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2. Overall Objectives

2.1. Overall Objectives
Our research program is articulated around effective algebraic geometry and its applications. The objective
is to develop algorithmic methods for effective and reliable resolution of geometric and algebraic problems,
which are encountered in fields such as CAGD (Computer Aided Geometric Design), robotics, computer
vision, molecular biology, etc. We focus on the analysis of these methods from the point of view of complexity
as well as qualitative aspects, combining symbolic and numerical computation.

Geometry is one of the key topics of our activity, which includes effective algebraic geometry, differential
geometry, computational geometry of semi-algebraic sets. More specifically, we are interested in problems of
small dimensions such as intersection, singularity, topology computation, and questions related to algebraic
curves and surfaces.

These geometric investigations lead to algebraic questions, and particularly to the resolution of polynomial
equations. We are involved in the design and analysis of new methods of effective algebraic geometry. Their
developments and applications are central and often critical in practical problems.
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Approximate numerical calculations, usually opposed to symbolic calculations, and the problems of certifica-
tion are also at the heart of our approach. We intend to explore these bonds between geometry, algebra and
analysis, which are currently making important strides. These objectives are both theoretical and practical.
Recent developments enable us to control, check, and certify results when the data are known to a limited
precision.

Finally our work is implemented in software developments. We pay attention to problems of genericity,
modularity, effectiveness, suitable for the writing of algebraic and geometrical codes. The implementation
and validation of these tools form another important component of our activity.

3. Scientific Foundations

3.1. Introduction
Our scientific activity is defined according to three broad topics: geometry, resolution of algebraic systems of
equations, and symbolic-numeric links.

3.2. Geometry
We are interested in geometric modeling problems, based on non-discrete models, mainly of semi-algebraic
type. Our activities focus in particular on the following points:

3.2.1. Geometry of algebraic varieties
In order to solve effectively an algebraic problem, a preprocessing analysing step is often mandatory. From
such study, we will be able to deduce the method of resolution that is best suited to and thus produce an
efficient solver, dedicated to a certain class of systems. The effective algebraic geometry provides us tools for
analysis and makes it possible to exploit the geometric properties of these algebraic varieties. For this purpose,
we focus on new formulations of resultants allowing us to produce solvers from linear algebra routines, and
adapted to the solutions we want to compute. Among these formulations, we study in particular residual
and toric resultant theory. The latter approach relates the generic properties of the solutions of polynomial
equations, to the geometry of the Newton polytope associated with the polynomials.

3.2.2. Geometric algorithms for curved arcs and surface patches
The above-mentioned tools of effective algebraic geometry make it possible to analyse in detail and separately
the algebraic varieties. Traditional algorithmic geometry deals with problems whose data are linear objects
(points, segments, lines) but in very great numbers. Combining these two points of view, we concentrate on
problems where collections of piecewise algebraic objects are involved. The properties of such geometrical
structures are still not well known, and the traditional algorithmic geometry methods do not always extend to
this context, which requires new investigations.

3.2.3. Geometry of singularities and topology
The analysis of singularities for a (semi)-algebraic set provides a better understanding of their structure. As
a result, it may help us better apprehend and approach modeling problems. We are particularly interested
in applying singularity theory to cases of implicit curves and surfaces, silhouettes, shadows curves, moved
curves, medial axis, self-intersections, appearing in algorithmic problems in CAGD and shape analysis.

3.2.4. Geometry, groups, and invariants
The objects in geometrical problems are points, lines, planes, spheres, quadrics, .... Their properties are, by
nature, independent from the reference one chooses for performing analytic computations. Which leads us
to methods from invariant theory. In addition to the development of symbolic geometric computations that
exploit these invariants, we are also interested in developing more synthetic representations for handling those
expressions.
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3.3. Resolution of algebraic systems
The underlying representation behind a geometric model is often of algebraic type. Computing with such
models raise algebraic questions, which frequently appear as bottlenecks of the geometric problems. Here are
the particular approaches that we develop to handle such questions.

3.3.1. Algebraic methods and quotient structure
In order to compute the solutions of a system of polynomial equations in several variables, we analyse and
take advantage of the structure of the quotient ring, defined by these polynomials. This raises questions of
representing and calculating normal forms in such structures. The numerical and algebraic computations in
this context lead us to study new approaches of normal form computations, generalizing the well-known
Gröbner bases.

3.3.2. Duality, residues, interpolation
We are interested in the “effective” use of duality, that is, the properties of linear forms on the polynomials
or quotient rings by ideals. We undertake a detailed study of these tools from an algorithmic perspective,
which yields the answer to basic questions in algebraic geometry and brings a substantial improvement on the
complexity of resolution of these problems. Our focuses are effective computation of the algebraic residue,
interpolation problems, and the relation between coefficients and roots in the case of multivariate polynomials.

3.3.3. Structured linear algebra and polynomials
The preceding work lead naturally to the theory of structured matrices. Indeed, the matrices resulting from
polynomial problems, such as matrices of resultants or Bezoutians, are structured. Their rows and columns are
naturally indexed by monomials, and their structures generalize the Toeplitz matrices to the multivariate case.
We are interested in exploiting these properties and the implications in solving polynomial equations [34].

3.3.4. Decomposition and factorisation
When solving a system of polynomials equations, a first treatment is to transform it into several simpler
subsystems when possible. We are interested in a new type of algorithms that combine the numerical and
symbolic aspects, and are simultaneously more effective and reliable. For instance, the (difficult) problem
of approximate factorization, the computation of perturbations of the data, which enables us to break up the
problem, is studied. More generally, we are working on the problem of decomposing a variety into irreducible
components.

3.3.5. Deformation and homotopy
The behavior of a problem in the vicinity of a data can be interpreted in terms of deformations. Accordingly,
the methods of homotopy consist in introducing a new parameter and in following the evolution of the solutions
between a known position and the configuration one seeks to solve. This parameter can also be introduced in
a symbolic manner, as in the techniques of perturbation of non-generic situations. We are interested in these
methods, in order to use them in the resolution of polynomial equations as well as for new algorithms of
approximate factorization.

3.4. Symbolic-numeric computation
Either in geometric or algebraic problems, symbolic and numeric computation are closely intertwined. Our
aim is to exploit the complementarity of these domains, in order to develop controlled methods, as explained
now.

3.4.1. Certification
The numerical problems are often approached locally. However in many situations, it is significant to give
global answers, making it possible to certify calculations. The symbolic-numeric approach combining the
algebraic and analytical aspects, intends to address these local-global problems. Especially, we focus on
certification of geometric predicates that are essential for the analysis of geometrical structures [30].
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3.4.2. Approximation
The sequence of geometric constructions, if treated in an exact way, often leads to a rapid complexification
of the problems. It is then significant to be able to approximate these objects while controlling the quality
of approximation. Subdivision techniques based on the algebraic formulation of our problems are exploited
in order to control the approximation, while locating interesting features such as singularities. This approach
combines geometrical, algebraic and algorithmic aspects.

