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2. Overall Objectives

2.1. Introduction
The Espresso project-team proposes models, methods and tools for computer-aided design of embed-
ded systems. The model considered by the project-team is polychrony [9]. It is based on the paradigm
of the synchronous hypothesis and allow for the specification of multi-clocked systems. The meth-
ods considered by the project-team put this model to work for the refinement-based (top-down) and
component-based (bottom-up) design of embedded systems using correctness-preserving model transfor-
mations. The project-team makes a continuous effort to develop the Polychrony toolbox, freely available at
http://www.irisa.fr/espresso/Polychrony.

Polychrony is an integrated development environment and technology demonstrator consisting of a compiler,
a visual editor and a model checker. It provides a unified model-driven environment to perform embedded
system design exploration by using top-down and bottom-up design methodologies formally supported by
design model transformations from specification to implementation and from synchrony to asynchrony.

The company TNI-Valiosys supplies its commercial implementation, RT-Builder, used for industrial scale
projects by Snecma/Hispano-Suiza and EADS – Airbus Industries (see http://www.tni-valiosys.com). Past and
present collaborators of project-team Espresso through European, French and bilateral collaborations include
CS-SI, CEA-List, MBDA, AONIX, SILICOMP, THALES, EDF, AIRBUS, VERIMAG, CEA.

2.2. Context and motivations
High-level embedded system design has gained prominence in the face of rising technological complexity,
increasing performance requirements and shortening time to market demands for electronic equipments.
Today, the installed base of intellectual property (IP) further stresses the requirements for adapting existing
components with new services within complex integrated architectures, calling for appropriate mathematical
models and methodological approaches to that purpose.

http://www.irisa.fr/espresso/Polychrony
http://www.tni-valiosys.com
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Over the past decade, numerous programming models, languages, tools and frameworks have been proposed
to design, simulate and validate heterogeneous systems within abstract and rigorously defined mathematical
models. Formal design frameworks provide well-defined mathematical models that yield a rigorous method-
ological support for the trusted design, automatic validation, and systematic test-case generation of systems.

However, they are usually not amenable to direct engineering use nor seem to satisfy the present industrial
demand. As a matter of fact, the attention of the industry tends to shift to modeling frameworks based
on general-purpose programming language variants, in response to a growing industry demand for higher
abstraction-levels in the system design process and an attempt to fill the so-called productivity gap.

At present, a possibility of widening divergences between formal methods and industrial practices is perceiv-
able. It seems that any useful methodology cannot avoid the industrial trend of using emerging programming
languages. This contrasted picture calls for an effort toward the convergence between the theory of formal
methods and the industrial practice and trends in system design.

Project-team Espresso aims at this convergence by considering the formal modeling framework of the
Polychrony toolbox to serve as pivot formalism to import, transform, validate and export heterogeneous
formalisms and languages.

2.3. The polychronous approach
Despite overwhelming advances in embedded systems design, existing techniques and tools merely provide
ad-hoc solutions to the challenging issue of the productivity gap. The pressing demand for design tools
has sometimes hidden the need to lay mathematical foundations below design languages. Many illustrating
examples can be found, e.g. the variety of very different formal semantics found in state-diagram formalisms.
Even though these design languages benefit from decades of programming practice, they still give rise to some
diverging interpretations of their semantics.

The need for higher abstraction-levels and the rise of stronger market constraints now make the need for un-
ambiguous design models more obvious. This challenge requires models and methods to translate a high-level
system specification into a distribution of purely sequential programs and to implement semantics-preserving
transformations and high-level optimizations such as hierarchization (sequentialization) or desynchronization
(protocol synthesis).

In this aim, system design based on the so-called “synchronous hypothesis” has focused the attention of
many academic and industrial actors. The synchronous paradigm consists of abstracting the non-functional
implementation details of a system and lets one benefit from a focused reasoning on the logics behind the
instants at which the system functionalities should be secured.

With this point of view, synchronous design models and languages provide intuitive models for embedded
systems [4]. This affinity explains the ease of generating systems and architectures and verify their function-
alities using compilers and related tools that implement this approach.

In the relational mathematical model behind the design language Signal, the supportive data-flow notation
of Polychrony, this affinity goes beyond the domain of purely sequential systems and synchronous circuits
and embraces the context of complex architectures consisting of synchronous circuits and desynchronization
protocols: globally asynchronous and locally synchronous architectures (GALS).

This unique feature is obtained thanks to the fundamental notion of polychrony: the capability to describe
systems in which components obey to multiple clock rates. It provides a mathematical foundation to a notion
of refinement: the ability to model a system from the early stages of its requirement specifications (relations,
properties) to the late stages of its synthesis and deployment (functions, automata).

The notion of polychrony goes beyond the usual scope of a programming language, allowing for specifications
and properties to be described. As a result, the Signal design methodology draws a continuum from synchrony
to asynchrony, from specification to implementation, from abstraction to refinement, from interface to
implementation. Signal gives the opportunity to seamlessly model embedded systems at multiple levels of
abstraction while reasoning within a simple and formally defined mathematical model.
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The inherent flexibility of the abstract notion of signal handled in Signal invites and favors the design of
correct-by-construction systems by means of well-defined model transformations that preserve the intended
semantics and stated properties of the architecture under design.

3. Scientific Foundations

3.1. Scientific Foundations
Embedded systems are not new, but their pervasive introduction in ordinary-life objects (cars, telephone, home
appliances) brought a new focus onto design methods for such systems. New development techniques are
needed to meet the challenges of productivity in a competitive environment. Synchronous languages rely on
the synchronous hypothesis, which lets computations and behaviors be divided into a discrete sequence of
computation steps which are equivalently called reactions or execution instants. In itself this assumption is
rather common in practical embedded system design.

But the synchronous hypothesis adds to this the fact that, inside each instant, the behavioral propagation
is well-behaved (causal), so that the status of every signal or variable is established and defined prior to
being tested or used. This criterion, which may be seen at first as an isolated technical requirement, is in
fact the key point of the approach. It ensures strong semantic soundness by allowing universally recognized
mathematical models to be used as supporting foundations. In turn, these models give access to a large corpus
of efficient optimization, compilation, and formal verification techniques. The synchronous hypothesis also
guarantees full equivalence between various levels of representation, thereby avoiding altogether the pitfalls
of non-synthesizability of other similar formalisms. In that sense the synchronous hypothesis is, in our view, a
major contribution to the goal of model-based design of embedded systems.

We shall describe the synchronous hypothesis and its mathematical background, together with a range
of design techniques enpowered by the approach. Declarative formalisms implementing the synchronous
hypothesis can be cast into a model of computation [9] consisting of a domain of traces or behaviors and
of semi-lattice structure that renders the synchronous hypothesis using a timing equivalence relation: clock
equivalence. Asynchrony can be superimposed on this model by considering a flow equivalence relation as
well as heterogeneous systems [29] by parameterizing composition with arbitrary timing relations.

3.1.1. A synchronous model of computation
We consider a partially-ordered set of tags t to denote instants seen as symbolic periods in time during which
a reaction takes place. The relation t1 ≤ t2 says that t1 occurs before t2. Its minimum is noted 0. A totally
ordered set of tags C is called a chain and denotes the sampling of a possibly continuous or dense signal over
a countable series of causally related tags. Events, signals, behaviors and processes are defined as follows:

• an event e is a pair consisting of a value v and a tag t,

• a signal s is a function from a chain of tags to a set of values,

• a behavior b is a function from a set of names x to signals,

• a process p is a set of behaviors that have the same domain.

In the remainder, we write tags(s) for the tags of a signal s, vars(b) for the domains of b, b|X for the projection
of a behavior b on a set of names X and b/X for its complementary.

