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2. Overall Objectives

2.1. Overall Objectives
Software correctness is a key aspect of many computing systems. For example, computers and software are
used to help control nuclear power plants, avionic controls, and automobiles and, in such safety-critical
systems, incorrect software can cause serious problems. Similarly, errors in networking software, operating
systems, browsers, etc, can leave computer systems open for computer viruses and security breeches. In
order to avoid errors in such complex and interacting systems, one must be able to prove the correctness of
individual application programs as well as a wide range of software systems that analyze and manipulate
them: these range from compilers and linkers, to parsers and type checkers, to high-level properties of
entire programming languages. In the face of this increasing need for program correctness, an international
community of researchers is developing many approaches to the correctness of software. Formal methods are
gaining acceptance as one viable approach to addressing program correctness and this project will focus on
using such methods to address this problem.
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The Parsifal team aims at elaborating methods and tools for specifying and reasoning about computation
systems such as compilers, security protocols, and concurrent programs. A central challenge here is proving
properties of programs that manipulate other programs. The specification of such computational systems today
is commonly given using operational semantics, supplanting the well-established but restrictive approach using
denotational semantics. Operational semantics is generally given via inference rules using relations between
different items of the computation, and for this reason, it is an example of a relational specification. Inference
rules over relations are also used for specifying the static semantics for programming languages as well (type
inference, for example). The use of denotational style presentations of computational systems naturally leads
to the use of functional programming-based executable specifications. Similarly, the use of inference systems
for the presentation of operational semantics provides a natural setting for exploiting logic programming-based
implementations.

The Parsifal project will exploit recent developments in proof search, logic programming, and type theory to
make the specification of operational semantics more expressive and declarative and will develop techniques
and tools for animating and reasoning directly on logic-based specifications. More specifically, the Parsifal
project will focus on the following goals.

• Foundations: We plan to exploit proof search in expressive logics for the specification of computa-
tions and to develop a single logic for reasoning about proof search specifications. This logic will
be based on higher-order intuitionistic logic and will include proof principles for induction and co-
induction. We shall also consider its analogous design as a type system.

• Prototypes: We plan to build prototype components needed for the implementation of proof search
(including unification, search, tabling, binding and substitution in syntax, etc) and use these compo-
nents to build specific research prototypes for a range of applications. We shall explore architectures
for provers that allow differing amounts of interaction and automation.

• Applications: We will test the feasibility of incorporating our deductive tools into various applica-
tions that can benefit from mixing computation and deduction. Application areas we have in mind
are security, global computing, proof-carrying code, and mobile code.

Parsifal’s focus on formal specification and correctness of computer systems means that this project is sup-
porting INRIA’s objective to “guarantee the reliability and security of software intensive systems” (Strategic
Plan 2003-2007).

3. Scientific Foundations

3.1. Proof search
Keywords: linear logic, logic programming, proof search.

Participants: David Baelde, Dale Miller, Alexis Saurin, Lutz Straßburger.

The term “proof search” refers to a modern updating of the logic programming paradigm. In particular, that
update implies several things that have not been generally embraced by the logic programming community.

• Proof search takes its motivation for new design and analysis from proof theory instead of model
theory. Proof theory provides a solid foundation for explaining logic programming generally and has
been a productive framework for motivating exciting new programming languages.

• Proof theory allows for relatively easy exploring of such intensional aspects of computation as
binders, binder mobility, and resource management.

• Proof search, given its foundations in “finitistic” proof theory often allows one to move quickly to
consider implementations using logic variables, unification, backtracking, resource-splitting, explicit
substitutions, etc.
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• Proof search has a focus on logically correct deduction. In particular, many short cuts that have
been easy to implement in, say, Prolog systems, such as negation-as-failure, Prolog’s cut, unsound
unification, etc, are generally de-emphasized.

• Proof search emphasizes specifications and execution of specifications rather than programming and
pure performance. Emphasis is more generally on clear and deductive specifications. There are,
however, at least a couple of examples of when the more declarative specification also turned out to
provide the more effective implementation (given suitable compilers): see [34] and [32].

• Proof search design and theory also focuses on the meaning of logical connectives and quantifiers.
This focus is in contrast to the focus of constraint logic programming (on processing of constraints
on terms) and concurrent logic programming language (with their focus on novel readings of logic
variables or constraints) [26].

