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2. Overall Objectives
2.1. Overall Objectives

Keywords: aeronautics, change detection, civil engineering, diagnostics, monitoring, on-line identification
and detection algorithms, optimal sensors placement, sensors fusion, statistical hypotheses testing, subspace-
based algorithms, system identification, vibration-based structural analysis and damage detection and local-
ization.

2.1.1. Context.
Structural Health Monitoring (SHM) is the whole process of the design, development and implementation
of techniques for the detection, localization and estimation of damages, for monitoring the integrity of
structures and machines within the aerospace, civil and mechanical engineering infrastructures [50], [66]. In
addition to these key driving application areas, SHM is now spreading over most transportation infrastructures
and vehicles, within the naval, railway and automobile domains. Examples of structures or machines to be
monitored include aircrafts, space crafts, buildings, bridges, dams, ships, offshore platforms, on-shore and
off-shore wind farms (wind energy systems), turbo-alternators and other heavy machinery, ....

The emergence of stronger safety and environmental norms, the need for early decision mechanisms, together
with the widespread diffusion of sensors of all kinds, result in a thorough renewal of sensor information
processing problems. This calls for new research investigations within the sensor data (signal and image)
information processing community. In particular, efficient and robust methods for structural analysis, non
destructive evaluation, integrity monitoring, damage diagnostics and localization, are necessary for fatigue
and aging prevention, and for condition-based maintenance. Moreover, multidisciplinary research, mixing
information science, engineering science and scientific computing, is mandatory. However, most of the SHM
research investigations are conducted within mechanical, civil and aeronautical engineering departments, with
little involvement of advanced data information processing specialists.
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2.1.2. Objectives.
In this context, and based on our background and results on model-based statistical identification, change
detection and vibration monitoring, our objectives are :

• Importing knowledge from engineering communities within our model-based information process-
ing methods;

• Mixing statistical inference tools (identification, detection, rejection) with simplified models of
aerodynamic effects, thermo-dynamical or other environmental effects;

• Involving nonlinearities in the models, algorithms and proofs of performances;
• Exporting our data processing algorithms within the SHM community, based on specific training

actions, on a dedicated free Scilab toolbox, and an industrial software.

2.1.3. Industrial and academic relations.

• Multi–partners projects: at European level on exploitation of flight test data under natural excitation
conditions (FliTE2 - Eurêka), on structural assessment, monitoring and control (SAMCO - FP5
Growth),

• Academic research: national project on monitoring civil engineering structures (CONSTRUCTIF
- ACI S&I), European network on system identification (FP5 TMR), FWO research network on
identification and control.

3. Scientific Foundations
3.1. Introduction

In this section, the main features for the key monitoring issues, namely identification, detection, and diagnos-
tics, are provided, and a particular instantiation relevant for vibration monitoring is described.

It should be stressed that the foundations for identification, detection, and diagnostics, are fairly general, if
not generic. Handling high order linear dynamical systems, in connection with finite elements models, which
call for using subspace-based methods, is specific to vibration-based SHM. Actually, one particular feature of
model-based sensor information data processing as exercised in SISTHEM, is the combined use of black-box
or semi-physical models together with physical ones. Black-box and semi-physical models are, for example,
eigenstructure parameterizations of linear MIMO systems, of interest for modal analysis and vibration-based
SHM. Such models are intended to be identifiable. However, due to the large model orders that need to be
considered, the issue of model order selection is really a challenge. Traditional advanced techniques from
statistics such as the various forms of Akaïke criteria (AIC, BIC, MDL, ...) do not work at all. This gives raise
to new research activities specific to handling high order models.

Our approach to monitoring assumes that a model of the monitored system is available. This is a reasonable
assumption, especially within the SHM areas. The main feature of our monitoring method is its intrinsic ability
to the early warning of small deviations of a system with respect to a reference (safe) behavior under usual
operating conditions, namely without any artificial excitation or other external action. Such a normal behavior
is summarized in a reference parameter vector θ0, for example a collection of modes and mode-shapes.

3.2. Identification
Keywords: adaptive estimation, estimating function, recursive estimation.

See module 6.1.

The behavior of the monitored continuous system is assumed to be described by a parametric model
{Pθ , θ ∈ Θ}, where the distribution of the observations (Z0, ..., ZN ) is characterized by the parameter
vector θ ∈ Θ. An estimating function, for example of the form :
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KN (θ) = 1/N

N∑
k=0

K(θ,Zk)

is such that Eθ[KN (θ)] = 0 for all θ ∈ Θ. In many situations, K is the gradient of a function to be minimized :
squared prediction error, log-likelihood (up to a sign), .... For performing model identification on the basis of
observations (Z0, ..., ZN ), an estimate of the unknown parameter is then [54] :

θ̂N = arg{θ ∈ Θ : KN (θ) = 0}

Assuming that θ∗ is the true parameter value, and that Eθ∗ [KN (θ)] = 0 if and only if θ = θ∗ with θ∗ fixed
(identifiability condition), then θ̂N converges towards θ∗. From the central limit theorem, the vector KN (θ∗) is
asymptotically Gaussian with zero mean, with covariance matrix Σ which can be either computed or estimated.
If, additionally, the matrix JN = −Eθ∗ [K′

N (θ∗)] is invertible, then using a Taylor expansion and the constraint
KN (θ̂N ) = 0, the asymptotic normality of the estimate is obtained :

√
N (θ̂N − θ∗) ≈J−1

N

√
N KN (θ∗)

In many applications, such an approach must be improved in the following directions :

• Recursive estimation: the ability to compute θ̂N+1 simply from θ̂N ;
• Adaptive estimation: the ability to track the true parameter θ∗ when it is time-varying.

3.3. Detection
Keywords: local approach, residual evaluation, residual generation.

See module 6.4.

Our approach to on-board detection is based on the so-called asymptotic statistical local approach, which
we have extended and adapted [6], [5], [2]. It is worth noticing that these investigations of ours have been
initially motivated by a vibration monitoring application example. It should also be stressed that, as opposite
to many monitoring approaches, our method does not require repeated identification for each newly collected
data sample.

For achieving the early detection of small deviations with respect to the normal behavior, our approach
generates, on the basis of the reference parameter vector θ0 and a new data record, indicators which
automatically perform :

• The early detection of a slight mismatch between the model and the data;
• A preliminary diagnostics and localization of the deviation(s);
• The tradeoff between the magnitude of the detected changes and the uncertainty resulting from the

estimation error in the reference model and the measurement noise level.

These indicators are computationally cheap, and thus can be embedded. This is of particular interest in some
applications, such as flutter monitoring, as explained in module 4.4.

As in most fault detection approaches, the key issue is to design a residual, which is ideally close to zero under
normal operation, and has low sensitivity to noises and other nuisance perturbations, but high sensitivity to
small deviations, before they develop into events to be avoided (damages, faults, ...). The originality of our
approach is to :

• Design the residual basically as a parameter estimating function,
• Evaluate the residual thanks to a kind of central limit theorem, stating that the residual is asymptot-

ically Gaussian and reflects the presence of a deviation in the parameter vector through a change in
its own mean vector, which switches from zero in the reference situation to a non-zero value.
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This is actually a strong result, which transforms any detection problem concerning a parameterized stochastic
process into the problem of monitoring the mean of a Gaussian vector.

The behavior of the monitored system is again assumed to be described by a parametric model {Pθ , θ ∈ Θ},
and the safe behavior of the process is assumed to correspond to the parameter value θ0. This parameter often
results from a preliminary identification based on reference data, as in module 3.2.