Figure 1 depicts a behavior b over three signals named x, y and z. Two frames depict timing domains
formalized by chains of tags. Signals x and y belong to the same timing domain: x is a down-sampling of
y. Its events are synchronous to odd occurrences of events along y and share the same tags, e.g. t1. Even tags
of y, e.g. t2, are ordered along its chain, e.g. t1 < t2, but absent from x. Signal z belongs to a different timing
domain. Its tags, e.g. t3 are not ordered with respect to the chain of y, e.g. t1¬ ≤ t3 and t3¬ ≤ t1.
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Figure 1. Behavior b over three signals x, y and z in two clock domains

3.1.1.1. Composition

Synchronous composition is noted p || q and defined by the union b ∪ c of all behaviors b (from p) and c (from
q) which hold the same values at the same tags b|I = c|I for all signal x ∈ I = vars(b) ∩ vars(c) they share.
Figure 2 depicts the synchronous composition (Figure 2, right) of the behaviors b (Figure 2, left) and the
behavior c (Figure 2, middle). The signal y, shared by b and c, carries the same tags and the same values in
both b and c. Hence, b ∪ c defines the synchronous composition of b and c.

Figure 2. Synchronous composition of b ∈ p and c ∈ q

3.1.1.2. Scheduling

A scheduling structure is defined to schedule the occurrence of events along signals during an instant t. A
scheduling → is a pre-order relation between dates xt where t represents the time and x the location of the
event. Figure 3 depicts such a relation superimposed to the signals x and y of Figure 1. The relation yt1 → xt1 ,
for instance, requires y to be calculated before x at the instant t1. Naturally, scheduling is contained in time:
if t < t′ then xt →b xt′ for any x and b and if xt →b xt′ then t′¬ < t.

Figure 3. Scheduling relations between simultaneous events

3.1.1.3. Structure

A synchronous structure is defined by a semi-lattice structure to denote behaviors that have the same timing
structure. The intuition behind this relation is depicted in Figure 4. It is to consider a signal as an elastic with
ordered marks on it (tags). If the elastic is stretched, marks remain in the same relative (partial) order but have
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more space (time) between each other. The same holds for a set of elastics: a behavior. If elastics are equally
stretched, the order between marks is unchanged.

In Figure 4, the time scale of x and y changes but the partial timing and scheduling relations are preserved.
Stretching is a partial-order relation which defines clock equivalence. Formally, a behavior c is a stretching
of b of same domain, written b ≤ c, iff there exists an increasing bijection on tags f that preserves the timing
and scheduling relations. If so, c is the image of b by f . Last, the behaviors b and c are said clock-equivalent,
written b ∼ c, iff there exists a behavior d s.t. d ≤ b and d ≤ c.

Figure 4. Relating synchronous behaviors by stretching.

3.1.2. A declarative design languages
Signal [5] is a declarative design language expressed within the polychronous model of computation. In Signal,
a process P is an infinite loop that consists of the synchronous composition P ||Q of simultaneous equations
x = y f z over signals named x, y, z. The restriction of a signal name x to a process P is noted P/x.

P,Q ::= x = y f z | P/x | P ||Q

Equations x = y f z in Signal more generally denote processes that define timing relations between input and
output signals. There are four primitive combinators in Signal:

• delay x = y $init v, initially defines the signal x by the value v and then by the previous value of
the signal y. The signal y and its delayed copy x = y $init v are synchronous: they share the same
set of tags t1, t2, · · ·. Initially, at t1, the signal x takes the declared value v and then, at tag tn, the
value of y at tag tn−1.

y •t1,v1 •t2,v2 •t3,v3 · · ·
y $init v •t1,v •t2,v1 •t3,v2 · · ·

• sampling x = y when z, defines x by y when z is true (and both y and z are present); x is present
with the value v2 at t2 only if y is present with v2 at t2 and if z is present at t2 with the value true.
When this is the case, one needs to schedule the calculation of y and z before x, as depicted by
yt2 → xt2 ←− zt2 .

• merge x = y default z, defines x by y when y is present and by z otherwise. If y is absent and z
present with v1 at t1 then x holds (t1, v1). If y is present (at t2 or t3) then x holds its value whether
z is present (at t2) or not (at t3).

y • •t2,v2 · · ·
↓

y when z •t2,v2 · · ·
↑

z • •t1,0 •t2,1 · · ·

y •t2,v2 •t3,v3 · · ·
↓ ↓

y default z •t1,v1 •t2,v2 •t3,v3 · · ·
↑

z •t1,v1 • · · ·
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The structuring element of a Signal specification is a process. A process accepts input signals originating
from possibly different clock domains to produce output signals when needed. This allows, for instance, to
specify a counter where the inputs tick and reset and the output value have independent clocks. The body
of counter consists of one equation that defines the output signal value. Upon the event reset, it sets the
count to 0. Otherwise, upon a tick event, it increments the count by referring to the previous value of value
and adding 1 to it. Otherwise, if the count is solicited in the context of the counter process (meaning that its
clock is active), the counter just returns the previous count without having to obtain a value from the tick and
reset signals.

process counter = (? event tick, reset ! integer value)
(| value := (0 when reset)

default ((value$ init 0 + 1) when tick)
default (value$ init 0)

|);

A Signal process is a structuring element akin to a hierarchical block diagram. A process may structurally
contain sub-processes. A process is a generic structuring element that can be specialized to the timing context
of its call. For instance, the definition of a synchronized counter starting from the previous specification
consists of its refinement with synchronization. The input tick and reset clocks expected by the process
counter are sampled from the boolean input signals tick and reset by using the when tick and when
reset expressions. The count is then synchronized to the inputs by the equation reset ^= tick ^= count.

process synccounter = (? boolean tick, reset ! integer value)
(| value := counter (when tick, when reset)
| reset ^= tick ^= value
|);

3.1.3. Compilation of Signal
Sequential code generation starting from a Signal specification starts with an analysis of its implicit synchro-
nization and scheduling relations. This analysis yields the control and data flow graphs that define the class of
sequentially executable specifications and allow to generate code.

3.1.3.1. Synchronization and scheduling specifications

In Signal, the clockˆx of a signal x denotes the set of instants at which the signal x is present. It is represented
by a signal that is true when x is present and that is absent otherwise. Clock expressions represent control.
The clock whenx (resp. notx) represents the time tags at which a boolean signal x is present and true (resp.
false).

The empty clock is written 0 and clocks expressions e combined using conjunction, disjunction and symmetric
difference. Clocks equations E are Signal processes: the equation eˆ = e′ synchronizes the clocks e and
e′ while eˆ <e′ specifies the containment of e in e′. Explicit scheduling relations x→ y when e allow to
schedule the calculation of signals (e.g. x after y at the clock e).

e ::= ˆx | whenx | notx | eˆ+ e′ | eˆ− e′ | ê + e′ | 0 (clock expression)
E ::= () | eˆ = e′ | eˆ <e′ | x→ y when e | E ||E′ | E/x (clock relations)

3.1.3.2. Synchronization and scheduling analysis

A Signal process P corresponds to a system of clock and scheduling relations E that denotes its timing
structure. It can be defined by induction on the structure of P using the inference system P : E of Figure 5.
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x := y$ init v : ^x ^= ^y

x := y when z : ^x ^= ^y when z | y -> x when z

x := y default z : ^x ^= ^y default ^z | y -> x when ^y | z -> x when ^z ^- ^y

Figure 5. Clock inference system

3.1.3.3. Hierarchization

The clock and scheduling relations E of a process P define the control-flow and data-flow graphs that hold
all necessary information to compile a Signal specification upon satisfaction of the property of endochrony.
A process is said endochronous iff, given a set of input signals and flow-equivalent input behaviors, it has the
capability to reconstruct a unique synchronous behavior up to clock-equivalence: the input and output signals
are ordered in clock-equivalent ways.