The proof theory of proof search has been used to design various logic programming languages. In the late
1980’s, sequent calculus for intuitionistic logic was used to motivate the various extensions now incorporated
into λProlog. Later, linear logic programming languages have been introduced: in particular, LO of Andreoli
and Pareschi [18], Lolli of Hodas and Miller [31], and Forum of Miller [38].

A key application area for proof search and the above logic programs is the specification of operational
semantics. Particularly successful specifications along these lines are those of evaluation and typing for the
untyped λ-calculus [3] and reachability within progress calculi, such as the π-calculus [6], [47], [50], [51].

3.2. Reasoning about logic specifications
Keywords: LINC, definitions, fixed points, generic judgments, higher-order abstract syntax, lambda-tree
syntax.
Participants: David Baelde, Joëlle Despeyroux, Dale Miller, Alexis Saurin.

Now that meaning is given using logic specifications (relational specifications), how do we reason about the
formal properties of such specifications? Addressing this question is a central focus of the theoretical aspects
of this project.

The traditional architecture for systems designed to help reasoning about the formal correctness of specifica-
tion and programming languages can generally be characterized at a high-level as follows: First: Implement
mathematics. This often involves choosing between a classical or constructive (intuitionistic) foundation, as
well as a choosing abstraction mechanism (eg, sets or functions). The Coq and NuPRL systems, for example,
have chosen intuitionistically typed λ-calculus for their approach to the formalization of mathematics. Sys-
tems such as HOL [29] use classical higher-order logic while systems such as Isabelle/ZF [44] use classical
logic. Second: Reduce programming correctness problems to mathematics. Thus, data structures, states,
stacks, heaps, invariants, etc, all are represented as various kinds of mathematical objects. One then reasons
directly on these objects using standard mathematical techniques (induction, primitive recursion, fixed points,
well-founded orders, etc).

Such an approach to formal methods is, of course, powerful and successful. There is, however, growing
evidence that many of the proof search specifications that rely on such intensional aspects of logic as bindings
and resource management (as in linear logic) are not served well by encoding them into the traditional data
structures found in such systems. In particular, the resulting encoding can often be complicated enough that
the essential logical character of a problem can be obfuscated.

We propose to use the LINC logic of [48] as the meta-logic for our system for reasoning about computation
systems. The three key ingredients of LINC can be described as follows.

First, LINC is an intuitionistic logic for which provability is described similarly to Gentzen’s LJ calculus [27].
Quantification at higher-order types (but not predicate types) is allowed and terms are simply typed λ-terms
over βη-equivalence. This core logic provides support for λ-tree syntax, a particular approach to higher-order
abstract syntax. Considering a classical logic extension of LINC is also of some interest, as is an extension
allowing for quantification at predicate type.
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Second, LINC incorporates the proof-theoretical notion of definition, a simple and elegant device for extending
a logic with the if-and-only-if closure of a logic specification and for supporting inductive and co-inductive
reasoning over such specifications. This notion of definition was developed by Hallnäs and Schroeder-Heister
[30] and, independently, by Girard [28]. Later McDowell, Miller, and Tiu have made substantial extensions
to our understanding of this concept [36], [3], [40]. Tiu and Momigliano [41], [48] have also shown how to
modify the notion of definition to support induction and co-induction in the sequent calculus.

Third, LINC contains a new (third) logical quantifier ∇ (nabla). After several attempts to reason about logic
specifications without using this new quantifier [35], [37], [3], it became clear that when the object-logic
supports λ-tree syntax, the generic judgment [40], [6] and its associated quantifier could provide a strong
and declarative role in reasoning. This new quantifier is able to help capture internal (intensional) reasons for
judgment to hold generically instead of the universal judgment that holds for external (extensional) reasons.
Another important observation to make about ∇ is that if given a logic specification that is essentially a
collection of Horn clauses (that is, there is no uses of negation in the specification), there is no distinctions
to be made between ∀ or ∇ in the premise (body) of semantic definitions. In the presence of negations and
implications, a difference between these two quantifiers does arise [6].

3.3. A type theory for proof search
Keywords: co-induction, higher-order abstract syntax, induction, type theory.

Participants: Joëlle Despeyroux, Dale Miller.

Type theory can be used to specify and reason about computation using much as LINC is used as a to reason
about computation. The meta-level would be, for example, CIC. The applications would in principle be the
same, except that conventional type theories are often better suited for proofs in mathematics and less suited
for encoding of languages with binders, although Coq can certainly code reachability of, say, the π-calculus
[19].