Given a new N -size sample of sensors data, the following question is addressed : Does the new sample still
correspond to the nominal model Pθ0 ? One manner to address this generally difficult question is the following.
The asymptotic local approach consists in deciding between the nominal hypothesis and a close alternative
hypothesis, namely :

(Safe) H0 : θ = θ0 and (Damaged) H1 : θ = θ0 + η/
√

N (1)

where η is an unknown but fixed change vector. A residual is generated under the form :

ζN = 1/
√

N

N∑
k=0

K(θ0, Zk) =
√

N KN (θ0) . (2)

If the matrix JN = −Eθ0 [K
′
N (θ0)] converges towards a limit J, then the central limit theorem shows [48] that

the residual is asymptotically Gaussian :

ζN
N →∞

→


N(0,Σ) under Pθ0 ,

N(J η, Σ) under Pθ0+η/
√

N ,

where the asymptotic covariance matrix Σ can be estimated, and manifests the deviation in the parameter
vector by a change in its own mean value. Then, deciding between η = 0 and η 6= 0 amounts to compute the
following χ2-test, provided that J is full rank and Σ is invertible :

χ2 = ζ
T

F−1 ζ ≷ λ . (3)

where

ζ
∆= JT Σ−1 ζN and F ∆= JT Σ−1 J (4)

With this approach, it is possible to decide, with a quantifiable error level, if a residual value is significantly
different from zero, for assessing whether a fault/damage has occurred. It should be stressed that the residual
and the sensitivity and covariance matrices J and Σ can be evaluated (or estimated) for the nominal model.
In particular, it is not necessary to re-identify the model, and the sensitivity and covariance matrices can be
pre-computed off-line.

3.4. Diagnostics
Keywords: diagnostics, isolation.

See modules 6.5 and 6.4.
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A further monitoring step, often called fault isolation, consists in determining which (subsets of) components
of the parameter vector θ have been affected by the change. Solutions for that are now described. How this
relates to diagnostics is addressed afterwards.

3.4.1. Isolation.
The question: which (subsets of) components of θ have changed ?, can be addressed using either nuisance
parameters elimination methods or a multiple hypotheses testing approach [45]. Here we only sketch two
intuitively simple statistical nuisance elimination techniques, which proceed by projection and rejection,
respectively.

The fault vector η is partitioned into an informative part and a nuisance part, and the sensitivity matrix
J, the Fisher information matrix F = JT Σ−1 J and the normalized residual ζ = JT Σ−1 ζN are partitioned
accordingly

η =
(

ηa

ηb

)
, J =

(
Ja Jb

)
, F =

(
Faa Fab

Fba Fbb

)
, ζ =

(
ζa

ζb

)
.

A rather intuitive statistical solution to the isolation problem, which can be called sensitivity approach, consists
in projecting the deviations in η onto the subspace generated by the components ηa to be isolated, and deciding
between ηa = ηb = 0 and ηa 6= 0, ηb = 0. This results in the following test statistics :

ta = ζ
T

a F−1
aa ζa , (5)

where ζa is the partial residual (score). If ta ≥ tb, the component responsible for the fault is considered to be
a rather than b.

Another statistical solution to the problem of isolating ηa consists in viewing parameter ηb as a nuisance,
and using an existing method for inferring part of the parameters while ignoring and being robust to the
complementary part. This method is called min-max approach. It consists in replacing the nuisance parameter
component ηb by its least favorable value, for deciding between ηa = 0 and ηa 6= 0, with ηb unknown. This
results in the following test statistics :

t∗a = ζ
∗ T

a F∗−1
a ζ

∗
a , (6)

where ζ
∗
a

∆= ζa − Fab F−1
bb ζb is the effective residual (score) resulting from the regression of the

informative partial score ζa over the nuisance partial score ζb, and where the Schur complement
F∗

a = Faa − Fab F−1
bb Fba is the associated Fisher information matrix. If t∗a ≥ t∗b , the component re-

sponsible for the fault is considered to be a rather than b.

The properties and relationships of these two types of tests are investigated in [43].

3.4.2. Diagnostics.
In most SHM applications, a complex physical system, characterized by a generally non identifiable parameter
vector Φ has to be monitored using a simple (black-box) model characterized by an identifiable parameter
vector θ. A typical example is the vibration monitoring problem in module 4.2, for which complex finite
elements models are often available but not identifiable, whereas the small number of existing sensors calls
for identifying only simplified input-output (black-box) representations. In such a situation, two different
diagnosis problems may arise, namely diagnosis in terms of the black-box parameter θ and diagnosis in terms
of the parameter vector Φ of the underlying physical model.
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The isolation methods sketched above are possible solutions to the former. Our approach to the latter diagnosis
problem is basically a detection approach again, and not a (generally ill-posed) inverse problem estimation
approach [4]. The basic idea is to note that the physical sensitivity matrix writes J JΦθ, where JΦθ is the
Jacobian matrix at Φ0 of the application Φ 7→ θ(Φ), and to use the sensitivity test (5) for the components of
the parameter vector Φ. Typically this results in the following type of directional test :

χ2
Φ = ζT Σ−1 J JΦθ (JT

Φθ JT Σ−1 J JΦθ)−1 JT
Φθ JT Σ−1 ζ ≷ λ . (7)

It should be clear that the selection of a particular parameterization Φ for the physical model may have a non
negligible influence on such type of tests, according to the numerical conditioning of the Jacobian matrices
JΦθ.

As a summary, the machinery in modules 3.2, 3.3 and 3.4 provides us with a generic framework for designing
monitoring algorithms for continuous structures, machines and processes. This approach assumes that a model
of the monitored system is available. This is a reasonable assumption within the field of applications described
in module 4.2, since most mechanical processes rely on physical principles which write in terms of equations,
providing us with models. These important modeling and parameterization issues are among the questions we
intend to investigate within our research program.

The key issue to be addressed within each parametric model class is the residual generation, or equivalently
the choice of the parameter estimating function.

3.5. Subspace-based identification and detection
Keywords: Hankel matrix factorization, covariance-driven subspace-based algorithms.

See module 6.4.

For reasons closely related to the vibrations monitoring applications described in module 4.2, we have been
investigating subspace-based methods, for both the identification and the monitoring of the eigenstructure
(λ,ϕλ) of the state transition matrix F of a linear dynamical state-space system :{

Xk+1 = F Xk + Vk+1

Yk = H Xk
, (8)

namely the (λ,φλ) defined by :

det (F − λ I) = 0, (F − λ I) ϕλ = 0, φλ
∆= H ϕλ (9)

The (canonical) parameter vector in that case is :

θ
∆=

(
Λ

vecΦ

)
(10)

where Λ is the vector whose elements are the eigenvalues λ, Φ is the matrix whose columns are the φλ’s, and
vec is the column stacking operator.

Subspace-based methods is the generic name for linear systems identification algorithms based on either time
domain measurements or output covariance matrices, in which different subspaces of Gaussian random vectors
play a key role [65]. A contribution of ours, minor but extremely fruitful, has been to write the output-
only covariance-driven subspace identification method under a form which involves a parameter estimating
function, from which we define a residual adapted to vibration monitoring [1]. This is explained next.
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3.5.1. Covariance-driven subspace identification.

Let Ri
∆= E

(
Yk Y T

k−i

)
and:

Hp+1,q
∆=


R0 R1

... Rq−1

R1 R2

... Rq

...
...

...
...

Rp Rp+1

... Rp+q−1


∆= Hank (Ri) (11)

be the output covariance and Hankel matrices, respectively; and: G
∆= E

(
XkY T

k

)
Direct computations of

the Ri’s from the equations (8) lead to the well known key factorizations :

Ri = HF iG
Hp+1,q = Op+1(H,F ) Cq(F,G) (12)

where:

Op+1(H,F ) ∆=


H
HF
...
HF p

 and Cq(F,G) ∆=(G FG · · · F q−1G)

are the observability and controllability matrices, respectively. The observation matrix H is then found in the
first block-row of the observability matrix O. The state-transition matrix F is obtained from the shift invariance
property of O. The eigenstructure (λ,ϕλ) then results from (9).