To determine the order x � y in which signals are processed during the period of a reaction, clock relations
E play an essential role. The process of determining this order is called hierarchization and consists of an
insertion algorithm which hooks elementary control flow graphs (in the form of if-then-else structures) one to
the others. Figure 6, right, let h3 be a clock computed using h1 and h2. Let h be the head of a tree from which
h1 and h2 are computed (an if-then-else), h3 is computed after h1 and h2 and placed under h.

Figure 6. Hierarchization of clocks

3.1.3.4. Example

The implications of hierarchization for code generation can be outlined by considering the specification of a
one-place buffer in Signal. Process buffer implements two functionalities. One is the process alternate
which desynchronizes the signals i and o by synchronizing them to the true and false values of an alternating
boolean signal b.

process buffer = (? i ! o)
(| alternate (i, o)
| o := current (i)
|)

where
process alternate = (? i, o ! )
(| zb := b$1 init true
| b := not zb
| o ^= when not b
| i ^= when b
|) / b, zb;
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process current = (? i ! o)
(| zo := i cell ^o init false
| o := zo when ^o
|) / zo;

end;

The other functionality is the process current. It defines a cell in which values are stored at the input clock
^i and loaded at the output clock ^o. cell is a predefined Signal operation defined by:

x := y cell z init v =def (m := x $init v ||x := y defaultm ||ˆxˆ = ŷˆ+ ẑ) /m

Clock inference applies the clock inference system of Figure 5 to the process buffer to determine three
synchronization classes. We observe that b, c_b, zb, zo are synchronous and define the master clock
synchronization class of buffer.

(| c_b ^= b
| b ^= zb
| zb ^= zo
| c_i := when b
| c_i ^= i
| c_o := when not b
| c_o ^= o
| i -> zo when ^i
| zb -> b
| zo -> o when ^o
|) / zb, zo, c_b, c_o, c_i, b;

There are two other synchronization classes, c_i and c_o, that corresponds to the true and false values of the
boolean flip-flop variable b, respectively:

b ≺� c_b ≺� zb ≺� zo and b � c_i ≺� i and b � c_o ≺� o

This defines three nodes in the control-flow graph of the generated code. At the main clock c_b, b and c_o
are calculated from zb. At the sub-clock b, the input signal i is read. At the sub-clock c_o the output signal o
is written. Finally, zb is determined. Notice that the sequence of instructions follows the scheduling relations
determined during clock inference.

buffer_iterate () {
b = !zb;
c_o = !b;
if (b) {
if (!r_buffer_i(&i))
return FALSE;

};
if (c_o) {
o = i;
w_buffer_o(o);

};
zb = b;
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return TRUE;
}

Whereas Signal uses a hierarchization algorithm to find a sequential execution path starting from a system
of clock relations, Lustre leaves this task to engineers, which must provide a well-synchronized program:
well-synchronized Lustre programs correspond to hierarchized Signal specifications.

3.1.3.5. Certification

The simplicity of the single-clocked model of Lustre eases program analysis and code generation and its
commercial implementation, Scade by Esterel Technologies, provides a certified C code generator. Its com-
bination to Sildex, the commercial implementation of Signal by TNI-Valiosys, as a front-end for architecture
mapping and early requirement specification is the methodology advocated in the IST project Safeair (URL:
http://www.safeair.org). The formal validation and certification of synchronous program properties has been
the subject of numerous studies. In [40], a co-inductive axiomatization of Signal in the proof assistant Coq [35],
based on the calculus of constructions [46], is proposed.

The application of this model is two-folds. It allows, first of all, for the exhaustive verification of formal
properties of infinite-state systems. Two case studies have been developed. In [37], a faithful model of the
steam-boiler problem was given in Signal and its properties proved with Signal’s Coq model. It is applied to
proving the correctness of real-time properties of a protocol for loosely time-triggered architectures, extending
previous work proving the correctness of its finite-state approximation [36].

Another and important application of modeling Signal in the proof assistant Coq is being explored and consists
of developing a reference compiler translating Signal programs into Coq assertion. This translation allows to
represent model transformations performed by the Signal compiler as correctness preserving transformations
of Coq assertions, yielding a costly yet correct-by-construction synthesis of target code.

Other approaches to the certification of generated code have been investigated. In [41], validation is achieved
by checking a model of the C code generated by the Signal compiler in the theorem prover PVS with respect
to a model of its source specification: translation validation.

4. Application Domains

4.1. Application Domains
The application domains covered by the Polychrony toolbox are engineering areas where a system design-flow
requires high-level model transformations and verifications to be applied during the development-cycle.

The project-team has focused on developing such integrated design methods in the context of avionics
applications, through the European IST projects Sacres, Syrf, Safeair. This research track is being continued
in the submitted Espace (avionics) and Sea (automotive) projects.

In this context, Polychrony is seen as a platform on which the architecture of an embedded system can
be specified from the earliest design stages until the late deployment stages through a number of formally
verifiable design refinements.

Recent trends in system-level design show, in a far from unrelated way, the need for modeling systems on
chips as globally asynchronous and locally synchronous systems. It is indeed manifest in the charter of the
ACM-IEEE MEMOCODE conference. It is the subject of an ongoing collaboration of project-team Espresso
with UC San Diego and Virginia Tech through INRIA associate-projects program.

5. Software

5.1. The Polychrony workbench
Participants: Loic Besnard, Thierry Gautier, Paul Le Guernic.

http://www.safeair.org
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Polychrony is an integrated development environment and technology demonstrator consisting of a compiler,
of a visual editor and of a model checker. It provides a unified model-driven environment to perform embedded
system design exploration by using top-down and bottom-up design methodologies formally supported by
design model transformations from specification to implementation and from synchrony to asynchrony.

Polychrony supports the synchronous, multi-clocked, data-flow specification language Signal. It is being
extended by plugins to capture SystemC modules or real-time Java classes within the workbench. It allows
to perform validation and verification tasks, e.g., with the integrated SIGALI model checker, the Coq theorem
prover, or with the Spin model checker.

Polychrony is registered at the APP and is freely distributed from http://www.irisa.fr/espresso/Polychrony for
non-commercial use. Based on the Signal language, it provides a formal framework:

1. to validate a design at different levels,

2. to refine descriptions in a top-down approach,

3. to abstract properties needed for black-box composition,

4. to assemble predefined components (bottom-up with COTS).

Figure 7. Avionics application modeling using the visual editor of the Polychrony workbench

The company TNI-Valiosys supplies a commercial implementation of Polychrony, called RT-Builder, used for
industrial scale projects by Snecma/Hispano-Suiza and Airbus Industries (see http://www.tni-valiosys.com).

http://www.irisa.fr/espresso/Polychrony
http://www.tni-valiosys.com
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Polychrony is a set of tools composed of:

1. A Signal batch compiler providing a set of functionalities viewed as a set of services for, e.g., pro-
gram transformations, optimizations, formal verification, abstraction, separate compilation, map-
ping, code generation, simulation, temporal profiling, etc.

2. A GUI with interactive access to compiling functionalities.

3. The SIGALI tool, an associated formal system for formal verification and controller synthesis, jointly
developed with the Vertecs project-team (http://www.irisa.fr/vertecs).

Polychrony offers services for modeling application programs and architectures starting from high-level and
heterogeneous input notations and formalisms. These models are imported in Polychrony using the data-flow
notation Signal. Polychrony operates these models by performing global transformations and optimizations
on them (hierarchization of control, desynchronization protocol synthesis, separate compilation, clustering,
abstraction) in order to deploy them on mission specific target architectures. C, C++, multi-threaded and
real-time Java and SynDex code generators are provided. The connection to the SynDEx distribution tool
(http://www-rocq.inria.fr/syndex) has been developed in the context of the RNTL project Acotris.

