%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team EVEREST

Vérification et sécurité du logiciel

Sophia Antipolis

S THEME SYM S

ctivity

http://www.inria.fr/recherche/equipes/listes/theme_SYM.en.html
http://www.inria.fr
http://www.inria.fr/recherche/equipes/everest.en.html
http://www.inria.fr/inria/organigramme/fiche_ur-sop.en.html

t—m

Table of contents

Team ...
Overall Objectives,

2.1. Overall Objectives

Scientific Foundations

3.1. Type systems

3.2. Program verification

3.3. Machine-checked semantics and algorithms
3.4. Software security

3.5. Proof Carrying Code

Application Domains

4.1. Smart devices
4.2. Global computing

SoftWare e

5.1. Jack: a tool for applet validation
5.2. Jakarta

New Results ...

6.1. Program verification and Proof Carrying Code
6.2. Machine-checked semantics and algorithms
6.3. Type theory and proof assistants

Contracts and Grants with Industry

7.1. Contracts

7.2. National projects

7.3. European projects

7.4. International projects and collaborations

Dissemination

8.1. Conference and workshop attendance, travel
8.2. Leadership within scientific community

8.3. Visiting scientists

8.4. Supervision of Ph.D. projects

8.5. Ph.D. committees

8.6. Supervision of internships

8.7. Teaching

Bibliography

LW N NN

A~ B W W

13

1. Team

Team Leader
Gilles Barthe [Research Director INRIA, HdR]

Team Vice-Leader
Marieke Huisman [Research scientist INRIA]

Research scientist
Benjamin Grégoire [Research scientist INRIA]

Administrative assistant
Nathalie Bellesso

Ph.D. student
Julien Charles [MESR grant, Teaching Assistant UNSA]
Clément Hurlin [since September 2006]
Allard Kakebeen [until February 2006]
César Kunz
Mariela Pavlova [until October 2006]
Tamara Rezk [until September 2006]
Sabrina Tarento [until September 2006, MESR grant, Teaching Assistant UNSA]
Santiago Zanella [since June 2006]
Post-doctoral Fellow
Julien Forest [until September 2006 |
Romain Janvier [since September 2006]
Yu Zhang [since November 2006]
Technical Staff
Sophie Hadjadj
Anne Pacalet [since January 2006]
David Pichardie [until August 2006]
Visiting Ph.D. student
Salvador Cavadini [visiting Ph.D. student from University of San Luis, Argentina, since February 2006, 18
months |
Student internship
Fernando Pastawski [Cordoba University, Argentina, 6 months]
Gustavo Petri [Cordoba University, Argentina, 6 months]
Alejandro Tamalet [Rosario University, Argentina, 5 months]

2. Overall Objectives

2.1. Overall Objectives

The Everest project concentrates on increasing reliability and security of mobile and embedded software.
This is achieved by developing and applying formal methods and language-based techniques, covering both
platform and application level. The project’s privileged application domain ranges from trusted personal
devices, such as mobile phones and smart cards, to ubiquitous computing.

The project focuses on the following research areas:
e Program verification and Proof Carrying Code;
e Machine-checked semantics and algorithms;

e Foundations of proof assistants.

2 Activity Report INRIA 2006

3. Scientific Foundations

3.1. Type systems

Types are often considered as one of the great successes of programming language theory, and their use
permeates modern programming languages. The widespread use of types is a consequence of three crucial
factors:

o Types are intuitive. Types are a particularly simple form of assertion. They can be explained to the
user without the need to understand precise details about why and how they are used in order to
achieve certain effects. For example, Fortran and C use type systems to generate memory layout
directives at compile time; yet the users of C can write type-correct programs and understand typing
errors without knowing exactly how the type concept is related to memory layout.

o Types are automatic. In many cases an untyped program can be enhanced with types automatically
by type inference. Of course, adherence of a program to even the simplest policy is an algorith-
mically undecidable property. Type systems circumvent this obstacle by guaranteeing a safe over-
approximation of the desired policy. For example, a branching statement with one unsafe branch will
usually be considered unsafe by a type system. This not only restores decidability but contributes to
the aforementioned intuitiveness and simplicity of type systems.

e Types scale up. Besides their simplicity and the possibility to infer types, type systems allow to
reduce the verification of a complex system into simpler verification tasks involving smaller parts of
the system. Such a compositional approach is a crucial property for making the verification of large,
distributed and reconfigurable systems feasible.

Type systems have long been used in programming languages to enforce basic safety properties of programs.
For example, the type system of Java is designed to statically detect certain runtime errors such as the
application of a string function to a floating point number, or a call to a method that does not belong to a
name space of a given class. In addition, the research community has developed numerous type systems that
enforce more advanced safety properties dealing with modularity, concurrency, and aliasing in Java programs.

Type systems are also increasingly being studied as a means to enforce security; in particular, the research
community has developed type systems that guarantee secure information flow and resource control policies.

3.2. Program verification

Research on program logics has a long history, dating back to the seminal work on Floyd-Hoare logics and
weakest precondition calculi in the late 1960s and early 1970s. Although this line of research has not yet
lead to a breakthrough in the application of program verification, there has been steady progress, resulting in
tool-supported program logics for realistic programming languages.

There are a number of reasons to adopt program verification techniques based on logic to guarantee the
correctness of programs.

e Logic is expressive. During its long development, logic has been designed to allow for greater and
greater expressiveness, a trend pushed by philosophers and mathematicians. This trend continues
with computer scientists developing still more expressiveness in logic to encompass notions of
resources and locality. Today a rich collection of well developed and expressive logics exists for
describing computational systems.

e Logic is precise. While types generally over-approximate program behaviour, logic can be used
to provide precise statements about program behaviour. Special conditions can be assumed and
exceptional behaviours can be described. Via the use of negation and rich quantifier alternation,
it is possible to state nearly arbitrary observations about programs and computational systems.

o Logic allows analyses to be combined. Logic provides a common setting into which the declarative
content of a typing judgement or other static analyses can be translated. The results of such analyses
can then be placed into a common logic so that conclusions about their combinations can be drawn.

Project-Team EVEREST 3

Recently, there has been a lot of research into logic-based program verification of Java, which has culminated
in the realisation of program verification environments for single-threaded Java.