3.4.3. Degeneracies and arithmetic
According to an engineer in CAGD, the problems of singularities obey the following rule: less than 20% of
the treated cases are singular, but more than 80% of time is necessary to develop a code allowing to treat them
correctly. Degenerated cases are thus critical from both theoretical and practical perspectives. To resolve these
difficulties, in addition to the qualitative studies and classifications, we study methods of perturbations of
symbolic systems, or adaptive methods based on exact arithmetics. For example, we work on the computation
of the sign of expressions, and on approaches combining modular and approximate computations, which speed
up the exact answer [25].

4. Application Domains
4.1. CAGD

Keywords: engineering computer-assisted, geometric modeling.

3D modeling is increasingly familiar for us (synthesized images, structures, vision by computer, Internet, ...).
The involved mathematical objects have often an algebraic nature, which are then discretized for easy handling.
The treatment of such objects can sometimes be very complicated, for example requiring the computations of
intersections or isosurfaces (CSG, digital simulations, ...), the detection of singularities, the analysis of the
topology, ...We propose the developments of methods for shape modeling that take into account the algebraic
specificities of these problems. We tackle questions whose answer strongly depends on the context of the
application being considered, in direct relationship to the industrial contacts of CAGD we have.

4.2. Computer vision and robotics
Keywords: calibration, engineering, reconstruction.

Robotics and computer vision come with specific applications of the methods for solving polynomial
equations. That is the case for instance, for the calibration of cameras, robots, computations of configurations
and workspace. The resolution of algebraic problems with approximate coefficients is omnipresent.

4.3. Molecular biology and geometrical structures
Keywords: biology, health.

The chemical properties of molecules intervening in certain drugs are related to the configurations (or
conformations) which they can take. These molecules are seen as mechanisms of bars and spheres, authorizing
rotations around certain connections, similar to robots series. Distance geometry thus plays a significant
role, for example, in the reconstruction from NMR experiments, or the analysis of realizable or accessible
configurations. The methods we develop are well suited for solving such a problem.

5. Software
5.1. Synaps, a module for symbolic and numeric computations

Keywords: C++, algebraic number, bezoutian, effective algebraic geometry, eigenvalues, genericity, geome-
try, iterative methods, linear algebra, links symbolic-numeric, polynomials, resultant, solving, sparse matrices,
stability, structured matrices.
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Participants: Ioannis Emiris, Bernard Mourrain [contact person], Jean-Pascal Pavone, Olivier Ruatta, Jean-
Pierre Técourt, Philippe Trébuchet, Elias Tsigaridas, Julien Wintz.

See SYNAPS web site: http://www-sop.inria.fr/galaad/logiciels/synaps/.

Until recently, symbolic and numeric computations were separated domains: software for manipulating
formulas is often not effective for numerical linear algebra; while the numerically stable and efficient tools
in linear algebra are usually not adapted to the computations with polynomials.

We design the software SYNAPS (SYmbolic Numeric APplicationS) for symbolic and numerical computations
with polynomials. It contains tools to compute with algebraic data structures such as polynomials in one or
more variables, ideals, ring quotients, ..., as well as numerical computations on vectors, matrices, iterative
processes, ...Specialized tools such as LAPACK, GMP, SUPERLU, RS, GB, ... are also connected and can
be imported in a transparent way. A set of solvers for polynomial equations have been developped in
this environment and are exploited in geometric computation on algebraic curves and surfaces (topology,
intersection, singularity detection and analysis, ...).

These developments are based on C++, and attention is paid to the generic structures so that effectiveness
would be maintained. Thanks to the parameterization of the code (template) and to the control of their
instantiations (traits, template expression), they offer generic programming without losing effectiveness. This
powerful kernel contains univariate and multivariate algebraic solvers as well as subdivision solvers and
several resultant-based methods for projection operations.

Many functionalities of the library are now also available through the computer algebra system MATHEMAGIX,
or the geometric modeler AXEL, as dynamic binary libraries.

5.2. Axel, a geometric modeler for algebraic objects
Keywords: computational algebraic geometry, curve, implicit equation, intersection, parameterisation, reso-
lution, singularity, surface, topology.

Participants: Bernard Mourrain, Jean-Pascal Pavone, Julien Wintz [contact person].

See AXEL web site: http://www-sop.inria.fr/galaad/logiciels/axel/.

We are developing a software called AXEL (Algebraic Software-Components for gEometric modeLing) dedi-
cated to algebraic methods for curves and surfaces. Many algorithms in geometric modeling require a combi-
nation of geometric and algebraic tools. Aiming at the development of reliable and efficient implementations,
AXEL provides a framework for such combination of tools, involving symbolic and numeric computations.

The application contains data structures and functionalities related to algebraic models used in geometric
modeling, such as polynomial parameterisation, B-Spline, implicit curves and surfaces. It provides algorithms
for the treatment of such geometric objects, such as tools for computing intersection points of curves or
surfaces, detecting and computing self-intersection points of parameterized surfaces, implicitization, for
computing the topology of implicit curves, for meshing implicit (singular) surfaces, etc.

This package is now distributed as binary packages as well for linux as for MacOSX, see http://www-
sop.inria.fr/galaad/axel/.

5.3. Multires, a maple package for multivariate resolution problems
Keywords: eigenvalues, interpolation, linear algebra, polynomial algorithmic, residue, resultant.

Participants: Laurent Busé [contact person], Ioannis Emiris, Bernard Mourrain, Olivier Ruatta, Philippe
Trébuchet.

See MULTIRES web site: http://www-sop.inria.fr/galaad/logiciels/multires/.

http://www-sop.inria.fr/galaad/logiciels/synaps/
http://www-sop.inria.fr/galaad/logiciels/axel/
http://www-sop.inria.fr/galaad/axel/
http://www-sop.inria.fr/galaad/axel/
http://www-sop.inria.fr/galaad/logiciels/multires/
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The Maple package MULTIRES contains a set of routines related to the resolution of polynomial equations.
The prime objective is to illustrate various algorithms on multivariate polynomials, and not their effectiveness,
which is achieved in a more adapted environment as SYNAPS. It provides methods to build matrices whose
determinants are multiples of resultants on certain varieties, and solvers depending on these formulations, and
based on eigenvalues and eigenvectors computation. It contains the computations of Bezoutians in several
variables, the formulation of Macaulay [33] for projective resultant, Jouanolou [32] combining matrices of
Macaulay type, and Bezout and (sparse) resultant on a toric variety [29], [28]. Also being added are a new
construction proposed for the residual resultant of a complete intersection [26], functions for computing the
degree of residual resultant illustrated in [27], and the geometric algorithm for decomposing an algebraic
variety [31]. The Weierstrass method generalized for several variables (presented in [35]) and a method of
resolution by homotopy derived from such generalization are implemented as well. Furthermore, there are
tools related to the duality of polynomials, particularly the computation of residue for a complete intersection
of dimension 0.