Since the actual model order is generally not known, this procedure is run with increasing model orders.

3.5.2. Model parameter characterization.
Choosing the eigenvectors of matrix F as a basis for the state space of model (8) yields the following
representation of the observability matrix:

Op+1(θ) =


Φ
Φ∆
...
Φ∆p

 (13)

where ∆ ∆= diag(Λ), and Λ and Φ are as in (10). Whether a nominal parameter θ0 fits a given output covariance
sequence (Rj)j is characterized by [1]:

Op+1(θ0) and Hp+1,q have the same left kernel space. (14)

This property can be checked as follows. From the nominal θ0, compute Op+1(θ0) using (13), and perform
e.g. a singular value decomposition (SVD) of Op+1(θ0) for extracting a matrix U such that:

UT U = Is and UT Op+1(θ0) = 0 (15)
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Matrix U is not unique (two such matrices relate through a post-multiplication with an orthonormal matrix),
but can be regarded as a function of θ0. Then the characterization writes:

U(θ0)T Hp+1,q = 0 (16)

3.5.3. Residual associated with subspace identification.
Assume now that a reference θ0 and a new sample Y1, · · · , YN are available. For checking whether the data
agree with θ0, the idea is to compute the empirical Hankel matrix Ĥp+1,q:

Ĥp+1,q
∆= Hank

(
R̂i

)
, R̂i

∆= 1/(N − i)
N∑

k=i+1

Yk Y T
k−i (17)

and to define the residual vector:

ζN (θ0)
∆=
√

N vec
(
U(θ0)T Ĥp+1,q

)
(18)

Let θ be the actual parameter value for the system which generated the new data sample, and Eθ be the
expectation when the actual system parameter is θ. From (16), we know that ζN (θ0) has zero mean when no
change occurs in θ, and nonzero mean if a change occurs. Thus ζN (θ0) plays the role of a residual.

It is our experience that this residual has highly interesting properties, both for damage detection [1] and
localization [4], and for flutter monitoring [8].

3.5.4. Other uses of the key factorizations.
Factorization (3.5.1) is the key for a characterization of the canonical parameter vector θ in (10), and for
deriving the residual. Factorization (12) is also the key for :

• Proving consistency and robustness results [14];

• Designing an extension of covariance-driven subspace identification algorithm adapted to the pres-
ence and fusion of non-simultaneously recorded multiple sensors setups [7];

• Proving the consistency and robustness of this extension [9];

• Designing various forms of input-output covariance-driven subspace identification algorithms
adapted to the presence of both known inputs and unknown excitations [15].

4. Application Domains

4.1. Introduction
In this section, the problems we are faced with vibration-based monitoring and within our two major
application domains are briefly described.

4.2. Vibrations-based monitoring
Keywords: mechanical structure, modal analysis, subspace–based method, vibrations.

See modules 3.5, 6., 7.1 and 8.1.
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Detecting and localizing damages for monitoring the integrity of structural and mechanical systems is a topic
of growing interest, due to the aging of many engineering constructions and machines and to increased safety
norms. Many current approaches still rely on visual inspections or local non destructive evaluations performed
manually. This includes acoustic, ultrasonic, radiographic or eddy-current methods; magnet or thermal field
techniques, .... These experimental approaches assume an a priori knowledge and the accessibility of a
neighborhood of the damage location. Automatic global vibration-based monitoring techniques have been
recognized to be useful alternatives to those local evaluations [50]. However this has led to actual damage
monitoring systems only in the field of rotating machines.

A common feature of the structures to be monitored (e.g. civil engineering structures subject to hurricanes or
earthquakes, but also swell, wind and rain; aircrafts subject to strength and turbulences, ...) is the following.
These systems are subject to both fast and unmeasured variations in their environment and small slow
variations in their vibrating characteristics. The available data (measurements from e.g. strain gauges or
accelerometers) do not separate the effects of the external forces from the effect of the structure. The external
forces vary more rapidly than the structure itself (fortunately !), damages or fatigues on the structure are of
interest, while any change in the excitation is meaningless. Expert systems based on a human-like exploitation
of recorded spectra can hardly work in such a case : the changes of interest (1% in eigenfrequencies) are
visible neither on the signals nor on their spectra. A global health monitoring method must rather rely on a
model which will help in discriminating between the two mixed causes of the changes that are contained in
the measurements.

Classical modal analysis and vibration monitoring methods basically process data registered either on test beds
or under specific excitation or rotation speed conditions. However there is a need for vibration monitoring
algorithms devoted to the processing of data recorded in-operation, namely during the actual functioning of
the considered structure or machine, without artificial excitation, speeding down or stopping.

Health monitoring techniques based on processing vibration measurements basically handle two types of
characteristics: the structural parameters (mass, stiffness, flexibility, damping) and the modal parameters
(modal frequencies, and associated damping values and mode-shapes); see [63] and references therein. A
central question for monitoring is to compute changes in those characteristics and to assess their significance.
For the frequencies, crucial issues are then: how to compute the changes, to assess that the changes are
significant, to handle correlations among individual changes. A related issue is how to compare the changes
in the frequencies obtained from experimental data with the sensitivity of modal parameters obtained from
an analytical model. Furthermore, it has been widely acknowledged that, whereas changes in frequencies
bear useful information for damage detection, information on changes in (the curvature of) mode-shapes
is mandatory for performing damage localization. Then, similar issues arise for the computation and the
significance of the changes. In particular, assessing the significance of (usually small) changes in the mode-
shapes, and handling the (usually high) correlations among individual mode-shape changes are still considered
as opened questions [63], [50].

Controlling the computational complexity of the processing of the collected data is another standard monitor-
ing requirement, which includes a limited use of an analytical model of the structure. Moreover, the reduction
from the analytical model to the experimental model (truncated modal space) is known to play a key role in
the success of model-based damage detection and localization.

The approach which we have been developing, based on the foundations in modules 3.2–3.5, aims at
addressing all the issues and overcoming the limitations above.

4.3. Civil engineering
See modules 3.5, 6.1, 6.5 and 8.1.

Civil engineering is a currently renewing scientific research area, which can no longer be restricted to the single
mechanical domain, with numerical codes as its central focus. Recent and significant advances in physics and
physical chemistry have improved the understanding of the detailed mechanisms of the constitution and the
behavior of various materials (see e.g. the multi-disciplinary general agreement CNRS-Lafarge). Moreover,
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because of major economical and societal issues, such as durability and safety of infrastructures, buildings and
networks, civil engineering is evolving towards a multi-disciplinary field, involving in particular information
sciences and technologies and environmental sciences.

These last ten years, monitoring the integrity of the civil infrastructure has been an active research topic,
including in connected areas such as automatic control, for mastering either the aging of the bridges, as in
America (US, Canada) and Great Britain, or the resistance to seismic events and the protection of the cultural
heritage, as in Italy and Greece. The research effort in France seems to be more recent, maybe because a
tendency of long term design without fatigue oriented inspections, as opposite to less severe design with
planned mid-term inspections. One of the current thematic priorities of the Réseau de Génie Civil et Urbain
(RGCU) is devoted to constructions monitoring and diagnostics. The picture in Asia (Japan, and also China) is
somewhat different, in that the demand for automatic data processing for global SHM systems is much higher,
because recent or currently built bridges are equipped with hundreds if not thousands of sensors, in particular
the Hong Kong-Shenzen Western Corridor and Stonecutter Bridge projects.