The type theory approach does not need to make a distinction between meta-logic and object-logic, which
may make specifications more compactness and elegance. This approach also avoids the duplication of code.
However, we like the flexibility given by the existence of two different meta-logics in LINC. Note that the
Isabelle system also uses two meta-logics, giving rise to several systems that people can choose: Isabelle/ZF,
Isabelle/HOL, etc. Having a single meta-logic is more natural in the context of a rich type theory. Outside this
context, we think that both choices make sense.

More points of comparison between the two approaches are listed below.

• Type theory is generally explained using natural deduction, whereas proof search usually relies on
sequent calculus. Normalization of proofs in type theory correspond to computation. In contrast,
proof search explores only normal proofs (cut-free proofs) and uses normalization (cut-elimination)
for reasoning about computation.

• Type theory provides a fixed, rich notion of proof, usually with dependent types, while there is no
a-priori notion of proofs as objects in proof search, although most proof search systems provide
primitives for building proof objects.

• The development of proofs using relational specifications require the instantiation of quantified
variables. Proof search systems provide unification and backtracking search to fully automate such
instantiations. In type theory, such instantiations are usually done interactively.

• In type theory, object level bindings are either coded as functions (a priori, a wrong choice) or names
or deBruijn numbers (usually messy), while binding in syntax can be naturally supported by the meta
logic in proof search (as in λProlog and Twelf).

• The new ∇ quantifier in LINC describes the intensional behavior of abstraction, which has no
(current) correspondence in type theory.
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In their first experiments [21], [20], Despeyroux, Hirschowitz, and Felty worked in the Coq system. They
defined certain expressions in higher-order abstract syntax as “valid” expressions (using an inductively defined
predicate “valid”) to describe a well defined sub-part of all the functional terms corresponding roughly to
syntactic expressions.

In a second step, Despeyroux, Pfenning, Leleu, and Schürmann proposed two different, yet similar type
theories [22], [25], [23] based on modal logic in which expressions live in the functional space A → B while
general functions (for case and iteration reasoning in the proposed systems) live in the full functional space
�A → B. An initial attempt to extend the systems in [22], [23] to dependent types was given in [24]: clearly
more work on that kind of extension is needed. These papers give a possible answer to the problem of extending
the Edinburgh Logical Framework (LF is a sub-system of CC where the function space is restricted to λ-trees)
with recursion and induction principles.

Pfenning and Schürmann then proposed a different (two levels) system to which it was easier to add dependent
types [46], [45].

The previous works mentioned proposed principles for recursion. In the traditional functional approach, in
a rich type theory like CIC, those principles naturally come with their counterparts at the level of types: the
principles for induction. In proof search, the situation is less clear. Among the works proposing principles for
induction in our context, let us cite the similar induction principles independently discovered by Despeyroux
& co-workers at the proof level [21], [22], [23] and by Hofmann at the model level [33]. There is also the work
by Miller and McDowell [36] and more recently the work by Momigliano and Tiu on LINC [41].

4. Application Domains
4.1. Model checking operational semantics

Keywords: model checking, operational semantics, process calculus, symbolic bisimulations.

When operational semantics is presented as inference rules, it can often be encoded naturally into a logic
programming setting. The logic programming foundations developed in Parsifal allows for such operational
semantics to be animated in direct and natural ways. Recent work on searching fixed points of logic program
specifications allow for the automating of bisimulation checking for finitary processes. This foundational work
lead to a proof theory [4] and game semantic [39] that allows for the natural duality of finite success and finite
failure.

Given its basis in proof theory, an intensional treatment of syntax and bindings in syntax was natural to develop
[6]. The design of a working system, Level 0/1, that exploits these foundational ideas is presented in [49], [7].
The resulting system is one of the few systems that can directly implement bisimulation checking for the
π-calculus [50], [47].

Since operational semantics can be described declaratively, our work should allow for richer approaches to
developing rule forms for operational semantics.

4.2. Mechanized metatheory
The Parsifal project has been developing approaches to meta-logic and theorem proving architecture that
should allow for reasoning about the operational semantics of computational systems. Early work along these
lines was reported in [3]. The meta-logical framework reported in that paper has been greatly extended by
Miller and Tiu [6], [48]. These papers report success in the way such meta-logic can be used interactive to
establish important properties concerning operational semantics. This work should naturally lead to addressing
the following different applications.