5.2. Integrated Modular Avionics design using Polychrony
Participants: Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

The Apex interface, defined in the ARINC standard [27], provides an avionics application software with the
set of basic services to access the operating-system and other system-specific resources. Its definition relies on
the Integrated Modular Avionics approach (IMA, [28]). A main feature in an IMA architecture is that several
avionics applications (possibly with different critical levels) can be hosted on a single, shared computer system.
Of course, a critical issue is to ensure safe allocation of shared computer resources in order to prevent fault
propagations from one hosted application to another. This is addressed through a functional partitioning of the
applications with respect to available time and memory resources. The allocation unit that results from this
decomposition is the partition.

A partition is composed of processes which represent the executive units (an ARINC partition/process is akin
to a Unix process/task). When a partition is activated, its owned processes run concurrently to perform the
functions associated with the partition. The process scheduling policy is priority preemptive.

Each partition is allocated to a processor for a fixed time window within a major time frame maintained by
the operating system. Suitable mechanisms and devices are provided for communication and synchronization
between processes (e.g. buffer, event, semaphore) and partitions (e.g. ports and channels).

The specification of the ARINC 651-653 services in Signal [6] is now part of the distribution Polychrony
and offers a complete implementation of the Apex communication, synchronization, process management
and partitioning services. Its Signal implementation consists of a library of generic, parameterizable Signal
modules.

5.3. A model of Signal in Coq
Participant: Jean-Pierre Talpin.

The verification of a reactive system is usually done by elaborating a discrete model of the system specified
in a dedicated formalism and then by checking a property against the model. The use of formal proof systems
enables to prove hybrid properties about infinite state systems: the correctness and the completeness of a
reactive system. To this aim, the Espresso project-team has developed a complete model of the Signal design
language in Coq [40]. More precisely, we have defined a translation scheme of the trace semantics of Signal to
the logical framework of Coq. We have conducted several case studies to demonstrate the applicability of the
approach to resolve sophisticated verification problems: a complete model and proof of the well-known steam-
boiler problem [37], the correctness of an implementation of a Signal protocol for loosely timed-triggered
architectures [36]. Such a proof, of course, cannot always be done automatically: it requires human-interaction

http://www.irisa.fr/vertecs
http://www-rocq.inria.fr/syndex
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to direct the proof strategy. The prover can nonetheless automate its most tedious and mechanical parts. In
general, formal proofs of programs are difficult and time-consuming. In the particular case of modeling a
reactive system using Signal, experience however shows that this difficulty is significantly reduced thanks to
the combined declarative style of programming and a relational style of modeling.

5.4. Affine clock calculus
Participants: Loïc Besnard, Thierry Gautier.

The affine clock calculus [43] is an extension of the boolean clock calculus based on free boolean conditions.
The affine relations allow to express that successive values of some signal are provided at specific micro-
instants between any two successive macro-instants in a regular manner. To express affine relations, three
predefined processes have been introduced.

affine_sample={integer φ, d} (? x ! y ), with φ ≥ 0 and d > 0, defines a signal y as an undersampling of an
other one x. A value of y is available each dth value of x, and the occurrence of the first value of y is given by
the phases (φ + 1). For φ = 3 and n = 4, the process is illustrated on figure 8.

Figure 8. Example: y := affine_sample{3,4} (x)

affine_clock_relation={integer n, φ, d} (? x, y) defines the fact that the clock of the input signals x and y are
in affine relation with n, φ, d as parameters. To implement this process, a clock (I) greater than the clock of x
and y is built such that the clock of x is synchronized with the clock of affine_sample { max(0,−φ), n }(I),
and the clock of y is synchronized with the clock of affine_sample { max(0, φ), d }(I). For n = 5, φ = 4 and
d = 7, the process is illustrated on figure 9.

Figure 9. Example: clock_affine{5,4,7}(x,y)

affine_unsample={integer n, φ} (? x, z ! y) with n > 0 and φ ≥ 0, defines the signal y, synchronized with
the signal z, as an oversampling from the input signal x; the input signal z is used to fix the values of y when
x is absent. For n = 3, φ = 1, the process is illustrated on figure 10.

5.5. A meta-model of Polychrony
Participants: Christian Brunette, Thierry Gautier, Jean-Pierre Talpin.
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Figure 10. Example: y := clock_unsample{3,1}(x, z)

We have developed a metamodel of Polychrony in the Generic Modeling Environment (GME) detailed in
Sections (6.2, 6.3, and 6.4.

• Signal-Meta is the metamodel of the SIGNAL language. It describes all syntactic elements specified
in [30]: all SIGNAL operators (e.g. arithmetic, clock synchronization), model (e.g. process frame,
module), and construction (e.g. iteration, type declaration).

• Signal-Meta has been extended to allow the definition of mode automata, which were originally
proposed by Maraninchi et al. [39] to extend the functionality-oriented data-flow paradigm with the
capability to model transition systems easily and provide an additional imperative flavor.

• MIMAD is also built as an extension of Signal-Meta and allows to design applications based on
the Integrated Modular Avionics (IMA) architecture, which relies on the avionic standard APEX-
ARINC [27], [28].

These metamodels aims at providing a user with a graphical framework allowing to model applications
using a component-based approach. Application architectures can be easily described by just selecting these
components via drag and drop, creating some connections between them and specifying their parameters as
component attribute. To complete this framework, we have developed, for each of these metamodels, GME
interpreters to transform the resulting graphical model to SIGNAL programs, and so to test and compile them
in Polychrony.

6. New Results

6.1. The UML profile MARTE for Real-Time and Embedded Systems Design
Participants: Jean-Pierre Talpin, Thierry Gautier, Christian Brunette.

The collaboration between the AOSTE, DART, ESPRESSO teams from INRIA, CEA and THALES Research
and Technology, in the context of the CARROLL Research Programme (see http://www.carroll-research.org)
aims at the standardization of a UML 2.0 profile for real-time embedded systems (MARTE) before the Object
Management Group (OMG). The main objectives of MARTE are the following : defining time, concurrency
and communication models, mixing control-flow and intensive computational data-paths, modeling architec-
tural platforms and adopting Y-chart approaches for allocation of application functions onto architectural re-
sources). It bears strong connections with other OMG standardization attempts (some accepted already, some
only proposed) such as the SysML (System Engineering in UML) standard, or AADL and UML4SoC current
RFC proposals. The MARTE profile is divided in three subparts (some would say subprofiles):

• TCR (Time and Concurrent Resources) is meant to provide the infrastructure notions of logi-
cal/discrete and physical/real time, and the basic concurrency and communication models relevant
to the profile. It should extend in many ways the corresponding parts of the SPT profile, in particular
in adding the notions of synchronous/clocked systems (with synchrony and priorities).

http://www.carroll-research.org
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Figure 11. A meta-model of Polychrony in the GME

• SPA (Schedulability and Performance Analysis) should provide with features allowing the non-
functional performance evaluation and static or dynamic scheduling policies of systems.

• RTEM (Real-Time Embedded Modeling) will take these time informations into account to provide
for behavioral definitions of hierarchical models, as in state and activity diagrams for instance).
It also claims for independent high-level modeling of architectural platforms and the platform-
based design methodology using useful feature of the two previous subprofiles to build and model
optimized allocation links between application and architectures. It also requires dedicated modeling
features for frequently encountered structures in real-time and embedded systems.

A first contribution of Espresso to MARTE, Figure 12, is to propose a model of the APEX-ARINC 653
operating system services, based on related work reported in Section 6.4.

In the MARTE profile for UML, Espresso proposes a Chapter on real-time and embedded application modeling
(RTEAM). The Chapter is concerned with the association of a timing model with behavioral description
diagrams such as activities or state-machines. The main features of this combination appear in Figure 13,
which depicts the model of an alarm clock using timed activity diagrams.