3.3. Machine-checked semantics and algorithms

We are interested in developing formal, machine-checked semantics of programming languages and of their
execution platforms such as virtual machines, run-time environments, Application Programming Interfaces,
and of the tools that are used for compiling, verifying, validating programs. In particular, we have strong
experience in modelling and verifying execution platforms for smart cards, as well as their main security func-
tions, such as bytecode verifiers and access control mechanisms, and the standard deployment architectures
for multi-application smart cards, such as Global Platform.

We are also interested in developing formal, machine-checked security proofs for cryptographic algorithms,
using tools from provable cryptography. In particular, we have formalised the Generic Model and Random
Oracle Model, and given formally verified security bounds for the probability of an attacker breaking the
discrete logarithm and related encryption and signing schemes.

3.4. Software security

Security is not a technology, but a property of a system. For this reason, there are new security requirements
associated with each new technology or architecture. While these security requirements are often expressed
from the perspective of the users, they must also be translated to concrete objectives that can be enforced by
security mechanisms.

For instance, the Java security model assumes that end users trust its runtime environment but not the
downloaded code. The concrete objectives include adherence to the typing and policy of the JVM and
compliance with the stack inspection mechanism, which are enforced by the Java byte code verifier and the
runtime environment.

The ability to derive concrete verification objectives from carefully gathered security requirements is an im-
portant step for guaranteeing that a component is secure with respect to a given security policy. Typical re-
quirements include information flow security policies; resource control policies; framework-specific security;
and application-specific security.

We give precise mathematical definitions of these requirements, using programming language semantics, and
provide means to enforce these requirements using type systems or logic.

3.5. Proof Carrying Code

Proof Carrying Code (PCC) is an innovative security framework in which components come equipped with a
certificate which can be used by devices (code consumers in PCC terminology) to verify locally and statically
that downloaded components issued by an untrusted third party (code producers in PCC terminology) are
correct. In order to realise this view, standard PCC infrastructures build upon several elements: a logic, a
verification condition generator, a formal representation of proofs, and a proof checker.

o A formal logic for specifying and verifying policies. The specification language is used to express
requirements on the incoming component, and the logic is used to verify that the component
meets the expected requirements. Standard PCC adopts first-order predicate logic as a formalism
to both specify and verify the correctness of components, and focuses on safety properties. Thus,
requirements are expressed as pre- and post-conditions stating, respectively, properties to be satisfied
by the state before and after a given procedure or function is invoked.

e A verification condition generator (VCGen). The VCGen produces, for each component and safety
policy, a set of proof obligations whose provability will be sufficient to ensure that the component
respects the safety policy. Standard PCC adopts a VCGen based on programming verification
techniques such as Hoare-Floyd logics and weakest precondition calculi, and it requires that
components come equipped with extra annotations, e.g., loop invariants that make the generation
of verification conditions feasible.

4 Activity Report INRIA 2006

o A formal representation of proofs (Certificates). Certificates provide a formal representation of
proofs, and are used to convey to the code consumer easy-to-verify evidence that the code it receives
is secure. In Standard PCC, certificates are terms of the lambda calculus, as suggested by the Curry-
Howard isomorphism, and routinely used in modern proof assistants such as Coq.

o A proof checker that validates certificates against specifications. The objective of a proof checker is
to verify that the certificate does indeed establish the proof obligations generated by the VCGen.
In Standard PCC, proof checking is reduced to type checking by virtue of the Curry-Howard
isomorphism. One very attractive aspect of this approach is that the proof checker, which forms
part of the Trusted Computing Base is particularly simple.

We study other variants of Proof Carrying Code that cover a wide range of security properties that escape the
scope of certifying compilers, and that need to be established interactively on source code programs.

4. Application Domains

4.1. Smart devices

Smart devices, including new generation smart cards and trusted personal devices typically contain a micro-
processor and a memory chip (but with limited computing and storage capabilities). They are often used by
commercial and governmental organisations and are expected to play a key role in enforcing trust and confi-
dence in e-payment and e-government. Current applications include bankcards, e-purses, SIM cards in mobile
phones, e-IDs, etc,

These devices provide solutions for application developers by enabling them to program in high-level
languages (several dialects of Java exist for this purpose: Java Card, MIDP, etc.), on a common software base
(a virtual machine and Application Programming Interfaces, APIs), which isolates their code from specific
hardware and operating system libraries. These devices support both the flexibility and the evolution of
applications by enabling downloading of executable content onto already deployed devices (so-called post
issuance), and by allowing several commercially independent applications to run on a single device. This open
character forms their commercial strength, but also creates a technical challenge: reliability, correctness and
security become crucial issues, since malicious applications might potentially exploit bugs in the smart device
platform, with detrimental effects on security and/or privacy.

4.2. Global computing

A global computer is a distributed computational infrastructure that aims at providing a global and uniform
access to services. However, global computers consist of large networks of heterogeneous devices that
differ greatly in their computational infrastructure and in the resources they offer to services. In order to
deliver services globally and uniformly, each device in a global computer must therefore be extensible
with the computational infrastructure, platform or libraries, needed to execute the required services. In that
respect, global computers transcend the scope of established computational models such as mobile code, the
Grid, or agents, which impose a clear separation between mobile applications and the fixed computational
infrastructure upon which they execute.

While global computers may deeply affect our quality of life, security is paramount for them to become
pervasive infrastructures in our society, as envisioned in ambient intelligence. Indeed, numerous application
domains, including e-government or e-health, involve sensitive data that must be protected from unauthorised
parties. In spite of clear risks, provisions to enforce security in global computers remain extremely primitive.
Some global computers, for instance in the automotive industry, choose to enforce security by maintaining de-
vices completely under the control of the operator. Other models, building upon the Java security architecture,
choose to enforce security via a sandbox model that distinguishes between a fixed trusted computing base and
untrusted applications. Unfortunately, these approaches do not embrace the complexity of global computers.

Project-Team EVEREST 5

5. Software

5.1. Jack: a tool for applet validation

Participants: Gilles Barthe, Julien Charles, Benjamin Grégoire, Marieke Huisman, Mariela Pavlova.

In 2003, the team took over the development of Jack (Java Applet Correctness Kit, a tool for applet validation),
initiated within the research laboratory of the smart card manufacturer Gemplus (now Gemalto). The work was
originally carried out in the context of an ODL, with Lilian Burdy, the chief architect of Jack, working as a
research engineer within the ODL.