6. New Results

6.1. Algebra
6.1.1. Solving algebraic equations

Participant: Bernard Mourrain.

Algebraic methods to solve polynomial equations have been described in the tutorial presentation [14]. In the
first one, we give an overview of fundamental algebraic properties, used to recover the roots of a polynomial
system, when we know the multiplicative structure of its quotient algebra. This involves ingredients such
as tables of multiplication, duality, eigenvector computations, Chow form. In a seccond tutorial to be
published we describe normal form computation and more precisely border basis methods, that we illustrate
several simple examples. In particular, we show its usefulness in the context of solving polynomial systems
with approximate coefficients. The main results are recalled and we prove a new result on the syzygies,
naturally associated with commutation properties. Finally, we describe an algorithm and its implementation
for computing such border bases.

6.1.2. Univariate polynomial solvers
Participants: Ioannis Emiris [Univ. Athens], Bernard Mourrain, Elias Tsigaridas [Univ. Athens].

In [24], we present algorithmic, complexity and implementation results concerning real root isolation of a
polynomial of degree d, with integer coefficients of bit size ≤ τ , using Sturm (-Habicht) sequences and the
Bernstein subdivision solver. In particular, we unify and simplify the analysis of both methods and we give
an asymptotic complexity bound of Õ(d4τ2). This matches the best known bounds for binary subdivision
solvers. Moreover, we generalize this to cover the non square-free polynomials and show that within the
same complexity we can also compute the multiplicities of the roots. We also consider algorithms for sign
evaluation, comparison of real algebraic numbers and simultaneous inequalities, and we improve the known
bounds at least by a factor of d. Finally, we present our C++ implementation in SYNAPS and some experiments
on various data sets. This work has been accepted for publication.

6.1.3. Implicitization of rational hypersurfaces
Participants: Laurent Busé, Marc Chardin [Univ. Paris VI], Jean-Pierre Jouanolou [Univ. Strasbourg].

Recently, a method to compute the implicit equation of a parameterized hypersurface has been developed
by the authors. We address here some questions related to this method: optimality of a degree estimate and
determination of an extraneous factor that appears when the base points are not locally complete intersections.
We then make a link with a resultant computation for the case of rational plane curves and for particular cases
of space surfaces. As a consequence, we prove a conjecture of Busé, Cox and D’Andrea. This work has been
submitted for publication.
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6.1.4. Factors of iterated resultants
Participants: Laurent Busé, Bernard Mourrain.

In this work we were interested in the understanding of the factorization of iterated resultants and discriminants
that we encounter for instance in the study of the topology of an algebraic surface. Our contribution was to
give all the irreducible factors of two times iterated univariate resultants and discriminants over the integer
universal ring of coefficients of the entry polynomials. Moreover, we showed that each factor can be separately
and explicitely computed in terms of a certain multivariate resultant. A paper [23] has been submitted for
publication.

6.1.5. Discriminants of homogeneous polynomials
Participants: Laurent Busé, Jean-Pierre Jouanolou [Univ. Strasbourg].

This is the continuation of a work, still in progress, started last year which aims to provide a computation study
of discriminants of homogeneous polynomials. These objects give a necessary and sufficient condition so that
a given variety in a projective space has singularities; they are thus of interest in CAGD since it is useful to
detect singularities of a curve or algebraic surfaces which are supposed to represent real objects. This work is
done in collboration with Jean-Pierre Jouanolou from the university Louis Pasteur of Strasbourg.

6.1.6. Residue Calculus and Applications
Participants: Mohamed Elkadi, Alain Yger [Univ. Bordeaux].

We present a new algorithm to compute effectively the residue of a polynomial maps inspired by the so-called
Arnold’s perturbation method. The strategy is to reduce the computations to the case of a map without common
zeroes at infinity, and to deduce algebraic relations between the components of this map and the coordinate
functions. Then we use a generalized version of the transformation to obtain the residue. Instead of computing
symbolic determinants, we rely on constant coefficients of some Laurent series. The algorithm is then applied
to solve some questions in Computer Aided Geometric Design.

6.2. Geometry
6.2.1. Geometric modeling with quadric patches

Participants: Bernard Mourrain, Changhe Tu [Shandong Univ.], Jiaye Wang [Shandong Univ.], Wenping
Wang [Hong Kong Univ.].

Representing shapes by non-linear model is a challenge in geometric modeling, which aims at developping
geometric computation on compact and rich models. Our work on quadric patches is related to this objective.
We are interested in developping basic algebraic-geometric operations which are required for exact and
efficient manipulations of quadrics in this context. One of the key operation is the intersection of quadrics.
We present an efficient method for classifying the morphology of the intersection curve of two quadrics
(QSIC) in PR3, 3D real projective space; including an analysis of singularity, reducibility, the number of
connected components, and the degree of each irreducible component, etc. There are in total 35 different QSIC
morphologies with non-degenerate quadric pencils, which we characterize by by algebraic condition expressed
in terms of the Segre characteristics and the signature sequence of a quadric pencil. We show how to compute
a signature sequence with rational arithmetic so as to determine the morphology of the intersection curve of
any two given quadrics. Two immediate applications of our results are the robust topological classification of
QSIC in computing B-rep surface representation in solid modeling and the derivation of algebraic conditions
for collision detection of quadric primitives. This work is submitted for a journal publication.

6.2.2. A computational study of ruled surfaces
Participants: Laurent Busé, Marc Dohm, André Galligo.
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Implicitization is a fundamental problem in Computer Aided Geometric Design and there are numerous
applications related to it, e.g. the computation of the intersection of two ruled surfaces. The method of µ-bases
(also known as "moving lines" or "moving surfaces") constitutes an efficient solution to the implicitization
problem. Introduced in 1998 by Cox, Sederberg, and Chen for rational curves, it was generalized later to ruled
surfaces. Whereas the curve case is very well understood and we know that the resultant of a µ-basis is the
implicit equation to the power d, where d is the degree of the parametrization, this result is still to be shown
in its full generality (i.e. for arbitrary d) for ruled surfaces. This work filled this gap by giving a proof, which
relies on a geometric idea that reduces the ruled surface case to the curve case. This work has been presented
at the EACA conference and is submitted for publication in a journal.

6.2.3. General classification of (1,2) parametric surfaces in P3

Participants: Thi Ha Lé, André Galligo.

