Circadian Cycle, Research Report, n°® 5833,
INRIA, February 2006, http://hal.inria.fr/inria-00070191.

[19] N. CHABRIER-RIVIER, F. FAGES, S. SOLIMAN. BIOCHAM’s user manual, INRIA, 2003-2006,
http://contraintes.inria.fr/BIOCHAM/.

[20] R. HAEMMERLE, F. FAGES. Modules for Prolog Revisited, Technical report, n® RR-5869, INRIA, 2006,
http://hal.inria.fr/inria-00070157.

[21] R. HAEMMERLE, F. FAGES, S. SOLIMAN. On Internalizing Modules as Agents in Concurrent Constraint
Programming, Technical report, n° RR-5981, INRIA, 2006, http://hal.inria.fr/inria-00096644/.

[22] J.-C. REUSSNER. Optimisation de la livraison, du stockage, du mélange et du chargement des pétroles bruts
d’une rafinerie, Rapport de stage de ’ENSTA Paris, INRIA, June 2006.
Miscellaneous

[23] F. FAGES. Machine learning biochemical networks from temporal logic propertiesJoint April/IQ workshop,
Titisee, Germany, March 2006.

http://pauillac.inria.fr/~fages/Papers/FS06cmsb.pdf
http://pauillac.inria.fr/~fages/Papers/HF06iclp.pdf
http://drops.dagstuhl.de/opus/volltexte/2006/710
http://hal.inria.fr/inria-00070191
http://contraintes.inria.fr/BIOCHAM/
http://hal.inria.fr/inria-00070157
http://hal.inria.fr/inria-00096644/