The original motivation for Jack was to provide a developer-oriented environment to validate Java smart
card applications annotated with JML annotations; the main emphasis of the original release was in hiding
the complexity of formal verification using automatic provers, and in enabling developers to use formal
verification technology within a standard IDE, namely Eclipse. Since 2004, we have added many features
to Jack:

e A plug-in to prove proof obligations interactively using the Coq proof assistant, as well as an
interface to use Coq within Eclipse. Together with the Coq plugin, we also developed several
Coq tactics to solve or simplify some proof obligations automatically (and therewith increase their
readability) [24].

A similar Coq plug-in has been developed for ESC/Java.

e A plug-in to generate annotations from high-level security properties [27], and another plugin to
generate annotations to prevent nullpointer and array-index-out-of-bound exceptions, and to generate
modifies clauses.

o A plug-in JML2BML) to translate JML specifications into BML specifications (BML, the Bytecode
Modeling Language, is the bytecode cousin of JML, developed by the team), and another plug-in
(BML-VcGen) to generate verification conditions from Java bytecode and its BML specification [9].

e Support for a native keyword in JML, to enable connecting a JML specification with the logic of
the underlying prover. This makes it easier to reason about complicated data structures [10].

The Jack tool has been used in small to medium-scale experiments. The most conclusive application, carried
out in collaboration with researchers from the POPS team at INRIA Futurs and researchers from Gemalto,
used the verification tool at bytecode level to reduce the footprint of Java-to-native compilation schemes [11].

Most of the work on Jack has been conducted within the European project Inspired [20]. A survey article [21]
is in preparation for the proceedings of FMCO’06.

5.2. Jakarta

Participants: Gilles Barthe, Julien Forest.

We develop a tool for formally specifying and verifying execution platforms, and more particularly bytecode
verifiers, as they exist e.g. in the Java Platform.

The tool, which instruments a two-phase methodology that is common to many existing works, intends to
provide a very high-level of automation for the mundane tasks inherent to the methodology (namely deriving
a virtual machine from another by abstraction techniques, and proving the correctness of the abstraction), and
has been used successfully for certifying the correctness of the Java Card bytecode verifier.

The development of the tool was initiated in the context of the European project Verificard and is continued
partly in the context of the RNTL project CASTLES which focuses on the certification of execution platforms
for smart cards.

6 Activity Report INRIA 2006

6. New Results

6.1. Program verification and Proof Carrying Code

Participants: Gilles Barthe, Salvador Cavadini, Julien Charles, Benjamin Grégoire, Marieke Huisman,
Clément Hurlin, Romain Janvier, César Kunz, Anne Pacalet, Mariela Pavlova, Gustavo Petri, David Pichardie,
Tamara Rezk, Alejandro Tamalet, Santiago Zanella, Yu Zhang.

1. We studied certificate translators for optimising compilers, and in particular the means to transform
certificates of source code into certificates of executable code in the context of an optimising
compiler [6]. Currently we are working on an implementation of a certificate translator in OCAML.
In addition, we have begun studying certificate translation for aspect-oriented languages.

2. We have defined an information flow type system for a sequential JVM-like language that includes
classes, objects, arrays, exceptions and method calls, and we have proven that it guarantees non-
interference [18], [2]. For increased confidence, we have formalised the proof in the proof assistant
Coq, showing soundness of the type system w.r.t. the Bicolano semantics (see below); an additional
benefit of the formalisation is that from our proof we have extracted a certified lightweight bytecode
verifier for information flow. Our work provides, to the best of our knowledge, the first sound and
implemented information flow type system for such an expressive fragment of the JVM.

In addition, we have developed a systematic technique to connect source code and bytecode security
type systems [7], [2], and we have applied this technique to the information flow type system with
exceptions, mentioned above. This is a key step towards the deployment of language-based security
in practical applications.

3. Development and maintenance of Jack has continued this year. The bytecode verification framework
was used in a case study, carried out in collaboration with researchers from the POPS team at INRIA
Futurs and researchers from Gemalto, where proven absence of possible exceptions is used to reduce
the footprint of Java-to-native compilation schemes [11].

To make interactive verification simpler, an editor for Coq has been integrated into Eclipse. This
editor provides basically the same functionalities as Coqlde, but allows the developer to stay in the
same environment both for development and verification of the application.

4. To improve Jack’s support for interactive verification, we developed two example applications: an
implementation of quicksort, as well as a Java bytecode verifier.

The quicksort algorithm is implemented as a single method. It has been fully annotated and proved
interactively. This proof could not have been done automatically, because of the extensive use of
loop invariants and ghost variables.

The bytecode verifier is a fixpoint algorithm: each instruction is associated with an abstract memory
state, and the main loop iterates on the instruction graph to refine the information we have on each
state. We have proved that for each iteration of the main loop the information on the states is refined,
and we also proved several properties concerning the exception-freeness of the different functions.

However, so far we could not prove termination of the algorithm, because we needed a transforma-
tion function from states to integers (in JML, the sole available termination argument possible is
an integer). Since this transformation function is (too) difficult to define using only Java and JML
annotations, we introduced the means to bind prover-native implementations to JML specifications
of methods and types. For this, we introduced a new keyword in JML, the native keyword [10]. The
main target of the native keyword is static verification, especially in order to use prover-specific fea-
tures, but it can also be used for run-time verification. If a whole theory is defined within a specific
prover, it can be bound easily to JML annotations using the keyword native.

5. One of the results of our work on the verification of bytecode is the definition of the Bytecode
Modeling Language (BML), the bytecode cousin of JML [9], [8]. Within the Mobius project, a

Project-Team EVEREST

specific task force has been identified to write a reference manual for BML. This reference manual
will specify the syntax and semantics of the language, the class file format that will be used to
store the annotations, and the compiler from JML to BML. This will serve as a basis for the tool
development of the bytecode subcomponent of the Mobius tool set. The writing of the reference
manual is currently starting; it will be available via http://www-sop.inria.fr/everest/BML. The team
is one of the active partners in the specific task force.

6. An algorithm to generate annotations for high-level security properties has been implemented in
Jack [27]. We are currently formalising this algorithm, in order to prove formal correctness of the
approach. Given a property described by a finite state machine (FSM) and a Java application, we
have defined how the FSM can be captured by appropriate JML set annotations. We have defined
a “monitoring semantics”, describing how the transitions in the FSM are triggered by method calls
in the Java application. The FSM is extended in such a way that if it cannot make a transition, it
will end up in a sink-state. For the Java application, we add an invariant that this sink-state should
never be reached, and we prove that if the monitoring semantics does not reach the sink-state, this
invariant will not be violated. Currently, we are proving that if the monitoring with the FSM will not
find any errors, then runtime assertion checking will not find any assertion violations. A next step
is to propagate the annotations, and to show that eventually correctness of the annotations can be
proven statically.