Patches of parametric real surfaces of low degrees are commonly used in Computer Aided Geometric Design
and Geometric Modeling. However the precise description of the geometry of the whole real surface is
generally difficult to master, and few complete classifications exist. We study surfaces of bidegree (1,2). We
present a classification and a geometric study of parametric surfaces of bidegree (1,2) over the complex field
and over the real field by considering a dual scroll. We detect and describe (if it is not void) the trace of self-
intersection and singular locus in the system of coordinates attached to the control polygon of a patch (1,2) in
the box [0; 1]× [0; 1]. This work has been accepted for publication.

6.2.4. Using Bézier patches of bidegree (1,2) for corn leaf modeling
Participants: Franck Aries [INRA of Avignon], André Galligo, Thi Ha Lé.

Surface modeling has a wide range of applications in botany including canopy models for teledetection,
computation of radiative balance and optical properties. The detailed description of the architecture of
vegetation canopies is critical for the modeling of many processes. The area, size, shape, orientation and
position of the leaves drive the efficiency with which exchanges will occur with the atmosphere, including
gas such as water vapor or carbon dioxide, liquids such as water, and radiation. Up to now, models describing
canopy functioning are based on very simple approximations of the canopy architecture. A more detailed
description is required when investigations focus on the role of particular organs in the canopy, the description
of rain interception, the propagation of diseases from organs to others, or the radiative transfer to describe
the reflected or emitted fluxes in a range of wavelengths. A corn leaf, as well as many leaves, is formed by a
nervure separating 2 ruled surface patches. We investigate such representations with patches of bidegree (1,2).
Our approach consists in representing the nervure as a conic or a cubic spline curve, relying on the fact that
a line in the parameter space is mapped on a twisted cubic by a parameterization of bidegree (1,2). Then we
choose (1,2) Bézier patches delimited by this segment of curve to model the leaf. We present a tool box of
algorithms adapted to our purpose, for the patches of bidegree (1,2). This includes fast detection algorithm
for selfintersection and intersection, area estimation and computation of normals. In a following paper with a
more botany flavor, we will present a realistic model for modeling a corn parcel.

6.2.5. Biquadratic sampling method for intersection of surfaces
Participants: Stéphane Chau, André Galligo, Jean-Pascal Pavone.

In Computer Aided Geometric Design (CAGD), the parameterized surfaces are used delimiting volumes. The
computation of the intersection curve between such two surfaces is thus crucial for the description of the
CAGD objects. An often used method to address this problem consist in using a mesh for each surface, and
then to proceed to their intersection (intersection of triangles). Other methods for the intersection problem
deal with global representations of the surfaces such as B-splines, however the usual CAGD procedures
(offsetting, drafting, ...) do not conserve this model and procedural surfaces that are based on approximations
are required. So, even if the intersection methods are exact, they only provide an approximation of the "real"
intersection curve. This can be of bad quality, because the approximations of the surfaces are separated
from the intersection process and are somehow "global". In the general case, the only informations that we
can access for a parameterized surface are "local" (its evaluation). Thus, a general algorithm is a sampling
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algorithm. Moreover, in order to design a more robust algorithm which does not avoid possible intersection
between two parameterized surfaces S1 and S2, we consider the local extreme values of the distance function
between S1 and S2. We are interested in an intersection method based on approximation by biquadratic
patches. It can be seen as a good compromise between the approximation by B-splines and meshes because it
is a local approximation (like the meshes case) and the distance function can have extreme values (like the B-
spline case). It can be used for the detection of touching points, and bifurcation points which are undetectable
by a mesh approximation. This method is almost as efficient as a classical sampling method, but it is more
robust. Moreover, this approach requires less evaluations than a classical sampling method, so it could be
more interesting for complicated procedural surfaces. Our approach is based on two steps. At first, we build
quadtrees hierarchy covering the grids of biquadratic patches and then we have a family of intersection problem
between two biquadratic patches. This last problem was treated in work that has been accepted for publication
but we also introduce a subdivision method to find the topology of the intersection curves.

6.2.6. Subdivision methods for 2d and 3d implicit curves
Participants: Chen Liang [Univ. of Hong Kong], Bernard Mourrain, Jean-Pascal Pavone.

We describe a subdivision method for handling algebraic implicit curves in 2d and 3d. We use the representa-
tion of polynomials in the Bernstein basis associated with a given box, to check if the topology of the curve
is determined inside this box, from its points on the border of the box. Subdivision solvers are involved for
computing these points on the faces of the box, and segments joining these points are deduced to get a graph
isotopic to the curve. Using envelop of polynomials, we show how this method allow to handle efficiently
and accurately implicit curves with large coefficients. We report on implementation aspects and experimenta-
tions on 2d curves such as ridge curves or self intersection curves of parameterized surfaces, and on silhouette
curves of implicit surfaces, showing the interesting practical behavior of this approach.

6.2.7. Intersection and self-intersection of surfaces by means of Bezoutian matrices
Participants: Laurent Busé, Mohamed Elkadi, André Galligo.

The computation of intersection and self-intersection loci of parameterized surfaces is an important task in
Computer Aided Geometric Design and computer algebra tools need to be developed further for computing
their implicit equations. In this work, we addressed these problems via four resultants with separated variables:
two of them are specializations of more general ones and the others are determinantal. We gave a rigorous study
in these cases and provide new and useful formulas via adapted computations of Bezoutians. A paper has been
submitted for publication.

6.2.8. Topology of curves and surfaces
Participants: Lionel Alberti, George Comte [UNSA], Bernard Mourrain, Jean-Pierre Técourt.

In order to produce a triangulation of an implicit surface, we look at subdivision methods. Our approach to the
problem is through singularity theory. By Thom-Mather transversality theorem (which we can guarantee in a
computable way) we can prove that in given domains, the surface is topologically trivial (that is, a product of
its link with Rn). We can then recursively apply the method to the link of the surface. The classical method
uses a CAD decomposition that even in its lighter forms has a complexity depending on the complexity of
the projection making the complexity somewhat unrelated to the actual geometry of the surface. With this
approach we do not have to rely on a projection and it is hoped that it will actually lead to a practically more
efficient algorithm. This work has been submitted for publication. The approach behind this work is described
in [12]. Some algebraic issues related to these geometric problems are discussed in [16].

6.2.9. Intersection of algebraic surfaces
Participants: Daouda N’Diatta, Bernard Mourrain, Olivier Ruatta [Univ. Limoges].



10 Activity Report INRIA 2006

Numerical modeling plays an increasingly role in fields at the border between data processing and mathemat-
ics. This is the case for example in CAD (computer-aided design), where the objects of a scene or a piece to
be built are represented by parameterized curves or surfaces such as NURBS, robotics (problem of the paral-
lel robot, or vision), or molecular biology (rebuilding of a molecule starting from the matrix of the distances
between its atoms obtained by NMR). A fundamental operator in this context is the intersection of geometric
models, which leads to algebraic questions.