Among the challenges for vibration-based bridges health monitoring, two major issues are the different kinds
of (non measured) excitation sources and the environmental effects [64]. Typically the traffic on and under
the bridge, the wind and also the rain, contribute to excite the structure, and influence the measured dynamics.
Moreover, the temperature is also known to affect the eigenfrequencies and mode-shapes, to an extent which
is significant w.r.t. the deviations to be monitored. This is addressed in module 6.5.

4.4. Aeronautics
See modules 3.5, 6.1, 6.4 and 7.1.

The aging of aerospace structures is a major current concern of civilian and military aircraft operators. Another
key driving factor for SHM is to increase the operation and support efficiency of an air vehicle fleet. A SHM
system is viewed as a component of a global integrated vehicle health management (IVHM) system. An
overview of the users needs can be found in [47].

Improved safety and performance and reduced aircraft development and operating costs are other major
concerns. One of the critical design objectives is to clear the aircraft from unstable aero-elastic vibrations
(flutter) in all flight conditions. This requires a careful exploration of the dynamical behavior of the structure
subject to vibration and aero-servo-elastic forces. This is achieved via a combination of ground vibration tests
and in-flight tests. For both types of tests, various sensors data are recorded, and modal analyses are performed.
Important challenges of the in-flight modal analyses are the limited choices for measured excitation inputs, and
the presence of unmeasured natural excitation input (turbulence). A better exploitation of flight test data can
be achieved by using output-only system identification methods, which exploits data recorded under natural
excitation conditions (e.g., turbulent), without resorting to artificial control surface excitation and other types
of excitation inputs [15].

A crucial issue is to ensure that the newly designed airplane is stable throughout its operating range. A critical
instability phenomenon, known under the name of “aero-elastic flutter, involves the unfavorable interaction
of aerodynamic, elastic, and inertia forces on structures to produce an unstable oscillation that often results
in structural failure” [55]. For preventing from this phenomenon, the airplane is submitted to a flight flutter
testing procedure, with incrementally increasing altitude and airspeed. The problem of predicting the speed at
which flutter can occur is usually addressed with the aid of identification methods achieving modal analysis
from the in-flight data recorded during these tests. The rationale is that the damping coefficient reflects the rate
of increase or decrease in energy in the aero-servo-elastic system, and thus is a relevant measure of stability.
Therefore, while frequencies and mode-shapes are usually the most important parameters in structural analysis,
the most critical ones in flutter analysis are the damping factors, for some critical modes. The mode-shapes
are usually not estimated for flutter testing.

Until the late nineties, most approaches to flutter clearance have led to data-based methods, processing
different types of data. A combined data-based and model-based method has been introduced recently under
the name of flutterometer. Based on an aero-elastic state-space model and on frequency-domain transfer
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functions extracted from sensor data under controlled excitation, the flutterometer computes on-line a robust
flutter margin using the µ-method for analyzing the worst case effects of model uncertainty. In recent
comparative evaluations using simulated and real data [49], [56], several data-based methods are shown to
fail in accurately predicting flutter when using data from low speed tests, whereas the flutterometer turns out
not to converge to the true flutter speed during envelope expansion, due to inherent conservative predictions.

Algorithms achieving the on-line in-flight exploitation of flight test data are expected to allow a more direct
exploration of the flight domain, with improved confidence and reduced costs. Among other challenges, one
important issue to be addressed on-line is the flight flutter monitoring problem, stated as the problem of
monitoring some specific damping coefficients. On the other hand, it is known, e.g. from Cramer-Rao bounds,
that damping factors are difficult to estimate accurately. For improving the estimation of damping factors, and
moreover for achieving this in real-time during flight tests, one possible although unexpected route is to rely
on detection algorithms able to decide whether some damping factor decreases below some critical value or
not. The rationale is that detection algorithms usually have a much shorter response time than identification
algorithms. This is addressed in module 6.4.

5. Software

5.1. COSMAD: Modal analysis and health monitoring Scilab toolbox
Keywords: Scilab, damage detection, damage localization, identification, input-output identification, modal
diagnosis, optimal sensor positioning, output-only identification, sensor fusion, subspace-based identification,
vibration monitoring.

Participants: Laurent Mevel [corresponding person], Simon Berger, Maurice Goursat.

With the help of Yann Veillard and Auguste Sam, former engineers, Laurent Mevel and Maurice Goursat have
developed a Scilab toolbox devoted to modal analysis and vibration monitoring of structures or machines
subjected to known or ambient (unknown) excitation [59], [58].

This software (COSMAD 3.1.1) has been registered at the APP under the number

IDDN.FR.001.210011.000.S.A.2003.000.20700

and can be down-loaded from http://www.irisa.fr/sisthem/cosmad/. The toolbox is currently undergoing heavy
changes. The work is done by Simon Berger as a side project of the FliTE2 European project. Parts of this
work will be made available after it is finished and approved by the FliTE2 partners. See module 7.1 for more
details.

This toolbox performs the following tasks :

• Output-only (O/O) subspace-based identification, working batch-wise, see modules 3.5, 6.1 and 7.1.
The problem is to identify the eigenstructure (eigenvalues and observed components of the associated
eigenvectors) of the state transition matrix of a linear dynamical system, using only the observation
of some measured outputs summarized into a sequence of covariance matrices corresponding to
successive time shifts. An overview of this method can be found in [3].

• Input-output (I/O) subspace-based identification, working batch-wise, see modules 3.5, 6.1 and 7.1.
The problem is again to identify the eigenstructure, but now using the observation of some measured
inputs and outputs summarized into a sequence of cross-covariance matrices. This method is
described in [15].

• Automatic subspace-based modal analysis, a pre-tuned version of the O/O and I/O identification
methods above. This is described in [59].

http://www.irisa.fr/sisthem/cosmad/
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• Automated on-line identification package, see modules 3.2, 3.5 and 6.1. The main question is to
react to non stationarities and fluctuations in the evolution of the modes, especially the damping.
The developed package allows the extraction of such modes using a graphical interface allowing us
to follow the evolution of all frequencies and damping over time and to analyze their stabilization
diagram (from which they were extracted). Automated modal extraction is performed based on the
automated analysis and classification of the stabilization diagram. For this method, see [60], [61],
[53].

• Automatic recursive subspace-based modal analysis, a sample point-wise version of the O/O and
I/O identification algorithms above. For this method, see [52].

• Subspace-based identification through moving sensors data fusion, see modules 3.2 and 3.5. The
problem is to identify the eigenstructure based on a joint processing of signals recorded at different
time periods, under different excitations, and with different sensors pools. The key principles are
described in [7] and a consistency result can be found in [9].

• Damage detection, working batch-wise, see modules 3.3, 3.5, and 4.2. Based on vibrations measure-
ments processing, the problem is to perform early detection of small deviations of the structure w.r.t.
a reference behavior considered as normal. Such an early detection of small deviations is manda-
tory for fatigue prevention. The algorithm confronts a new data record, summarized by covariance
matrices, to a reference modal signature. The method is described in [1], [4].

• Damage monitoring, a sample point-wise version of the damage detection algorithm above. This is
described in [57].

• On-line flutter onset detection, see modules 3.3, 3.5, 4.2 and 6.4. This algorithm detects that one
damping coefficient crosses a critical value from above. For this method see [8]. An extension to
detect if some subset of the whole modal parameter vector varies with respect to a threshold value,
applies directly to monitoring the evolution of a set of frequencies or a set of damping coefficients
with respect to their reference values [22], [24].