7. We have been investigating ways to extend specification languages to cope with multi-threading.
Initial work [28] identified a promising approach by identifying notions as atomicity, independence
and immutability, that allow us to use existing methods and tools for verification of single-threaded
code, by separating the multi-threaded aspects from the functional aspects of the specification.
We have started working on formal definitions of the concepts involved. This showed us that the
notions as proposed by Rodriguez et al. are too restrictive, as they do not take the actual method
specification into account. We are currently working on overcoming these limitations, defining a
precise semantics, and then appropriate proof rules for verifying them.

8. We are studying ways of combining static program analysis techniques to simplify formal program
verification. We defined a domain-based program decomposition and proved that if a postcondition
holds for each element in the decomposition, then the postcondition holds for the complete program.
We think that domain-based decomposition is a powerful tool to simplify the verification of
programs, because it divides the program into less complex subprograms. We use program slicing
techniques to find the decomposition, i.e. to get the subprograms.

In addition, we defined a new slicing technique, called reachability slicing. This new technique
gives an answer to the following question: which sentences are (potentially) executed when sentences
81,82, ..., and s, are executed? We defined how reachability slices can be computed with the help
of other slicing techniques and how they then can be combined to obtain better, i.e. smaller, slices.

These two results, reachability slicing and domain-based decomposition, are related. Reachability
slicing allows us to use program sentences as decomposition criteria; which makes it easy to
formulate and perform the decomposition.

9. Within the context of the Mobius project, we have contributed to two deliverables that define the
security requirements for the Mobius security architecture. We contributed to the identification of
three kinds of security requirements: information flow policies, framework-specific policies and
application-specific policies. We addressed in particular the following topics:

1. how existing information flow policies can be refined for bytecode;

2. how framework-specific security requirements can by expressed using existing specifica-
tion languages, in particular JML;

3. what are typical application-specific security requirements for operating system compo-
nents, and in particular for a bytecode verifier.

http://www-sop.inria.fr/everest/BML

8 Activity Report INRIA 2006

10. In collaboration with D. Gurov and I. Aktug from KTH, Sweden, we have continued our work
on adapting our compositional verification techniques [19] to more elaborate program models. The
basic program model that we used to develop our compositional verification techniques is a control
flow graph of the application, where nodes are control points, possibly labelled as a return point, and
edges are labelled as either internal actions or method calls. To include exceptions in the program
model, we added explicit throwing and catching of exceptions. Each control point can be labelled
with an exception, denoting that the program is an exceptional state. The behaviour of method calls
is changed: the callstack contains a set of possible return points, and depending on whether the
return state is normal or exceptional, an appropriate return point is selected. We have shown that
with this modification our compositional verification techniques still apply. We combined this with
the extension for multi-threading that we have developed earlier.

In addition, we also looked at how we can characterise behavioural properties by sets of structural
properties. Our compositional verification techniques only apply when the local assumptions are
structural. When a behavioural property can be characterised by a set of structural properties, this
means that we can also have behavioural properties as local assumptions. We have shown how modal
logic behavioural formulae can be characterised by structural formulae, and we are currently working
on extending this with greatest fixpoints. This requires a tableau construction and the use of a global
discharge rule.

11. No matter how carefully crafted cryptographic primitives and protocols are, experience has shown
that effective attacks can remain hidden for years and have disastrous consequences when made
public. It is agreed that the point has been reached where it is no longer viable to construct
cryptographic proofs by hand, nor even verify them. Shoup [29], Bellare and Rogaway [23], and
Halevi [25] advocate the construction of cryptographic proofs as sequences of probabilistic games
as a natural solution for taming the complexity of the task. They also recognise that a fully-
specified programming language is required to code those games and that language-based techniques
are needed for manipulating them. To answer these concerns, we have designed a probabilistic
imperative programming language and formalised its semantics in the logic of the Coq theorem
prover. This permits us to fully specify cryptographic proofs and gives a rudimentary way to verify
them by reasoning directly about their semantics. Next, we plan to devise a framework to ease
the construction of the proofs. By providing and building upon a Hoare-like logic and a weakest
precondition calculus we expect to automate most mundane aspects of the construction, leaving the
creative part of the task to be carried out interactively by the user.

6.2. Machine-checked semantics and algorithms

Participants: Gilles Barthe, Julien Forest, Benjamin Grégoire, Marieke Huisman, Allard Kakebeen, Mariela
Pavlova, David Pichardie, Gustavo Petri, Sabrina Tarento.

1. We have completed our models of the bytecode verifier. The syntax of the Jakarta Specification
Language (JSL) has been extended with both record types and polymorphic higher order types.
These extensions required the development of a completely new typing algorithm for JSL which has
been implemented in Jakarta. A basic system module has been developed and implemented. This
leads to a considerable simplification of formal proofs and code (due in particular to the development
of a standard library for basic datatypes).

2. We are in charge of the maintenance and development of Bicolano, which is a formal semantics
in Coq of a representative fragment of the Java bytecode language. In the Mobius project, this
semantics is used as a reference for all the formal developments around Java bytecode. This year, we
have especially worked on the efficient implementation of several of the interfaces of the Bicolano
development (in particular concerning program syntax and semantic domains).

3. We have pursued our work on the formalisation of the generic model (GM) and the random oracle
model (ROM) in COQ. The aim of this work is to verify the correctness of cryptographic algorithms,

Project-Team EVEREST

without making the perfect cryptography assumption. In [30], we considered the case of parallel
attacks, for which we have shown an upper bound to the probability of an interactive adversary to
make a one-more signature forgery (assuming that the adversary adheres to the GM and to the ROM
i.e., he can make interactions with a hash oracle and a signature oracle).

4. We have participated in the development of the so-called Mobius base logic, a program logic for Java
bytecode, and to the development of its correctness proof. In Cogq, this logic is proved sound w.rz.
the Bicolano semantics. We have also developed a verification condition generator (VCgen) for this
logic and proved its correctness (also in Coq). We are currently working on several optimisations for
this VCgen; we look in particular at different ways to reduce the control flow graph of the program
to limit the number of proof obligations generated.