• Model checking as deduction. Being able to see model checking as a special kind of deduction
should have many benefits for establishing the correctness of computational systems.

• The POPLmark Challenge: Mechanized Meta-theory for the Masses
• Correctness of security protocols
• Mixing deduction and computation, as in, for example, proof carrying code.
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5. Software

5.1. Bedwyr
Participants: Dale Miller, David Baelde [correspondant].

Bedwyr is a generalization of logic programming that allows model checking directly on syntactic expression
possibly containing bindings. This system, written in OCaml, is a direct implementation of two recent advances
in the theory of proof search.

1. It is possible to capture both finite success and finite failure in a sequent calculus. Proof search in
such a proof system can capture both may and must behavior in operational semantics.

2. Higher-order abstract syntax is directly supported using term-level λ-binders, the ∇-quantifier,
higher-order pattern unification, and explicit substitutions. These features allow reasoning directly
on expressions containing bound variables.

The distributed system comes with several example applications, including the finite π-calculus (operational
semantics, bisimulation, trace analysis, and modal logics), the spi-calculus (operational semantics), value-
passing CCS, the λ-calculus, winning strategies for games, and various other model checking problems.

While the system has been written to validate certain theoretic results and to help suggest new theoretical
directions, we believe that the system can be of use to others interested more in reasoning about computer
systems than about proof theory foundations.

Bedwyr is an open source project hosted by INRIA’s GForge. We welcome contributions from others of
example applications and new features. The developers behind the current distribution are:

• David Baelde and Dale Miller (INRIA and LIX/Ecole Polytechnique)
• Andrew Gacek and Gopalan Nadathur (University of Minneapolis)
• Alwen Tiu (Australian National University and NICTA).

The developers thank Brigitte Pientka, for her advice regarding tabling, and Axelle Ziegler, for her help in
translating an early implementation from SML to OCaml. Much of the effort for this work is supported within
the context of the Slimmer project, which is supported by funds from INRIA and NSF.

The system’s document and sources can be found at http://slimmer.gforge.inria.fr/bedwyr/. Version 1.0 of
Bedwyr was released on November 1st, 2006. About 65 downloads of the system were made during the
following six weeks.

1. Mixing Finite Success and Finite Failure in an Automated Prover by A. Tui, G. Nadathur, and D.
Miller. (pdf)

2. Model checking for pi-calculus using proof search by Alwen Tiu. In Proceedings of CONCUR 2005,
LNCS Vol. 3653, pages 36 - 50, Springer-Verlag, 2005. (pdf).

3. A proof theory for generic judgments by Dale Miller and Alwen Tiu. ACM Trans. on Computational
Logic, 6(4):749-783, October 2005. (.pdf).

6. New Results

6.1. Static analysis via proof theory
Static analysis of logic programs can provide useful information for programmers and compilers. Typing
systems, such as in λProlog [42], [43], have proved valuable during the development of code: type errors often
represent program errors that are caught at compile time when they are easier to find and fix than at runtime
when they are much harder to repair. Static type information also provides valuable documentation of code
since it provides a concise approximation to what the code does.

http://slimmer.gforge.inria.fr/bedwyr/
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In [11], Miller described a method by which it is possible to infer that certain relationships concerning
collections underlying structured data hold. For collections, both multisets and sets were used to approximate
more complicated structures as lists and binary trees. Consider, for example, a list sorting program that
maintains duplicates of elements. Part of the correctness of a sort program includes the fact that if the atomic
formula sort(t, s) is provable, then s is a permutation of t that is in-order. The proof of such a property is
likely to involve inductive arguments requiring the invention of invariants: in other words, this is not likely
to be a property that can be inferred statically during compile time. On the other hand, if the lists t and s
are approximated by multisets (that is, if we forget the order of items in lists), then it might be possible to
establish that if the atomic formula sort(t, s) is provable, then the multiset associated to s is equal to the
multiset associated to t. If that is so, then it is immediate that the lists t and s are, in fact, permutations of
one another (in other words, no elements were dropped, duplicated, or created during sorting). Such properties
based on using multisets to approximate lists can often be inferred statically.

While this work focused exclusively on the static analysis of first-order Horn clauses, it does so by making
substitution instances of such Horn clauses that carry them into linear logic. Proofs for the resulting linear
logic formulas are then attempted as part of static analysis.