It is composed of the timed activity Count which counts the number of ticks comprised between a start and
a stop event. It is composed of the timed activity Check which emits an alarm when the count becomes
0. A causality dependency schedules the execution of Count before (or at the same time as) Check. Upon
completion, Check either terminates the activity (if the Alarm is raised) or loops back with a clock unit delay
until the next event occurs. All control and object flows in red denote an implicit "immediate" stereotype that
indicate branches that can be executed immediately. no buffer is provided). All control and object flows with
a delay stereotype are executed at the next unit of the parent activity clock.

The activity Count is complemented with a clock relation which defines its clock CountClk by the union of
the canonical clocks of its start, stop and tick input events. The clock of the Check activity is defined by
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<<Task>>

ArincProcessService

{isReentrant = false}

getProcessStatus( in id : ProcessId_Type, out status : ProcessStatus_Type ) : ReturnCode_Type{serviceKind = GetSchedulingFeature, GetState}

createProcess( in attr : ProcessAttribute_Type, out id : ProcessId_Type ) : ReturnCode_Type{serviceKind = Create, SetSchedulingFeature}

setPriority( in id : ProcessId_Type, in priority : Priority_Type ) : ReturnCode_Type{serviceKind = SetSchedulingFeature}

getProcessId( in name : ProcessName_Type, out id : ProcessId_Type ) : ReturnCode_Type{serviceKind = Other}

unlockPreemption( out lvl : LockLevel_Type ) : ReturnCode_Type{serviceKind = SetSchedulingFeature}

lockPreemption( out lvl : LockLevel_Type ) : ReturnCode_Type{serviceKind = SetSchedulingFeature}

timedWait( in delay : SystemTime_Type ) : ReturnCode_Type{serviceKind = Suspend, Wait}

suspendSelf( in timeout : SystemTime_Type ) : ReturnCode_Type{serviceKind = Suspend}

getTime( out time : SystemTime_Type ) : ReturnCode_Type{serviceKind = Other}

suspend( in id : ProcessId_Type ) : ReturnCode_Type{serviceKind = Suspend}

resume( in id : ProcessId_Type ) : ReturnCode_Type{serviceKind = Resume}

start( in id : ProcessId_Type ) : ReturnCode_Type{serviceKind = Activate}
stop( in id : ProcessId_Type ) : ReturnCode_Type{serviceKind = Delay}

replenish() : ReturnCode_Type{serviceKind = SetSchedulingFeature}
periodicWait() : ReturnCode_Type{serviceKind = Suspend}

stopSelf(){serviceKind = Delay}

<<TaskService>>

<<Process>>

ArincPartitionService

{schedulingType = Other,

isReentrant = false}

raiseApplicationError( in code : ErrorCode_Type, in msg : MessageArea_Type, in length : MessageSize_Type ) : ReturnCode_Type
reportApplicationMessage( in msg : MessageArea_Type, in length : MessageSize_Type ) : ReturnCode_Type

createErrorHandler( in entryPoint : SystemAddress_Type, in size : StackSize_Type ) : ReturnCode_Type

getPartitionStatus( out status : PartitionStatus_Type ) : ReturnCode_Type

setPartitionMode( in mode : OperatingMode_Type ) : ReturnCode_Type

getErrorStatus( out status : ErrorStatusType ) : ReturnCode_Type

getTime( out time : SystemTime_Type ) : ReturnCode_Type

<<ProcessService>>

Figure 12. Part of the ARINC 653 Library in the MARTE profile

Figure 13. Timed Activity Diagram for an Alarm
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the canonical clock of the timed event tick. Additionally, a dependency specifies a scheduling relation that
enforces the execution of Count to happen before or at the same time as Check. By looking into the definition
of Count and Check, one indeed notices that Count computes the count value that is tested against 0 in the
Check activity. An explicit causality stereotypes helps getting one aware of that constraint. Another clock
relation is depicted by the OCL constraint of the Select activity of the Count diagram. While the events start,
stop and the guard [last >= 0] have no explicit clock relation, it is necessary to deterministically choose
one of these events in order to deterministically set one of the init, default or last values to count. This is done
by making a priority relation between start, stop and last explicit.

6.2. A meta-model of Polychrony
Keywords: Generic Modeling Environment, Metamodeling, Model transformation, SIGNAL.

Participants: Christian Brunette, Thierry Gautier, Jean-Pierre Talpin.

In [19], we present the meta-model of Polychrony in the GME. The aim of this work is to generalize the
use of formal methods implemented in Polychrony by making them accessible in more popular framework,
such as Eclipse. However, in a world of rapid technology obsolescence, model engineering must be platform
independent. To achieve this independence, the higher their abstraction expression level is, the more adaptable
to various operational environments they will be. Model Driven Software Development is based on a number of
common principles such as like XMI, OCL and UML, that can be mapped to different standards and different
environments. Thus, we choose to express the SIGNAL language as a metamodel, called Signal-Meta, using
these technologies.

To develop our metamodeling approach, we choose the Generic Modeling Environment (GME) developed
by the ISIS institute at Vanderbilt University. GME is a configurable UML-based toolkit that supports the
creation of domain-specific modeling and program synthesis environments [38]. Metamodels are proposed in
the environment to describe modeling paradigms for specific domains. Such a paradigm includes, for a given
domain, the necessary basic concepts to represent models from a syntactical viewpoint to a semantical one.

Describing a metamodel in GME consists in modeling all paradigm concepts as classes through usual UML
class diagrams using some predefined UML-stereotypes. In these class diagrams, GME provides a means to
express the visibility of components within a model through the notion of Aspect (i.e. one can decide which
parts of the descriptions are visible depending on their associated aspects). Signal-Meta comprises three main
Aspects: Interface, Computation part and Clock and Dependence Relations. The first Aspect manages all
input/output signals and static parameters. The two other reflects respectively data-flow relations and clock
relations between signals. Figure 14 represents the description of a modem using Signal-Meta in GME. At the
bottom of the windows, the left frame contains all concepts that can be manipulated in the upper frame by
drag&drop.

The graphical description constitutes a good front-end for SIGNAL specifications. To complete this front-end,
we need a mean to transform the graphical Signal-Meta specifications in the SIGNAL language. GME offers a
means to develop and plug components into the GME environment. The role of such a component consists of
interacting with the graphical designs. GME distinguishes different families of components that can be plugged
to its environment depending of their role. We developed an Interpreter whose role is to check information,
such as the correctness of a model, and/or produce a result, such as a description file. This interpreter, outlined
Figure 15, is developed in C++ using the Builder Object Network (BON2) API provided with GME.

6.3. Multi-clocked mode automata
Keywords: Generic Modeling Environment, Mode automata, Model transformation, SIGNAL.

Participants: Jean-Pierre Talpin, Thierry Gautier, Christian Brunette.
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Figure 14. Description of a Modem in GME.

Figure 15. Generation of SIGNAL models from GME.



18 Activity Report INRIA 2006

Gathering advantages of declarative and imperative approaches, mode automata were originally proposed by
Maraninchi et al. [39] to extend the functionality-oriented data-flow paradigm with the capability to model
transition systems easily and provide an additional imperative flavor. Similar variants and extensions of the
same approach to mix multiple programming paradigms or heterogeneous models of computation [31] have
been proposed until recently, the latest advance being the combination of stream functions with automata
in [33]. Nowadays, commercial toolsets such as the Esterel Studio’s Scade or Matlab/Simulink’s Stateflow are
largely inspired from similar concepts.