5. Currently there are two kinds of verification condition generators. The first approach propagates all
information it has (derived from the annotations) to the entry point of the program. To implement
such a VCgen, extra information is required (given by for example the loop modifies clause, that
specifies which variables may be modified by a loop). In the second approach, for each annotation
a verification condition is generated (specifying that the annotation should imply the weakest
precondition of its successor). The advantage of the first approach is that the required annotations
are smaller (so the task of the programmer is simpler), where the advantage of the second approach
is it simplicity. In particular, to implement and prove the correctness of a VCgen for bytecode using
the first approach is an order of magnitude more complex than using the second approach.

We have implemented and proved correct an algorithm that automatically transforms annotations
(including loop modifies clauses) for a VCgen using the first approach into annotations for a VCgen
using the second approach. The correctness proof is an algorithm to automatically transform proofs
of the verification conditions generated by the first VCgen into proofs of the verification conditions
generated by the second one.

6. We are currently formalising the new Java Memory Model (introduced in Java 1.5) [26]. This
memory model corrects certain security leaks that were possible previously, and in addition allows
many common compiler optimisations. The goal of our formalisation is to prove that in case the
program is correctly synchronised (meaning that it does not contain race conditions), the set of
legal program behaviours coincides with the behaviours described by an interleaving semantics (this
property is claimed by the developers of the Java Memory Model—we will verify it formally). As
we are only interested in verifying correctly synchronised programs, this allows us to assume an
interleaving semantics to prove the correctness of an application.

We are also planning to study whether we can formally prove that the new Java Memory Model does
not contain security leaks, in particular that it cannot be used to forge variables out of thin air. Finally,
we plan to study whether we can find alternative and more intuitive, but equivalent, formulations of
the Java Memory Model.

6.3. Type theory and proof assistants

Participants: Gilles Barthe, Julien Forest, Benjamin Grégoire, Fernando Pastawski, David Pichardie.

1. We have developed a practical method to define and reason about general recursive functions in
Coq [4]. This method allows the user to easily define and reason about not-structurally recursive
functions in Coq. The method has been merged and extended with the method due to A. Balaa
and Y. Bertot [22] and integrated into the Coq proof assistant. Currently, the method allows the
user to define a large class of well-founded functions directly (using either well-founded induction
or a well-founded measure), while structural and non-recursive functions can be defined via the
Function keyword. In the case of well-founded or measured functions, the user has to prove some
proof obligations to ensure that the function is terminating. In all cases, the system automatically
derives an induction principle, a fixpoint equation, a graph, and an equivalence proof between graph
and function. In the case of structural functions, one can also define mutually recursive functions
and automatically derive mutual inductive principles.

10 Activity Report INRIA 2006

2. We have extended our type-based termination system [5] to the Calculus of Inductive Constructions.
The system (CIC") is more powerful than the actual guard condition of Coq and easier to understand.

3. We participate to the development of the Coq proof assistant. In particular, we maintain and extend
the conversion algorithm based on a compiler and a virtual machine (which has been recently added
to Coq). This year, a new compilation scheme, based on lazy evaluation, has been implemented for
co-fixpoints. We also participate to the integration of the new ring and field tactics.

4. In collaboration with L. Théry (Marelle) and B. Werner (LogiCal) we have developed a reflexive
procedure to prove the primality of large prime numbers [13] in Coq. This technique is based on
Pocklington’s theorem. We have also developed a special procedure for Mersenne numbers. To speed
up the verification of such generated proofs we have (with L. Théry) implemented an efficient library
for arbitrary precision arithmetic in Coq and proved its correctness [12].

7. Contracts and Grants with Industry

7.1. Contracts

RNTL Castles (Development of Static Analyses and Test for Secure Embedded Software, accepted in
2003, started January 2004). Other participants are Lande (Rennes), AQL and Oberthur. More
information is available via http://www-sop.inria.fr/everest/projects/castles/. The goal of the project
is to define an environment to support the formal specification and verification of low-level execution
platforms.

CEA The CEA (Commissariat a I’Energie Atomique) develops static analysis tools for C programs based
on techniques such as precondition computation using Hoare logic and abstract interpretation. The
collaboration (2006-2009) aims to enhance these tools by adding slicing capabilities in order to help
managing bigger applications. Building smaller models is especially useful to study applications that
can not be fully handled by other analyses. Anne Pacalet and Salvador Cavadini are involved in this
collaboration.

INRIA-Microsoft Research Joint Laboratory (Secure Distributed Computations and their Proofs,
2006-2009). Other participants are the Programming Principles and Tools group at Microsoft
Research Cambridge and the Moscova team (Rocquencourt). This project intends to design
formal tools for programming distributed computations with effective security guarantees. Gilles
Barthe, Benjamin Grégoire, and Santiago Zanella are involved in the project, see http://joint-
lab.futurs.inria.fr/.

7.2. National projects

ACI Security GECCOO (Generation of Certified Code for Object-Oriented Applications - Specifica-
tions, refinement, proof and error detection, 2003-2006). Other participants are TFC (Besangon),
Cassis (Nancy), ProVal (LRI/Futurs) and Vasco (IMAG, Grenoble), see http://geccoo.lri.fr/.

ACI Security SPOPS (Secure Operating Systems for Trusted Personal Devices, 2003-2006). Gilles
Barthe was the coordinator of this project that involved the POPS team (INRIA Lille) and SSIR
(Supélec, Rennes), see http://www-sop.inria.fr/everest/projects/spops/.

7.3. European projects

Mobius Gilles Barthe is the scientific coordinator of the European Integrated Project Mobius (Mobility,
Ubiquity and Security), launched under the FET Global Computing Proactive Initiative in the
6th Framework program (2005-2009). The project gathers 12 academic and 4 industrial partners.
The goal of this project is to develop the technology for establishing trust and security for the
next generation of global computers, using the Proof Carrying Code paradigm. The essential
features of the Mobius security architecture will be innovative trust management, static enforcement
mechanisms and support for system component downloading, see http://mobius.inria.fr.

http://www-sop.inria.fr/everest/projects/castles/
http://joint-lab.futurs.inria.fr/
http://joint-lab.futurs.inria.fr/
http://geccoo.lri.fr/
http://www-sop.inria.fr/everest/projects/spops/
http://mobius.inria.fr

Project-Team EVEREST

Inspired (2003-2006): The partners in the project are all major industrial actors in the domain of smart
cards, INRIA (also the projects Metiss and POPS) and the Universities of Louvain (Belgium) and
Twente (Netherlands). The goal of the project is to define the new generation of Trusted Personal De-
vices. The role of INRIA is to develop appropriate formal methods for those. Gilles Barthe is Work-
Package leader for the Development Tools and Methodologies, see http://www.inspiredproject.com/.