Work such as this suggests that declarative languages might permit rich kinds of static analysis. Such
preliminary work provided a partial justification of the need for flexible connections between programming
languages and static analysis that is briefly described in [10].

6.2. Reasoning about operational semantics
The operational semantics of programming and specification languages is often presented via inference rules
and these can generally be mapped into logic programming-like clauses. Such logical encodings of operational
semantics can be surprisingly declarative if one uses logics that directly account for term-level bindings and
for resources, such as are found in linear logic. Traditional theorem proving techniques, such as unification and
backtracking search, can then be applied to animate operational semantic specifications. Of course, one wishes
to go a step further than animation: using logic to encode computation should facilitate formal reasoning
directly with semantic specifications. In the paper [12], Miller outlined an approach to reasoning about logic
specifications that involves viewing logic specifications as theories in an object-logic and then using a meta-
logic to reason about properties of those object-logic theories.

The Bedwyr system (described in the Software section) has been used to valid at least some of the design
ideas presented in [12]. These results are encouraging and the team plans to develop those themes to a greater
extent.

6.3. Effective implementation of module checking with linguistic expressions
The effort to implement the Bedwyr provided the team with a number of challenges. A number of these chal-
lenges involved dealing with how best to implement λ-terms efficiently to support unification, backtracking
search, and the “flipping” of variable status (internally, Bedwyr has two provers and the status of variables in
these two systems are essentially duals). Most of these implementation details are documented directly in the
code and, in part, in the Bedwyr user manual [14].

6.4. Structure and semantics of proofs
Lutz Straßburger continues to probe the structure and semantics of proofs. In particular, in his lectures notes
[15], he develops the basics of the structure of proof nets for linear logic for a non-specialist audience. These
notes provide a comprehensive perspective on how proofs can be constructed and equated.

Straßburger is also developing semantic approaches capturing proof structures within Boolean categories [13]
and within free *-autonomous categories [9]. In a field where almost all that is written about proofs is syntactic
(structure induction over the height of proofs, etc), these contributions to the semantics of proofs are important
alternative avenues of investigation.
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Chuck Liang, a professor from Hofstra University, spent his sabbatical at LIX in the fall of 2006. He and
Miller have written the report [16] that describes a general framework for capturing focusing-style proof
systems for intuitionistic and classical logic. As a result, a rather strong normal form of cut-free proofs are
available. We expect to be able to apply this framework to account for almost all known focusing-style calculi
for intuitionistic logic. Applications of this normal form that we are now pursuing involve the structure of
implementation of λ-terms and λ-reduction as well as new approaches to proving the completeness of various
first-order logic theorem proving strategies.

Miller is beginning the supervision of two PhD students (Delande and Nigam) who are working on understand-
ing the structure of cut-free system in richer and more “practical” senses than simply as “trees-of-inference
rules” or as typed λ-terms. In the context of the PCC (proof-carrying-code) paradigm, proofs can come from a
wide range of formal proving systems that are not traditional theorem provers (for example, model checkers,
static analyzers, etc) and proofs need to meet certain “engineering” goals (compact size, fast checking, reuse,
modular, etc). No concrete research results are available currently.

6.5. Proof theory approaches to induction
Systems like model-checkers and the Bedwyr system explores a computational system through all its finite
behaviors. As a result, most such systems cannot handle infinite state spaces, many kinds of looping behavior,
etc. Baelde and Tiu spent some a month recently attempting to develop a proof theory for cyclic proofs. Our
current efforts are being directed, instead, on more conventional notions of proof search (focusing proofs) in
the presence of induction.

7. Other Grants and Activities

7.1. Actions nationales
7.1.1. Rossignol: Project ACI Securité

Participant: Dale Miller.

The project ROSSIGNOL started in 2003 and includes the following participants: LIF (responsable: D.
Lugiez), INRIA Futurs (responsable: C. Palamidessi), LSV (responsable: F. Jacquemard), VERIMAG (re-
sponsable: Y. Lakhnech).

ROSSIGNOL focuses on the foundations of Security Protocols. The goal of this project is the development of
abstract models, simple enough to be used for the definition of a comprehensible semantics for the language
of security properties. In particular, the project focuses on probabilistic models.