• Modal diagnosis, working batch-wise, see modules 3.4, 3.5, and 4.2. This algorithm finds the modes
the most affected by the detected deviation. For this method, see [4].

• Damage localization, see modules 3.4, 3.5 and 4.2. The problem is to find the part of the structure,
and the associated structural parameters (e.g. masses, stiffness coefficients), which have been
affected by the damage. We state and solve this problem as a detection problem, and not an (ill-posed)
inverse estimation problem. This is explained in [4]. This module has been completely rewritten by
Wensong Zhou and is now much easier to use [17], [34].

• Optimal sensor positioning for monitoring. At the design stage of the monitoring system, a criterion
is computed, which quantifies the relevance of a given sensor number and positioning for the purpose
of structural health monitoring. For this criterion, see the articles [44], [42].

The modules have been tested by different partners, especially the French industrial partners, EADS, Dassault
and Sopemea, within the FliTE2 project (see module 7.1), by partners within the CONSTRUCTIF project (see
module 8.1) [32], [31] and bilateral contracts. Based on intensive internal evaluation of the toolbox, on both
simulated and real data sets, EADS Space Transportation and CNES are currently investigating how to use the
toolbox for the exploitation of the next Ariane 5 flight data sets [26], [30].

This Scilab toolbox continues to play the role of a programming and development environment for all our
newly designed algorithms. Moreover, offering a maintained Scilab platform turns out to be a crucial factor in
convincing industrial partners to undergo joint investigations with us.

6. New Results
6.1. Eigenstructure identification

Keywords: automated identification, input-output identification, modal analysis, output-only identification,
subspace–based method.
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Participants: Michèle Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel.

See modules 3.2, 3.5, 4.2. 7.1.

6.1.1. Improving subspace identification by modal basis change.
Usually subspace identification is a one step procedure working on user selected time series. Without prior
knowledge, sensors with little to no information about the desired modes do not bring information to the
identification procedure. They may even degrade the identification results, especially for damping estimates.
The idea of this work is to use the result of a first step identification to obtain raw mode-shapes estimates.
Then, the mode-shape matrix allows us to project the data in modal basis, allowing to obtain a set of time
series with - a priori - more pertinent information. Then, the subspace identification is applied to the projected
time series. Early results show improvements in the identification of the modes, provided that the estimation
of the mode-shapes in the first step is good enough. The work will be presented at IMAC’07 [25].

6.1.2. Properties of subspace identification methods.
The article describing and comparing output-only and input/output covariance-driven subspace identification
methods (see 2005 activity report) has been published [15].

The article describing the general framework encompassing most well known subspace approaches (either
output-only or input/output, should they be covariance, data or frequency driven), and proving general
consistency theorems for subspace methods under non stationary excitation, has been accepted for publication
in an IEEE journal [14].

6.1.3. Automated modal analysis.
Different case studies have been performed to test the capacity and robustness of the on-line monitoring
method implemented in the COSMAD toolbox, see module 5.1. The results of the analysis of long datasets
from different scenarios in the Bradford Stadium (international benchmark) [23] have been submitted to a
special issue of an international journal.

6.1.4. Time series simulation.
Being able to generate large time series is critical for many of our applications. Extensions and variants of
our time series simulator (see 2004 and 2005 activity reports) encompass the crudest linear recursion white
noise simulator up to a FRF driven time series simulator. This simulator is a key tool for many application
cases, including flutter case generation, time series simulation from FRF at specific temperatures [67], and
time series simulation for model validation [28].

A time series simulator has been programmed and will be included in the Scilab toolbox when the GUI is
completed.

Further work on time series simulation is reported in module 6.4.

6.2. Change/damage detection, isolation, and diagnostics
Keywords: CUSUM algorithms, change detection, nuisance parameters, null space computation.

Participants: Michèle Basseville, Albert Benveniste, Simon Berger, Maurice Goursat, Laurent Mevel, Hous-
sein Nasser, Wensong Zhou.

See modules 3.3, 3.4, 6.4 and 6.5.

6.2.1. Null space computation for subspace-based detection.
The subspace-based residual has been initially introduced as in (18), namely with a parametric left kernel
U(θ0) computed as displayed in (15).
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6.2.1.1. QR computation.

In Nasser’s PhD thesis, a new computation scheme has been proposed for the subspace-based residual. This
computation is based on a QR factorization of the matrix built by putting together the observability matrix
corresponding to the reference model and the Hankel matrix built from the fresh data. The QR factorization
ensures that the left kernel U is strictly orthogonal to the reference observability even in the presence of noise.
The triangular form of the QR factorization allows also the resulting residual to be of smaller size, which is
critical, for the damage detection procedure.

Both the Jacobian and covariance matrices associated with this residual are also of smaller dimensions,
reducing the computational burden of the algorithm. Experimentally, this algorithm has been shown to exhibit
a better behavior than the previous algorithm, especially in validation problems where less correlations seem
to be required in order to achieve sufficient contrast between the reference and the "damaged" states.

6.2.1.2. Empirical null space.

It turns out that it some cases it may be of interest to compute an empirical left kernel, based only on a
reference dataset, and not on a reference signature. Performing a SVD of the empirical Hankel matrix built on
the reference dataset provides us with such an empirical kernel. Such an approach is used e.g. in [51], [68].

When multiple reference datasets are available, as e.g. when handling the temperature effect, see module 6.5,
a global empirical Hankel matrix is computed by averaging the empirical Hankel matrices corresponding to
each reference dataset, and a global empirical left kernel can then be computed as above [21], [36].

This approach has been applied to data of different types, in addition to the two test-cases investigated
within CONSTRUCTIF, see modules 6.5 and 8.1. The results obtained while processing data from two new
application areas, seismic and MEMS, respectively, are explained below.

6.2.2. FRF driven subspace-based detection.
In [67], the damage detection test was adapted to handle the (common) case where the available inputs are
frequency response functions (FRF), and not time series data. The residual (18) was computed by simulating
time series and correlation matrices were derived from impulse response functions (IRF), which result from
the inverse Fourier transform of the FRF.

A new version of the test has been proposed this year. The covariance matrix is now the result of the averaging
of multiple repetitions of FRF measurements. This method has been successfully tested on cantilever data
[27], this is explained below.

6.2.3. New application areas.
This year, we have been involved in investigations regarding two applications in domains which we never
investigated before. The first one was known to us to be a relevant test case for the methods we design, the
second one is a bit more surprising.

6.2.3.1. Earthquake monitoring.

Earthquake data are typically very short and highly non stationary. The small sample size does not guarantee a
good identification, and does not ensure that the usual computation scheme of the residual covariance works. It
implies that the test fails to detect damage in that problem. To compensate for poor identification, the empirical
kernel technique described above has been used. As for the computation of the covariance matrix, the classical
scheme cuts the signal in different parts, computes a residual on each of those parts, and averages the different
residuals. For earthquake data, not enough residuals can be obtained to get a good estimate of the covariance.

Bootstrap techniques have been investigated and tested successfully. Sub-sampling of the residual sequence
is performed. Experimentally, it has been shown that the computation of the residual covariance matrix is
improved, and that higher contrast is obtained for detecting the evolving damage of the soil under earthquake
pressure. This work has been submitted to the Mini-symposium on Identification Methods in Structural
Dynamics organized for the ECCOMAS Thematic Conference: 1st International Conference on Computational
Dynamics and Earthquake Engineering, which we have been invited to participate to.
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6.2.3.2. MEMS.