While the introduction of preemption mechanism in the multi-clocked data-flow formalism Signal was
previously studied by Rutten et al. in [42], no attempt has been made to extend mode automata with the
capability to model multi-clocked systems and multi-rate systems. In [23], we extend Signal-Meta with an
inherited metamodel of multi-clocked mode automata. A salient feature is the simplicity incurred by the
separation of concerns between data-flow (that expresses structure) and control-flow (that expresses a timing
model) that is characteristic to the design methodology of SIGNAL.

While the specification of mode automata in related works requires a primary address on the semantics and on
compilation of control, the use of SIGNAL as a foundation allows to waive this specific issue to its analysis and
code generation engine Polychrony and clearly expose the semantics and transformation of mode automata in
a much simpler way by making use of clearly separated concerns expressed by guarded commands (data-flow
relations) and by clock equations (control-flow relations).

6.3.1. Example of a switch
To illustrate our modeling techniques, we consider the example of a simple crossbar switch (see Figure 16).
The switch is a typical example of specification where an imperative automata-like structure superimposed to
a native data-flow structure gives a shorter and more intuitive description of the system’s behavior. The mode
automata of the switch consists of two states flip and flop, in which routing is performed from y1,2 to either
x1,2 or x2,1 depending on the current mode of the automaton. The mode toggles from flip to flop, or converse,
upon an occurrence of the event r (see Figure 16).

Figure 16. Description of the crossbar switch.

The left of Figure 17 represents the switch process in which y1, y2, and r are declared as input signals, x1 and
x2 as output signals, and SwitchAtm as the mode automaton. DATA_TYPE is a parameter only used to define
a generic type for input and output signals. The SwitchAtm object is a container in which all its states are
specified (see right of Figure 17). The SwitchAtm automaton contains two terminal states (flip and flop).
StrongTransitions are guarded by the event r, as labeled on the middle of transitions. The 0 indicates the
priority of the transition, which has been added to guarantee the determinism of a mode automata if there are
more than one outgoing transition on a state. The left of Figure 17 also represents the synchronization of the
SwitchAtm clock with the union of the clock of y1, y2, and r. Because output signals are partially defined
in states (see the content of state flip (resp. flop) at the left (resp. right) of Figure 17), their clocks have to
be specified explicitly. Therefore, the MinClock operator is used to define them as the union of clocks of their
partial definitions.
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Content of states flip and flop.

Figure 17. The Switch process and the SwitchAtm mode automaton specifications in GME.

6.3.2. Model Transformation
The transformation consists in interpreting the graphical formalism as a SIGNAL specification. Therefore,
we have extended the Signal-Meta interpreter to support the mode automata extension. The code below
corresponds to the application of the interpreter on the switch example specified in Figure 17.
process Switch =

{ type DATA_TYPE; }

( ? DATA_TYPE y1,y2; event r; ! DATA_TYPE x1, x2; )

(| min_clock(x2) | min_clock(x1)

| %Atm%(| __ST_0_flop_To_flip := when (r) when (_Atm_0_zNextState = #flop)

| __ST_1_flip_To_flop := when (r) when (_Atm_0_zNextState = #flip)

| _Atm_0_currentState ^= (y1 ^+ y2 ^+ r)

| _Atm_0_nextState := _Atm_0_currentState

| _Atm_0_currentState := #flip when __ST_0_flop_To_flip

default #flop when __ST_1_flip_To_flop

default _Atm_0_zNextState

| _Atm_0_previousState := _Atm_0_currentState$ init #flip

| _Atm_0_zNextState := _Atm_0_nextState$ init #flip

| case _Atm_0_currentState in

{#flop}: (| x2 ::= y1 | x1 ::= y2 |)

{#flip}: (| x2 ::= y2 | x1 ::= y1 |)

end

|)

where

event __ST_0_flop_To_flip, __ST_1_flip_To_flop;

type _Atm_0_type = enum(flop, flip);

_Atm_0_type _Atm_0_currentState, _Atm_0_previousState;

_Atm_0_type _Atm_0_nextState, _Atm_0_zNextState;

end
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|); % process Switch

6.4. A modeling paradigm for Integrated Modular Avionics design
Keywords: Generic Modeling Environment, Integrated Modular Avionics, metamodeling.
Participants: Christian Brunette, Thierry Gautier, Jean-Pierre Talpin.

We previously addressed the design of applications based on the Integrated Modular Avionics (IMA)
architecture [13], [14], which relies on the avionic standard APEX-ARINC [27], [28]. This leads to the
implementation of a library of components in Signal, providing real-time executive services defined by the
APEX-ARINC standard.

Now, we carry out this library in the General Modeling Environment (GME) [18]. The primary purpose is
to increase the usability of the library by proposing the same concepts within a non domain-specific tool
such as GME. Therefore, without being an expert of synchronous technologies, a user could still be able to
design applications based on the IMA modeling approach proposed in the Polychrony environment. Today,
we observe that the attention of the industry tends to shift to frameworks based on general-purpose modeling
formalisms (e.g. UML), in response to a growing industry demand for higher abstraction-levels in the system
design process.

GME [38] is a configurable object-oriented toolkit, which supports the creation of domain-specific modeling
and program synthesis environments. Metamodels are proposed in the environment to describe modeling
paradigms for specific domains: basic concepts required for model representation from a syntactical viewpoint
to a semantical one.

Our modeling paradigm for IMA design in GME, called MIMAD, is represented by the layer on the top
in Figure 18. The layers on the bottom are dedicated to domain-specific technologies. Here, we consider
Polychrony, which is associated with Signal. However, one can observe that the idea is extensible to further
technologies that offer specific useful functionalities to the MIMAD layer (e.g., the integrated environment
UPPAAL, which enables validation and verification of real-time systems using timed automata). As GME
enables to import and export XML files, information exchange between layers can rely on this intermediate
format. This favors a high flexibility and interoperability.

Figure 18. A component-oriented modeling framework for IMA design.

The MIMAD layer aims at providing a user with a graphical framework allowing to model applications
using a component-based approach. Application architectures can be easily described by just selecting these
components via drag and drop. Component parameters (e.g. period or deadline of an IMA process model) can
be specified. The resulting GME model is transformed in Signal (referred to as Mimad2Sig in Figure 18) based
on the XML intermediate format.
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In the synchronous data-flow layer, the XML description obtained from the upper layer is used to generate a
corresponding Signal model of the initial application description. This is achieved by using the IMA-based
components already defined in PolychronyPolychrony [6]. Thereon, the formal analysis and transformation
techniques available in the platform can be applied to the generated Signal specification. Finally, a feedback
is sent to the MIMAD layer to notify the user with possible incoherences in initial descriptions.

6.5. An Eclipse plugin for Polychrony
Keywords: Eclipse, Ecore, Metamodeling, Model transformation, SIGNAL.

Participants: Christian Brunette, Jean-Pierre Talpin.

In the frame of the Topcased project and of the OpenEmbeDD project, we have to create an eclipse plugin for
Polychrony. So, within a collaboration initiated at INRIA in the ATLAS team in Nantes, we study migration
of existing GME projects, and particularly Signal-Meta, into Eclipse.

6.5.1. From GME to Eclipse
The ATLAS team has defined a model engineering support on top of the Eclipse Modeling Framework
(EMF), called the AMMA (ATLAS Model Management Architecture) platform [25]. To be able to exchange
models between an EMF based system and a corresponding GME assumes an abstract understanding of both
architectures and a precise organization of the interoperability scheme. EMF and GME allows metamodel
and model management. The designed models conforms to a previously defined metamodel. Any metamodel
design assumes the existence of a metametamodel (implicit or explicit). So three levels have to be considered:
metametamodel concepts mapping (M3), building metamodel projectors (M2) and building model projectors
(M1). Projectors are operational bridges between different technical spaces, and are realize here using
ATL (ATLAS Transformation Language), which allows model transformations in EMF technical space. The
metamodel bridge is already effective. Only a part of the metamodel concepts are translated into the ATLAS
file. All graphical information are lost. The file contains only information about concepts and their relations
(e.g. inheritance, containment). So, it is possible to work on the old GME project into EMF. The GReAT [26]
transformation language provided with GME can also be replaced by ATL to work on the produced artifacts.
This work is described in [32] and has been pursued this year by some improvements to keep more information
in the EMF Model. For example, the OCL constraints are added as specific comments, which can then be used
by OCL constraints checker provided in Eclipse. The translation has also been improved to fit more precisely
to EMF metamodels.