7.1.2. Geocal: ACI-Nouvelles interfaces des mathematiques
Participants: David Baelde, Joëlle Despeyroux, Dale Miller, Alexis Saurin, Lutz Straßburger.

GeoCal collects together 10 research terms in logic, theoretical computer science, and algebraic topology.
This team involves LDP (Institut de Mathématiques de Luminy), PPS (Preuves, Programmes, Systèmes,
Paris VII), LIF (Laboratoire d’Informatique Fondamentale, modélisation et vérification, Marseille), LIPN
(Laboratoire d’Informatique de Paris Nord), LSV (Laboratoire Spécification et Vérification, ENS Cachan),
LIP (Laboratoire d’Informatique du Parallélisme, PLUME), INRIA-Futurs, Institut de Mathématiques et
Modélisation de Montpellier LORIA (CALLIGRAMME), and INRIA-Sophia (MIMOSA).

7.1.3. INFER: ANR on the Theory and Application of Deep Inference
Participants: Dale Miller, Lutz Straßburger.

The ARN proposal (blanc) titled INFER: Theory and Application of Deep Inference that is coordinated by
Lutz Straßburger has been accepted in September 2006. Besides Parsifal, the teams associated with this effort
are represented by Francois Lamarche (INRIA-Loria) and Michel Parigot (CNRS-PPS).
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7.2. Actions internationales
7.2.1. Vallauris: Integrated Action within the EGIDE/PAI PICASSO program

Participants: David Baelde, Joëlle Despeyroux, Dale Miller, Alexis Saurin, Lutz Straßburger.

The EGIDE/PAI program PICASSO aims at promoting the scientific and technological exchanges between
France and Spain. The equip Parsifal is participating, within this program, to a project whose participants
are INRIA Futurs (responsables: D. Miller) and the Universidad Politécnica de Madrid (responsables: James
Lipton and Manuel Hermenegildo).

The main aims of our project, which we call Vallauris, are the integration of the approaches developed by the
INRIA and the UPM teams to the analysis and implementation of Higher-Order Languages (both sequential
and concurrent), coinductive techniques (with special emphasis on lazy features), and in the areas of code
validation, proof carrying code and security. This project started January 2005.

7.2.2. Slimmer: INRIA funded international team
Participants: David Baelde, Dale Miller.

Slimmer stands for Sophisticated logic implementations for modeling and mechanical reasoning is an
“Equipes Associées” with seed money from INRIA. This project is initially designed to bring together the
Parsifal personnel and Gopalan Nadathur’s Teyjus team at the University of Minnesota. Separate NSF funding
for this effort has also been awards to the University of Minnesota. We also hope to expand the scope of this
project to include other French and non-French sites, in particular, Marino Miculan (University of Udine) and
Brigitte Pientka (McGill University).

7.2.3. Mobius: an EU Integrated Project on Proof Carrying Code
Participants: Vivek Nigam, Olivier Delande, Joëlle Despeyroux, Dale Miller.

Mobius stands for “Mobility, Ubiquity and Security” and is a Proposal for an Integrated Project in response to
the call FP6-2004-IST-FETPI. This proposal involve numerous site in Europe and was awarded in September
2005. This large, European based project is coordinated out of INRIA-Sophia.

7.2.4. TYPES: coordinated action from IST
Participants: Dale Miller, Joelle Despeyroux.

TYPES is an European project (a coordination action from the IST program) aiming at developing the
technology of formal reasoning based on type theory. The project brings together 36 universities and research
centers from 8 European countries (France, Italy, Germany, Netherlands, United Kingdom, Sweden, Poland
and Estonia). It is the continuation of a number of European projects since 1992. The funding from the present
project enables the maintaining of collaboration within the community by supporting an annual workshop, a
few smaller thematic workshops, one summer school, and visits of researchers to one another’s labs.

7.2.5. Amadeus: PAI on the “Realm of Cut Elimination”
Participants: Dale Miller, Lutz Straßburger.

The "PAI" Amadeus for collaboration between France and Austria has approved the grant "The Realm of Cut
Elimination" in November 2006. This proposal will allow for collaborations between the Parsifal team and the
groups of Agata Ciabattoni at Technische Universität Wien and Michel Parigot at CNRS-PPS.

7.2.6. Hurbert Curien: PAI Germaine De Stael “Deep Inference and the Essence of Proofs”
Participants: Dale Miller, Lutz Straßburger.