Micro-electro-mechanical systems (MEMS) has brought both opportunities and challenges to the field of
structural dynamics in a different scale, owing primarily to its interdisciplinary nature of research and
extremely small feature size. An application of the MEMS is to detect a target mass particle attached
eccentrically to a microcantilever by measuring three-dimensional modes in the microcantilever vibration
spectrum. A technique of current interest is the use of scanning probe microcantilevers, initially developed
for imaging purposes in scanning force microscopy, for sensing applications. Recent studies have shown that
microcantilevers can be fabricated which have sensitivities into the attogram regime. A major objective is to
detect the variation in mass on such structures. It has been shown that the addition of a target mass particle can
be detected by measuring multiple three dimensional modes in the micro cantilever spectrum. Our objective
is to apply subspace identification and detection techniques to the MEMS structures. One particular feature of
this application lies in the fact that only direct FRF (frequency domain) measurements are collected.

For the cantilever data, multiple measurements were performed on "similar" structures. The new FRF method
described above exhibited good capabilities to average the modal structures of these "similar" cantilevers [27].
As opposed to [67], the new approach is based on the computation of the empirical kernel, and requires neither
the identification of some model nor the simulation of the corresponding data.

6.2.4. Handling nuisance parameters.
The investigation [45], [46] of the handling of nuisance parameters in systems monitoring has been pursued.
Parameter orthogonality, as expressed in the Fisher information matrix being block-diagonal, is known to be a
key issue for investigating the coupling between two subsets of components of the parameter vector [43]. The
extension of this orthogonality property, to the case of estimating functions other than in maximum likelihood,
is an insensitivity property expressed with the aid of sub-matrices of the sensitivity matrix of the considered
estimating function. This sensitivity matrix, rather than the Fisher information matrix, should play a role in
nuisance parameter rejection.

6.2.5. Handling FEM for damage localization.
The aim of the post-doctoral sojourn of Wensong Zhou has been to improve the computation and clustering of
the sensitivities JΦθ in (7), based in particular on sub-structuring techniques of common use within the FEM
community. Actually, the damage localization tests are obtained by plugging aggregated sensitivities of the
modes and mode-shapes w.r.t. FEM structural parameters.

The technique has been tested on the numerical bridge of É. Balmes used in H. Nasser’s PhD thesis. This
simulation involves approximately 10000 elements. The technique was able to detect the damage correctly.
This work implied to rewrite the Jacobian by removing the influence of the damping coefficients from the
computation of the sensitivities.

Moreover, considering the large number of physical elements and the small number of sensors and modes,
an identifiability problem appears. Some elements are indistinguishable from others from the point of view
of the test. Macro clusters have to be considered. An evaluation of the geometrical relevance of the statistical
clustering operation has been done. It has been shown that the clusters tend to be convex and that they aggregate
when the desired size of the cluster rises [17], [34].

6.3. Model validation
Keywords: modal analysis, model validation, subspace–based method.

Participants: Michèle Basseville, Albert Benveniste, Gilles Canales, Laurent Mevel.

See modules 3.3, 3.5, 4.2.



16 Activity Report INRIA 2006

The main problem for identification techniques in general is to obtain confidence intervals and more generally
to assess information about some previous identification techniques output. This problem is also known as
the model validation problem. It can be seen as a first step before doing any damage detection test, because
damage detection techniques, should they be identification driven or (better) model driven, need to be fed with
a reference signature, which must be as close as possible to the reference data. So, obtaining the best identified
signature is required both as the output of the identification procedure and as the input of any damage detection
procedure.

In [28], it has been shown that damage detection technique can be used to check if some given signature
corresponds to some record. The method has been shown to work well but suffers from heavy computational
task. This year, using the QR factorization of H. Nasser’s thesis and a Quasi-Newton approach, a validation
algorithm has been developed to perform the search for the identified model best matching the given record.
The QR approach, by forcing the orthogonalization of the different terms of the damage detection residual,
reduces the effect of noise and thus does not require as much correlation as the classical SVD driven
factorization. The Quasi-Newton approach ensures that no exhaustive search is done and that the best path
from the initial condition to the optimal point is obtained in a minimal number of steps. The function to
minimize is the result of the statistical test for a candidate modal parameter with the reference model in input.
The gradient is computed by finite-difference formula. The inverse of the Hessian matrix is approximated by
an iterative formula at each step of the minimization algorithm, namely the BFGS formula. The linear search
performed at each step of the minimization algorithm was done with the Goldstein-Price criteria, for it does
not require to compute the gradient at each step.

Since computing the value of the statistical test is very time consuming, special care was taken to avoid
redundant computing, especially regarding quantities depending only on the reference data. The original
algorithms were thus cleaned and rewritten for the purpose of this model validation algorithm. This work
was the subject of Gilles Canales’s Master Thesis. The second problem in the model validation setup is
to obtain confidence intervals from both the record and the identified model. In [18], [40], some formulae
has been proposed for obtaining these confidence intervals using the Jacobian and the covariance matrices
from the damaged detection procedure, linking both identification and detection problems, see module 3.5.
Experimental results on that matter have been reported in [29] and [13]. The tricky part of this work was to
avoid ill conditioning in the computation of the covariance matrix.

6.4. Flutter monitoring and onset detection
Keywords: CUSUM test, aeronautical structure, flutter, modal analysis, subspace-based residual.
Participants: Michèle Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel, Wensong Zhou, Rafik
Zouari.

See modules 3.3, 3.5, 4.4 and 7.1.

In a previous study, we have investigated the flutter monitoring problem, see modules 4.4 and 7.1, stated
as a statistical hypotheses testing problem regarding a specified damping coefficient which crosses a critical
value from above. In [8], we have advocated for an on–line test built on a sample-wise temporal data-driven
computation for the subspace–based residual (18), a non-local approximation for that residual (different from
the local approximation in module 3.4), and the cumulative sum (CUSUM) test [5], see also module 6.2.

6.4.1. Different criteria for flutter monitoring.
The more realistic problem of monitoring two pairs of eigenfrequencies and damping coefficients subject to
specific time variations has been addressed in [22]. From the physics of the flutter phenomenon, it may be
assumed indeed that two modes evolve until super-imposition at an unknown time instant, and monitoring
the difference in the two frequencies has been shown to be relevant as well. The real challenge of this
parameterization is the lack of any calibration data corresponding to the (unknown) modal state associated
to the crossing scenario. It has been experimentally shown that, when calibrated to react to a given crossing
scenario, the test also reacts correctly to other crossing scenarios, even if the two frequencies cross each other
at another position in the frequency domain.
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None of these approaches uses any model of the underlying physical phenomenon. The aim of the doctoral
thesis of Rafik Zouari is to investigate the use of (reduced) aero-servo-elastic models for the design of flutter
detection tests, and calibrate the trade-off between complexity, efficiency and robustness of the resulting
algorithm. This is done within the framework of FliTE2, in particular in collaboration with J. Cooper,
U. Manchester, see module 7.1.

During the first year of his thesis, Rafik Zouari has investigated different ways to involve the coupling between
two modes and mode-shapes within the framework of our on-line CUSUM test for flutter monitoring. A new
flutter criterion has been proposed based on the classical flutter margin theory. This criterion involves both the
frequency and damping coefficient of the two considered modes, by forcing some 4th order equation to remain
stable (Rough-Hurwitz criterion). From this so-called flutter margin, two expressions of a new Jacobian matrix
have been proposed. One is computed from the continuous modes, the second uses the discrete modes as input.
Both methods have been tested on a 2DOF aero-elastic model of two modes. These two flutter criterions are
based on the monitoring of the frequency and damping coefficient as the source of flutter.

Other approaches consider that the mode shapes exhibit some specific behavior when flutters occurs. A new
criterion based on the MAC, the correlation between mode shapes, has been developed. The MAC criterion
has been tested on a 2D airplane wing model. Successful results of flutter monitoring and comparison with
both the analytical modes and flutter margin criterion built on identification results have been published in
[35], [33].