6.5.2. The new Polychrony environment
This translation gives a first EMF metamodel, which has been modified to exploit the power of the Eclipse
environment. From this metamodel, EMF can generate a plugin to build models based on such metamodel
(see figure 20). Using the modeling facilities provided with the Topcased framework, we create a graphical
environment for Polychrony (see figure 19).

The environment is complete concerning the modeling part. We reproduce in Eclipse the GME notion of
Aspect. So, the modeling of a SIGNAL process is split in three diagrams: one to model the interface of the
process, one to model the computation part, and one to model all explicit clock relations and dependences.
Actually, the graphical environment under Eclipse cannot generate Signal code the way we did it in GME.
Our objective in Eclipse is to deeply connect the graphical environment with the Polychrony compiler to
dynamically check the correctness of the model. Through this connection to the compiler, we can use the
facilities of the compiler to generate the SIGNAL program.

In the frame of the OpenEmbeDD project, we study the possibility of creating a unique environment for all
tools (Polychrony, Syndex [44], and Gaspard [34]) based on the synchronous paradigm. So, we began this
work by creating a UML metamodel in which we merge all common concepts of the three tools and we add
all specific ones.
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Figure 19. Signal-Meta environment in Eclipse.

Figure 20. EMF plugin for Signal-Meta.
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6.6. Rapid Prototyping of Heterogeneous Real-time Systems
Participants: Loïc Besnard, Hamoudi Kalla, Saïd Lankri, Jean-Pierre Talpin.

6.6.1. Importing C components
The ESPRESSO team has pursued his effort on importing C components into Signal [21]. This work is based
on the GCC compiler starting from its version 4. The compiler takes an arbitrary C source code, does the
compilation and outputs a tree called GNU TREE SSA (SSA - Single Statement Assignation) which represents
the original C source code in a sort of high level assembler instructions. The importer takes the resulting tree
and produces Signal code. This approach is convenient for reusing the many existing C components and
performing static code verification by the means of the Signal compiler.

In an alternative approach, we focus on a particular form of C components, specifically those who have a
strong algorithmic part. This type of C code is declined most of the time with computational parts that are not
compatible with the synchronous hypothesis (single assignment) and command parts. The aim is to split the
imported C component into two parts : the control parts are extracted and translated into Signal formalism, the
computational part is left in the C formalism and embedded in the resulting Signal component.

Many reasons are motivating this type of import. First, we do not really need to translate computational
parts, which are very well handled in the originating C language and cannot be simply imported. In addition,
Signal is not well designed for such type of programming. Second, the control/command part can be easily
handled in Signal, after the import we obtain a component whose ’decisional’ parts are written in Signal and
computational parts embedded as C code.

This import relies on standard technologies. The C component is first translated into its corresponding XML
structure with the help of a tool called SRCML, then a set of transformation rules are applied in order to obtain
Signal code and embed the computational parts. We have chosen a W3C standard, XSLT for these rules.

6.6.2. Importing Simulink components
Simulink has become the de facto standard tool largely used in the design of discrete-time systems. In order
to make the Signal language as a heterogeneous formalism integrator, we need to have correct translations
from Simulink to Signal. In this transformation, we offer a way of translating discrete-time Simulink models
to Signal, preserving by the way the component structure and hierarchization. We focus of discrete systems
using a fixed-step simulation in order to get a Signal model which is semantically equivalent.

Each Simulink ’box’ is translated into a Signal process and the known Simulink types are mapped to their
corrsponding types in Signal. Types are not mandatory in Simulink, in that case, we let the type-inference
system of Signal guess the types of the inputs and outputs.

In addition, we have written a Signal library of many discrete Simulink components. The translated models
make use of this library which is organized the same way libsimulink is in MATLAB.

Both the library and the transformation rules are extensible and the addition of new known
Simulink components is easy. As for C import, we first translate Simulink models into their XML rep-
resentation, and apply a set of rules to get a Signal code. We use the same XSLT standard in which
transformational rules are expressed.

6.7. New features of Polychrony
Participants: Loïc Besnard, Thierry Gautier.

The focus of this year is the open-source release of the environment: all the data structures, classes, methods
have been documented. The associated documentation is automatically generated using "doxygen" tool.
Moreover, this year we have integrated all the sources (Signal batch Compiler, Graphical User Interface
and Sigali) under Inria-Gforge (http://gforge.inria.fr). The automatic production of the releases, on LINUX,
SUNOS, MACOS X and WINDOWS has been also developped.

http://gforge.inria.fr
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A Java interface of some classes of Polychrony (written in C and C++) has been developped. Currently, only
the higth level functionalities are provided. It is used by MBDA (Section 6.6) to define an embedded system
design environment for the integration of heterogeneous components. Finally, the source of the Sigali tool has
been reorganized to avoid the duplication of the code between the sigali engine and the solver part, used for
controller synthesis.

6.8. Synthesis of latency-insensitive systems
Participants: Loïc Besnard, Paul Le Guernic, Julien Ouy, Jean-Pierre Talpin.

We are continuing our effort initiated in [45] to provide an implementation of weakly-endochronous or
self-synchronizing systems in Polychrony. We have defined a class of reactive and deterministic Signal
specifications that can be separately compiled and concurrently executed, allowing one to use Signal for
simulating globally asynchronous locally synchronous architectures.

C code can be generated for such programs with just a few modifications to the existing Signal compiler. We
are presently working on the definition of a (non-expensive) static analysis of such programs to determine
which of them are self-synchronizing.

On a different path, we are exploring a way to compile thoseself-synchronizing programs into object-
oriented C++ programs. Those programs are reactive, dynamically self-scheduled and able to support internal
concurrency. We are working on simplifying the required scheduling runtime system and on finding the
optimal granularity of code to schedule.

6.9. Periodic clock relations
Participants: Paul Le Guernic, Hugo Metivier, Jean-Pierre Talpin.

We try to extend the clock calculus of Signal with periodic dependencies between signals. These relations can
be expressed with infinite periodic binary words. This sort of constraints is more expressive than the calculus
on static dependency to represent the clocks dependency in the execution of the Signal program but more
complex to extract.

We are working on a non-assisted method to infer the periodic dependency from Signal equations, or to
prove property on Signal variables like an abstract interpretation. This method would permit to extend the
set of programs accepted by the Signal compiler thanks to an automatic insertion of bounded buffer for the
N-synchronizable signals.

In future work, the calculus with infinite periodic binary words could be use to analyse the scheduling of the
instructions generated from a program Signal, and we could try to calculate an bounded time for the execution
of the program for a set of instant.

7. Contracts and Grants with Industry

7.1. Carroll project Cortess (10/2006-10/2007)
Participants: Christian Brunette, Thierry Gautier, Jean-Pierre Talpin.

The partners of the CARROLL project Cortess (http://www.carroll-research.org) are Thales, CEA-List and
the INRIA project-teams Espresso, Aoste and Dart. The aim of the project Cortess is to continue the effort
of the former ProtesÊproject to standardize the UML profile for real-time and embedded systems (MARTE)
before the OMG. The contribution of the Espresso team to MARTE is decribed Section 6.1.