We focus on the problem of computing the topology of a plane algebraic curves and three-dimensional
algebraic curves defined as the intersection of two algebraic surfaces. In the case of two parameterized surfaces,
in order to reduce to such a situation, we may compute the implicit equation of one of the rational surfaces.
This reduce the problem of intersection to the case of a curve defined by an implicit equation in the plane of
parameters. Our main concern will be the case of implicit curves, either in the plane or in a three-dimensional
space.

The problem of computing the topology of an algebraic curve received a lot of attention in the past literature.
Different methods have been experimented, but they suffer from the problem of certifying the topology of the
result. At first, we propose an algorithm based on sub-resultant to compute with certainty a simplicial complex
isotopic to a plane algebraic curve defined by his implicit equation. Secondly, by using the 2D approach we
present a new method to compute with certainty the topology of an algebraic curve in 3D defined by two
polynomial equations even when the ideal generate by the two polynomial is not reduced.

These algorithms are beeing implemented in the SYNAPS library.

6.2.10. Resolution of singularities
Participants: Lionel Alberti, Edward Bierstone [Univ. Toronto].

This was done in collaboration with Edward Bierstone, Professor at the Fields Institute, Toronto, Canada.
The local properties of singularities are best understood looking at their resolution and blow-up maps. The
structure of resolution maps is not well understood in arbitrary dimension, but we can get a rather good handle
on what’s happening in dimension 3 for isolated singularities. Resolution is to be understood as a mathematical
tool enabling a better handling and understanding of singularities rather than as a goal in itself that will yield
efficient algorithms.

6.2.11. Approximate implicitization
Participants: Stéphane Chau, André Galligo.

In order to approximate a general parameterized surface (given by evaluations) by biquadratic patches, we
were interested in the approximate implicitization of these polynomial surfaces. The implicitization problem
consists in finding the exact algebraic representation of a given rational parametric curve or surface. The
classical methods to deal with this problem use the resultants and Groebner bases. But these algebraic
approaches are very time-consuming (because of too high degrees) and have the drawback of introducing too
many components in excess (so-called "phantom components"). So a very simple patch of surface can have a
complicated exact implicit equation because the parameterization is local whereas the algebraic representation
is global. Thus, instead of finding the exact representation of a given biquadratic patch, we can wonder
how well a given algebraic surface approximates the corresponding parametric surface of bi-degree (2, 2)
in the region of interest. This is the approximate implicitization problem and an algebraic approach based on
factorization was developed by SINTEF. Our approach consists in the construction of some specific geometric
constraints to give a linear system of equations and we use a singular value decomposition to solve it.

6.2.12. Dynamic and generic method for computing an arrangement of implicit curves
Participants: Julien Wintz, Bernard Mourrain.
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Arrangements are very important issues in many application fields and have been studied for several years
with different points of view. Arrangements are mainly computed using sweep line methods, such as the well
known Bentley-Ottman algorithm for computing an arrangement of line segments. These methods are strongly
related to the nature of objects and are not well suited for non-trivial objects such as closed curves or surfaces.
We propose an arrangement algorithm which is generic in the sense that it is not related to the nature of the
objects to be arranged. The algorithm is dynamic, which means, it can be maintained under insertion and
deletions of the objects. Objects are always considered with a bounding domain so that we can also consider
non convex objects. This domain is subdivided further if the cell is not deemed relevant, what is ensured by
a regularity test which depends on the nature of input objects. A cell is relevant if regions can be deduced
from the topology of the object within the cell. This general framework has been first tested for computing
an arrangement of implicit curves. Type related elements of the algorithm are then specialized for implicit
curves. These elements are regularity test and regions computation. A segment of implicit curve is said to be
regular in a cell if it is either x-monotonic, y-monotonic or if it contains one and only one singular points
and if the number of branches stemming out from this singularity is exactly the number of intersections of
the curves with the cell. To compute the number of branches stemming out from a singularity, we use degree
theory. To compute the intersection of the curve with the cell border (as well as the topological degree),
we use the Bernstein conversion of the polynomials representing the curve. The arrangement is represented
by an augmented influence graph on regions obtained by subdivision and merging steps. This algorithm is
implemented within the algebraic modeler AXEL and will quite easily be extended to the case of BSpline
curves [19].

6.3. Symbolic numeric computation
6.3.1. Solving Toeplitz-block linear systems

Participants: Houssam Khalil, Bernard Mourrain, Michelle Schatzmann [Univ. Lyon I].

Structured matrices appear in various domain, such as scientific computing, signal processing,...Among
well-known structured matrices. Toeplitz and Hankel structures have been intensively studied. So far, few
investigations have been pursued for the treatment of multi-level structured matrices. We found a relation
between Toeplitz matrices and syzygies, and algorithms to compute these syzygies. In following the same way
in the univariate case, we gived a relation between bloc-Toeplitz-bloc (TBT) matrices and bivariate syzygies.
We are looking for a fast algorithm to compute these syzygies. By computing the SVD of the displacement
of a banded TBT matrix we remark that almost of them are very small, which means that we can aproximate
this matrix by a small rank matrix. We are trying also to trasform a TBT linear system to another multi-level
structured system which was called Cauchy-bloc-Cauchy sytem type, which has a relation with the bivariate
interpolation problem.

6.3.2. Algorithms for bivariate polynomial absolute factorization
Participants: Guillaume Chèze, André Galligo, Grégoire Lecerf [CNRS, Univ. Versailles].

Absolute factorization stands for factorization over the algebraic closure of the ground field. This is interesting
for the applications; e.g. for a multivariate polynomial with rational coefficients it allows us to decompose
further than the rational factorization, for instance into polynomials with real coefficients. This is a long
standing problem in Computer algebra.

G. Chèze, André Galligo and G. Lecerf are working on an improvement of an approach initiated by Gao using
exact modular and p-adic computations. They already obtained nearly optimal complexity bounds. This work
is still in progress.

6.3.3. Geometry and optimisation
Participants: Nikos Pavlidis [University of Patras], Bernard Mourrain, Michael Vrahatis [University of
Patras].
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In a work developped in the context of our associate team CALAMATA with Greece, we investigated the
application of optimisation methods in geometric problems. We have examined the ability of feedforward
neural networks to identify the number of real roots of univariate polynomials, and more generally the ability to
approximate semi-algebraic sets. The obtained experimental results indicate that neural networks are capable
of performing this task with a high accuracy even when the training set is very small compared to the test set
(see [15]). We are currently investigating applications of Particule Sworm Optimisation methods to geometric
and algebraic problems, such are root isolation, 3D reconstruction from distances in Molecular Biology.