6.4.2. Simulation of flutter phenomena.
Rafik Zouari has developed a 2DOF model of the flutter phenomenon, in order to test the flutter algorithms
on simulated time series exhibiting a realistic flutter phenomenon. During the master thesis of Sirine Maalej,
a 2D airplane wing has been developed, with the help of Wensong Zhou. This simulator is able to generate
multi-sensor time series and will be our in-house benchmark for testing the flutter monitoring algorithms.

6.4.3. Comparing identification and detection approaches to monitoring.
A common monitoring approach views monitoring as an online identification problem. At each time step,
the desired parameters must be re-identified from a data batch. A less standard monitoring approach views
monitoring as an online detection problem. At each time step, the only issue addressed is whether the desired
parameters have changed or not, and a possible deviation with respect to a reference parameter vector is tested.

An article introducing and comparing subspace-based identification and detection algorithms for online in-
flight vibration-based monitoring is currently under revision for publication in a special issue on Applications
of System Identification for the IEEE Control Systems Magazine.

6.5. Handling the temperature effect
Keywords: civil engineering structures, modal analysis, temperature effect.

Participants: Michèle Basseville, Maurice Goursat, Laurent Mevel, Houssein Nasser.

See modules 3.4, 3.5, 4.3 and 8.1.

This work is performed within the framework of the CONSTRUCTIF project, see module 8.1.

The PhD thesis of Houssein Nasser addresses the problem of rejecting the temperature effect when performing
damage detection tests on civil structures. Because of the temperature effects, the test may not react to some
damages, and conversely may be too sensitive to some ambient temperature changes.

6.5.1. Three approaches.
Three different methods have been proposed for overcoming these drawbacks. The first one [62] [19], [16]
uses the simplified temperature model relating the modal parameter of interest with the ambient temperature
developed last year. The method consists in computing the Jacobian of the modal parameters with respect to
the ambient temperature, and considering the temperature as a nuisance parameter. Thus, the damage detection
test monitors the structural damage under the hypothesis that the temperature is a nuisance parameter.
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The second method involves the computation of a finite elements model (FEM) and assumes that the
temperature (or any equivalent measure of the ambient state) is measured. Then, knowing the ambient state and
a reference signature at some reference ambient state, and modifying the stiffness according to the temperature
model embedded in the FEM, we got the values of the computed modes at the ambient state. Then, the damage
detection test can be performed with respect to this temperature dependent safe hypothesis [20].

The third approach is based on the collection of varying reference temperature datasets, and on the computation
of the Hankel matrix and its kernel associated to all the datasets. This provides us with a reference kernel
averaging all the temperature scenarios [21], [36]. Method 2 and Method 3 have been tested successfully
on a bridge deck simulation case provided by E. Balmes (MSSMat, ECP). Validation on the data from the
laboratory test beam provided by F. Treyssède (LCPC) was performed this year.

6.5.2. Link between modal filters and temperature rejection.
With the new advances in sensors and network technologies, the amount of data that can be collected in real
time is increasing. For vibration-based damage detection, many algorithms are not suited to deal with hundreds
or thousands of sensors. It is therefore necessary to reduce this huge amount of data, keeping only the relevant
information about the damage to be detected.

We are collaborating with A. Deraemaeker from ULB to investigate the performance of a damage detection
algorithm working on modal filters data instead of raw time series. Typically, for a structure equipped with
hundreds of sensors, the data reduction resulting from the modal filter algorithm consists in a number of
distributed sensors equal to the number of modes in the frequency band of interest (i.e. generally 10 to 20). This
is much less than the total of number of sensors and a number much more consistent with the computational
requirements of our damage detection test.

In order to study the effect of the data reduction, we use data from a simulated model of a bridge. This model
was used at ULB in the past to investigate the possibility of removing the effects of environment from the
measurements. The bridge is equipped with a large number of sensors, and subject to different temperature
changes (which affect its structural behavior through temperature dependent materials). Data are available
for the undamaged as well as the damaged case, and for a large number of temperature cases. The damage
detection procedure is applied with and without data reduction. The environmental effects are removed by
techniques described in Nasser’s thesis. The investigation of the effects of the data reduction is currently under
way.

7. Contracts and Grants with Industry

7.1. Eurêka project FliTE2
Participants: Michèle Basseville, Albert Benveniste, Simon Berger, Maurice Goursat, Laurent Mevel, Rafik
Zouari.

See modules 4.2, 4.4, 5.1, 6.1 and 6.4.

Contract INRIA — SEPTEMBER 2005/AUGUST 2008.

We have been strongly contributing to the establishment of a follow-up of a major cooperation within the
Eurêka framework. The Eurêka project no 3341 FliTE2 («Flight Test Easy Extension») is devoted to improving
the exploitation of flight test data, under natural excitation conditions (e.g. turbulence), enabling more direct
exploration of the flight domain, with improved confidence and at reduced cost. It is coordinated by the
industrial test laboratory Sopemea. As in FliTE the partners are Dassault–Aviation and EADS (AeroMatra
Airbus) (France), LMS and KU Leuven (Belgium), Cracow University and the company PZL–Mielic (Poland),
and INRIA. The partnership is extended to ONERA/CERT, to Lambert Aircraft Engineering, an SME building
light aircrafts, and to the Dynamics and Aero-elasticity Group of Manchester University. Albert Benveniste
helps Sopemea in the scientific coordination of the project.
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In FliTE, the basis for novel techniques for in-flight test data structural analysis was developed, involving both
controlled and uncontrolled (natural) excitations. The main objective of FliTE2 is the effective transfer of the
results of FliTE to aircraft manufacturers. To this end, the project has been structured into working groups
addressing transfer to each industrial and driven by them, e.g. WGs are driven by ONERA (with Airbus),
Dassault-Aviation, SOPEMEA and LMS on ground vibration tests, and PZL and AGH on environmental tests.
A selected subset of academic partners is involved in each WG. In addition, an extra WG, driven by Laurent
Mevel (INRIA) and Jonathan Cooper (Manchester University), is devoted to research on aero-elastic flutter
monitoring and prediction. This new organization is effective from January 2006.

7.2. SAMCO network and association
Participant: Michèle Basseville.

See modules 4.2, 4.3 and 5.1.

Contract CNRS 500232 — FEBRUARY 2002/MARCH 2006.

The FP5 Growth thematic network SAMCO has been launched in October 2001 within the framework of the
Growth program. It aims at becoming a focal point of reference in the field of assessment, monitoring and
control of civil and industrial structures, in particular the transportation infrastructure (bridges, etc.). Several
partners of the network have proposed our participation, and we became a participating member, involved
especially in the thematic group «Monitoring and Assessment». This turns out to be a useful complement to
the diffusion of our knowledge and expertise in vibration monitoring.

Within this framework, we have offered Scilab as an open platform for the integration of the modules for
algorithms and methods covering the objectives of automatic modal analysis, automatic modal and statistical
damage detection methods. We have also offered the Scilab modal analysis modules, see module 5.1.

This year, we have been involved in the final workshop on the achievements and the future of the network
[37]. During that workshop, the European Association for SAMCO was founded.

7.3. EADS Space Transportation
Participants: Maurice Goursat, Laurent Mevel.

See modules 4.2, 4.4 and 5.1.

Collaboration with EADS is going on. A case study investigated by EADS using our COSMAD software has
been the topic of two joint conference papers [26], [30].

We have been contacted for participating into the Aerospace IDF pole. In this framework, we have applied
for being involved and funded in two investigations. The first one is concerned with the use of output-only
subspace-based identification methods for improving the models of spatial vehicles obtained by processing
flight test data.