Thematic Networks The team participates in the networks Types (type theory), see
http://www.cs.chalmers.se/Cs/Research/Logic/Types/ and Appsem 2 (Applied Semantics, con-
cluded), see http://www.tcs.informatik.uni-muenchen.de/~mhofmann/appsem?2/.

AIFA LERNET The team participates in the AIFA LERNET “LER-Language Engineering and Rigorous
Software Development” project, a grant contract funded by the European Commission, started in
March 2005, in which European and South American universities and research centres participate.

7.4. International projects and collaborations

STIC AmSud, Reseco project : Gilles Barthe is coordinator of the Reseco project within STIC AmSud,
a regional program of scientific cooperation between France, Argentina, Brazil, Chile, Peru and
Uruguay. The objective of the project is to investigate reliability and security in a computational
model where both the platform and applications are dynamic, so that incoming software, built from
off-the-shelf components, may be destined to form part of the platform or to execute as a standard
application. The partners of the Reseco project are Oasis (INRIA-Sophia Antipolis), Chile University
and Diego Portales University in Chile, Republic University in Montevideo, Uruguay and National
University of Cordoba (FAMAF) in Argentina.

KTH, Stockholm, Sweden : we collaborate with D. Gurov and I. Aktug on the development of compo-
sitional verification techniques for control-flow security properties for (multi-threaded) applets.

8. Dissemination

8.1. Conference and workshop attendance, travel

e Tamara Rezk gave a presentation about her work at Intel, Portland, US, January 2006.

e Sabrina Tarento gave a presentation about her work at Verimag, Grenoble and in Caen, January
2006.

e Julien Charles and Marieke Huisman attended the meetings of the ACI Sécurité Geccoo in Grenoble,
March 2006, and in Sophia Antipolis, June 2006. Julien Charles presented his work at the meeting
in Grenoble.

e Gilles Barthe presented the paper [4] at FLOPS’06, Fuji Susono, JAPAN, April 2006.
e Benjamin Grégoire presented the paper [13] at FLOPS’06, Fuji Susono, JAPAN, April 2006.

e Gilles Barthe, David Pichardie and Tamara Rezk visited Chalmers, Sweden, for a Mobius meeting
on type systems for information flow, and to collaborate with Andrei Sabelfeld and Alejandro Russo,
April 2006.

e Mariela Pavlova attended Cardis’06, where one of her co-authors presented the paper [11], Tarrag-
ona, Spain, April 2006.

e Mariela Pavlova presented the paper [9] at SAC’ 06, Dijon, France, April 2006.
e Julien Charles visited Joseph Kiniry’s team at UCD, April 2006
e Tamara Rezk presented the paper [7] at Security and Privacy’06, Oakland, US, May 2006.

e Tamara Rezk visited Stevens Institute in New Jersey, US, May 2006, to work with David Naumann.

http://www.inspiredproject.com/
http://www.cs.chalmers.se/Cs/Research/Logic/Types/
http://www.tcs.informatik.uni-muenchen.de/~mhofmann/appsem2/

12 Activity Report INRIA 2006

e Tamara Rezk gave a presentation about her work at IBM Watson Research institute, New York, US,
May 2006.

e Gilles Barthe, Julien Charles, Benjamin Grégoire, Sophie Hadjadj, Marieke Huisman, César Kunz,
Mariela Pavlova, Gustavo Petri, David Pichardie, Tamara Rezk, and Santiago Zanella attended the
annual Mobius meeting in Madrid, Spain, June 2006.

e Marieke Huisman presented the paper [14] at CSFW’06, Venice, Italy, July 2006. Gilles Barthe also
attended the conference.

e Julien Charles presented the paper [10] at FTfJP’06, an ECOOP workshop, Nantes, France, July
2006.

e Gilles Barthe, Marieke Huisman and Tamara Rezk presented their work at the Dagstuhl seminar The
Challenge of Software Verification, Germany, July 2006.

e Benjamin Grégoire presented the paper [12] at ICAR’06, Seattle, August 2006.

e Tamara Rezk gave an invited talk at the PCC workshop at FLOC’06, August, 2006.

e Santiago Zanella presented the paper [16] at FAST’06, Hamilton, Canada, August 2006.
e Gilles Barthe presented the paper [6] at SAS’06, Seoul, Korea, August 2006.

o Clément Hurlin presented the paper [15] at AVOCS’06, Nancy, September 2006.

e Marieke Huisman and Mariela Pavlova were invited to present their work at the ESF workshop on
Java Program Verification, Nijmegen, Netherlands, October 2006.

e Marieke Huisman presented a tutorial about Jack [21] at FMCO, Amsterdam, Netherlands, Novem-
ber 2006.

e Gilles Barthe presented the paper [5] at LPAR’06, Phnom Penh, Cambodia, November 2006.

e (César Kunz gave an invited presentation about Certificate translation at ISOLA’06, Cyprus, Novem-
ber 2006.

8.2. Leadership within scientific community

e Gilles Barthe is scientific coordinator of:
— the FET Integrated Project Mobius;
— the ACI Security SPOPS;
— the RNTL project Castles;
— the Stic-Amsud project Reseco;

and leader of Workpackage 2.6. Development Tools and Methodologies in the Integrated Project
Inspired.

e Benjamin Grégoire and Marieke Huisman are task leaders for tasks in the Mobius project.

e Gilles Barthe was a member of the program committees for ESORICS’06, FM’06, LOPSTR’06,
ISOLA’06, TGC’06, AMAST’ 06, SECRET’06, TFP’06, FAST’06.

e Marieke Huisman was a member of the program committees for .NET 2006, the VSTTE workshop
at FLOC’06, the SAVCBS workshop at FSE’06.

e Gilles Barthe and Marieke Huisman were member of the jury for the Isabelle Attali Award (best
innovative paper at E-smart 2006).

e Gilles Barthe is member of the Steering Committee of the Symposium on Trustworthy Global
Computing.

o The team organised a meeting on the bytecode logic for the Mobius project in Sophia Antipolis,
March 2006.

Project-Team EVEREST 13

e The team organised a meeting about scenarios for Proof Carrying Code for the Mobius project in
Sophia Antipolis, March 2006.

e With Laurent Théry (Marelle) and Benjamin Werner(LogiCal), Benjamin Grégoire organised a
Workshop on Proofs & Numbers in Orsay, June 2006.

e The team organised a meeting about type systems for resource control for the Mobius project in
Sophia Antipolis, November 2006.