6.3.4. Tensors, symmetric tensors and rank
Participants: Pierre Common [I3S], Gene Golub [Stanford Univ.], Lek-Heng Lim [Stanford Univ.], Bernard
Mourrain.

There are several extensions of the Singular Value Decomposition (SVD) to tensors. In this work, we are
interested in the Canonical Decomposition, into a minimal sum of outer products of vectors. In particular, this
allows us to define a tensor rank that restricts to the matrix rank for order-2 tensors. This decomposition is
essential in the process of Blind Identification of Under-Determined Mixtures (UDM), i.e., linear mixtures
with more inputs than observable outputs and appear in many application areas, including Speech, Mobile
Communications, Machine Learning, Factor Analysis with k-way arrays (MWA), Biomedical Engineering,
Psychometrics, and Chemometrics. In this work, we study various properties of symmetric tensors in relation
to a decomposition into a sum of outer product of vectors. A rank-1 order-k tensor is the outer product of k
vectors. Any symmetric tensor can be decomposed into a linear combination of rank-1 tensors, each of them
being symmetric or not. The Rank of a symmetric tensor is the minimal number of rank-1 tsWeensors that
are necessary to reconstruct it. The Symmetric Rank is obtained when constituting rank-1 tensors are imposed
to be themselves symmetric. It is shown that Rank and Symmetric Rank are generically equal, and that they
always exist in an algebraically closed field; in the real field for instance, it is necessary to define several
Typical Ranks. The Generic Rank is generally not maximal, contrary to matrices, and is now known for any
values of dimension and order. These properties are described in a paper submitted for a journal publication.

7. Other Grants and Activities

7.1. European actions
7.1.1. ACS

Participants: Lionel Alberti, Laurent Busé, Stéphane Chau, André Galligo, Bernard Mourrain [contact
person], Jean-Pascal Pavone, Jean-Pierre Técourt, Julien Wintz.

See the ACS project web site.
- Acronym: ACS, number FP6-006413
- Title: Algorithms for Complex Shapes.
- Specific Programme: IST
- RTD (FET Open)
- Start date: started 1st May, 2005 - Duration: 3 years
- Participants:

Univ. Groningen (Netherlands) [coordinating site]
ETH Zürich (Switzerland),
Freie Universität Berlin (Germany),
INRIA Sophia Antipolis (Galaad & Geometrica),
MPI Saarbrücken (Germany),
National Kapodistrian University of Athens (Greece),
Tel Aviv University (Israel)
GeometryFactory Sarl

http://acs.cs.rug.nl/
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- Abstract: computing with complex shapes, including piecewise smooth surfaces, surfaces with singularities,
as well as manifolds of codimension larger than one in moderately high dimension. Certified topology and
numerics, applications to shape approximation, shape learning, robust modeling.

7.1.2. AIM@SHAPE
Participants: Laurent Busé, Emmanuel Briand, Stéphane Chau, Mohamed Elkadi, Ioannis Emiris, André
Galligo, Thi Ha Lê, Bernard Mourrain [contact person], Olivier Ruatta, Julien Wintz.

See the AIM@SHAPE project web site
- Acronym: aim@shape, number NoE 50766
- Title: AIM@SHAPE, Advanced and Innovative Models And Tools for the development of Semantic-based
systems for Handling, Acquiring, and Processing knowledge Embedded in multidimensional digital objects.
- Type of project: network of excellence
- Beginning date: 1st of january 2004 - During: 4 years
- Partners list:

CNR - Consiglio Nazionale delle Ricerche,
DISI - Universita di Genova,
EPFL - Swiss Federal Institute of Technology,
IGD - Fraunhofer,
INPG - Institut National Polytechnique de Grenoble,
INRIA
CERTH - Center for Research and Technology Hellas,
UNIGE - Université de Genève,
MPII - Max-Planck-Institut für Informatik,
SINTEF,
Technion CGGC,
TUD - Darmstadt University of Technology,
UU - Utrecht University,
WIS - Weizmann Institute of Science.

- Abstract of the project: it is aimed at coordinating research on representing, modeling and processing
knowledge related to digital shapes, where by shape it is meant any individual object having a visual
appearance which exists in some (two-, three- or higher- dimensional) space (e.g., pictures, sketches, images,
3D objects, videos, 4D animations, etc.).

7.2. Bilateral actions
7.2.1. Associated team CALAMATA

Participants: Ioannis Emiris, Athanasios Kakargias, Bernard Mourrain [contact person], Nikos Pavlidis, Jean-
Pierre Técourt, Elias Tsigaridas, Michael Vrahatis.

The team of Geometric and Algebraic Algorithms at the National University of Athens, Greece, has been
associated with GALAAD since 2003. See its web site.

This bilateral collaboration is entitled CALAMATA (CALculs Algebriques, MATriciels et Applications). The
Greek team (http://www.di.uoa.gr/~erga/) is headed by Ioannis Emiris. The focus of this project is the solution
of polynomial systems by matrix methods. Our approach leads naturally to problems in structured and sparse
matrices. Real root isolation, either of one univariate polynomial or of a polynomial system, is of special
interest, especially in applications in geometric modeling, CAGD or nonlinear computational geometry. We
are interested in computational geometry, actually, in what concerns curves and surfaces.

In 2006, we had the visit of B. Mourrain, J.P. Pavone and J. Wintz to Athens, to work on univariate polynomial
subdivision solvers and arrangement problems. M. Vrahatis and K. E. Parsopoulos visited GALAAD, and
worked on Particule Sworm Optimisation methods with applications to geometric and algebraic problems.

http://www.aim-at-shape.net/
http://www-sop.inria.fr/galaad/collab/grece/ea.html
http://www.di.uoa.gr/~erga/
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7.2.2. NSF-INRIA collaboration
Participants: Laurent Busé, André Galligo, Mohamed Elkadi, Bernard Mourrain [contact person], Jean-Pierre
Técourt.

The objective of this collaboration between GALAAD and the Geometric Modeling group at Rice University
in Houston, Texas (USA) is to investigate techniques from Effective Algebraic Geometry in order to solve
some of the key problems in Geometric Modeling and Computational Biology. The two groups have similar
interests and complementary strengths. Effective Algebraic Geometry is the branch of Algebraic Geometry
that pursues concrete algorithms rather than abstract proofs. It deals mainly with practical methods for
representing polynomial curves and surfaces along with robust techniques for solving systems of polynomial
equations. Many applications in Geometric Modeling and Computational Biology require fast robust methods
for solving systems of polynomial equations. Here we concentrate our collective efforts on solving standard
problems such as implicitization, inversion, intersection, and detection of singularities for rational curves
and surfaces. To aid in modeling, we shall also investigate some novel approaches to represent shape. In
contemporary Computational Biology, many problems can be reduced to solving large systems of low degree
polynomial equations. We plan to apply our polynomials solvers together with new tools for analysing complex
shapes to help study these currently computationally intractable problems.