The second one, stated as a PhD subject, addresses the issues of quantifying the uncertainty in estimates from
flight test data and validating the resulting models.

8. Other Grants and Activities

8.1. Ministry grant CONSTRUCTIF
Participants: Michèle Basseville, Maurice Goursat, Laurent Mevel, Houssein Nasser, Wensong Zhou.

See modules 4.2, 4.3, 5.1, 6.2 and 6.5.

Contract INRIA 1 03 C 1559 — 16 JULY 2003/15 JULY 2006.
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This project, within the framework of the ACI Sécurité & Informatique, is coordinated by Laurent Mevel. Our
partners are LMSSMat (Laboratoire de Mécanique des Sols, Structures et Matériaux, École Centrale de Paris
and CNRS), LCPC/SMI (Laboratoire Central des Ponts et Chaussées, Service Métrologie et Instrumentation,
Paris and Nantes), and the INRIA project-team MACS (Rocquencourt).

The objectives of the project are, on the one hand, the intrinsic coupling of statistical models of sensor data
with fine models of the physical phenomena governing the instrumented structures, and, on the other hand,
the mixing of statistical inference, data assimilation, finite element model updating and optimization methods
for structural dynamics. The investigation of potential mutual benefits of criteria used for different purposes
by various methods designed in different scientific communities, is the central axis of the project. The main
object of the study is the intrinsic involvement of the temperature effect, which is a generic issue for vibration
monitoring of civil engineering structures.

Expanding on the joint paper with Dominique Chapelle (MACS) [62], we have proposed three methods to
handle the temperature effect in damage detection. Those methods are presented in module 6.5. Collaboration
has been enforced between CONSTRUCTIF partners. Étienne Balmès (MSSMat) has provided us with a sim-
ulated bridge deck FEM with embedded temperature variation. Fabien Treyssède (LCPC/SMI) has progressed
on a laboratory beam experiment to test the proposed techniques and has also developed some temperature
models for structural structures and especially beam structures. The case studies and the temperature models
have been considered by Houssein Nasser and are part of his PhD thesis, as part of either his methods or the
validation datasets.

Our damage localization method sketched in module 3.4 builds on the computation and clustering of the
sensitivities JΦθ in (7). This method suffers from some limitations: some finite elements may be impossible
to separate from a statistical point of view. During his post-doctoral sojourn, Wensong Zhou has investigated
macro-classes generation by designing an update of the classification approach to model reduction proposed
in [44]. The results obtained on a realistic bridge deck simulator provided by Étienne Balmès have been
encouraging [17], [34].

8.2. FWO Research Network ICCoS
Participants: Michèle Basseville, Albert Benveniste, Maurice Goursat, Laurent Mevel.

We participate to the Scientific Research Network «Identification and Control of Complex Systems» (ICCoS)
launched by the Research Foundation of Flanders (FWO). This network is dedicated to national and interna-
tional cooperation at postdoctoral level for the development of identification and control design methodologies.
This year, we have been invited to deliver a tutorial talk - see module 9.2.

9. Dissemination

9.1. Scientific animation
M. Basseville is member of the evaluation committee of the Security and Computer Science program (ANR
SetIn) launched by the National Agency for Research.

She is co–chair of the IFAC technical committee 6.4 «Fault Detection, Supervision and Safety of Technical
Processes», within the coordinating committee 6 «Industrial Applications», and member of the technical
committees 1.1 «Modeling, Identification and Signal Processing» and 1.4 «Stochastic Systems», within the
coordinating committee 1 «Systems and Signals».

She is associate editor for the IFAC journal «Automatica».

A. Benveniste is associated editor at large (AEAL) for the journal IEEE Transactions on Automatic Control and
member of the editorial board of the journal Proceedings of the IEEE. He is member of the Strategic Advisory
Council of the Institute for Systems Research, Univ. of Maryland, College Park, USA.
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9.2. Conference and workshop committees, invited conferences
9.2.1. Committees.

M. Basseville is associate editor within the IEEE Control Systems Society Conference Editorial Board, where
she has been and still is in charge of the evaluation of papers submitted to ACC’06, CDC’06, and ACC’07.
She has been member of the international program committee of SYSID’06, Safeprocess’06 and CIFA’06.

She has organized an invited session on System Identification and Detection for Flight Test Data Analysis,
for the 14th IFAC/IFORS Symposium on Identification and System Parameter Estimation - SYSID’06, in
Newcastle, Australia, in March 2006.

9.2.2. Invited publications and submissions.
The team has been invited to submit a paper to:

• The special issue on Applications of System Identification of the IEEE Control Systems Magazine.
An article entitled «In-flight monitoring of aeronautical structures: vibration-based online automated
identification versus detection» is under review;

• The special issue on Advances in Subspace-Based Techniques for Signal Processing and Communi-
cations of the EURASIP Journal of Applied Signal Processing. An article entitled « Subspace-based
algorithms for structural identification, damage detection, and sensor data fusion» has been accepted
[12];

• A special session on Validation Approaches for Structural Health Monitoring at the 24th Interna-
tional Modal Analysis Conference which took place in Saint Louis, MI, in January 2006. A tutorial
paper has been presented [18];

• A special session on Spatial Distribution of Damage at the 4th World Conference on Structural
Control and Monitoring in San Diego, CA, in July 2006 [17];

• A special session on Flight Flutter Testing and Analysis at the International Conference on Noise
and Vibration Engineering in Leuven, B., in September 2006 [35].

9.2.3. Invited presentations.
In addition to presentations with a publication in the proceedings, members of the SISTHEM project–team
have also given the following presentations.

We have been invited to deliver a tutorial talk during the FWO Research Network ICCoS Workshop [40].

Albert Benveniste has been invited speaker at the event in honor of the 60th birthday of Lennart Ljung [13].

Michèle Basseville has presented Sisthem’s views on advanced sensor data processing for structural health
monitoring during the final workshop of the Growth network SAMCO as part of the research agenda [37].

Technical details on these issues have been presented at the working group on safety, monitoring, and
supervision of the French GDR MACS [39].

The joint handling of physical models and statistical concepts has been explained with in a seminar at the
Brittany extension of ENS Cachan [38].

9.3. Visits and invitations
Palle Andersen, Managing Director of Structural Vibration Solutions A/S (SVIBS), Aalborg, Denmark, visited
us a couple of days in March 2006. SVIBS is promoting ARTeMIS, a commercial modal identification
software, and is interested in our know-how on damage detection and localization. The ongoing work consists
in sharing real data, possibly coming from major places outside Europe, and comparing identification and
detection results obtained with either ARTeMIS or COSMAD - see modules 5.1 and 6.2.
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Souha Bahlous, teaching assistant at the Institut Supérieur des Technologies de l’Environnement de
l’Urbanisme et du Bâtiment (ISTEUB), and member of the Laboratoire de Systèmes et de Mécanique
Appliquée (LASMAP), visited us during half a week in May 2006. She has given a seminar on her PhD work
about modal filtering and statistical approach to structural damage diagnostics from ambiant vibration data.

Arnaud Deraemaecker, FNRS Postdoctoral Researcher in the Active Structures Laboratory (ASL) of Univer-
sité Libre de Bruxelles (ULB), spent a couple of days with us in May 2006, with the objective of establishing
a cooperation between our two groups. One topic of joint interest is the investigation of the potential benefit
of the use of spatial filters as a forefront for reducing huge amount of data before applying our subspace-based
damage detection algorithms. The application example for this investigation is a laboratory test-case available
at ASL, and subject to a varying temperature environment. See module 6.5 for more details. Houssein Nasser
will spend one year there as a post-doc on this topic.
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