8.3. Visiting scientists

We had several visiting scientists, many of whom gave a talk in our seminar. Dilian Gurov (KTH, Stockholm,
Sweden) visited for three weeks in total, Lennart Beringer and Martin Hofmann (LMU, Munich) and Randy
Pollack (U. Edinburgh, UK) visited for a week.

8.4. Supervision of Ph.D. projects

e Anne Pacalet is the local supervisor of Salvador Cavadini.

e Gilles Barthe supervised the Ph.D. projects of Mariela Pavlova (finished November 2006), Tamara
Rezk (finished September 2006), Sabrina Tarento (finished September 2006) and supervises the
Ph.D. project of Santiago Zanella (started June 2006).

e Benjamin Grégoire supervises the Ph.D. project of Julien Charles (started September 2005).

e Gilles Barthe and Benjamin Grégoire supervise the Ph.D. project of César Kunz (started October
2005).

e Marieke Huisman supervises the Ph.D. projects of Allard Kakebeen (resigned February 2006) and
Clément Hurlin (started September 2006).

8.5. Ph.D. committees

e Gilles Barthe was a member of the Ph.D. jury’s of Laurent Mazaré (Université de Grenoble,
rapporteur), Nicolas Oury (Université Paris 11, rapporteur), Romain Janvier (Université de Grenoble,
rapporteur), June Andronick (Université Paris 11), and Carlos Gonzalia (Goteborg University).

8.6. Supervision of internships

e Marieke Huisman supervised Gustavo Petri and Alejandro Tamalet.
e (Gilles Barthe and Benjamin Grégoire co-supervised Fernando Pastawski.

8.7. Teaching

e Julien Charles taught Algorithms in Java, first year, and Unix, second year, University of Nice.
e Marieke Huisman taught: Méthodes formelles (Formal Methods), Ecole des Mines de Paris.

e Sabrina Tarento taught: Programmation en C (Programming in C), licence MP and Mass first year;
Programmation Java (Programming in Java), licence MI first year; Mathématiques intéractives sur
internet (Interactive mathematics on the internet), licence SM first year, University of Nice.

9. Bibliography

Year Publications
Books and Monographs
[1] G. BARTHE, B. GREGOIRE, M. HUISMAN, J.-L. LANET (editors). Construction and Analysis of Safe, Secure,

and Interoperable Smart Devices, Second International Workshop, CASSIS 2005, Nice, France, March 8-11,
2005, Revised Selected Papers, Lecture Notes in Computer Science, vol. 3956, Springer, 2006.

14 Activity Report INRIA 2006

Doctoral dissertations and Habilitation theses

[2] T. REZK. Verification of confidentiality policies for mobile code, Ph. D. Thesis, Université de Nice Sophia-
Antipolis, 2006.

[3] S. TARENTO. Formalisation en Coq de modeles cryptographiques et application au cryptosysteme ElGamal,
Ph. D. Thesis, Université de Nice Sophia-Antipolis, 2006.

Publications in Conferences and Workshops

[4] G. BARTHE, J. FOREST, D. PICHARDIE, V. RUSU. Defining and reasoning about recursive
functions: a practical tool for the Coq proof assistant, in "Proceedings of FLOPS’06", Lec-
ture Notes in Computer Science, vol. 3945, Springer-Verlag, 2006, p. 114-129, http://www-
sop.inria.fr/everest/personnel/David.Pichardie/Publis/genfixpoint.pdf.

[5]1 G. BARTHE, B. GREGOIRE, F. PASTAWSKI. Type-based termination of recursive definitions in the Calculus of
Inductive Constructions, in "Proceedings of the 13th International Conference on Logic for Programming
Artificial Intelligence and Reasoning (LPAR’06)", LNAI, Springer-Verlag, November 2006, http://www-
sop.inria.fr/everest/personnel/Benjamin.Gregoire/Publi/CICsombrero.pdf.gz.

[6] G. BARTHE, B. GREGOIRE, C. KUNZ, T. REZK. Certificate Translation for Optimizing Compilers, in "Pro-
ceedings of the 13th International Static Analysis Symposium (SAS), Seoul, Korea", LNCS, Springer-Verlag,
August 2006, http://www-sop.inria.fr/everest/personnel/Cesar.Kunz/publications/certtrans-S AS06.pdf.

[7] G. BARTHE, D. NAUMANN, T. REZK. Deriving an Information Flow Checker and Certifying Compiler for
Java, in "Proceedings of Symposium of Security and Privacy '06", IEEE Press, 2006.

[8] L. BURDY, M. HUISMAN, M. PAVLOVA. Preliminary Design of BML: A Behavioral Interface Specification
Language for Java bytecode, in "Fundamental Approaches to Software Engineering (FASE 2007)", Incs, To
appear., springer, 2007.

[9] L. BURDY, M. PAVLOVA. Java Bytecode Specification and Verification, in "SAC’06", ACM, 2006, http://www-
sop.inria.fr/everest/personnel/Mariela.Pavlova/bcSpec Verify.pdf.

[10] J. CHARLES. Adding Native Specifications to JML, in "ECOOP workshop on Formal Techniques for Java-like
Programs (FTfJP’2006)", 2006.

[11] A. COURBOT, M. PAVLOVA, G. GRIMAUD, J.-J. VANDEWALLE. A Low-Footprint Java-to-Native Compila-
tion Scheme Using Formal Methods, in "CARDIS", 2006, p. 329-344.

[12] B. GREGOIRE, L. THERY. A purely functional library for modular arithmetic and its
application for certifying large prime numbers, in "Proceedings of IJCAR’06", Lecture
Notes in Artificial Intelligence, vol. 4130, Springer-Verlag, 2006, p. 423-437, http://www-
sop.inria.fr/everest/personnel/Benjamin.Gregoire/Publi/numlib.pdf.