7.2.3. PAI Procore collaboration
Participants: Laurent Busé, Stéphane Chau, Yi-King Choi [Hong Kong Univ.], André Galligo, Yang Liu
[Hong Kong Univ.], Wenping Wang [Hong Kong Univ.], Julien Wintz.

The objective of this collaboration is to conduct research in algebraic techniques for solving problems
in geometric modeling. We will investigate the use of implicit models, for compact and efficient shape
representation and processing. The application domains are Computer Aided Geometric Design, Robotics,
Shape compression, Computer Biology. We will focus on algebraic objects of small degree such as quadrics,
with the aim to extend the approach to higher degree. In particular, we are interested in the following problems:

• Shape segmentation and representation using quadrics.

• Shape processing using quadrics.

• Collision detection for objects defined by quadric surfaces.

Experimentation and validation will lead to joint open source software implementation, dedicated to quadric
manipulations. A package collecting these tools will be produced.

7.3. National actions
7.3.1. ANR DECOTES, Tensorial decomposition and applications

Years: 2006-2009.
Partners: I3S, CNRS; LTSI, INSERM; GALAAD, INRIA; SBP, Thales communications.

In signal processing, where high-order statistics are used for blind identification, in data analysis, in sensor
array processing, in machine learning, ... tensorial decompositions plays an important role. The aim of this
project is to study the key theoretical problems of such decompositions and to devise numerical algorithms
dedicated to some selected applications.

7.3.2. ANR GECKO, Geometry and Complexity
Years: 2005-2008
Partners: ALGO, INRIA; GALAAD, UNSA; LIX, Ecole Polytechnique; Univ. Paul Sabatier, Toulouse.

The topics of the project are the study, analysis and implementation of fundamental operations on matrices and
polynomials, methods for the resolution of polynomial or analytic equations. It combines numerical analysis,
effective algebaric geometry and complexity. See http://gecko.inria.fr/ for more details.

http://gecko.inria.fr/
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8. Dissemination

8.1. Animation of the scientific community
8.1.1. Seminar organization

We continued to organize a bi-weekly seminar called “Formes & Formules”. The list of talks is available at
http://www-sop.inria.fr/galaad/index.php?option=com_content&task=blogcategory&id=23&Itemid=162.

8.1.2. Relations with LSIIT
We are in relation with the Laboratory of Sciences, Computer graphics and Teledetection of Strasbourg
(LSIIT, UMR 7005 CNRS-ULP). Arnaud Fabre came in visit one week at GALAAD, visit during which
he made demonstration of his achievements in the field of constraint modeling in 3D. He presented a software,
CoyoteVR, which allows the modeling of geometric constraints in a virtual reality environment. Scenes built
using this tool, are exported in a formalism defined by Julien Wintz, when they worked together, GCML which
allow to define with ambiguity a geometric constraint system, using first order logic. Work between Arnaud
and Julien lead to a plugin for the definition and the resolution of geometric constraint system in AXEL.

Julien has given, at the days of computer graphics french community 2006, in Bordeaux, a talk on the
compilation of knowledge based systems for geometric constraint symbolic resolution. This work initiated
before his PhD thesis, under the direction of Pascal Schreck, is continued as a collaboration, which will allow,
according to the same principle, automatic compilation of plugins for Axel by using a syntactic base and a
semantic base, possibly defined in GCML as well.

Two publications on the application of the compilation process for the generation of symbolic solvers
of geometric constraint systems are currently in redaction. After the Afig days, Julien went one week in
Strasbourg, which gave the opportunity was the occasion to work at the same time on the constraints plugin
for Axel with Arnaud, and on compilation with Pascal. A discussion with Ludovic Sternberger is to define
how, porting Axel towards virtual reality can be performed.

8.1.3. Comittee participations

• A. Galligo is a member of the program comittee of the cycle of conference MEGA, the next one,
MEGA’07 will be held in Austria.

• B. Mourrain was a member of the programm comittee of the conference SMI’06 (International conf.
on Shape Modeling and Applications), Matsushima, Japan, 14-16 June, CASC’06 (International
Workshop on Computer Algebra in Scientific Computing), Moldovia, 11-15 September,

8.1.4. Editorial committees

• M. Elkadi, B. Mourrain, R. Piene [Univ. Oslo] are editors of the book "Algebraic Geometry and
Geometric Modeling", which appeared as [11].

• L. Busé, M. Elakdi and B. Mourrain are preparing a special issue of Theoretical Computer Science,
for the conference Computational Algebraic Geometry and Applications, held in Nice on the
occasion of the 60th birthday anniversary of André Galligo.

8.1.5. Organisation of conferences and schools

• Bernard Mourrain, Ollivier Ruatta and Jacques-Arthur Weil organised the workshop Matrices
structurées, équations différentielles et calcul formel, Limoges, 18-19 January.

• Laurent Busé organized with Marc Chardin a week conference at CIRM, Luminy, 15-19 may 2006,
Elimination theory and applications in honor of Jean-Pierre Jouanolou; 42 international participants;
Web page of the conference:
http://www-sop.inria.fr/galaad/conf/jouanolou/.

http://www-sop.inria.fr/galaad/index.php?option=com_content&task=blogcategory&id=23&Itemid=162
http://www-sop.inria.fr/galaad/conf/jouanolou/
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• Laurent Busé, Mohamed Elkadi and Bernard Mourrain organized then international conference
Computational Algebraic Geometry and Applications, at Nice, 2-6 june 2006, on the occasion of
the 60th birthday of André Galligo; 40 international participants; Web page:
http://www-sop.inria.fr/galaad/conf/06andre/index.html.

• Laurent Busé and Bernard Mourrain organized with C. D’Andrea, R. Goldman, L. González-Vega
and M. Sombra, 4-7 september 2006, the conference Algebraic Geometry and Geometric Modeling
2006; Web page: http://www.imub.ub.es/aggm06/; 38 international participants.

8.1.6. PHD thesis commitees

• A. Galligo was President of the Jury of the PhD thesis of Mauricio Araya (Inria Sophia, Tropics) at
UNSA in November 2006.

• B. Mourrain was referee for the Ph.D of A. Ayad (Univ. Rennes), P. Johansen (Univ. Oslo).

8.1.7. Other comittees

• L. Busé is an elected member of the administrative council of the SMF (the French Mathematical
Society).

• B. Mourrain is a member of the scientific council of SARIMA.

8.1.8. WWW server

• http://www-sop.inria.fr/galaad/.