Funding to explore some questions in structure and identity of proofs. People involved from the Paris area:
Lutz Straßburger, Dale Miller, Alexis Saurin, David Baelde, Michel Parigot, Stéphane Lengrand, Séverine
Maingaud. People from Bern: Kai Brünnler, Richard McKinley, Phiniki Stouppa.
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8. Dissemination

8.1. Services to the Scientific Community
8.1.1. Organization of Workshops

Lutz Strassburger and Dale Miller organized the Workshop on Logic Programming and Concurrency, at CIRM,
Luminy, in Marseilles. This workshop was part of the Winter School on Geometry of Computation (Geocal’06)
held in Luminy from January 30 to March 3.

8.1.2. Editorial activity
Dale Miller has the following editorial duties.

• Theory and Practice of Logic Programming Member of Advisory Board since 1999. Cambridge
University Press.

• ACM Transactions on Computational Logic (ToCL) Area editor for Proof Theory since 1999.
Published by ACM.

• Journal of Functional and Logic Programming. Permanent member of the Editorial Board since
1996. MIT Press.

• Journal of Logic and Computation. Associate editor since 1989. Oxford University Press.

8.1.3. Participation in program committees
Dale Miller was a program committee member for the following conferences.

• FSTTCS’06: Foundations of Software Technology and Theoretical Computer Science, Kolkata,
India. 13-15 December.

• LPAR-13: 13th International Conference on Logic for Programming Artificial Intelligence and
Reasoning, Phnom Penh, Cambodia. 13-17 November.

• LFMTP’06: Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, 16
August.

• TFIT’06: Taiwanese-French Conference on Information Technology, Nancy, France. 28-30 March.

• Geocal Workshop on Logic Programming and Concurrency, 27 February - 3 March, CIRM, Luminy,
France (Program Committee co-Chair)

8.1.4. Invited talks at Conferences or Workshops
Dale Miller gave an invited talk at IJCAR during the FLoC meeting in Seattle during 16-21 August. He also
gave talks at two workshops: Geometria della Logica (Facoltà di Lettere e Filosofia, Università di Roma Tre,
28-29 April) and Small Workshop on Deep Inference (Paris, December 1 and 2).

8.2. Teaching
Dale Miller teaches regularly at École Polytechnique. In 2006, he taught a “petite classes” for INF 431
(Informatique Fondamentale - Spring 2003, 2004, 2005) and for INF 542 (Théorie des automates, langages
formels, calculabilité - Fall 2003). Miller was also in charge of teaching INF 542 (Automates, Langages,
Logique, and Calculabilité). Miller and Jouannaud shared the teaching of the course they designed for
“Majeure 2” titled INF 585: Logics for Computer Science.

Dale Miller also co-teaches the course “Logique Linéaire et paradigmes logiques du calcul” in the new masters
program MPRI (Master Parisien de Recherche en Informatique) (2004, 2005, 2006).
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Dale Miller also served as external evaluator for the following PhD exams: Stéphane Lengrand (from
Université Paris VII & University of St Andrews); Nicolas Oury (LRI, University of Paris Sud); and James
Brotherston (LFCS, University of Edinburgh).

Lutz Straßburger taught a course on "Proof Nets and the Identity of Proofs" at ESSLLI’06, Malaga, Spain in
August 2006.

Dale Miller gave five lectures at MPRI in the class 2-1 "Logique linéaire et paradigmes logiques du calcul" in
January and February.

Dale Miller taught a short graduate course on “Proof Search and Computation” at the IT University of
Copenhagen from 31 May 2006 to 2 June 2006.

8.3. Popular writing
Team members have also written more popular or more accessible presentations of their work. Lutz
Straßburger lecture notes for his course on “Proof Nets and the Identity of Proofs” at ESSLLI’06 are available
as technical report [15]. Dale Miller and Roberto Di Cosmo were invited to contribute an article on linear logic
to the Stanford Encyclopedia of Philosophy [8]. Dale Miller was invited to contibute a personal and historic
account of the “early days” of logic programming. His article appeared in the newsletter of the Association
for Logic programming [17].

8.4. Internship supervision
From 1/03/2006, William Audry (École Normale Supérieure) was an intern in the Parsifal team. He has worked
on the theme: Non-commutative logics and operational semantics. Andrew Gacek, a PhD student from the
University of Minnesota took a three month internship during the summer of 2006 to work on the Bedwyr
system.
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