[13] B. GREGOIRE, L. THERY, B. WERNER. A computational approach to Pocklington certificates in type theory,
in "Proceedings of FLOPS’06", Lecture Notes in Computer Science, vol. 3945, Springer-Verlag, 2006, p. 97
- 113, http://www-sop.inria.fr/everest/personnel/Benjamin.Gregoire/Publi/pock.pdf.

http://www-sop.inria.fr/everest/personnel/David.Pichardie/Publis/genfixpoint.pdf
http://www-sop.inria.fr/everest/personnel/David.Pichardie/Publis/genfixpoint.pdf
http://www-sop.inria.fr/everest/personnel/Benjamin.Gregoire/Publi/CICsombrero.pdf.gz
http://www-sop.inria.fr/everest/personnel/Benjamin.Gregoire/Publi/CICsombrero.pdf.gz
http://www-sop.inria.fr/everest/personnel/Cesar.Kunz/publications/certtrans-SAS06.pdf
http://www-sop.inria.fr/everest/personnel/Mariela.Pavlova/bcSpecVerify.pdf
http://www-sop.inria.fr/everest/personnel/Mariela.Pavlova/bcSpecVerify.pdf
http://www-sop.inria.fr/everest/personnel/Benjamin.Gregoire/Publi/numlib.pdf
http://www-sop.inria.fr/everest/personnel/Benjamin.Gregoire/Publi/numlib.pdf
http://www-sop.inria.fr/everest/personnel/Benjamin.Gregoire/Publi/pock.pdf

Project-Team EVEREST 15

[14] M. HUISMAN, P. WORAH, K. SUNESEN. A temporal logic characterisation of observational determinism,
in "19th IEEE Computer Security Foundations Workshop", IEEE Computer Society, July 2006, ftp://ftp-
sop.inria.fr/everest/personnel/Marieke. Huisman/obsequiv_char.pdf.

[15] C. HURLIN. Proof reconstruction for first-order logic and set-theoretical constructions, in "Proc. International
Workshop on Automated Verification of Critical Systems (AVOCS)", 2006.

[16] S. ZANELLA BEGUELIN, G. BETARTE, C. LUNA. A Formal Specification of the MIDP 2.0 Security Model, in
"Proc. 4th International Workshop on Formal Aspects in Security and Trust, FAST 2006, Hamilton, Canada,
August 26-27 2006", Lecture Notes in Computer Science, To appear, Springer-Verlag, 2006, http://www-
sop.inria.fr/everest/personnel/Santiago.Zanella/MIDP/Zanella.2006. FAST.pdf.

Internal Reports

[17] G. BARTHE, P. D’ ARGENIO, T. REZK. Secure Information Flow by Self-Composition, Technical report,
INRIA, 2006, http://hal.inria.fr/inria-00097395.

[18] G. BARTHE, D. PICHARDIE, T. REZK. Deriving an Information Flow Checker for the JVM, Technical report,
INRIA, 2006.

[19] D. GUROV, M. HUISMAN, C. SPRENGER. Compositional Verification of Sequential Programs with Proce-
dures, Technical report, INRIA, 2006.

Miscellaneous
[20] Developer Oriented Methodology for Applet Validation, Inspired Deliverable 9.1., 2006.

[21] G. BARTHE, L. BURDY, J. CHARLES, B. GREGOIRE, M. HUISMAN, J.-L. LANET, M. PAVLOVA, A.
REQUET. JACK: a tool for validation of security and behaviour of Java applicationsFMCO, Abstract for
tutorial, longer version to appear, 2006.

References in notes

[22] A. BALAA, Y. BERTOT. Fix-point equations for well-founded recursion in type theory, in "Proceedings of
TPHOLSs’00", M. AAGAARD, J. HARRISON (editors). , Incs, vol. 1689, springer, 2000.

[23] M. BELLARE, P. ROGAWAY. Code-Based Game-Playing Proofs and the Security of Triple Encryption, 2004,
http://eprint.iacr.org/, Cryptology ePrint Archive, Report 2004/331.

[24] J. CHARLES. Vérification d’un composant Java: Le vérificateur de bytecode, Technical report, Université de
Nice, 2005, http://www-sop.inria.fr/everest/personnel/Julien.Charles/papers/05-06-17-rapport.pdf.

[25] S. HALEVI. A plausible approach to computer-aided cryptographic proofs, 2005, http://eprint.iacr.org/,
Cryptology ePrint Archive, Report 2005/181.

[26] J. MANSON, W. PUGH, S. ADVE. The Java Memory Model, in "to appear in ACM TOPLAS, Special POPL’05
Issue”, 2005, http://www.cs.umd.edu/users/jmanson/java.html.

ftp://ftp-sop.inria.fr/everest/personnel/Marieke.Huisman/obsequiv_char.pdf
ftp://ftp-sop.inria.fr/everest/personnel/Marieke.Huisman/obsequiv_char.pdf
http://www-sop.inria.fr/everest/personnel/Santiago.Zanella/MIDP/Zanella.2006.FAST.pdf
http://www-sop.inria.fr/everest/personnel/Santiago.Zanella/MIDP/Zanella.2006.FAST.pdf
http://hal.inria.fr/inria-00097395
http://eprint.iacr.org/
http://www-sop.inria.fr/everest/personnel/Julien.Charles/papers/05-06-17-rapport.pdf
http://eprint.iacr.org/
http://www.cs.umd.edu/users/jmanson/java.html

16 Activity Report INRIA 2006

[27] M. PAVLOVA, G. BARTHE, L. BURDY, M. HUISMAN, J.-L. LANET. Enforcing High-Level Security Prop-
erties For Applets, in "Proceedings of CARDIS’04", P. PARADINAS, J.-J. QUISQUATER (editors). , kluwer,
2004, ftp://ftp-sop.inria.fr/everest/publis/P+04cardis.pdf.

[28] E. RODRIGUEZ, M. B. DWYER, C. FLANAGAN, J. HATCLIFF, G. T. LEAVENS, ROBBY. Extending JML for
Modular Specification and Verification of Multi-Threaded Programs, in "ECOOP 2005 — Object-Oriented
Programming 19th European Conference, Glasgow, UK, Berlin", A. P. BLACK (editor). , Lecture Notes in
Computer Science, vol. 3586, Springer—Verlag, July 2005, p. 551-576.

[29] V. SHOUP. Sequences of games: a tool for taming complexity in security proofs, 2004, http://eprint.iacr.org/,
Cryptology ePrint Archive, Report 2004/332.

[30] S. TARENTO. Machine-Checked Security Proofs of Cryptographic Signature Schemes, in "Proceedings of
ESORICS’05", S. DE CAPITANI DI VIMERCATI, P. SYVERSON, D. GOLLMANN (editors). , Incs, vol. 3679,
springer, 2005, p. 140-158, http://www-sop.inria.fr/everest/Sabrina. Tarento/Papers/PA/main.pdf.

ftp://ftp-sop.inria.fr/everest/publis/P+04cardis.pdf
http://eprint.iacr.org/
http://www-sop.inria.fr/everest/Sabrina.Tarento/Papers/PA/main.pdf