7.2. Network of excellence Artist2
Participants: Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

http://www.carroll-research.org
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The Espresso project-team is involved in the activity of the Artist2 network of excellence. The book [1] and the
URL http://www.artist-embedded.org/FP6) give detailed presentations on the aim and scope of the network.

7.3. Sub-contractant for MBDA
Participants: Loïc Besnard, Jean-Pierre Talpin.

In the context of the ANR project Systematics, the Espresso project-team collaborates with MBDA division
of EADS to develop a embedded system design environment based on Polychrony for the integration of
heterogeneous components (in C, Lustre, Simulink). Work conducted in this project is reported in Sectionõ6.6.

7.4. Fondation EADS Grant
Participants: Yann Glouche, Jean-Pierre Talpin.

The Espresso project-team received a grant from the EADS Foundation to fund a Doctorate on contract-based
design in a polychronous model of computation. The aim of this program, carried in collaboration with case
studies from MBDA, is to develop and model-driven engineering framework, based on the Eclipse plugin for
Polychrony (developped in the frame of 7.6, allowing for the seamless integration of heterogeneous embedded
system components within a contract-based design MDD environment.

7.5. AESE project Topcased
Participants: Christian Brunette, Jean-Pierre Talpin.

The Espresso project-team participates to the Topcased initiative of Airbus. The aim of the Topcased initiative
is to developp an open-source toolset for the design of avionic architectures. A summary of Topcased appears
in [24]. Project Topcased is being funded by the ANR and the Midi-Pyréné region.

7.6. RNTL project OpenEmbeDD
Participants: Christian Brunette, Fabien Fillion, Jean-Pierre Talpin.

The Espresso project-team coordinates (in collaboration with project Tryskel) the RNTL project OpenEm-
beDD. The goal of OpenEmbeDD is to develop an open-source toolset consisting of:

• Model-driven design infrastructures

• Asynchronous design and verification environments

• Synchronous design and verification environments

for the design of embedded software. The project comprises many industrial partners to carry out case studies
and validate the design environment. In the frame of OpenEmbeDD, project Espresso develops an Eclipse
plugin for Polychrony in collaboration with Airbus (Topcased technology) and project Atlas (ATL technology).

Project Espresso is hosting a platform expert-engineer, Fabien Fillion, whose goal will be to integrate
synchronous and asynchronous design environments developped in the frame of the project within a unified
environment.

7.7. Rockwell-Collins France
Participants: Loïc Besnard, Jean-Pierre Talpin.

In the frame of the Topcased consortium, the Espresso project-team initiated a bilateral collaboration with
Rockwell-Collins France and the University of Minessota. The aim of this initiative is to investigate the use of
Polychrony for the system-level design of globally asynchronous and locally synchronous (GALS) avionics
architectures. A case study is being carried out to entirely design and verify a Dual Flight Guidance System in
collaboration with the University of Minnesota.

http://www.artist-embedded.org/FP6
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7.8. IST project Speeds
Participants: Lionel Morel, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

The Espresso project-team is involved in the activity of the IST project SPEEDS (Speculative and Exploratory
Design in Systems Engineering, http://www.speeds.eu.com/).

SPEEDS is a concerted effort to define the new generation of end-to-end methodologies, processes and sup-
porting tools for safety-critical embedded system design. It aims at improving substantially the competitive-
ness of the European industry in this critical economic sector by marrying design competence with deep
technical insights and theoretical foundations.

The project will enable European systems industry to evolve from model-based design of embedded systems,
towards integrated component based construction of complete virtual system models. It will include:

• Construction of early system prototypes during the design stage.

• Thorough quality and stability assessment at early design stages.

• Active treatment of design assumptions to guide system development.

• Support for concurrent multi-organization development of complex designs.

For ensuring a good acceptance of the SPEEDS approach from the industrial partners, system modeling will
be adressed using the following layers:

• Users will stay with their usual design tools and high-level languages;

• A SPEEDS core meta-model will provide a low-level common modeling language, independant
from the pre-cited tools. Translation from these high-level languages to the core meta-model will be
ensured;

• A rigorous formal semantics of the core meta-model will ensure the consistency of SPEEDS
modeling and provides a basis for system analysis.

The project thus includes the definition of a formal model for heterogeneous embedded systems called "HRC"
for Heterogeneous Rich Components.

The contribution of the Espresso project-team is to demonstrate how the design of such HRC-based systems
can benefit from the existing design and validation experience related to Polychronous systems.

Starting from SignalMeta[19], a profile implementing the Polychronous MoCC[9], a Polychronous Profile will
be defined as a library of derived concepts for the HRC meta-model. This will define a one-to-one mapping
between the Polychronous MoCC and the Polychronous Profile of HRC. Symmetrically, a mapping (eventually
partial) from HRC to the Polychronous Profile will be developped.

8. Other Grants and Activities

8.1. INRIA associated projects program
Participants: David Berner, Paul Le Guernic, Jean-Pierre Talpin.

The design productivity gap has been recognized by the semiconductor industry as one of the major threats to
the continued growth of system-on-chips and embedded systems. Ad-hoc system-level design methodologies,
that lift modeling to higher levels of abstraction, and the concept of intellectual property (IP), that promotes
reuse of existing components, are essential steps to manage design complexity. However, the issue of
compositional correctness arises with these steps. Given components from different manufacturers, designed
with heterogeneous models, at different levels of abstraction, assembling them in a correct-by-construction
manner is a difficult challenge. We address this challenge by proposing a behavioral type inference system to
capture SystemC components’ behavior at the interface level. The proposed type theory grounds a modeling
and specification methodology, formulated in terms of a module system, that reduces compositional design

http://www.speeds.eu.com/
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correctness verification to the validation of synthesized proof obligations. The proposed type theory is
conceptually minimal, equipped with a formal semantics, defined in a synchronous model of computation and
supports a scalable notion and a flexible degree of abstraction. Our collaboration targets the de facto standard
SystemC, yet with generic and language-independent techniques. Its applications range from the detection of
local design errors to the compositional assembly of modules [16], [15].

9. Dissemination
9.1. Advisory

• Paul Le Guernic is executive board member of the Réseau National en Technologies Logicielles and
steering committee member of the Réseau National en Micro-Nano Technologies.

• Jean-Pierre Talpin is elected member of INRIA’s evaluation commission at INRIA, external advisory
board member of the center of embedded systems at Virginia Tech, steering committee member
of the ACM-IEEE conference on methods and models for codesign (MEMOCODE), organization
committee member of the GALS workshop series, and editorial board member of the EURASIP
Journal on Embedded Systems.

9.2. Conferences
• Jean-Pierre Talpin served as technical program committee member for the ACM-IEEE MEM-

OCODE’06, IEEE DATE’06 and ACM SAC’06 conferences and for the SLAP’06 workshop.

9.3. Events
• Loïc Besnard animated the session on “Embedded and real-time systems” at AUTRANS’06: 3th

INRIA Meeting on Experimental Platforms Engineering, March 2006.

9.4. Teaching
• Thierry Gautier and Loïc Besnard taught on real-time programming at the DIIC 2 Graduate program

of the University of Rennes I.
• Julien Ouy taught on computer science at the Graduate program of the University of Rennes I
• Hugo Metivier taught UML design at the DIIC 2 Graduate program, on web design at the MIAGE

Graduate program and on computer science at the PCGI Graduate program.

9.5. Visits
• In the frame of the BALBOA associate projects program, Sudipta Kundu (UCSD) and Sandeep

Shukla (VT) visited project Espresso in August and November 2006. Jean-Pierre Talpin visited the
Fermat Laboratory at VT in March 2006 and UCSD in December 2006.

• Sudipta Kundu (UCSD) visited the team August 2006 in the frame of the BALBOA project
• Sandeep Shukla (VT) visited the team November 2006 in the frame of the BALBOA project
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