8.2. Participation at conferences and invitations
• L. Alberti attended to the Fields Institute summer school “Valuation Theory and Integral Closures

in Commutative Algebra”, Ottawa, Canada, July 3-22, 2006, to the Fields Institute workshop
“Workshop on Computational and Combinatorial Commutative Algebra”, Toronto, Canada, July
24-August 4, 2006, to the Fields Institute workshop “Fields-MITACS Industrial Problem-Solving
Workshop (FMIPW)”, Toronto, Canada, August 14-18, 2006.

• L. Busé was invited to give a talk at the commutative algebra and algebraic geometry seminar of the
university of Genova, Italia, february 27-march 3; participated to the conference “Elimination theory
and applications”, May 15-19, Luminy,France; participated to the conference ‘Algebraic Geometry
and Geometric Modeling”, September 4-7 2006, Barcelona, Spain; was invited to give a talk at the
workshop “Algorithms in Algebraic Geometry”, september 18-22, Minneapolis, USA; was invited
to give a talk at the seminar of the INRIA’s team “ALGO”, october 23, Rocquencourt, France.

• S. Chau participated to "Computational algebraic geometry and applications", Nice, 2 - 6 june 2006;
gave a presentation at "Curves and Surfaces", Avignon, 29 june - 5 july 2006.

• M. Dohm participated to the "CIMPA School on Commutative Algebra" (Hanoi, Vietnam), Dec.
26 - Jan. 6; "Elimination theory and applications" (Luminy, France), May 15-19, Luminy,France;
"Computational algebraic geometry and applications" (Nice, France), June 2-6; gave a talk at
"Encuentros de lgebra Computacional y Aplicaciones 2006" (Sevilla, Spain), September 7-9

• A. Galligo was invitated to give a lecture on Absolute factorization at the Ecole doctorale de
Bordeaux, february 2nd; participated to "Computational algebraic geometry and applications", Nice,
2 - 6 june; to "Curves and Surfaces", Avignon, 29 june - 5 july; gave a presentation at the conference
“Algebraic Geometry and Geometric Modeling”, September 4-7, Barcelona, Spain; participated to
the workshop on Factorization,AIM, Palo Alto (Ca, USA) May 15-19; to ISSAC’06, Genova, Italia,
July; to the conference to the memory of M. Bronstein, INRIA Sophia Antipolis, July.

• T. H. Lé participated to Computational algebraic geometry and applications, Nice, 2 - 6 june
2006; presentation at Curves and Surfaces, Avignon, 29 june - 5 july 2006; to Forum des jeunes
Mathématiciennes, Paris, 6-7 october 2006.

http://www-sop.inria.fr/galaad/conf/06andre/index.html
http://www.imub.ub.es/aggm06/
http://www-sop.inria.fr/galaad/
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• B. Mourrain gave a talk at the Dagsthul seminar Reliable Implementation of Real Number Algo-
rithms: Theory and Practice, 9-10 january, coorganised the workshop Matrices structurées, équa-
tions différentielles et calcul formel, Limoges, 18-19 january, participated to the Aim@Shape Man-
agement Board and review Meeting, Genova, 7-10 February and 28-31 March, to the ACS workshop,
Athens, 8-12 May, the conference Computational Algebraic Geometry and Application, Nice, 2-6
june, was invited to give a talk at a minsymposium of the conference Mathemathical methods for
curves and surfaces, 29 may-2 june, Avignon, gave a talk at a minisymposium of the European Con-
ference on Mathematics for Industry, Madrid, 10-14 july, gave a talk at the International Congress
on Mathematical Software, Castro Urdiales, Spain, 1-3 september, coorganised the conference Al-
gebraic Geometry and Geometric Modeling, Barcelona 4-7 september, gave a talk at the workshop
Algorithms in Algebraic Geometry, IMA Minneapolis USA, 18-22 september, at the workshop Soft-
ware for Algebraic Geometry, IMA Minneapolis USA, 23-27 october, at the Workshop on Geometric
Modeling and Geometric Computation, Vorau Austria, 27-29 november, at the worskop on Global
Optimisation, intergating Convexity, Optimization, Logic Programming and Computational Alge-
braic Geometry, Vienna Austria, 4-6 december.

• Julien Wintz gave a talk “A framework for geometric constraint satisfaction problem” at the 21st
Symposium of Applied Computing, Track 21 : Geometric Computing and Reasoning, Dijon, France,
April 24-27, 2006 . He also gave a talk “Subdivision method for computing an arrangement of im-
plicit planar curves” at the conference “Algebraic Geometry and Geometric Modeling”, Septem-
ber 4-7 2006, Barcelona, Spain and another talk “Compilation de systèmes à base de connais-
sances pour la résolution symbolique de contraintes géométriques” at the “Journées francophones
de l’informatique graphique”, Bordeaux, France, 24-27 November 2006 .

8.3. Formation
8.3.1. Teaching at Universities

• Laurent Busé, Master 2nd year of the university of Nice, “Algebraic curves and surfaces for CAGD”,
27 hours.

• Marc Dohm, Licence 2nd year, algebra course, 36h; Licence first year, analysis course, 24h.

• Mohamed Elkadi, Master 1st year: Effective Algebraic Geometry, 60 h, Master 2nd year: Introduc-
tion to Elimination Theory, 42 h, Licence 2nd year: Arithmetic, 30 h, Capes: Linear Algebra, 60h.

• André Galligo, Licence (140h), Master (60 h) in mathematics.

• Bernard Mourrain, Master 2nd year of the university of Nice, “Algorithms for curves and surfaces”,
20 hours.

8.3.2. PhD theses in progress

• Lionel Alberti, Vers une théorie quantitative des singularités, ED SFA, UNSA.

• Eliman Ba, Résultants, calculs et applications,UNSA.

• Stéphane Chau, Study of singularities used in CAGD, UNSA.

• Marc Dohm, Algorithmique des courbes et surfaces algébriques, UNSA.

• Daouda N’Diatta, Résultants et sous-résultants et applications, Univ. Limoges.

• Houssam Khalil, Matrices structurées en calcul symbolique et numérique, Univ. Lyon I.

• Thi Ha Lê, Classification and intersections of some parametrized surfaces and applications to
CAGD, UNSA.

• Julien Wintz, Méthodes algébriques pour la modélisation géométrique, INRIA Sophia-Antipolis,
ED STIC.
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8.3.3. Internships
See the web page of our interships.

• Dominique Dufaye-Santoni, Isolation de racines réelles de polynômes en une variable , 1 July 2006
- 30 August 2006.

• Ali Etber, Mathemagix, vers un système de calcul formel modulaire, 15 June 2006 - 30 July 2006.

• Chen Liang, Subdivision methods for the topolopy of implicit 3D curves, 4 November 2005-30
January 2006.

• Quoc Thinh Nguyen, Topologie de courbes algébriques implicites, 1 August 2006 - 30 September
2006.
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